diff --git a/data_analysis/diode.py b/data_analysis/diode.py index 4c4a55d256f8377dc39176f38def027730516d6b..5d451047e338236c44cdb1356cb5af498da656cb 100644 --- a/data_analysis/diode.py +++ b/data_analysis/diode.py @@ -1,17 +1,119 @@ import numpy as np import semiconductor as sc +from scipy.optimize import fsolve +def ideal_diode(Vbias,Is,n=1, temp=300): + + """ Function to calculate the current in an ideal diode + + args: + - Vbias (scalar or sequence): the bias voltage of the diode + - Is (scalar): the saturation current of the diode + - n (scalar): the ideality factor of the diode, 1 for radiative recombination, 2 for SRH recombination + - temp (scalar): the temperature + + return: + - a scalar or sequence with same dimension as Vbias + """ + + kB = 1.38e-23 # J/K + q = 1.602e-19 # C + + return Is * (np.exp(q * Vbias / (n * kB * temp)) -1 ) + + +def two_diodes(Vbias,Is1,Is2,n1=1,n2=2, temp=300): + """ Function to calculate the current for a two diodes model + + args: + - Vbias (scalar or sequence): the bias voltage of the diode + - Is1 (scalar): the saturation current of the first diode + - Is2 (scalar): the saturation current of the second diode + - n1 (scalar): the ideality factor of the first diode, 1 for radiative recombination, 2 for SRH recombination + - n1 (scalar): the ideality factor of the second diode, 1 for radiative recombination, 2 for SRH recombination + - temp (scalar): the temperature + + return: + - a scalar or sequence with same dimension as Vbias + """ + kB = 1.38e-23 # J/K + q = 1.602e-19 # C + + return Is1 * (np.exp( q * Vbias / (n1 * kB * temp)) -1 ) + Is2 * (np.exp( q * Vbias / (n2 * kB * temp)) -1 ) + +def two_diodes_with_resistances(Vbias,Is1,Is2,n1=1,n2=2, temp=300, Rs=0, Rsh=float("inf")): + """ Function to calculate the current for a two diodes model by taking into account the series and shunt resistances + + args: + - Vbias (scalar or sequence): the bias voltage of the diode + - Is1 (scalar): the saturation current of the first diode + - Is2 (scalar): the saturation current of the second diode + - n1 (scalar): the ideality factor of the first diode, 1 for radiative recombination, 2 for SRH recombination + - n1 (scalar): the ideality factor of the second diode, 1 for radiative recombination, 2 for SRH recombination + - temp (scalar): the temperature + - Rs (scalar): the serie resistance + - Rsh (scalar): the shunt resistance + + return: + - a scalar or sequence with same dimension as Vbias + """ + + kB = 1.38e-23 # J/K + q = 1.602e-19 # C + + + if isinstance(Vbias, (int,float)): + I = fsolve(lambda x:Is1 * (np.exp( q * (Vbias - Rs * x) / (n1 * kB * temp)) -1 ) + Is2 * (np.exp( q * (Vbias - Rs * x) / (n2 * kB * temp)) -1 ) + + (Vbias - Rs * x ) / Rsh - x,x0=two_diodes(Vbias,Is1,Is2,n1,n2, temp)) + else: + I=np.zeros(len(Vbias)) + i=0 + for v in Vbias: + I[i] = fsolve(lambda x:Is1 * (np.exp( q * (v - Rs * x) / (n1 * kB * temp)) -1 ) + Is2 * (np.exp( q * (v - Rs * x) / (n2 * kB * temp)) -1 ) + + (v - Rs * x ) / Rsh - x,x0=two_diodes(v,Is1,Is2,n1,n2, temp)) + return I def depletion_length(doping_in, doping_out, Vbias=0,temp=300): + """ Function to calculate the depletion length in a pn junction + + args: + - doping_in (scalar): the doping in the region for which the depletion length has to be calculated + - doping_out (scalar): the doping in the adjacent region for which the depletion length has to be calculated + - Vbias (scalar): the bias voltage of the pn junction + - temp (scalar): the temperature + + return: + - a scalar with the depletion length calculated in one region + """ + + kB = 1.38e-23 # J/K + q = 1.602e-19 # C + epsilon_0 = 8.8542e-12 # F/m + epsilon_si = 11.7 + phi_0 = kB * temp / q * np.log(doping_in * doping_out / sc.intrinsic_concentration(temp)**2 ) return np.sqrt(2 * epsilon_si * epsilon_0 / q * doping_out / doping_in / (doping_in + doping_out) * (phi_0 - Vbias)) -def j_srh(mu_n,mu_p,ND,NA,tau=1e-7,temp=300,Vbias=0): - +def j_srh(Vbias,ND,NA,tau=1e-7,temp=300): + """ Function to calculate the Shockley-Read-Hall contribution to the current density in a pn junction + + args: + - Vbias (scalar): the bias voltage of the pn junction + - ND (scalar): the donor doping concentration in the n region + - NA (scalar): the acceptor