
Introduction to structured programming with Fortran

https://forge.uclouvain.be/barriat/learning-fortran

Pierre-Yves Barriat

November 13, 2024

CISM/CÉCI Training Sessions

https://forge.uclouvain.be/barriat/learning-fortran


Fortran : shall we start ?
You already know one computer language ?
You understand the very basic programming concepts :

What is a variable, an assignment, function call, etc. ?
Why do I have to compile my code ?
What is an executable ?

You (may) already know some Fortran ?
How to proceed from old Fortran, to much more modern languages like
Fortran 90/2003 ?

13/11/2024 | Introduction to structured programming with Fortran 2 / 65



Why learn Fortran ?
Because of the execution speed  of a program

Well suited for numerical computations :
more than 45% of scientific applications are in Fortran
Fast  code : compilers can optimize well

Optimized numerical libraries  available

Fortran is a simple  langage and it is (kind-of) easy to learn

13/11/2024 | Introduction to structured programming with Fortran 3 / 65



Fortran is simple
We want to get our science done! Not learn languages!

How easy/difficult is it really to learn Fortran ?

The concept is easy:
variables, operators, controls, loops, subroutines/functions

Invest some time now, gain big later!

13/11/2024 | Introduction to structured programming with Fortran 4 / 65



History
FORmula TRANslation

invented 1954-8 by John Backus and his team at IBM

FORTRAN 66 (ISO Standard 1972)
FORTRAN 77 (1978)
Fortran 90 (1991)
Fortran 95 (1997)
Fortran 2003 (2004) → "standard" version

Fortran 2008 (2010)
Fortran 2018 (11/2018)

13/11/2024 | Introduction to structured programming with Fortran 5 / 65



Starting with Fortran 77
Old Fortran provides only the absolute minimum !
Basic features

data containers (integer, float, ...), arrays, basic operators, loops, I/O,
subroutines and functions

But this version has flaws
no dynamic memory allocation, old & obsolete constructs, "spaghetti"
code, etc.

Is that enough to write code ?

13/11/2024 | Introduction to structured programming with Fortran 6 / 65



Fortran 77 → Fortran >90
If Fortran 77 is so simple, why is it then so difficult to write good code ?
Is simple really better ?
⇒ Using a language allows us to express our thoughts (on a computer)

A more sophisticated language allows for more complex thoughts
More language elements to get organized
⇒ Fortran 90/95/2003 (recursive, OOP, etc)

13/11/2024 | Introduction to structured programming with Fortran 7 / 65



How to build a FORTRAN program
FORTRAN is a compiled language (like C) so the source code (what you write) must
be converted into machine code before it can be executed (e.g. Make command)

Fortran 77 source code hello_world.f90
13/11/2024 | Introduction to structured programming with Fortran 8 / 65

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/00_hello_world.f90


FORTRAN 77 Format
This version requires a fixed format for programs

max length variable names is 6 characters
alphanumeric only, must start with a letter
character strings are case sensitive

13/11/2024 | Introduction to structured programming with Fortran 9 / 65



FORTRAN >90 Format
Versions >90 relaxe these requirements:

comments following statements ( !  delimiter)

long variable names (31 characters)
containing only letters, digits or underscore
max row length is 132 characters
can be max 39 continuation lines
if a line is ended with ampersand ( & ), the line continues onto the next line

semicolon ( ; ) as a separator between statements on a single line

13/11/2024 | Introduction to structured programming with Fortran 10 / 65



Program organization
Most FORTRAN  programs consist of a main program and one or more
subprograms

There is a fixed order:

Heading
Declarations
Variable initializations
Program code
Format statements

Subprogram definitions
(functions & subroutines)

13/11/2024 | Introduction to structured programming with Fortran 11 / 65



Data type declarations
Basic data types are :

INTEGER  : integer numbers (+/-)

REAL  : floating point numbers

DOUBLE PRECISION  : extended precision floating point

CHARACTER*n  : string with up to n characters
character(len=n)

LOGICAL  : takes on values .TRUE.  or .FALSE.

