Introduction to structured programming with Fortran

https://forge.uclouvain.be/barriat/learning-fortran

Pierre-Yves Barriat

November 13, 2024

CISM/CECI Training Sessions

'l UCLouvain

https://forge.uclouvain.be/barriat/learning-fortran

Fortran : shall we start ?

You already know one computer language ?

You understand the very basic programming concepts :
o What is a variable, an assignment, function call, etc. ?

o Why do I have to compile my code ?
o What is an executable ?
You (may) already know some Fortran ?

How to proceed from old Fortran, to much more modern languages like
Fortran 90/2003 ?

Why learn Fortran ?

Because of the execution speed of a program

Well suited for numerical computations :
more than 45% of scientific applications are in Fortran

Fast code :compilers can optimize well
Optimized numerical libraries available

Fortranis a simple langage and itis (kind-of) easy to learn

Fortran is simple
e We want to get our science done! Not learn languages!

e How easy/difficult is it really to learn Fortran ?

e The concept is easy:
variables, operators, controls, loops, subroutines/functions

e Invest some time now, gain big later!

History

FORmMula TRANslation

invented 1954-8 by John Backus and his team at IBM

FORTRAN 66 (ISO Standard 1972)

FORTRAN 77 (1978)
Fortran 90 (1991)
Fortran 95 (1997)
Fortran 2003 (2004) -
Fortran 2008 (2010)
Fortran 2018 (11/2018)

"standard"

version

Starting with Fortran 77

e Old Fortran provides only the absolute minimum !

e Basic features
data containers (integer, float, ...), arrays, basic operators, loops, I/0,
subroutines and functions

e But this version has flaws
no dynamic memory allocation, old & obsolete constructs, "spaghetti"
code, etc.

e [s that enough to write code ?

Fortran 77 — Fortran >90

If Fortran 77 is so simple, why is it then so difficult to write good code ?
Is simple really better ?

= Using a language allows us to express our thoughts (on a computer)
A more sophisticated language allows for more complex thoughts

More language elements to get organized
= Fortran 90/95/2003 (recursive, OOP, etc)

How to build a FORTRAN program {

FORTRAN is a compiled language (like C) so the source code (what you write) must
be converted into machine code before it can be executed (e.g. Make command)

FORTRAN N FORTRAN R L!nk \A(lth |
Program Compiler Libraries \

Executable

Source Code Object Code Code
L Make Changes Test & Debug Execute
in Source Code Program Program

Fortran 77 source code hello world.f90

https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/00_hello_world.f90

FORTRAN 77 Format

This version requires a fixed format for programs

C COMM

1000

ROGRAM MAIN

ENTS ARE ALLOWED IF A “C” IS PLACED IN COLUMN #1

IMENSION X(10)
EAD(5, *) (X(I),I=1,10)
RITE(6,1000) X

“| ‘THE STATEMENT TO A SECOND LINE',/,10F12.4)

FORMAT(1X, "THIS IS A VERY LONG LINE OF TEXT TO SHOW HOW TO CONTINUE '

< > < >
1-5 6 7-72 Statements 73-80
Label Optional
Line #s
Any character: continuation line

e max length variable names is 6 characters

e alphanumeric only, must start with a letter

e character strings are case sensitive

FORTRAN >90 Format

Versions >90 relaxe these requirements:

comments following statements (| delimiter)

long variable names (31 characters)

containing only letters, digits or underscore

max row length is 132 characters

can be max 39 continuation lines

if a line is ended with ampersand (&), the line continues onto the next line

semicolon (;) as a separator between statements on a single line

Program organization

Most FORTRAN programs consist of a main program and one or more

subprograms

There is a fixed order:

Heading

Declarations

Variable initializations
Program code

Format statements

Subprogram definitions
(functions & subroutines)

Data type declarations

Basic data types are:

e INTEGER :integer numbers (+/-)

e REAL :floating point numbers

e DOUBLE PRECISION :extended precision floating point
® CHARACTER*n : string with up to n characters

character(len=n)

e LOGICAL :takesonvalues .TRUE. or .FALSE.

