
Introduction to structured programming with Fortran

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran

Pierre-Yves Barriat

November 09, 2023

CISM/CÉCI Training Sessions

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran

Fortran : shall we start ?
You know already one computer language ?

You understand the very basic programming concepts :
What is a variable, an assignment, function call, etc.?

Why do I have to compile my code?

What is an executable?

You (may) already know some Fortran ?

How to proceed from old Fortran, to much more modern languages like Fortran
90/2003 ?

09/11/2023 | Introduction to structured programming with Fortran 2 / 62

Why to learn Fortran ?
Because of the execution speed of a program

Well suited for numerical computations :
more than 45% of scientific applications are in Fortran

Fast code : compilers can optimize well

Optimized numerical libraries available

Fortran is a simple langage and it is (kind-of) easy to learn

09/11/2023 | Introduction to structured programming with Fortran 3 / 62

Fortran is simple
We want to get our science done! Not learn languages!

How easy/difficult is it really to learn Fortran ?

The concept is easy:
variables, operators, controls, loops, subroutines/functions

Invest some time now, gain big later!

09/11/2023 | Introduction to structured programming with Fortran 4 / 62

History
FORmula TRANslation

invented 1954-8 by John Backus and his team at IBM

FORTRAN 66 (ISO Standard 1972)

FORTRAN 77 (1978)

Fortran 90 (1991)

Fortran 95 (1997)

Fortran 2003 (2004) → "standard" version

Fortran 2008 (2010)

Fortran 2018 (11/2018)

09/11/2023 | Introduction to structured programming with Fortran 5 / 62

Starting with Fortran 77
Old Fortran provides only the absolute minimum!

Basic features :
data containers (integer, float, ...), arrays, basic operators, loops, I/O, subroutines
and functions

But this version has flaws:
no dynamic memory allocation, old & obsolete constructs, “spaghetti” code, etc.

Is that enough to write code ?

09/11/2023 | Introduction to structured programming with Fortran 6 / 62

Fortran 77 → Fortran >90
If Fortran 77 is so simple, why is it then so difficult to write good code?

Is simple really better?
⇒ Using a language allows us to express our thoughts (on a computer)

A more sophisticated language allows for more complex thoughts

More language elements to get organized
⇒ Fortran 90/95/2003 (recursive, OOP, etc)

09/11/2023 | Introduction to structured programming with Fortran 7 / 62

How to Build a FORTRAN Program
FORTRAN is a compiled language (like C) so the source code (what you write) must be
converted into machine code before it can be executed (e.g. Make command)

Fortran 77 source code hello_world.f
09/11/2023 | Introduction to structured programming with Fortran 8 / 62

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/00_hello_world.f

FORTRAN 77 Format
This version requires a fixed format for programs

max length variable names is 6 characters

alphanumeric only, must start with a letter

character strings are case sensitive
09/11/2023 | Introduction to structured programming with Fortran 9 / 62

FORTRAN >90 Format
Versions >90 relaxe these requirements:

comments following statements (! delimiter)

long variable names (31 characters)

containing only letters, digits or underscore

max row length is 132 characters

can be max 39 continuation lines

if a line is ended with ampersand (&), the line continues onto the next line

semicolon (;) as a separator between statements on a single line

09/11/2023 | Introduction to structured programming with Fortran 10 / 62

Program Organization
Most FORTRAN programs consist of a main program and one or more subprograms

There is a fixed order:

Heading
Declarations
Variable initializations
Program code
Format statements

Subprogram definitions
(functions & subroutines)

09/11/2023 | Introduction to structured programming with Fortran 11 / 62

Data Type Declarations
Basic data types are :

INTEGER : integer numbers (+/-)

REAL : floating point numbers

DOUBLE PRECISION : extended precision floating point

CHARACTER*n : string with up to n characters

LOGICAL : takes on values .TRUE. or .FALSE.