13/11/2024 | Introduction to structured programming with Fortran 12 / 65



INTEGER  and REAL  can specify number of bytes to use

Default is: INTEGER*4  and REAL*4

DOUBLE PRECISION  is same as REAL*8

or REAL(8)

program variables_example
  integer :: a = 5
  real :: b = 3.14
  character(len=10) :: name = "Fortran"
  logical :: is_programming_fun = .true.
end program variables_example

13/11/2024 | Introduction to structured programming with Fortran 13 / 65



Arrays
Arrays of any type must be declared with the dimension  attribute in F77

! declare and initialize a vector
integer, dimension(5) :: nums = (/1, 2, 3, 4, 5/)
! declare a 3 x 5 array
real, dimension nums(3,5)
! declare a vector with 30 characters strings in each element
character(30), dimension name(50)

In >F90, you can remove the dimension  attribute

! declare a 3 x 5 array
real nums(3,5)

13/11/2024 | Introduction to structured programming with Fortran 14 / 65



Arrays can be multi-dimensional (up to 7 in F77) and are indexed using ( )

my_array(3)  or force(4,2)

Indices are by default defined as 1...N

We can specify index range in declaration

INTEGER arr(0:11)  : arr  is dimensioned from 0-11  (12 elements)

Whole array reference (only in >F90): arr(:)=-8  assigns 8 to all elements in arr

Avoid arr=-8  assignement

13/11/2024 | Introduction to structured programming with Fortran 15 / 65



Arrays are stored in column order (1st column, 2nd column, etc) so accessing by
incrementing row index first usually is fastest

real, dimension(1000, 1000) matrix

do j = 1, 1000          ! Column loop (outer loop)
    do i = 1, 1000      ! Row loop (inner loop)
        matrix(i, j) = matrix(i, j) * 2.0
    end do
end do

column major ordering in Fortran vs. row major ordering in C

A compiler (with sufficient optimization flags) may re-order loops automatically

13/11/2024 | Introduction to structured programming with Fortran 16 / 65



Implicit vs Explicit declarations
By default, an implicit type is assumed depending on the first letter of the variable
name:

A-H, O-Z  define REAL variables

I-N  define INTEGER variables

Can use the IMPLICIT statement:

IMPLICIT REAL (A-Z) 

makes all variables REAL if not declared

13/11/2024 | Introduction to structured programming with Fortran 17 / 65



Good habit

Force explicit type declarations :

IMPLICIT NONE

User must explicitly declare all variable types

13/11/2024 | Introduction to structured programming with Fortran 18 / 65



Assignment statements
Old assignment statement: <label>  <variable>  = <expression>

<label>  : statement label number (1 to 99999)

<variable>  : FORTRAN variable
(max 6 characters, alphanumeric only for standard FORTRAN 77)

Expression:

Numeric expressions: var = 3.5*cos(theta)

Character expressions: day(1:3) = 'TUE'

Relational expressions: flag = ans .GT. 0

Logical expressions: flag = F1 .OR. F2

13/11/2024 | Introduction to structured programming with Fortran 19 / 65



Numeric expressions
Arithmetic operators: precedence: **  (high) → -  (low)

Operator Function

** exponentiation

* multiplication

/ division

+ addition

- subtraction

13/11/2024 | Introduction to structured programming with Fortran 20 / 65



Numeric expressions are up-cast to the highest data type in the expression
according to the precedence:

(low) logical → integer → real → complex (high)

and smaller byte size (low) to larger byte size (high)

Examples:

Fortran source code 01_arith.f90
Fortran source code 02_sphere.f90

13/11/2024 | Introduction to structured programming with Fortran 21 / 65

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/01_arith.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/02_sphere.f90


Character expressions
Only built-in operator is Concatenation defined by //

'ILL'//'-'//'ADVISED'

character  arrays are most commonly encountered

treated like any array (indexed using : notation)
fixed length (usually padded with blanks)

13/11/2024 | Introduction to structured programming with Fortran 22 / 65



Example:

CHARACTER FAMILY*16
FAMILY = ‘GEORGE P. BURDELL’

PRINT*,FAMILY(:6)
PRINT*,FAMILY(8:9)
PRINT*,FAMILY(11:)
PRINT*,FAMILY(:6)//FAMILY(10:)

GEORGE
P.
BURDELL
GEORGE BURDELL

13/11/2024 | Introduction to structured programming with Fortran 23 / 65



Relational expressions
Two expressions whose values are compared to determine whether the relation is
true or false

may be numeric (common) or non-numeric

character  strings can be compared

done character by character
shorter string is padded with blanks for comparison

13/11/2024 | Introduction to structured programming with Fortran 24 / 65



Operator Relationship

.LT.  or < less than

.LE.  or <= less than or equal to

.EQ.  or == equal to

.NE.  or /= not equal to

.GT.  or > greater than

.GE.  or >= greater than or equal to

13/11/2024 | Introduction to structured programming with Fortran 25 / 65



Logical expressions
Consists of one or more logical operators and logical, numeric or relational
operands

values are .TRUE.  or .FALSE.

need to consider overall operator precedence

can combine logical and integer data with logical operators but this is tricky
(avoid!)

