diff --git a/6_number.jl b/6_number.jl new file mode 100644 index 0000000000000000000000000000000000000000..194e33f70a1941f7f81cf408993685cbe296ecd9 --- /dev/null +++ b/6_number.jl @@ -0,0 +1,471 @@ +### A Pluto.jl notebook ### +# v0.19.46 + +using Markdown +using InteractiveUtils + +# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). +macro bind(def, element) + quote + local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end + local el = $(esc(element)) + global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el) + el + end +end + +# â•”â•â•¡ 06679a09-47d7-4024-8232-4954c08747a0 +using PlutoUI, Primes + +# â•”â•â•¡ 1b1d5c9b-5fc7-480e-9649-e9c44a49c38d +include("utils.jl") + +# â•”â•â•¡ 736307ec-a2a4-11ef-0f85-ad1a0093e06a +md"# La théorie des nombres" + +# â•”â•â•¡ cbabee34-2ca2-4ad4-93ba-2ec3c941da5e +md""" +Si tous les mois avaient 30 jours, est-ce qu'il y a des jours de la semaine qui ne seront jamais le premier du mois ? + +Reformulation: pour tout nombre ``0 \le j < 7``, existe-t-il ``x`` et ``y`` tels que ``30x = j + 7y``. Notation modulo : ``30x \equiv j \pmod{7}``. + +Si tous les ans avaient 365 jours, est-ce qu'il y a des jours de la semaine qui ne seront jamais le jours de Noël ? Est si tous les ans avaient 366 jours ? Et s'ils avaient 364 jours ? + +Reformulation: pour tout nombre ``0 \le j < 7``, existe-t-il ``x`` et ``y`` tels que ``365x = j + 7y``. Notation modulo : ``365x \equiv j \pmod{7}``. +""" + +# â•”â•â•¡ 909b8a36-79bb-4c1a-9dd7-4acaffc0434e +frametitle("Théorème de Bézout") + +# â•”â•â•¡ 08b18315-c28e-44ed-beb2-5b17421b0224 +md""" +> **Définition** Le *Greatest Common Divisor (GCD)* de deux nombres ``a \in \mathbb{Z}`` et ``b \in \mathbb{Z}``, noté ``\text{gcd}(a, b)`` est le plus grand nombre ``g \in \mathbb{Z}`` qui divise ``a`` et ``b``. C'est à dire qu'il existe ``x \in \mathbb{Z}`` tel que ``a = gx`` et ``y \in \mathbb{Z}`` tel que ``b = gy``. En notation modulaire, ``a \equiv 0 \pmod{g}`` et ``b \equiv 0 \pmod{g}``. + +> **Théorème de Bézout** Il existe ``x, y \in \mathbb{Z}`` tels que ``ax + by = c`` si et seulement si ``\text{gcd}(x, y)`` divise ``c``. En notation modulaire ``ax \equiv c \pmod{b}`` et ``by \equiv c \pmod{a}``. +""" + +# â•”â•â•¡ 7bad8c6c-45c7-402f-ad59-6857e9268901 +qa(md"Comment prouver que l'égalité ``ax + by = c`` implique que ``\text{gcd}(x, y)`` divise ``c`` ?", +md""" +""",) + +# â•”â•â•¡ cd481f6c-66f4-4ebf-9769-c3edc24f403b +frametitle("Algorithme d'Euclide : élaboration") + +# â•”â•â•¡ 37585789-bd43-4ce5-b550-ad712b70d226 +md""" +> **Définition** Le résultat de la *division Euclidienne* de ``a`` par un diviseur ``d`` est un quotient ``q`` et un reste ``0 \le r < d`` tels que ``a = qd + r``. En notation modulaire ``a \equiv r \pmod{d}``. +""" + +# â•”â•â•¡ 6e59ee60-ef73-45ca-86eb-4d8a44c73771 +qa(md"**Observation clé** Que dit le théorème de Bézout par rapport à ``\text{gcd}(a, d)`` et ``r``.", +md""" +Le reste ``r`` est **divisible** par ``\text{gcd}(a, d)``. +Le nombre ``\text{gcd}(a, d)`` divise donc les 3 nombres, ``a``, ``d`` et ``r`` et donc ``\text{gcd}(a, d) = \text{gcd}(a, d, r)``. +""") + +# â•”â•â•¡ d6b89fda-308f-43da-8028-1a812b4516cf +qa(md"**Observation clé** Que dit le théorème de Bézout par rapport à ``\text{gcd}(d, r)`` et ``a``.", +md""" +Le nombre ``a`` est **divisible** par ``\text{gcd}(d, r)``. +Le nombre ``\text{gcd}(d, r)`` divise donc les 3 nombres, ``a``, ``d`` et ``r`` et donc ``\text{gcd}(d, r) = \text{gcd}(a, d, r)``. +En combinant ça avec l'observation précédente, on a le résultat suivant.