09/11/2023 | Introduction to structured programming with Fortran 12 / 62

Data Type Declarations
INTEGER and REAL can specify number of bytes to use

Default is: INTEGER*4 and REAL*4

DOUBLE PRECISION is same as REAL*8

Arrays of any type must be declared:

DIMENSION A(3,5) - declares a 3 x 5 array

CHARACTER*30 NAME(50) - directly declares a character array with 30
character strings in each element

09/11/2023 | Introduction to structured programming with Fortran 13 / 62

Implicit vs Explicit Declarations
By default, an implicit type is assumed depending on the first letter of the variable
name:

A-H, O-Z define REAL variables

I-N define INTEGER variables

Can use the IMPLICIT statement:

IMPLICIT REAL (A-Z)

makes all variables REAL if not declared

09/11/2023 | Introduction to structured programming with Fortran 14 / 62

Implicit vs Explicit Declarations

IMPLICIT CHARACTER*2 (W)

makes variables starting with W be 2-character strings

IMPLICIT DOUBLE PRECISION (D)

makes variables starting with D be double precision

Good habit: force explicit type declarations

IMPLICIT NONE

user must explicitly declare all variable types

09/11/2023 | Introduction to structured programming with Fortran 15 / 62

Assignment Statements
Old assignment statement: <label> <variable> = <expression>

<label> : statement label number (1 to 99999)

<variable> : FORTRAN variable
(max 6 characters, alphanumeric only for standard FORTRAN 77)

Expression:

Numeric expressions: VAR = 3.5*COS(THETA)

Character expressions: DAY(1:3) = 'TUE'

Relational expressions: FLAG = ANS .GT. 0

Logical expressions: FLAG = F1 .OR. F2

09/11/2023 | Introduction to structured programming with Fortran 16 / 62

Numeric Expressions
Arithmetic operators: precedence: ** (high) → - (low)

Operator Function

** exponentiation

* multiplication

/ division

+ addition

- subtraction

09/11/2023 | Introduction to structured programming with Fortran 17 / 62

Numeric Expressions
Numeric expressions are up-cast to the highest data type in the expression according
to the precedence:

(low) logical → integer → real → complex (high)

and smaller byte size (low) to larger byte size (high)

Examples:

Fortran 77 source code arith.f
Fortran 77 source code sphere.f

09/11/2023 | Introduction to structured programming with Fortran 18 / 62

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/01_arith.f
https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/02_sphere.f

Character Expressions
Only built-in operator is Concatenation defined by //

'ILL'//'-'//'ADVISED'

character arrays are most commonly encountered

treated like any array (indexed using : notation)

fixed length (usually padded with blanks)

09/11/2023 | Introduction to structured programming with Fortran 19 / 62

Character Expressions
Example:

CHARACTER FAMILY*16
FAMILY = ‘GEORGE P. BURDELL’

PRINT*,FAMILY(:6)
PRINT*,FAMILY(8:9)
PRINT*,FAMILY(11:)
PRINT*,FAMILY(:6)//FAMILY(10:)

GEORGE
P.
BURDELL
GEORGE BURDELL

09/11/2023 | Introduction to structured programming with Fortran 20 / 62

Relational Expressions
Two expressions whose values are compared to determine whether the relation is true
or false

may be numeric (common) or non-numeric

character strings can be compared

done character by character

shorter string is padded with blanks for comparison

09/11/2023 | Introduction to structured programming with Fortran 21 / 62

Relational Expressions

Operator Relationship

.LT. or < less than

.LE. or <= less than or equal to

.EQ. or == equal to

.NE. or /= not equal to

.GT. or > greater than

.GE. or >= greater than or equal to

09/11/2023 | Introduction to structured programming with Fortran 22 / 62

Logical Expressions
Consists of one or more logical operators and logical, numeric or relational operands

values are .TRUE. or .FALSE.

need to consider overall operator precedence

can combine logical and integer data with logical operators but this is tricky
(avoid!)

09/11/2023 | Introduction to structured programming with Fortran 23 / 62

Logical Expressions

F77 Operator >F90 Operator Example Meaning

.AND. && A .AND. B logical AND

.OR. || A .OR. B logical OR

.EQV. == A .EQV. B logical equivalence

.NEQV. /= A .NEQV. B logical inequivalence

.XOR. /= A .XOR. B exclusive OR (same as .NEQV.)