INTEGER and REAL can specify number of bytes to use
Default is: INTEGER*4 and REAL*4
DOUBLE PRECISION iS Same as REAL*8

Or REAL(8)

program variables_example

integer :: a =5
real :: b = 3.14
character(len=10) :: name = "Fortran"
logical :: is_programming_fun = .true.

end program variables_example

Arrays

Arrays of any type must be declared with the dimension attribute in F77

I declare and initialize a vector

integer, dimension(5) :: nums = (/1, 2, 3, 4, 5/)

| declare a 3 x 5 array

real, dimension nums(3,5)

I declare a vector with 30 characters strings in each element
character(30), dimension name(50)

In >F90, you can remove the dimension attribute

| declare a 3 x 5 array
real nums(3,5)

Arrays can be multi-dimensional (up to 7 in F77) and are indexed using ()
my_array(3) Or force(4,2)

Indices are by default defined as 1...N

We can specify index range in declaration
INTEGER arr(0:11) : arr is dimensioned from 0-11 (12 elements)

Whole array reference (only in >F90): arr(:)=-8 assigns 8 to all elementsin arr

Avoid arr=-8 assignement

Arrays are stored in column order (1st column, 2nd column, etc) so accessing by
incrementing row index first usually is fastest

real, dimension(1000, 1000) matrix

do j = 1, 1000 I Column loop (outer Lloop)
do 1 =1, 1000 l Row loop (inner Lloop)
matrix(i, j) = matrix(i, j) * 2.0
end do
end do

column major ordering in Fortran vs. row major ordering in C

A compiler (with sufficient optimization flags) may re-order loops automatically

Implicit vs Explicit declarations

By default, an implicit type is assumed depending on the first letter of the variable
name:

e A-H, 0-z define REAL variables
e 1-N define INTEGER variables

Can use the IMPLICIT statement:

IMPLICIT REAL (A-Z)

makes all variables REAL if not declared

Good habit

Force explicit type declarations :

IMPLICIT NONE

User must explicitly declare all variable types

Assignment statements

Old assignment statement: <label> <variable> = <expression>

e <label> :statementlabel number (1 to 99999)
e <variable> : FORTRAN variable
(max 6 characters, alphanumeric only for standard FORTRAN 77)

Expression:

e Numeric expressions. var = 3.5*cos(theta)
e Character expressions: day(1:3) = 'TUE'
e Relational expressions: flag = ans .GT. @

e Logical expressions: flag = F1 .0OR. F2

Numeric expressions

Arithmetic operators: precedence: ** (high) - - (low)

Operator Function

o exponentiation
* multiplication
/ division

i addition

- subtraction

Numeric expressions are up-cast to the highest data type in the expression
according to the precedence:

(low) logical - integer - real - complex (high)

and smaller byte size (low) to larger byte size (high)

Examples:

Fortran source code 01 arith.f90
Fortran source code 02_sphere.f90

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/01_arith.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/02_sphere.f90

Character expressions

Only built-in operator is Concatenation defined by //
'ILL'//'-"//'ADVISED'

character arrays are most commonly encountered

e treated like any array (indexed using : notation)

e fixed length (usually padded with blanks)

Example:

CHARACTER FAMILY*16
FAMILY = ‘GEORGE P. BURDELL’

PRINT*, FAMILY(:6)
PRINT*, FAMILY(8:9)
PRINT*, FAMILY(11:)
PRINT*, FAMILY(:6)//FAMILY(10:)

GEORGE

P.

BURDELL

GEORGE BURDELL

Relational expressions

Two expressions whose values are compared to determine whether the relation is
true or false
e may be numeric (common) or non-numeric

character strings can be compared

e done character by character

e shorter string is padded with blanks for comparison

Operator
.LT. or <

.LE. oOr <=
.EQ. oOr ==
.NE. Or /=
.GT. Or >

.GE. Or >=

Relationship
less than
less than or equal to
equal to
not equal to
greater than

greater than or equal to

Logical expressions

Consists of one or more logical operators and logical, numeric or relational
operands

e values are .TRUE. Or .FALSE.

e need to consider overall operator precedence

can combine logical and integer data with logical operators but this is tricky
(avoid!)

F77 Operator >F90 Operator Example Meaning

.AND. && A .AND. B logical AnD

.OR. | | A .OR. B logical orR

.EQV. —— A .EQV. B logical equivalence

.NEQV. /= A .NEQV. B logical inequivalence

. XOR. /= A .XOR. B exclusive OorR (same as .NEQV.)

