Introduction to structured programming with Fortran

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran

1)

Pierre-Yves Barriat

November 09, 2023

CISMICECI Training Sessions

'l UCLouvain

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran

Fortran : shall we start ?

e You know already one computer language ?

e You understand the very basic programming concepts :
o What is a variable, an assignment, function call, etc.?

o Why do | have to compile my code?

o What is an executable?

You (may) already know some Fortran ?

How to proceed from old Fortran, to much more modern languages like Fortran
90/2003 ?

Why to learn Fortran ?

Because of the execution speed of a program

Well suited for numerical computations :
more than 45% of scientific applications are in Fortran

e Fast code : compilers can optimize well

Optimized numerical libraries available

e Fortranisa simple langage and itis (kind-of) easy to learn

Fortran is simple

 We want to get our science done! Not learn languages!
e How easy/difficult is it really to learn Fortran ?

e The concept is easy:
variables, operators, controls, loops, subroutines/functions

e Invest some time now, gain big later!

History

FORmMula TRANSsIation
Invented 1954-8 by John Backus and his team at IBM

e FORTRAN 66 (ISO Standard 1972)
FORTRAN 77 (1978)

Fortran 90 (1991)

Fortran 95 (1997)

Fortran 2003 (2004) —» "standard" version
Fortran 2008 (2010)

Fortran 2018 (11/2018)

Starting with Fortran 77

e Old Fortran provides only the absolute minimum!

e Basic features :

data containers (integer, float, ...), arrays, basic operators, loops, 1/O, subroutines
and functions

e But this version has flaws:
no dynamic memory allocation, old & obsolete constructs, “spaghetti” code, etc.

e Is that enough to write code ?

Fortran 77 — Fortran >90

If Fortran 77 is so simple, why is it then so difficult to write good code?

Is simple really better?
= Using a language allows us to express our thoughts (on a computer)

A more sophisticated language allows for more complex thoughts

More language elements to get organized
= Fortran 90/95/2003 (recursive, OOP, etc)

How to Build a FORTRAN Program N

FORTRAN is a compiled language (like C) so the source code (what you write) must be
converted into machine code before it can be executed (e.g. Make command)

FORTRAN N FORTRAN R L!nk VYIth |
Program Compiler Libraries \

Executable
Code

Source Code Object Code

T

Fortran 77 source code hello world.f

Make Changes Test & Debug Execute
in Source Code Program Program

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/00_hello_world.f

FORTRAN 77 Format

This version requires a fixed format for programs

ROGRAM MAIN
C COMMENTS ARE ALLOWED IF A “C” IS PLACED IN COLUMN #1
IMENSION X(10)

EAD(5, *) (X(I),I=1,10)

RITE(6,1000) X

1000| FORMAT(1X, "THIS IS A VERY LONG LINE OF TEXT TO SHOW HOW TO CONTINUE

*| ‘THE STATEMENT TO A SECOND LINE',/,10F12.4)

< > < >
15 6 7-72 Statements 73-80
Label Optional
Line #s
Any character: continuation line

e max length variable names is 6 characters
e alphanumeric only, must start with a letter

e character strings are case sensitive

FORTRAN >90 Format

Versions >90 relaxe these requirements:

e comments following statements (! delimiter)

e long variable names (31 characters)

e containing only letters, digits or underscore

e max row length is 132 characters

e can be max 39 continuation lines

e if a line is ended with ampersand (&), the line continues onto the next line

e semicolon (;) as a separator between statements on a single line

Program Organization

Most FORTRAN programs consist of a main program and one or more subprograms

There is a fixed order:

Heading

Declarations

Variable i1nitializations
Program code

Format statements

Subprogram definitions
(functions & subroutines)

Data Type Declarations

Basic data types are :

e INTEGER :integer numbers (+/-)

e REAL : floating point numbers

e DOUBLE PRECISION : extended precision floating point
e CHARACTER*n : string with up to n characters

LOGICAL : takes on values .TRUE. Or .FALSE.