.NOT. ! .NOT. A logical negation

09/11/2023 | Introduction to structured programming with Fortran 24 / 62

Arrays in FORTRAN
Arrays can be multi-dimensional (up to 7 in F77) and are indexed using () :

TEST(3) or FORCE(4,2)

Indices are by default defined as 1...N

We can specify index range in declaration

INTEGER K(0:11) : K is dimensioned from 0-11 (12 elements)

Arrays are stored in column order (1st column, 2nd column, etc) so accessing by
incrementing row index first usually is fastest (see later)

Whole array reference (only in >F90): K(:)=-8 assigns 8 to all elements in K

Avoid K=-8 assignement
09/11/2023 | Introduction to structured programming with Fortran 25 / 62

Unconditional GO TO in F77
This is the only GOTO in FORTRAN 77

Syntax: GO TO label

Unconditional transfer to labeled statement

 10 -code-
 GO TO 30
 -code that is bypassed-
 30 -code that is target of GOTO-
 -more code-
 GO TO 10

Problem : leads to confusing "spaghetti code"

09/11/2023 | Introduction to structured programming with Fortran 26 / 62

IF ELSE IF Statement
Basic version:

IF (KSTAT.EQ.1) THEN
 CLASS='FRESHMAN'
ELSE IF (KSTAT.EQ.2) THEN
 CLASS='SOPHOMORE'
ELSE IF (KSTAT.EQ.3) THEN
 CLASS='JUNIOR'
ELSE IF (KSTAT.EQ.4) THEN
 CLASS='SENIOR'
ELSE
 CLASS='UNKNOWN'
ENDIF

09/11/2023 | Introduction to structured programming with Fortran 27 / 62

Spaghetti Code in F77 (and before)
Use of GO TO and arithmetic IF 's leads to bad code that is very hard to maintain

Here is the equivalent of an IF-THEN-ELSE statement:

 10 IF (KEY.LT.0) GO TO 20
 TEST=TEST-1
 THETA=ATAN(X,Y)
 GO TO 30
 20 TEST=TEST+1
 THETA=ATAN(-X,Y)
 30 CONTINUE

Now try to figure out what a complex IF ELSE IF statement would look like coded
with this kind of simple IF ...

09/11/2023 | Introduction to structured programming with Fortran 28 / 62

Loop Statements (old versions)
DO loop: structure that executes a specified number of times

Spaghetti Code Version

 K=2
 10 PRINT*,A(K)
 K=K+2
 IF (K.LE.11) GO TO 10
 20 CONTINUE

F77 Version

 DO 100 K=2,10,2
 PRINT*,A(K)
 100 CONTINUE

09/11/2023 | Introduction to structured programming with Fortran 29 / 62

Loop Statements (>F90)

DO K=2,10,2
 WRITE(*,*) A(K)
END DO

loop_control can include variables and a third parameter to specify increments,
including negative values

loop always executes ONCE before testing for end condition

READ(*,*) R
DO WHILE (R.GE.0)
 VOL=2*PI*R**2*CLEN
 READ(*,*) R
END DO

Loop will not execute at all if logical_expr is not true at start
09/11/2023 | Introduction to structured programming with Fortran 30 / 62

Comments on Loop Statements
In old versions:

to transfer out (exit loop), use a GO TO

to skip to next loop, use GO TO terminating statement (this is a good reason to
always make this a CONTINUE statement)

In new versions:

to transfer out (exit loop), use EXIT statement and control is transferred to
statement following loop end. This means you cannot transfer out of multiple
nested loops with a single EXIT statement (use named loops if needed -
myloop : do i=1,n). This is much like a BREAK statement in other languages.

to skip to next loop cycle, use CYCLE statement in loop.