.NOT. .NOT. A logical negation

Unconditional GO TO in FORTRAN 77

e Syntax: GO TO label

e Unconditional transfer to labeled statement

10 -code-
GO TO 30
-code that is bypassed-
30 -code that 1is target of GOTO-
-more code-
GO TO 10

e Problem : leads to confusing "spaghetti code” 3<

Spaghetti Code in F77 (and before)

Use of Go To and arithmetic IF 'sleads to bad code thatis very hard to maintain

10 IF (KEY.LT.0) GO TO 20
TEST=TEST-1
THETA=ATAN(X, Y)

GO TO 30

20 TEST=TEST+1
THETA=ATAN(-X, Y)

30 CONTINUE

IF ELSE IF statement

Basic version:

IF (KSTAT.EQ.1) THEN
CLASS='FRESHMAN"

ELSE IF (KSTAT.EQ.2) THEN
CLASS='SOPHOMORE '

ELSE IF (KSTAT.EQ.3) THEN
CLASS="'JUNIOR'

ELSE IF (KSTAT.EQ.4) THEN
CLASS='SENIOR'

ELSE
CLASS="UNKNOWN'

ENDIF

Loop statements (old versions)

DO loop: structure that executes a specified number of times

Spaghetti Code Version

K=1
10 PRINT*,A(K)

K=K+1

IF (K.LE.10) GO TO 10
20 CONTINUE

Fortran 77 Version

DO 100 K=1,10
PRINT*, A(K)
100 CONTINUE

Loop Statements (>F90)

DO K=1,10
WRITE(*,*) A(K)
END DO

can include a third parameter to specify increments, including negative
values

R=10

DO WHILE (R.GE.O)
VOL=2*PI*R**2
R=R-1

END DO

loop will not execute at all if logical_expr is nottrue at start

Comments on Loop Statements

To exit a loop

e in old versions: usea Go T0 statement
e iNn Nnew versions: use an EXIT Sstatement

you cannot transfer out of multiple nested loops with a single EXIT
use named loops if needed : myloop : do i=1,n andthen EXIT myloop

To skip to next loop cycle

e in new versions only : use a CYCLE statement

File I/0

Much of early FORTRAN was devoted to reading input data from "cards" and
writing to a line printer

Today, most I/0 is to and from a file: it requires more extensive I/0 capabilities
standardized until FORTRAN 77

I/0 = communication between a program and the outside world

e opening and closing a file with OPEN & CLOSE

e data reading & writing with READ & WRITE
e can use unformatted ReaD & WRITE if no human readable data are involved
(much faster access, smaller files)

program io_example

integer file_id = 105
character(len=*) file_name = "data.txt"

open(unit=file_id, file=file_name)
write(file_id,*) "Hello, file!"
close(file_id)

end

Device number * is by default the screen (or standard output - also 6)

device numbers 1-7 are defined as standard I7/0 devices

FORMAT statement

data type format descriptors
integer iw
real (decimal) fw.d

real (exponential) ew.d

character a, aw
logical lw
spaces & tabs wx & tw
linebreak /

example
write(*, '(i5)') int
write(*, '(f7.4)"') X
write(*, '(el12.3)"') vy
write(*, '(a)') string
write(*, '(12)') test
write (*, '(13,2x,f6.3)"') 1, X

write (*,'(f6.3,/,f6.3)"') X, vy

WRITE statement

WRITE(*,1000) A,B,KEY
1000 FORMAT(F12.4,E14.5,16)

|----+----0----4----0----+----0----+----
1234.5678 -0.12345E+02 12

Each WRITE produces one or more output lines as needed to write out
variable_list using format statement

variable_list can include implied Do

write(105,1000) (A(I),I=1,10)

READ statement

READ(105,1000) A,B,C
1000 FORMAT(3F12.4)

Each ReaD reads one line of data
any remaining data in a line is dropped if not translated in variable_list
variable_list can include implied po

read(105,1000) (A(I),I=1,10)

e inputitems can be integer, real or character
e characters must be enclosedin ' ' (or " ")

e input items are separated by commas
e input items must agree in type with variables in variable list

e each READ/WRITE processes a new record (line)

Example

Fortran 90 source code

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/04_plot.f90

Advanced example (>F90)

character(len=*) :: Xx_name
integer :: lerr, 1Size, guess_unit
logical :: 1ltsopen, 1itexists

inquire(file=trim(x_name), size=1Size, number=guess_unit, opened=itsopen,

if (itsopen) close(guess_unit, status='delete')
|

open(902, file=trim(x_name), status="new', iostat=ierr)
|

if (iSize <= 0 .OR. .NOT.itexists) then
open(902, file=trim(x_name), status="new', iostat=ierr)
if (ierr /= 0) then
close(902)
endif

endif

exist=itexists)

NAMELIST

It is possible to pre-define the structure of input and output data using NAMELIST
in order to make it easier to process with READ and WRITE statements

e Use NAMELIST to define the data structure

e Use READ or WRITE with reference to NAMELIST to handle the data in the
specified format

This is not part of standard F77 but it is included in >F90

NAMELIST - cont'd

On input, the NAMELIST data must be structured as follows:

&INPUT
THICK=0.245,
LENGTH=12. 34,
WIDTH=2.34,
DENSITY=0.0034

/

Fortran 90 source code 05 namelist.f90
Namelist file 05 namelist.def

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/05_namelist.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/05_namelist.def

Internal WRITE statement

Internal WRITE does same as ENCODE in F77: a cast to string

INTEGER J,K
CHARACTER(50) CHAR50

J=1
K=2
WRITE(CHAR50, *) J,K

Results:

CHAR50=" 1 2'

Internal READ statement

Internal READ does same as DECODE in F77 : a cast from string

INTEGER K
REAL A, B
CHARACTER(80) RECS80
REC80(1)='1.2"
REC80(2)='2.3"
REC80(3)="'-5"
READ(REC80, *) A, B, K

Results:

A=1.2, B=2.3, K=-5

Structured programming

Structured programming is based on subprograms (functions and subroutines)
and control statements (like 1F statements or loops):

e structure the control-flow of your programs (e.g. give up the 6o 10)
e improved readability

e |lower level aspect of coding in a smart way

It is a programming paradigm aimed at improving the quality, clarity, and access
time of a computer program

Functions and Subroutines

Subprograms allow structured coding

FUNCTION : returns single explicit function value for given function arguments
it's also a variable - so must be declared!

SUBROUTINE : any values returned must be returned through the arguments

no explicit subroutine value is returned !

e Subprograms are not recursive in F77

e Subprograms use a separate namespace (variables are local)

Subprograms should (must) include at least one RETURN

FUNCTION example:

REAL FUNCTION AVG3(A,B,C)
REAL A,B,C
AVG3=(A+B+C)/3

RETURN

END

Use:

AV = WEIGHT*AVG3(Al,F2,B2)

FUNCTION type is implicitly defined as REAL

Subroutine is invoked using the CALL statement

SUBROUTINE AVG3S(A, B, C, AVERAGE)
REAL A,B,C, AVERAGE
AVERAGE=(A+B+C)/3

END

Use:

CALL AVG3S(A1,F2,B2,AVR)
RESULT = WEIGHT*AVR

Any returned values must be returned through argument list

Arguments

Arguments in subprogram are dummy arguments

arguments used in invocation are called "actual" or "real"

e passed by reference (memory address) if given as symbolic

the subprogram can then alter the actual argument value since it can
access it by reference

e passed by value if given as literal (so cannot be modified)

CALL AVG3S(A1,3.4,C1,QAV)

2nd argument is passed by value and others by reference

Arguments used in invocation (by calling program) may be variables, array names,
literals, expressions or function names

Using symbolic arguments (variables or array names) is the only way to return a
value (result) from a SUBROUTINE

It is considered BAD coding practice, but functions can return values by changing
the value of arguments

this type of use should be strictly avoided !

~ Q/
4/

The INTENT keyword (>F90) increases readability and enables better compile-time

error checking

SUBROUTINE AVG3S(A, B, C, AVERAGE)
IMPLICIT NONE

REAL, INTENT(IN) .. A, B
REAL, INTENT(INOUT) :: C I default
REAL, INTENT(OUT) : . AVERAGE
A =10 | Compilation error
C = 10 Il Correct
AVERAGE=(A+B+C)/3 I Correct

END

compiler uses INTENT for error checking and optimization

FUNCTION versus Array

REMAINDER(4,3) could be a 2D array or it could be a reference to a function

If the name, including arguments, matches an array declaration, then it is taken
to be an array, otherwise, it is assumed to be a FUNCTION

Be careful about implicit versus explicit type declarations with FUNCTION

PROGRAM MAIN
INTEGER REMAINDER

KR = REMAINDER(4,3)
END
INTEGER FUNCTION REMAINDER(INUM, IDEN)

END

Examples

Fortran 77 source code 03_histogram.f

Fortran 90 source code 03_histogram.f90

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/03_histogram.f
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/03_histogram.f90

Arrays with Subprograms

Arrays must be passed by reference to subprogram
How do you tell subprogram how large the array is ?

answer varies with FORTRAN version and vendor (dialect)...
e when an array element, e.g. A(1) , isused in a subprogram invocation, it is
passed as a reference (address), just like a simple variable

e when an array is used by name in a subprogram invocation, it is passed as a
reference to the entire array.

the array must be appropriately dimensioned (and this can be tricky...)