doping concentraion in the p region + - tau (scalar): the global lifetime associated to the SRH mechanism + - temp (scalar): the temperature + + return: + - a scalar with the SRH current density calculated + """ + kB = 1.38e-23 # J/K + q = 1.602e-19 # C + ld_n = depletion_length(ND, NA, Vbias) ld_p = depletion_length(NA, ND, Vbias) ni = sc.intrinsic_concentration(temp) - x=(ld_p + ld_n) # approximation by considering only the depletion region without diffusion mechanism + x=(ld_p + ld_n) # approximation by considering only the depletion region without diffusion mechanism, gives an upper limit as the effective length is always below coeff_SRH = q * ni * x / (2 * tau) @@ -19,8 +121,29 @@ def j_srh(mu_n,mu_p,ND,NA,tau=1e-7,temp=300,Vbias=0): -def j_radial(mu_n,mu_p,tau_n,tau_p,ND,NA,ln,lp,temp=300,Vbias=0): - +def j_radiative(Vbias,mu_n,mu_p,tau_n,tau_p,ND,NA,ln,lp,temp=300): + """ Function to calculate the radial contribution to the current density in a silicon pn junction + + args: + - Vbias (scalar): the bias voltage of the pn junction + - mu_n (scalar): the mobility of the electrons + - mu_p (scalar): the mobility of the holes + - tau_n (scalar): the lifetime of the electrons + - tau_p (scalar): the lifetime of the holes + - ND (scalar): the donor doping concentration in the n region + - NA (scalar): the acceptor doping concentraion in the p region + - ln (scalar): the length of the cathode (n-doped region) + - lp (scalar): the length of the anode (p-doped region) + - temp (scalar): the temperature + + return: + - a scalar with the radiative current density calculated + """ + b_rad = 4.76e-15 # cm3/s - low-impurity value entre 1 et 10 + + kB = 1.38e-23 # J/K + q = 1.602e-19 # C + Dn = kB * temp / q * mu_n Dp = kB * temp / q * mu_p @@ -38,15 +161,3 @@ def j_radial(mu_n,mu_p,tau_n,tau_p,ND,NA,ln,lp,temp=300,Vbias=0): return q * ( coeff_radial * (np.exp(q * Vbias/ ( kB * temp)) - 1 ) ) - - -################################################################# -# -# CONSTANTS -# -################################################################# -b_rad = 4.76e-15 # cm3/s - low-impurity value entre 1 et 10 -kB = 1.38e-23 # J/K -q = 1.602e-19 # C -epsilon_0 = 8.8542e-12 # F/m -epsilon_si = 11.7 \ No newline at end of file diff --git a/data_analysis/semiconductor.py b/data_analysis/semiconductor.py index 93121b6d74657d46e3d9f9224109c4def5ca5cfe..53570f554775aa8ebe0509c32a313dabcb866f5c 100644 --- a/data_analysis/semiconductor.py +++ b/data_analysis/semiconductor.py @@ -1,5 +1,6 @@ import numpy as np import mechanics as mec +import scipy.interpolate as interp def mobility_impurity(carrier="n",Ni=1e15,temp=300, dopant="phosphorus"): """ Function to calculate the silicon mobility according to Masetti relation (1983) @@ -166,3 +167,30 @@ def piezoresitivity_strain(strain_tensor, pi11, pi12, pi44): stress_tensor= mec.stress_from_strain(strain_tensor) return piezo_tensor @ stress_tensor + +def piezo_ratio_temperature(temp,carrier="n"): + """ Function to calculate the correcting ratio due to temperature variations for the piezoresistive coefficients. The data are taken from Kanda (1982) between 200 K and 400K. + The correction is refered to the 300K coefficients. The new piezoresistive coefficients can be calculated by piezo_coefficient(temp) = ratio * piezo_coefficient(300K) + + args: + - temp (scalar or sequence): the temperatures for which the correting ratio has to be calculated + - carrier (string): "n" for electrons, "p" for holes + + return: + - a scalar or sequence with the same dimension as temp with the correcting ratio + """ + + temp_kanda1982=np.linspace(125, -75,9)+273 + dpi_kanda1982_n=np.array([0.7547318611987381,0.8067823343848579,0.8611987381703468,0.9298107255520504,1.0007886435331228,1.0977917981072554,1.2113564668769716,1.3438485804416402,1.5165615141955835]) + dpi_kanda1982_p=np.array([0.7523342983957861,0.8037360206464299,0.8598127702627387,0.922894558591104,0.995324258126102,1.0934548187864221,1.205601887444947,1.3411219494071012,1.5093457676819353]) + + fn=interp.interp1d(temp_kanda1982,dpi_kanda1982_n,kind="linear",fill_value="extrapolate" ) + fp=interp.interp1d(temp_kanda1982,dpi_kanda1982_p,kind="linear",fill_value="extrapolate" ) + + if carrier=="n": + return