09/11/2023 | Introduction to structured programming with Fortran 31 / 62

File-Directed Input and Output
Much of early FORTRAN was devoted to reading input data
from "cards" and writing to a line printer

Today, most I/O is to and from a file: it requires more extensive I/O capabilities
standardized until FORTRAN 77

I/O = communication between a program and the outside world

opening and closing a file with OPEN & CLOSE

data reading & writing with READ & WRITE

can use unformatted READ & WRITE if no human readable data are involved
(much faster access, smaller files)

Fortran 77 source code plot.f
09/11/2023 | Introduction to structured programming with Fortran 32 / 62

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/03_plot.f

READ Statement
syntax: READ(dev_no, format_label) variable_list

read a record from dev_no using format_label and assign results to variables
in variable_list

 READ(105,1000) A,B,C
 1000 FORMAT(3F12.4)

device numbers 1-7 are defined as standard I/O devices

each READ reads one or more lines of data and any remaining data in a line that is
read is dropped if not translated to one of the variables in the variable_list

variable_list can include implied DO such as: READ(105,1000)
(A(I),I=1,10)

09/11/2023 | Introduction to structured programming with Fortran 33 / 62

READ Statement - cont'd
input items can be integer, real or character

characters must be enclosed in ' ' (or " ")

input items are separated by commas

input items must agree in type with variables in variable_list

each READ processes a new record (line)

INTEGER K
REAL(8) A,B
OPEN(105,FILE='path_to_existing_file')
READ(105,*) A,B,K

read one line and look for floating point values for A and B and an integer for K

09/11/2023 | Introduction to structured programming with Fortran 34 / 62

WRITE Statement
syntax: WRITE(dev_no, format_label) variable_list

write variables in variable_list to output dev_no using format specified in
format statement with format_label

 WRITE(*,1000) A,B,KEY
 1000 FORMAT(F12.4,E14.5,I6)

|----+----o----+----o----+----o----+----|
 1234.5678 -0.12345E+02 12

device number * is by default the screen (or standard output - also 6)

each WRITE produces one or more output lines as needed to write out
variable_list using format statement

variable_list can include implied DO such as: WRITE(*,2000)(A(I),I=1,10)
35 / 62

FORMAT Statement

data type format descriptors example

integer iw write(*,'(i5)') int

real (decimal) fw.d write(*,'(f7.4)') x

real (exponential) ew.d write(*,'(e12.3)') y

character a, aw write(*,'(a)') string

logical lw write(*,'(l2)') test

spaces & tabs wx & tw write (*,'(i3,2x,f6.3)') i, x

linebreak / write (*,'(f6.3,/,f6.3)') x, y

09/11/2023 | Introduction to structured programming with Fortran 36 / 62

OPEN & CLOSE example (>F90)
Once opened, file is referred to by an assigned device number (a unique id)

character(len=*) :: x_name
integer :: ierr, iSize, guess_unit
logical :: itsopen, itexists
!
inquire(file=trim(x_name), size=iSize, number=guess_unit, opened=itsopen, exist=itexists)
if (itsopen) close(guess_unit, status='delete')
!
open(902,file=trim(x_name),status='new',iostat=ierr)
!
if (iSize <= 0 .OR. .NOT.itexists) then
 open(902,file=trim(x_name),status='new',iostat=ierr)
 if (ierr /= 0) then
 ...
 close(902)
 endif
 ...
endif

09/11/2023 | Introduction to structured programming with Fortran 37 / 62

NAMELIST

It is possible to pre-define the structure of input and output data using NAMELIST in
order to make it easier to process with READ and WRITE statements

Use NAMELIST to define the data structure

Use READ or WRITE with reference to NAMELIST to handle the data in the
specified format

This is not part of standard F77 but it is included in >F90

09/11/2023 | Introduction to structured programming with Fortran 38 / 62

NAMELIST - cont'd
On input, the NAMELIST data must be structured as follows:

&INPUT
 THICK=0.245,
 LENGTH=12.34,
 WIDTH=2.34,
 DENSITY=0.0034
/

Fortran 90 source code namelist.f90
Namelist file namelist.def

09/11/2023 | Introduction to structured programming with Fortran 39 / 62

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/04_namelist.f90
https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/04_namelist.def