Data Type Declarations

INTEGER and REAL can specify number of bytes to use

e Defaultis: INTEGER*4 and REAL*4

e DOUBLE PRECISION IS Same as REAL*8
Arrays of any type must be declared:

e DIMENSION A(3,5) -declaresa 3 x5 array

e CHARACTER*30 NAME(50) - directly declares a character array with 30
character strings in each element

Implicit vs Explicit Declarations

By default, an implicit type is assumed depending on the first letter of the variable
name:

e A-H, 0-z define REAL variables
e I-N define INTEGER variables

Can use the IMPLICIT statement:

IMPLICIT REAL (A-Z)

makes all variables REAL if not declared

Implicit vs Explicit Declarations

‘ IMPLICIT CHARACTER*2 (W)

makes variables starting with W be 2-character strings

‘ IMPLICIT DOUBLE PRECISION (D)

makes variables starting with D be double precision

Good habit: force explicit type declarations

‘ IMPLICIT NONE

user must explicitly declare all variable types

Assignment Statements

Old assignment statement: <label> <variable> = <expression>

e <label> : statement label number (1 to 99999)
e <variable> : FORTRAN variable
(max 6 characters, alphanumeric only for standard FORTRAN 77)

Expression:

e Numeric expressions:. VAR = 3.5*COS(THETA)
e Character expressions. DAY(1:3) = 'TUE'
e Relational expressions: FLAG = ANS .GT. O

e Logical expressions: FLAG = F1 .0OR. F2

Numeric Expressions

Arithmetic operators: precedence: ** (high) —

Operator Function

xx exponentiation
* multiplication

/ division

+ addition

- subtraction

- (low)

Numeric Expressions

Numeric expressions are up-cast to the highest data type in the expression according
to the precedence:

(low) logical — integer — real — complex (high)

and smaller byte size (low) to larger byte size (high)

Examples:

Fortran 77 source code
Fortran 77 source code

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/01_arith.f
https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/02_sphere.f

Character Expressions

Only built-in operator is Concatenation defined by //

‘ ‘ILL'//'-'//"ADVISED'

character arrays are most commonly encountered

e treated like any array (indexed using : notation)

e fixed length (usually padded with blanks)

Character Expressions

Example:

CHARACTER FAMILY*16
FAMILY = ‘GEORGE P. BURDELL’

PRINT*, FAMILY(:6)
PRINT*, FAMILY(8:9)
PRINT*, FAMILY(11:)
PRINT*, FAMILY(:6)//FAMILY(10:)

GEORGE

P.

BURDELL

GEORGE BURDELL

Relational Expressions

Two expressions whose values are compared to determine whether the relation is true
or false
e may be numeric (common) or non-numeric

character strings can be compared

e done character by character

e shorter string is padded with blanks for comparison

Relational Expressions

Operator
LT. Or <
.LE. Or <=
.EQ. oOr ==
.NE. oOr /=
.GT. or >
.GE. Or >=

Relationship
less than
less than or equal to
equal to
not equal to
greater than

greater than or equal to

Logical Expressions

Consists of one or more logical operators and logical, numeric or relational operands

e values are .TRUE. oOr .FALSE.

e need to consider overall operator precedence

can combine logical and integer data with logical operators but this is tricky
(avoid!)

Logical Expressions

F77 Operator >F90 Operator

.AND.
.OR.
.EQV.
.NEQV.
. XOR.

.NOT.

&&

Example

A .AND. B
A .OR. B

A .EQV. B
A .NEQV. B

A .XOR. B

.NOT. A

Meaning
logical AND
logical OR
logical equivalence
logical inequivalence
exclusive OR (same as

logical negation

.NEQV.)

Arrays in FORTRAN
Arrays can be multi-dimensional (up to 7 in F77) and are indexed using () :

e TEST(3) Or FORCE(4,2)

Indices are by default definedas 1...N
We can specify index range in declaration

e INTEGER K(0:11) : K isdimensioned from 0-11 (12 elements)

Arrays are stored in column order (1st column, 2nd column, etc) so accessing by
Incrementing row index first usually is fastest (see later)

Whole array reference (only in >F90): K(:)=-8 assigns 8 to all elements in K

Avoid K=-8 assignement

Unconditional GO TO In F77

This is the only GOTO in FORTRAN 77

e Syntax: GO TO label

e Unconditional transfer to labeled statement

10 -code-
GO TO 30
-code that 1is bypassed-
30 -code that is target of GOTO-
-more code-
GO TO 10