fn(temp) + elif carrier =="p": + return fp(temp) + else: + return 0 + diff --git a/data_analysis/transistor.py b/data_analysis/transistor.py index aa6d59a2c87d934b8fca9b4ec0be426717ad6eed..3976e5b4b7ba8af482052f5092547bb584e50797 100644 --- a/data_analysis/transistor.py +++ b/data_analysis/transistor.py @@ -2,10 +2,25 @@ import data_processing as proc import numpy as np import scipy.interpolate as interp -def threshold_voltage_extraction(i,v,smoothing=True,accuracy=6): # second-derivative method - v_step=np.mean(v[1:]-v[:-1]) +def threshold_voltage_extraction(ids,vgs,accuracy=4): + """ Function to find the threshold voltage of a transistor defined as the voltage where the transconductance gm is maximum, i.e., when the first derivative of the current is maximum or when the second derivative is zero. + The method is based on the second-derivative method from Wong HS, White MH, Krutsick TJ, Booth RV. "Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET’s." Solid-State Electron (1987). + The transistor should be put in linear region (VDS <= VGS-Vth), i.e., with low VDS bias. + The implementation is based on central finite difference to limit the impact of noise for the determination of the threshold voltage. + The numerical derivative is done on accuracy + 1 points, but accuracy should be even + + args: + - ids (scalar): the source to drain current of the transistor (nmos or pmos) + - vgs (scalar): the voltage between the gate and the source of the transistor (nmos or pmos) + - accuracy (integer): related to the number of points taken for the finite difference. For central finite difference, the number of points for a first order derivation is accuracy + 1 but accuracy should be even to guarantee a centered interval. + + return: + - a tuple of two scalars with the threshold voltage found and the transconductance value found at this voltage + """ + + v_step=np.mean(vgs[1:]-vgs[:-1]) - gm,v_gm=proc.finite_difference(i, v_step,order=2,accuracy=accuracy) + gm,v_gm=proc.finite_difference(ids, v_step,order=1,accuracy=accuracy) f = interp.InterpolatedUnivariateSpline(v_gm, gm, k=4) cr_pts = f.derivative().roots() @@ -17,7 +32,27 @@ def threshold_voltage_extraction(i,v,smoothing=True,accuracy=6): # second-deriva return vth, gm_max -def mos_transistor_current(vg,vd,vs=0,vth=0.8,k=1e-4,vea=50,mos_type="nmos",early=True): +def mos_transistor_current(vg,vd,vs=0,vth=0.8,k=1e-4,vea=50,theta=0,mos_type="nmos",early=True): + """ Function to calculate the current in a MOS transistor: + cutoff (vgs < vth) : ids = 0 + triode (vgs - vth >= vds) : ids = k * ( (vgs-vth) * vds - vds**2/2) * (1+(vds)/vea) + saturation (vgs - vth < vds) : ids = k/2 * ( (vgs-vth)**2) * (1+(vds)/vea) + with k = "mobility" * "oxide capacitance" * "width" / "length" where the oxide capacitance is given by the ratio between the permittivity and the oxide thickness, i.e., Cox = epsilon_r * epsilon_0 / t_ox + The mobility degradation is taken into account by replacing k by k / (1 + theta * (vgs - vth)) in the current equation. + + args: + - vg (scalar or sequence): gate voltage of the transistor. Maximum one parameter among vg, vd and vs can be a sequence. + - vd (scala or sequence): drain voltage of the transistor. Maximum one parameter among vg, vd and vs can be a sequence. + - vs (scalar or sequence): source voltage of the transistor. Maximum one parameter among vg, vd and vs can be a sequence. + - vth (scalar): threshold voltage of the transistor + - k (scalar): the gain factor of the transistor + - vea (scalar) : early voltage of the transistor + - theta (scalar) : mobility degradation factor + + return: + - a scalar or sequence with the value of current calculated + """ + if mos_type=="nmos": vth=abs(vth) vds=vd-vs @@ -29,18 +64,20 @@ def mos_transistor_current(vg,vd,vs=0,vth=0.8,k=1e-4,vea=50,mos_type="nmos",earl if vgs<vth: mode="cutoff" - elif vgs>=vds: + elif vgs-vth>=vds: mode="saturation" - elif vg-vs<vds: + elif vgs-vth<vds: mode="triode" + k_theta=k/(1+theta*(vgs-vth)) + if mode=="cutoff": jd=0 elif mode=="saturation": - jd=k/2*(vgs-vth)**2 + jd=k_theta/2*(vgs-vth)**2 elif mode=="triode": - jd=k*((vgs-vth)*(vds)-(vds)**2/2) + jd=k_theta*((vgs-vth)*(vds)-(vds)**2/2) if early: return jd*(1+(vds)/vea)