Internal WRITE Statement
Internal WRITE does same as ENCODE in F77 : a cast to string

WRITE (dev_no, format_label) var_list

write variables in var_list to internal storage defined by character variable used
as dev_no = default character variable (not an array)

INTEGER*4 J,K
CHARACTER*50 CHAR50
DATA J,K/1,2/
...
WRITE(CHAR50,*) J,K

Results:

CHAR50=' 1 2'

09/11/2023 | Introduction to structured programming with Fortran 40 / 62

Internal READ Statement
Internal READ does same as DECODE in F77 : a cast from string

READ (dev_no, format_label) var_list

read variables from internal storage specified by character variable used as
dev_no = default character variable (not an array)

INTEGER K
REAL A,B
CHARACTER*80 REC80
DATA REC80/'1.2, 2.3, -5'/
...
READ(REC80,*) A,B,K

Results:

A=1.2, B=2.3, K=-5
41 / 62

Structured programming
Structured programming is based on subprograms (functions and subroutines) and
control statements (like IF statements or loops) :

structure the control-flow of your programs (e.g. give up the GO TO)

improved readability

lower level aspect of coding in a smart way

It is a programming paradigm aimed at improving the quality, clarity, and access time
of a computer program

09/11/2023 | Introduction to structured programming with Fortran 42 / 62

Functions and Subroutines
FUNCTION & SUBROUTINE are subprograms that allow structured coding

FUNCTION : returns a single explicit function value for given function arguments
It’s also a variable → so must be declared !

SUBROUTINE : any values returned must be returned through the arguments (no
explicit subroutine value is returned)

functions and subroutines are not recursive in F77

Subprograms use a separate namespace for each subprogram so that variables are
local to the subprogram

variables are passed to subprogram through argument list and returned in function
value or through arguments

variables stored in COMMON may be shared between namespaces
43 / 62

Functions and Subroutines - cont'd
Subprograms must (should) include at least one RETURN (can have more) and be
terminated by an END statement

FUNCTION example:

REAL FUNCTION AVG3(A,B,C)
AVG3=(A+B+C)/3
RETURN
END

Use:

AV = WEIGHT*AVG3(A1,F2,B2)

FUNCTION type is implicitly defined as REAL
09/11/2023 | Introduction to structured programming with Fortran 44 / 62

Functions and Subroutines - cont'd
Subroutine is invoked using the CALL statement

SUBROUTINE AVG3S(A,B,C,AVERAGE)
AVERAGE=(A+B+C)/3
RETURN
END

Use:

CALL AVG3S(A1,F2,B2,AVR)
RESULT = WEIGHT*AVR

Any returned values must be returned through argument list

Fortran 90 source code newton.f90

09/11/2023 | Introduction to structured programming with Fortran 45 / 62

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/05_newton.f90

Arguments
Arguments in subprogram are dummy arguments used in place of the real arguments

arguments are passed by reference (memory address) if given as symbolic
the subprogram can then alter the actual argument value since it can access
it by reference

arguments are passed by value if given as literal (so cannot be modified)

CALL AVG3S(A1,3.4,C1,QAV)

2nd argument is passed by value - QAV contains result

CALL AVG3S(A,C,B,4.1)

no return value is available since "4.1" is a value and not a reference to a variable!
09/11/2023 | Introduction to structured programming with Fortran 46 / 62

Arguments - cont'd
dummy arguments appearing in a subprogram declaration cannot be an individual

array element reference, e.g., A(2) , or a literal, for obvious reasons!

arguments used in invocation (by calling program) may be variables, subscripted
variables, array names, literals, expressions or function names

using symbolic arguments (variables or array names) is the only way to return a
value (result) from a SUBROUTINE

It is considered BAD coding practice, but functions can return values by
changing the value of arguments
This type of use should be strictly avoided!