« Problem : leads to confusing "spaghetti code" 3¢

IF ELSE IF Statement

Basic version:

IF (KSTAT.EQ.1) THEN
CLASS='FRESHMAN"

ELSE IF (KSTAT.EQ.2) THEN
CLASS='SOPHOMORE '

ELSE IF (KSTAT.EQ.3) THEN
CLASS="'JUNIOR'

ELSE IF (KSTAT.EQ.4) THEN
CLASS='SENIOR'

ELSE
CLASS="UNKNOWN'

ENDIF

Spaghetti Code Iin F77 (and before)

Use of Go To and arithmetic IF 'sleads to bad code that is very hard to maintain

Here is the equivalent of an IF-THEN-ELSE sStatement:

10 IF (KEY.LT.0) GO TO 20
TEST=TEST-1
THETA=ATAN(X, Y)

GO TO 30

20 TEST=TEST+1
THETA=ATAN(-X, Y)

30 CONTINUE

Now try to figure out what a complex IF ELSE IF statement would look like coded
with this kind of simple 1IF ...

Loop Statements (old versions)

DO loop: structure that executes a specified number of times

Spaghetti Code Version

K=2
10 PRINT*,A(K)

K=K+2

IF (K.LE.11) GO TO 10
20 CONTINUE

F77 Version

DO 100 K=2,10,2
PRINT*, A(K)
100 CONTINUE

Loop Statements (>F90) "-T,

DO K=2,10,2
WRITE(*,*) A(K)
END DO

e loop_control can include variables and a third parameter to specify increments,
Including negative values

e loop always executes ONCE before testing for end condition

READ(*, *) R

DO WHILE (R.GE.O)
VOL=2*PI*R**2*CLEN
READ(*, *) R

END DO

e Loop will not execute at all if logical_expr Is not true at start

Comments on Loop Statements

In old versions:

e to transfer out (exit loop), use a GO TO

e to skip to next loop, use Go TO terminating statement (this is a good reason to
always make this a CONTINUE statement)

In new versions:

e to transfer out (exit loop), use EXIT statement and control is transferred to
statement following loop end. This means you cannot transfer out of multiple
nested loops with a single EXIT statement (use named loops if needed -

myloop : do i=1,n). Thisis much like a BREAK statement in other languages.

e to skip to next loop cycle, use CYCLE statement in loop.

File-Directed Input and Output

Much of early FORTRAN was devoted to reading input data
from "cards" and writing to a line printer

Today, most I/O is to and from a file: it requires more extensive I/O capabilities
standardized until FORTRAN 77

I/0 = communication between a program and the outside world

e opening and closing a file with OPEN & CLOSE

e data reading & writing with READ & WRITE
e can use unformatted READ & WRITE if no human readable data are involved
(much faster access, smaller files)

Fortran 77 source code

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/03_plot.f

READ Statement o'

e Syntax: READ(dev_no, format_label) variable_list

e read arecord from dev_no using format_label and assign results to variables

IN variable_ list

READ(105,1000) A,B,C
1000 FORMAT(3F12.4)

device numbers 1-7 are defined as standard 1/O devices
e each READ reads one or more lines of data and any remaining data in a line that is
read is dropped if not translated to one of the variables in the variable_list

e variable_list can include implied DO such as: READ(105,1000)
(A(I),I=1,10)

READ Statement - cont'd

Input items can be integer, real or character

characters must be enclosedin ' ' (or " ")

iInput items are separated by commas

Input items must agree in type with variables in variable_list

e each READ processes a new record (line)

INTEGER K

REAL(8) A,B

OPEN(105, FILE="path_to_existing_file')
READ(105,*) A,B,K

read one line and look for floating point values for A and B and an integer for K

WRITE Statement

e syntaxX: WRITE(dev_no, format_label) variable_list

e write variables in variable_1list to output dev_no using format specified in
format statement with format_label

WRITE(*,1000) A,B,KEY
1000 FORMAT(F12.4,E14.5,16)

|----+----0----4----0----+----0----+----
1234.5678 -0.12345E+02 12

e device number * is by default the screen (or standard output - also 6)

e each WRITE produces one or more output lines as needed to write out
variable_list using format statement

e variable_list can include implied DO such as: WRITE(*,2000)(A(I),I=1,10)