Arrays - dynamic allocation

Using ALLOCATABLE on declaration, and using ALLOCATE and DEALLOCATE

integer :: m, n

integer, allocatable :: idx(:)
real, allocatable :: mat(:,:)
m= 100 ; n = 200

allocate(1dx(0:m-1))
allocate(mat(m, n))

deallocate(idx , mat)

It exists many array intrinsic functions

SIZE, SHAPE, SUM, ANY, MINVAL, MAXLOC, RESHAPE, DOT_PRODUCT,
TRANSPOSE, WHERE, FORALL, etc

later

COMMON & MODULE Statement

A variable declared in a Main program can be made accessible to subprograms

e COMMON statement allows variables to have a more extensive scope
can group into labeled commoN
e with > F90, it's better to use a MODULE subprogram

this can be selective (don't have to share all everywhere) with oNLY

Fortran 77 source code 06 common.f
Fortran 90 source code 06_module.f90

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/06_common.f
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/06_module.f90

Hands-on

Fortran 90 source code 07_plot_newton.f90
Fortran 90 source code 07 newton.f90

Text file 08 ChristmasTree.txt

57765

13/11/2024 | Introduction to structured programming with Fortran

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/07_plot_newton.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/07_newton.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/08_ChristmasTree.txt

Data Type Declarations

FORTRAN >90 allows user derived types

TYPE my_variable

character (30) ¢ name
integer :: 1d
real(8) 1 value
integer, dimension(3,3) :: dimIndex

END TYPE variable

type(my_variable) var
var%name = "salinity"
var%id 1

Subprograms type

MODULE are subprograms that allow modular coding and data encapsulation
The interface of a subprogram type is explicit or implicit
Several types of subprograms:

e intrinsic : explicit - defined by Fortran itself (trignonometric functions, etc)
e module : explicit - defined with MODULE statement and used with USE
e internal : explicit - defined with CONTAINS statement inside (sub)programs

e external : implicit (but can be manually (re)defined explicit) - e.qg. libraries

Differ with the scope: what data and other subprograms a subprogram can access

MODULE type

MODULE example
IMPLICIT NONE
INTEGER, PARAMETER :: index = 10
REAL(8), SAVE :: latitude
CONTAINS
FUNCTION check(x) RESULT(z)
INTEGER :: X, z

END FUNCTION check
END MODULE example

PROGRAM myprog
USE example, ONLY: check, latitude
IMPLICIT NONE
test = check(a)

END PROGRAM myprog

internal subprogams

program main
implicit none
integer N
real X(20)

write(*,*), 'Processing x...', process()
contains
logical function process()
l in this function N and X can be accessed directly (scope of main)
| Please not that this method is not recommended:
I 1t would be better to pass X as an argument of process
implicit none
if (sum(x) > 5.) then
process = .FALSE.
else
process = .TRUE.
endif

end function process
end program

external subprogams

e external subprogams are defined in a separate program unit
e to use them in another program unit, refer with the EXTERNAL statement
e compiled separately and linked

I DO NOT USE THEM: modules are much easier and more robust |

They are only needed when subprogams are written with different programming
language or when using external libraries (such as BLAS)

It's highly recommended to construct INTERFACE blocks for any external
subprogams used

interface statement

SUBROUTINE nag_rand(table)
INTERFACE
SUBROUTINE go05faf(a,b,n, x)

REAL, INTENT(IN) s a. b
INTEGER, INTENT(IN) :: n
REAL, INTENT(OUT) :: x(n)

END SUBROUTINE gO5faf
END INTERFACE
|

REAL, DIMENSION(:), INTENT(OUT)
|

call gos5faf(-1.0,-1.0, SIZE(table), table)

END SUBROUTINE nag_rand

table

Fortran Compiler and libraries

Examples:

module load netCDF-Fortran/4.5.3-gompi-2021b
gfortran -ffree-1line-1length-none \

-0 OceanGrideChange.exe 07_0OceanGrideChange.f90 \
-I${EBROOTNETCDFMINFORTRAN}/include -L${EBROOTNETCDFMINFORTRAN}/1ib -1lnetcdff

module load netCDF-Fortran/4.5.3-iimpi-2021b
ifort -03 \

-0 OceanGrideChange.exe 07_0OceanGrideChange.f90 \
-I${EBROOTNETCDFMINFORTRAN}/include -L${EBROOTNETCDFMINFORTRAN}/1ib -1lnetcdff

Fortran 90 source code with the input file

https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/09_OceanGrideChange.f90
https://forge.uclouvain.be/barriat/learning-fortran/-/blob/master/src/09_input.nc

Conclusions

e Fortran in all its standard versions and vendor-specific dialects is a rich but
confusing language

e Fortran is a modern language that continues to evolve

e Fortran is still ideally suited for numerical computations in engineering and
science

o most new language features have been added since F95

o "High Performance Fortran" includes capabilities designed for parallel
processing