13/11/2024 | Introduction to structured programming with Fortran 26 / 65



F77 Operator >F90 Operator Example Meaning

.AND. && A .AND. B logical AND

.OR. || A .OR. B logical OR

.EQV. == A .EQV. B logical equivalence

.NEQV. /= A .NEQV. B logical inequivalence

.XOR. /= A .XOR. B exclusive OR  (same as .NEQV. )

.NOT. .NOT. A logical negation

13/11/2024 | Introduction to structured programming with Fortran 27 / 65



Unconditional GO TO  in FORTRAN 77
Syntax: GO TO label

Unconditional transfer to labeled statement

  10  -code-
      GO TO 30
      -code that is bypassed-
  30  -code that is target of GOTO-
      -more code-
      GO TO 10

Problem : leads to confusing "spaghetti code" 

13/11/2024 | Introduction to structured programming with Fortran 28 / 65



Spaghetti Code in F77 (and before)
Use of GO TO  and arithmetic IF 's leads to bad code that is very hard to maintain

  10  IF (KEY.LT.0) GO TO 20
      TEST=TEST-1
      THETA=ATAN(X,Y)
      GO TO 30
  20  TEST=TEST+1
      THETA=ATAN(-X,Y)
  30  CONTINUE

13/11/2024 | Introduction to structured programming with Fortran 29 / 65



IF ELSE IF  statement
Basic version:

IF (KSTAT.EQ.1) THEN
  CLASS='FRESHMAN'
ELSE IF (KSTAT.EQ.2) THEN
  CLASS='SOPHOMORE'
ELSE IF (KSTAT.EQ.3) THEN
  CLASS='JUNIOR'
ELSE IF (KSTAT.EQ.4) THEN
  CLASS='SENIOR'
ELSE
  CLASS='UNKNOWN'
ENDIF

13/11/2024 | Introduction to structured programming with Fortran 30 / 65



Loop statements (old versions)
DO  loop: structure that executes a specified number of times

Spaghetti Code Version

      K=1
  10  PRINT*,A(K)
      K=K+1
      IF (K.LE.10) GO TO 10
  20  CONTINUE

Fortran 77 Version

      DO 100 K=1,10
      PRINT*,A(K)
 100  CONTINUE

13/11/2024 | Introduction to structured programming with Fortran 31 / 65



Loop Statements (>F90)
DO K=1,10
  WRITE(*,*) A(K)
END DO

can include a third parameter to specify increments, including negative
values

R=10
DO WHILE (R.GE.0) 
  VOL=2*PI*R**2
  R=R-1
END DO

loop will not execute at all if logical_expr  is not true at start

13/11/2024 | Introduction to structured programming with Fortran 32 / 65



Comments on Loop Statements

To exit a loop

in old versions: use a GO TO  statement

in new versions: use an EXIT  statement

you cannot transfer out of multiple nested loops with a single EXIT
use named loops if needed : myloop : do i=1,n  and then EXIT myloop

To skip to next loop cycle

in new versions only : use a CYCLE  statement

13/11/2024 | Introduction to structured programming with Fortran 33 / 65



File I/O
Much of early FORTRAN was devoted to reading input data from "cards" and
writing to a line printer

Today, most I/O is to and from a file: it requires more extensive I/O capabilities
standardized until FORTRAN 77

I/O = communication between a program and the outside world

opening and closing a file with OPEN  & CLOSE

data reading & writing with READ  & WRITE

can use unformatted READ  & WRITE  if no human readable data are involved
(much faster access, smaller files)

13/11/2024 | Introduction to structured programming with Fortran 34 / 65



program io_example

  integer file_id = 105
  character(len=*) file_name = "data.txt"

  open(unit=file_id, file=file_name)
  write(file_id,*) "Hello, file!"
  close(file_id)

end

Device number *  is by default the screen (or standard output - also 6)

device numbers 1-7 are defined as standard I/O devices

13/11/2024 | Introduction to structured programming with Fortran 35 / 65



FORMAT  statement

data type format descriptors example

integer iw write(*,'(i5)') int

real  (decimal) fw.d write(*,'(f7.4)') x

real  (exponential) ew.d write(*,'(e12.3)') y

character a, aw write(*,'(a)') string

logical lw write(*,'(l2)') test

spaces & tabs wx  & tw write (*,'(i3,2x,f6.3)') i, x

linebreak / write (*,'(f6.3,/,f6.3)') x, y

13/11/2024 | Introduction to structured programming with Fortran 36 / 65



WRITE  statement

WRITE(*,1000) A,B,KEY
1000 FORMAT(F12.4,E14.5,I6)

|----+----o----+----o----+----o----+----|
    1234.5678  -0.12345E+02    12

Each WRITE  produces one or more output lines as needed to write out
variable_list  using format  statement

variable_list  can include implied DO

write(105,1000) (A(I),I=1,10)