FORMAT Statement

data type format descriptors example
integer iw write(*, '(15)') int
real (decimal) fw.d write(*, '(f7.4)') x
real (exponential) ew.d write(*, '(el12.3)') vy
character a, aw write(*, '(a)') string
logical lw write(*, '(12)') test
spaces & tabs wx & tw write (*,'(i3,2x,f6.3)') i, x

linebreak / write (*,'(f6.3,/,f6.3)') x, vy

OPEN & CLOSE example (>F90) h'J"

Once opened, file is referred to by an assigned device number (a unique id)

character(len=*) :: X_nhame
integer :: lerr, 1Size, guess_unit
logical :: itsopen, itexists

inquire(file=trim(x_name), size=iSize, number=guess_unit, opened=itsopen, exist=itexists)

1f (itsopen) close(guess_unit, status='delete')
|

open(902, file=trim(x_name), status="new', 1ostat=ierr)

1

1f (1Size <= 0 .0OR. .NOT.itexists) then
open(902, file=trim(x_name), status="'new', iostat=ierr)
if (ierr /= 0) then

close(902)
endif

endif

NAMELIST

It is possible to pre-define the structure of input and output data using NAMELIST in
order to make it easier to process with READ and WRITE statements

e Use NAMELIST to define the data structure

e Use READ or WRITE with reference to NAMELIST to handle the data in the
specified format

This is not part of standard F77 but it is included in >F90

NAMELIST - cont'd

On input, the NAMELIST data must be structured as follows:

&INPUT
THICK=0.245,
LENGTH=12. 34,
WIDTH=2.34,
DENSITY=0.0034

/

Fortran 90 source code namelist.f90
Namelist file namelist.def

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/04_namelist.f90
https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/04_namelist.def

Internal WRITE Statement /

Internal WRITE does same as ENCODE in F77 : a cast to string

WRITE (dev_no, format_label) var_list
write variables in var_1list to internal storage defined by character variable used

as dev_no = default character variable (not an array)

INTEGER*4 J,K
CHARACTER*50 CHAR50

DATA J,K/1,2/

WRITE(CHAR50, *) J,K

Results:

CHAR50=" 1 2'

Internal READ Statement “:f:‘

Internal READ does same as DECODE Iin F77 : a cast from string

READ (dev_no, format_label) var_list
read variables from internal storage specified by character variable used as

dev_no = default character variable (not an array)

INTEGER K
REAL A,B

CHARACTER*80 RECSO

DATA REC80/'1.2, 2.3, -5'/

READ(REC80, *) A, B, K

Results:

A=1.2, B=2.3, K=-5

Structured programming

Structured programming is based on subprograms (functions and subroutines) and
control statements (like IF statements or loops) :

e structure the control-flow of your programs (e.g. give up the 6o T0)

e improved readability

e lower level aspect of coding in a smart way

It is a programming paradigm aimed at improving the quality, clarity, and access time
of a computer program

Functions and Subroutines

FUNCTION & SUBROUTINE are subprograms that allow structured coding
e FUNCTION : returns a single explicit function value for given function arguments
It's also a variable — so must be declared !

e SUBROUTINE : any values returned must be returned through the arguments (no
explicit subroutine value is returned)

e functions and subroutines are not recursive in F77

Subprograms use a separate namespace for each subprogram so that variables are
local to the subprogram

e variables are passed to subprogram through argument list and returned in function
value or through arguments

e variables stored in coMMON may be shared between namespaces

Functions and Subroutines - cont'd

Subprograms must (should) include at least one RETURN (can have more) and be
terminated by an END statement

FUNCTION example:

REAL FUNCTION AVG3(A,B,C)
AVG3=(A+B+C)/3

RETURN

END

Use:

AV = WEIGHT*AVG3(Al,F2,B2)

FUNCTION type is implicitly defined as REAL

Functions and Subroutines - cont'd

Subroutine is invoked using the CALL statement

SUBROUTINE AVG3S(A, B, C, AVERAGE)
AVERAGE=(A+B+C)/3

RETURN

END

Use:

CALL AVG3S(A1,F2,B2,AVR)
RESULT = WEIGHT*AVR

Any returned values must be returned through argument list

Fortran 90 source code newton.f90

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/05_newton.f90

Arguments “-i‘f

Arguments in subprogram are dummy arguments used in place of the real arguments

e arguments are passed by reference (memory address) if given as symbolic
the subprogram can then alter the actual argument value since it can access
it by reference

e arguments are passed by value if given as literal (so cannot be modified)

‘ CALL AVG3S(A1,3.4,C1,QAV) |

2nd argument is passed by value - QAV contains result

‘ CALL AVG3S(A,C,B,4.1)

no return value is available since "4.1" is a value and not a reference to a variable!

Arguments - cont'd

e dummy arguments appearing in a subprogram declaration cannot be an individual
array element reference, e.g., A(2) , or aliteral, for obvious reasons!

e arguments used in invocation (by calling program) may be variables, subscripted
variables, array names, literals, expressions or function names

e using symbolic arguments (variables or array names) is the only way to return a
value (result) from a SUBROUTINE

It is considered BAD coding practice, but functions can return values by
changing the value of arguments
This type of use should be strictly avoided!

Arguments - cont'd

The INTENT keyword (>F90) increases readability and enables better compile-time
error checking

SUBROUTINE AVG3S(A, B, C, AVERAGE)
IMPLICIT NONE
REAL, INTENT(IN) :: A, B
REAL, INTENT(INOUT) :: C | default
REAL, INTENT(OUT) :: AVERAGE

A 10 | Compilation error
C 10 I Correct
AVERAGE=(A+B+C)/3 l Correct

END

Compiler uses INTENT for error checking and optimization

FUNCTION versus Array

REMAINDER(4,3) could be a 2D array or it could be a reference to a function

If the name, including arguments, matches an array declaration, then it is taken to be
an array, otherwise, it is assumed to be a FUNCTION

Be careful about implicit versus explicit type declarations with FUNCTION

PROGRAM MAIN
INTEGER REMAINDER

KR = REMAINDER(4, 3)
END
INTEGER FUNCTION REMAINDER(INUM, IDEN)

END

Arrays with Subprograms LV

Arrays present special problems in subprograms

e must pass by reference to subprogram since there is no way to list array values
explicitly as literals

e how do you tell subprogram how large the array is ?
Answer varies with FORTRAN version and vendor (dialect)...

When an array element, e.g. A(1) , is used in a subprogram invocation (in calling
program), it is passed as a reference (address), just like a simple variable

When an array is used by name in a subprogram invocation (in calling program), it is
passed as a reference to the entire array. In this case the array must be appropriately
dimensioned in the subroutine (and this can be tricky...)

Arrays - cont'd

Data layout in multi-dimensional arrays

e always increment the left-most index of multi-dimensional arrays in the innermost
loop (i.e. fastest)

e column major ordering in Fortran vs. row major ordering in C

e a compiler (with sufficient optimization flags) may re-order loops automatically

do j=1,M
do 1=1,N ! 1nnermost Lloop
y(1i) = y(1)+ a(i,3)*x(J) ! left-most index is 1
end do
end do

Arrays - cont'd

e dynamically allocate memory for arrays using ALLOCATABLE on declaration

e memory is allocated through ALLOCATE statement in the code and is deallocated
through DEALLOCATE statement

integer :: m, n
integer, allocatable :: 1dx(:)
real, allocatable :: mat(:,:)

m= 100 ; n = 200
allocate(1idx(0:m-1))
allocate(mat(m, n))

deallocate(idx , mat)

It exists many array intrinsic functions: SIZE, SHAPE, SUM, ANY, MINVAL,
MAXLOC, RESHAPE, DOT_PRODUCT, TRANSPOSE, WHERE, FORALL, etc

COMMON & MODULE Statement

The coMmMoN statement allows variables to have a more extensive scope than
otherwise

e a variable declared ina Main Program can be made accessible to subprograms
(without appearing in argument lists of a calling statement)
e this can be selective (don't have to share all everywhere) with ONLY

e placement: among type declarations, after IMPLICIT or EXPLICIT , before DATA
statements

e can group into labeled commoN
With > F90, it's better to use the MODULE subprogram instead of the comMMoN statement