09/11/2023 | Introduction to structured programming with Fortran 47 / 62

Arguments - cont'd
The INTENT keyword (>F90) increases readability and enables better compile-time
error checking

SUBROUTINE AVG3S(A,B,C,AVERAGE)
 IMPLICIT NONE
 REAL, INTENT(IN) :: A, B
 REAL, INTENT(INOUT) :: C ! default
 REAL, INTENT(OUT) :: AVERAGE

 A = 10 ! Compilation error
 C = 10 ! Correct
 AVERAGE=(A+B+C)/3 ! Correct
END

Compiler uses INTENT for error checking and optimization

09/11/2023 | Introduction to structured programming with Fortran 48 / 62

FUNCTION versus Array
REMAINDER(4,3) could be a 2D array or it could be a reference to a function

If the name, including arguments, matches an array declaration, then it is taken to be
an array, otherwise, it is assumed to be a FUNCTION

Be careful about implicit versus explicit type declarations with FUNCTION

PROGRAM MAIN
 INTEGER REMAINDER
 ...
 KR = REMAINDER(4,3)
 ...
END

INTEGER FUNCTION REMAINDER(INUM,IDEN)
 ...
END

49 / 62

Arrays with Subprograms
Arrays present special problems in subprograms

must pass by reference to subprogram since there is no way to list array values
explicitly as literals

how do you tell subprogram how large the array is ?

Answer varies with FORTRAN version and vendor (dialect)...

When an array element, e.g. A(1) , is used in a subprogram invocation (in calling
program), it is passed as a reference (address), just like a simple variable

When an array is used by name in a subprogram invocation (in calling program), it is
passed as a reference to the entire array. In this case the array must be appropriately
dimensioned in the subroutine (and this can be tricky...)

09/11/2023 | Introduction to structured programming with Fortran 50 / 62

Arrays - cont'd

Data layout in multi-dimensional arrays

always increment the left-most index of multi-dimensional arrays in the innermost
loop (i.e. fastest)

column major ordering in Fortran vs. row major ordering in C

a compiler (with sufficient optimization flags) may re-order loops automatically

do j=1,M
 do i=1,N ! innermost loop
 y(i) = y(i)+ a(i,j)*x(j) ! left-most index is i
 end do
end do

09/11/2023 | Introduction to structured programming with Fortran 51 / 62

Arrays - cont'd
dynamically allocate memory for arrays using ALLOCATABLE on declaration

memory is allocated through ALLOCATE statement in the code and is deallocated
through DEALLOCATE statement

integer :: m, n
integer, allocatable :: idx(:)
real, allocatable :: mat(:,:)
m = 100 ; n = 200
allocate(idx(0:m-1))
allocate(mat(m, n))
...
deallocate(idx , mat)

It exists many array intrinsic functions: SIZE, SHAPE, SUM, ANY, MINVAL,
MAXLOC, RESHAPE, DOT_PRODUCT, TRANSPOSE, WHERE, FORALL, etc

09/11/2023 | Introduction to structured programming with Fortran 52 / 62

COMMON & MODULE Statement
The COMMON statement allows variables to have a more extensive scope than
otherwise

a variable declared in a Main Program can be made accessible to subprograms
(without appearing in argument lists of a calling statement)

this can be selective (don't have to share all everywhere) with ONLY

placement: among type declarations, after IMPLICIT or EXPLICIT , before DATA
statements

can group into labeled COMMON

With > F90, it's better to use the MODULE subprogram instead of the COMMON statement

Fortran 77 source code common.f - Fortran 90 source code module.f90
09/11/2023 | Introduction to structured programming with Fortran 53 / 62

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/06_common.f
https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/06_module.f90

Modular programming (>F90)
Modular programming is about separating parts of programs into independent and
interchangeable modules :

improve testability

improve maintainability

re-use of code

higher level aspect of coding in a smart way

separation of concerns

The principle is that making significant parts of the code independent, replaceable and
independently testable makes your programs more maintainable