13/11/2024 | Introduction to structured programming with Fortran 37 / 65



READ  statement

      READ(105,1000) A,B,C
 1000 FORMAT(3F12.4)

Each READ  reads one line of data

any remaining data in a line is dropped if not translated in variable_list

variable_list  can include implied DO

read(105,1000) (A(I),I=1,10)

13/11/2024 | Introduction to structured programming with Fortran 38 / 65



input items can be integer, real or character

characters must be enclosed in ' '  (or " " )

input items are separated by commas

input items must agree in type with variables in variable_list

each READ/WRITE  processes a new record (line)

Example

Fortran 90 source code 04_plot.f90

13/11/2024 | Introduction to structured programming with Fortran 39 / 65

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/04_plot.f90


Advanced example (>F90)
character(len=*) :: x_name
integer          :: ierr, iSize, guess_unit
logical          :: itsopen, itexists
!
inquire(file=trim(x_name), size=iSize, number=guess_unit, opened=itsopen, exist=itexists)
if ( itsopen ) close(guess_unit, status='delete')
!
open(902,file=trim(x_name),status='new',iostat=ierr)
!
if (iSize <= 0 .OR. .NOT.itexists) then
  open(902,file=trim(x_name),status='new',iostat=ierr)
  if (ierr /= 0) then
    ...
    close(902)
  endif
  ...
endif

13/11/2024 | Introduction to structured programming with Fortran 40 / 65



NAMELIST

It is possible to pre-define the structure of input and output data using NAMELIST
in order to make it easier to process with READ  and WRITE  statements

Use NAMELIST  to define the data structure

Use READ  or WRITE  with reference to NAMELIST  to handle the data in the
specified format

This is not part of standard F77 but it is included in >F90

13/11/2024 | Introduction to structured programming with Fortran 41 / 65



NAMELIST  - cont'd
On input, the NAMELIST  data must be structured as follows:

&INPUT
  THICK=0.245,
  LENGTH=12.34,
  WIDTH=2.34,
  DENSITY=0.0034
/

Fortran 90 source code 05_namelist.f90
Namelist file 05_namelist.def

13/11/2024 | Introduction to structured programming with Fortran 42 / 65

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/05_namelist.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/05_namelist.def


Internal WRITE  statement
Internal WRITE  does same as ENCODE  in F77 : a cast to string

INTEGER J,K
CHARACTER(50) CHAR50
J=1
K=2
WRITE(CHAR50,*) J,K

Results:

CHAR50='    1     2'

13/11/2024 | Introduction to structured programming with Fortran 43 / 65



Internal READ  statement
Internal READ  does same as DECODE  in F77 : a cast from string

INTEGER K
REAL A,B
CHARACTER(80) REC80
REC80(1)='1.2'
REC80(2)='2.3'
REC80(3)='-5'
READ(REC80,*) A,B,K

Results:

A=1.2, B=2.3, K=-5

13/11/2024 | Introduction to structured programming with Fortran 44 / 65



Structured programming
Structured programming is based on subprograms (functions and subroutines)
and control statements (like IF  statements or loops) :

structure the control-flow of your programs (e.g. give up the GO TO )

improved readability
lower level aspect of coding in a smart way

It is a programming paradigm aimed at improving the quality, clarity, and access
time of a computer program

13/11/2024 | Introduction to structured programming with Fortran 45 / 65



Functions and Subroutines
Subprograms allow structured coding

FUNCTION : returns single explicit function value for given function arguments

it's also a variable → so must be declared !

SUBROUTINE : any values returned must be returned through the arguments

no explicit subroutine value is returned !

