diff --git a/my_datasets/my_cifar10.py b/my_datasets/my_cifar10.py new file mode 100644 index 0000000000000000000000000000000000000000..7ecd4c31b5e88276dbe6217e23d1023ecabf474b --- /dev/null +++ b/my_datasets/my_cifar10.py @@ -0,0 +1,63 @@ +# Copyright 2015 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""CIFAR10 small images classification dataset. +""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os + +import numpy as np + +from keras import backend as K +from keras.datasets.cifar import load_batch +from keras.utils.data_utils import get_file +from tensorflow.python.util.tf_export import tf_export + + +#@tf_export('keras.datasets.cifar10.load_data') +def load_data(): + """Loads CIFAR10 dataset. + + Returns: + Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. + """ + dirname = 'cifar-10-batches-py' + origin = './' + #path = get_file(dirname, origin=origin, untar=True) + path = '/export/home/adkneip/Documents/PhD/Python3/IMC_Modeling/qnn/my_datasets/cifar-10-batches-py'; + + num_train_samples = 50000 + + x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') + y_train = np.empty((num_train_samples,), dtype='uint8') + + for i in range(1, 6): + fpath = os.path.join(path, 'data_batch_' + str(i)) + (x_train[(i - 1) * 10000:i * 10000, :, :, :], + y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) + + fpath = os.path.join(path, 'test_batch') + x_test, y_test = load_batch(fpath) + + y_train = np.reshape(y_train, (len(y_train), 1)) + y_test = np.reshape(y_test, (len(y_test), 1)) + + if K.image_data_format() == 'channels_last': + x_train = x_train.transpose(0, 2, 3, 1) + x_test = x_test.transpose(0, 2, 3, 1) + + return (x_train, y_train), (x_test, y_test)