09/11/2023 | Introduction to structured programming with Fortran 54 / 62

Data Type Declarations
FORTRAN >90 allows user derived types

TYPE my_variable
 character(30) :: name
 integer :: id
 real(8) :: value
 integer, dimension(3,3) :: dimIndex
END TYPE variable

type(my_variable) var
var%name = "salinity"
var%id = 1

09/11/2023 | Introduction to structured programming with Fortran 55 / 62

Subprograms type
MODULE are subprograms that allow modular coding and data encapsulation

The interface of a subprogram type is explicit or implicit

Several types of subprograms:

intrinsic : explicit - defined by Fortran itself (trignonometric functions, etc)

module : explicit - defined with MODULE statement and used with USE

internal : explicit - defined with CONTAINS statement inside (sub)programs

external : implicit (but can be manually (re)defined explicit) - e.g. libraries

Differ with the scope: what data and other subprograms a subprogram can access

09/11/2023 | Introduction to structured programming with Fortran 56 / 62

MODULE type

MODULE example
 IMPLICIT NONE
 INTEGER, PARAMETER :: index = 10
 REAL(8), SAVE :: latitude
CONTAINS
 FUNCTION check(x) RESULT(z)
 INTEGER :: x, z
 ...
 END FUNCTION check
END MODULE example

PROGRAM myprog
 USE example, ONLY: check, latitude
 IMPLICIT NONE
 ...
 test = check(a)
 ...
END PROGRAM myprog

57 / 62

internal subprogams

program main
 implicit none
 integer N
 real X(20)
 ...
 write(*,*), 'Processing x...', process()
 ...
contains
 logical function process()
 ! in this function N and X can be accessed directly (scope of main)
 ! Please not that this method is not recommended:
 ! it would be better to pass X as an argument of process
 implicit none
 if (sum(x) > 5.) then
 process = .FALSE.
 else
 process = .TRUE.
 endif
 end function process
end program

58 / 62

external subprogams
external subprogams are defined in a separate program unit

to use them in another program unit, refer with the EXTERNAL statement

compiled separately and linked

!!! DO NOT USE THEM: modules are much easier and more robust

They are only needed when subprogams are written with different programming
language or when using external libraries (such as BLAS)

It's highly recommended to construct INTERFACE blocks for any external
subprogams used

09/11/2023 | Introduction to structured programming with Fortran 59 / 62

interface statement

SUBROUTINE nag_rand(table)
 INTERFACE
 SUBROUTINE g05faf(a,b,n,x)
 REAL, INTENT(IN) :: a, b
 INTEGER, INTENT(IN) :: n
 REAL, INTENT(OUT) :: x(n)
 END SUBROUTINE g05faf
 END INTERFACE
 !
 REAL, DIMENSION(:), INTENT(OUT) :: table
 !
 call g05faf(-1.0,-1.0, SIZE(table), table)
END SUBROUTINE nag_rand

60 / 62

Fortran Compiler and libraries
Examples:

module load netCDF-Fortran/4.5.3-gompi-2021b
gfortran -ffree-line-length-none \
-o OceanGrideChange.exe 07_OceanGrideChange.f90 \
-I${EBROOTNETCDFMINFORTRAN}/include -L${EBROOTNETCDFMINFORTRAN}/lib -lnetcdff

module load netCDF-Fortran/4.5.3-iimpi-2021b
ifort -O3 \
-o OceanGrideChange.exe 07_OceanGrideChange.f90 \
-I${EBROOTNETCDFMINFORTRAN}/include -L${EBROOTNETCDFMINFORTRAN}/lib -lnetcdff

Fortran 90 source code OceanGrideChange.f90 with the input file input.nc

09/11/2023 | Introduction to structured programming with Fortran 61 / 62

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/07_OceanGrideChange.f90
https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/07_input.nc

Conclusions

Fortran in all its standard versions and vendor-specific dialects is a rich but
confusing language

Fortran is a modern language that continues to evolve

Fortran is still ideally suited for numerical computations in engineering and science

most new language features have been added since F95

"High Performance Fortran" includes capabilities designed for parallel
processing

09/11/2023 | Introduction to structured programming with Fortran 62 / 62