Subprograms are not recursive in F77

Subprograms use a separate namespace (variables are local)

13/11/2024 | Introduction to structured programming with Fortran 46 / 65



Subprograms should (must) include at least one RETURN

FUNCTION  example:

REAL FUNCTION AVG3(A,B,C)
REAL A,B,C
AVG3=(A+B+C)/3
RETURN
END

Use:

AV = WEIGHT*AVG3(A1,F2,B2)

FUNCTION  type is implicitly defined as REAL

13/11/2024 | Introduction to structured programming with Fortran 47 / 65



Subroutine is invoked using the CALL  statement

SUBROUTINE AVG3S(A,B,C,AVERAGE)
REAL A,B,C, AVERAGE
AVERAGE=(A+B+C)/3
END

Use:

CALL AVG3S(A1,F2,B2,AVR)
RESULT = WEIGHT*AVR

Any returned values must be returned through argument list

13/11/2024 | Introduction to structured programming with Fortran 48 / 65



Arguments
Arguments in subprogram are dummy  arguments

arguments used in invocation are called "actual" or "real"

passed by reference (memory address) if given as symbolic

the subprogram can then alter the actual argument value since it can
access it by reference

passed by value if given as literal (so cannot be modified)

CALL AVG3S(A1,3.4,C1,QAV)

2nd argument is passed by value and others by reference
13/11/2024 | Introduction to structured programming with Fortran 49 / 65



Arguments used in invocation (by calling program) may be variables, array names,
literals, expressions or function names

Using symbolic arguments (variables or array names) is the only way to return a
value (result) from a SUBROUTINE

It is considered BAD coding practice, but functions can return values by changing
the value of arguments

this type of use should be strictly avoided !

13/11/2024 | Introduction to structured programming with Fortran 50 / 65



The INTENT  keyword (>F90) increases readability and enables better compile-time
error checking

SUBROUTINE AVG3S(A,B,C,AVERAGE)
  IMPLICIT NONE
  REAL, INTENT(IN)    :: A, B
  REAL, INTENT(INOUT) :: C        ! default
  REAL, INTENT(OUT)   :: AVERAGE
  
  A = 10                          ! Compilation error
  C = 10                          ! Correct
  AVERAGE=(A+B+C)/3               ! Correct
END

compiler uses INTENT  for error checking and optimization

13/11/2024 | Introduction to structured programming with Fortran 51 / 65



FUNCTION  versus Array
REMAINDER(4,3)  could be a 2D array or it could be a reference to a function

If the name, including arguments, matches an array declaration, then it is taken
to be an array, otherwise, it is assumed to be a FUNCTION

Be careful about implicit  versus explicit  type declarations with FUNCTION

PROGRAM MAIN
  INTEGER REMAINDER
  ...
  KR = REMAINDER(4,3)
  ...
END

INTEGER FUNCTION REMAINDER(INUM,IDEN)
  ...
END

52 / 65



Examples
Fortran 77 source code 03_histogram.f

Fortran 90 source code 03_histogram.f90

13/11/2024 | Introduction to structured programming with Fortran 53 / 65

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/03_histogram.f
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/03_histogram.f90


Arrays with Subprograms
Arrays must be passed by reference to subprogram

How do you tell subprogram how large the array is ?

answer varies with FORTRAN version and vendor (dialect)...

when an array element, e.g. A(1) , is used in a subprogram invocation , it is
passed as a reference (address), just like a simple variable

when an array is used by name in a subprogram invocation, it is passed as a
reference to the entire array.

the array must be appropriately dimensioned (and this can be tricky...)

13/11/2024 | Introduction to structured programming with Fortran 54 / 65



Arrays - dynamic allocation
Using ALLOCATABLE  on declaration, and using ALLOCATE  and DEALLOCATE  later

integer :: m, n
integer, allocatable :: idx(:)
real, allocatable :: mat(:,:)
m = 100 ; n = 200
allocate( idx(0:m-1))
allocate( mat(m, n))
...
deallocate(idx , mat)

It exists many array intrinsic functions

SIZE, SHAPE, SUM, ANY, MINVAL, MAXLOC, RESHAPE, DOT_PRODUCT,
TRANSPOSE, WHERE, FORALL, etc

13/11/2024 | Introduction to structured programming with Fortran 55 / 65



COMMON  & MODULE  Statement
A variable declared in a Main  program can be made accessible to subprograms

COMMON  statement allows variables to have a more extensive scope

can group into labeled COMMON

with > F90, it's better to use a MODULE  subprogram

this can be selective (don't have to share all everywhere) with ONLY

Fortran 77 source code 06_common.f
Fortran 90 source code 06_module.f90

13/11/2024 | Introduction to structured programming with Fortran 56 / 65

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/06_common.f
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/06_module.f90