Fortran 77 source code - Fortran 90 source code

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/06_common.f
https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/06_module.f90

Modular programming (>F90)

Modular programming is about separating parts of programs into independent and
Interchangeable modules

e improve testability

e Improve maintainability

e re-use of code

e higher level aspect of coding in a smart way

separation of concerns

The principle is that making significant parts of the code independent, replaceable and
Independently testable makes your programs more maintainable

Data Type Declarations

FORTRAN >90 allows user derived types

TYPE my_variable

character (30) 1 name
integer :: 1d
real(8) :: value
integer, dimension(3,3) :: dimIndex

END TYPE variable

type(my_variable) var
var%name = "salinity"
var%id 1

Subprograms type

MODULE are subprograms that allow modular coding and data encapsulation
The interface of a subprogram type is explicit or implicit
Several types of subprograms:

e intrinsic : explicit - defined by Fortran itself (trignonometric functions, etc)
e module : explicit - defined with MODULE statement and used with USE
e internal : explicit - defined with CONTAINS statement inside (sub)programs

e external : implicit (but can be manually (re)defined explicit) - e.g. libraries

Differ with the scope: what data and other subprograms a subprogram can access

MODULE type

MODULE example
IMPLICIT NONE
INTEGER, PARAMETER :: index = 10
REAL(8), SAVE :: latitude
CONTAINS
FUNCTION check(x) RESULT(Zz)
INTEGER :: X, Z

END FUNCTION check
END MODULE example

PROGRAM myprog
USE example, ONLY: check, latitude
IMPLICIT NONE
test = check(a)

END PROGRAM myprog

internal subprogams

program main
implicit none
integer N
real X(20)

write(*,*),
contains
logical funct

l in this function N and X can be accessed directly (scope

I Please no

l 1t would

implicit no

if (sum(x)
process

else
process

endif

end function
end program

Processing X...', process()

ion process()

t that this method is not recommended:

be better to pass X as an argument of process
ne

> 5.) then

= .FALSE.

= .TRUE.

process

of main)

58 /62

external subprogams

e external subprogams are defined in a separate program unit
e to use them in another program unit, refer with the EXTERNAL statement

e compiled separately and linked
11 DO NOT USE THEM: modules are much easier and more robust |

They are only needed when subprogams are written with different programming
language or when using external libraries (such as BLAS)

It's highly recommended to construct INTERFACE blocks for any external
subprogams used

interface statement

SUBROUTINE nag_rand(table)
INTERFACE
SUBROUTINE go05faf(a,b,n, x)

REAL, INTENT(IN) v a. b
INTEGER, INTENT(IN) :: n
REAL, INTENT(OUT) :: x(n)

END SUBROUTINE gO5faf
END INTERFACE
|

REAL, DIMENSION(:), INTENT(OUT)
|

call gosfaf(-1.0,-1.0, SIZE(table), table)

END SUBROUTINE nag_rand

table

Fortran Compiler and libraries ”

Examples:

module load netCDF-Fortran/4.5.3-gompi-2021b
gfortran -ffree-1line-length-none \

-0 OceanGrideChange.exe 07_0OceanGrideChange.f90 \
-I${EBROOTNETCDFMINFORTRAN}/include -L${EBROOTNETCDFMINFORTRAN}/1ib -1lnetcdff

module load netCDF-Fortran/4.5.3-1impi1-2021b
ifort -03 \

-0 OceanGrideChange.exe 07_OceanGrideChange.f90 \
-I${EBROOTNETCDFMINFORTRAN}/include -L${EBROOTNETCDFMINFORTRAN}/1ib -1lnetcdff

Fortran 90 source code OceanGrideChange.f90 with the input file input.nc

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/07_OceanGrideChange.f90
https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/07_input.nc

Conclusions

e Fortran in all its standard versions and vendor-specific dialects is a rich but
confusing language

e Fortran is a modern language that continues to evolve
e Fortran is still ideally suited for numerical computations in engineering and science

o most new language features have been added since F95

o "High Performance Fortran" includes capabilities designed for parallel
processing