Hands-on
Fortran 90 source code 07_plot_newton.f90

Fortran 90 source code 07_newton.f90

Text file 08_ChristmasTree.txt

13/11/2024 | Introduction to structured programming with Fortran 57 / 65

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/07_plot_newton.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/07_newton.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/08_ChristmasTree.txt


Data Type Declarations
FORTRAN >90 allows user derived types

TYPE my_variable
  character(30)           :: name
  integer                 :: id
  real(8)                 :: value
  integer, dimension(3,3) :: dimIndex
END TYPE variable

type(my_variable) var
var%name = "salinity"
var%id   = 1

13/11/2024 | Introduction to structured programming with Fortran 58 / 65



Subprograms type
MODULE  are subprograms that allow modular coding and data encapsulation

The interface of a subprogram type is explicit or implicit

Several types of subprograms:

intrinsic : explicit - defined by Fortran itself (trignonometric functions, etc)

module : explicit - defined with MODULE  statement and used with USE

internal : explicit - defined with CONTAINS  statement inside (sub)programs

external : implicit (but can be manually (re)defined explicit) - e.g. libraries

Differ with the scope: what data and other subprograms a subprogram can access

13/11/2024 | Introduction to structured programming with Fortran 59 / 65



MODULE  type

MODULE example
  IMPLICIT NONE
  INTEGER, PARAMETER :: index = 10
  REAL(8), SAVE      :: latitude
CONTAINS
  FUNCTION check(x) RESULT(z)
  INTEGER :: x, z
  ...
  END FUNCTION check
END MODULE example

PROGRAM myprog
  USE example, ONLY: check, latitude
  IMPLICIT NONE
  ...
  test = check(a)
  ...
END PROGRAM myprog

60 / 65



internal  subprogams
program main
  implicit none
  integer N
  real X(20)
  ...
  write(*,*), 'Processing x...', process()
  ...
contains
  logical function process()
    ! in this function N and X can be accessed directly (scope of main)
    ! Please not that this method is not recommended:
    ! it would be better to pass X as an argument of process
    implicit none
    if (sum(x) > 5.) then
       process = .FALSE.
    else
       process = .TRUE.
    endif
  end function process
end program

61 / 65



external  subprogams
external  subprogams are defined in a separate program unit

to use them in another program unit, refer with the EXTERNAL  statement

compiled separately and linked

!!! DO NOT USE THEM: modules are much easier and more robust 

They are only needed when subprogams are written with different programming
language or when using external libraries (such as BLAS)

It's highly recommended to construct INTERFACE  blocks for any external
subprogams used

13/11/2024 | Introduction to structured programming with Fortran 62 / 65



interface  statement

SUBROUTINE nag_rand(table)
  INTERFACE 
    SUBROUTINE g05faf(a,b,n,x)
      REAL, INTENT(IN)    :: a, b
      INTEGER, INTENT(IN) :: n
      REAL, INTENT(OUT)   :: x(n)
    END SUBROUTINE g05faf
  END INTERFACE
  !
  REAL, DIMENSION(:), INTENT(OUT) :: table
  !
  call g05faf(-1.0,-1.0, SIZE(table), table)
END SUBROUTINE nag_rand

63 / 65



Fortran Compiler and libraries
Examples:

module load netCDF-Fortran/4.5.3-gompi-2021b
gfortran -ffree-line-length-none \
-o OceanGrideChange.exe 07_OceanGrideChange.f90 \
-I${EBROOTNETCDFMINFORTRAN}/include -L${EBROOTNETCDFMINFORTRAN}/lib -lnetcdff

module load netCDF-Fortran/4.5.3-iimpi-2021b
ifort -O3 \
-o OceanGrideChange.exe 07_OceanGrideChange.f90 \
-I${EBROOTNETCDFMINFORTRAN}/include -L${EBROOTNETCDFMINFORTRAN}/lib -lnetcdff

Fortran 90 source code 09_OceanGrideChange.f90 with the input file
09_input.nc

13/11/2024 | Introduction to structured programming with Fortran 64 / 65

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/09_OceanGrideChange.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/09_input.nc


Conclusions

Fortran in all its standard versions and vendor-specific dialects is a rich but
confusing language

Fortran is a modern language that continues to evolve

Fortran is still ideally suited for numerical computations in engineering and
science

most new language features have been added since F95
"High Performance Fortran" includes capabilities designed for parallel
processing

13/11/2024 | Introduction to structured programming with Fortran 65 / 65