``\text{gcd}(a, d) = \text{gcd}(d, r)``. +""") + +# â•”â•â•¡ d1b260fb-7500-47fb-bb48-21b5857ab55a +md""" +**Lemme**: Si ``a \equiv r \pmod{b}`` alors ``\text{gcd}(a, b) = \text{gcd}(b, r)``. +""" + +# â•”â•â•¡ 9207b107-e1b0-4328-a004-f4b8152b423f +qa(md"**Observation clé** Si ``a > b``, trouver un mono-variant.", +md""" +On a ``(a, b) > (b, r)``. En effet, ``a > b`` par supposition et ``b > r`` par définition de l'algorithme d'Euclide. +Notons que même si la supposition ``a > b`` n'est pas vraie, elle le devient pour ``\text{gcd}(b, r)``. +""") + +# â•”â•â•¡ 48eba223-6cce-4aa2-9977-4883ba7903fc +qa(md"**Observation finale** Si ``a`` et ``b`` sont positifs et qu'on effectue la substitution ``(a, b) \to (b, r)`` récursivement, le mono-variant impose qu'on ne puisse itérer qu'un nombre fini de fois, que va-t-il se passer ?", +md""" +La paire ``(a, b)`` va diminuer strictement (c'est à dire d'au moins 1) à chaque itération. Pourtant, ce sont des nombres entier positifs donc ils ne peuvent diminuer strictement qu'un nombre fini de fois. C'est une contradiction, comme cela se fait-il ? +À un moment ``b`` vaudra 0, on ne pourra alors plus faire de division Euclidienne. On utilisera alors le fait que ``\text{gcd}(a, 0) = a``. +""") + +# â•”â•â•¡ bd0c0258-7040-42e7-a20e-532b55af3a62 +frametitle("Algorithme d'Euclide : implémentation") + +# â•”â•â•¡ 97736c6a-3f5d-4978-8dd2-0a11c09ba9f0 +function pgcd(a, b) + print("gcd($a, $b) = ") + if a < b + return pgcd(b, a) + elseif b == 0 + println(a) + return a + else + return pgcd(b, mod(a, b)) + end +end + +# â•”â•â•¡ 1a4da418-147f-46f4-9b95-7955183aa5cf +md"a = $(@bind a Slider(1:typemax(Int32), default=90284599, show_value = true))" + +# â•”â•â•¡ f39cccac-5b24-46e4-8749-1b0a944542ef +md"b = $(@bind b Slider(1:typemax(Int32), default=249357461, show_value = true))" + +# â•”â•â•¡ fe2af566-4a8b-4052-9915-85266ee5ce98 +pgcd(a, b) + +# â•”â•â•¡ 03e49669-cdee-4241-862d-33ee91214455 +md"The complexity is difficult to evaluate but can be shown to be ``O(\log(\min(a, b)))``." + +# â•”â•â•¡ 83852dd5-3546-45af-a845-b01dab0aa2a6 +frametitle("Division modulaire") + +# â•”â•â•¡ 352b26e4-1cc3-47d5-a772-b460f718ebf8 +frametitle("Inverse modulaire") + +# â•”â•â•¡ 2cb5c6e0-b431-4d2e-b023-cd2131112eca +frametitle("Algorithme d'Euclide étendu") + +# â•”â•â•¡ f4895654-d684-42d2-ae4c-de72e6824484 +frametitle("Euler totient function") + +# â•”â•â•¡ f855a589-36c2-4b77-9f01-17da963658f4 +mod(2^Primes.totient(11), 11) + +# â•”â•â•¡ 457a1da2-3f87-43e6-a9cf-8dbfb225c4dc +frametitle("Fast exponentiation") + +# â•”â•â•¡ 00000000-0000-0000-0000-000000000001 +PLUTO_PROJECT_TOML_CONTENTS = """ +[deps] +PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" +Primes = "27ebfcd6-29c5-5fa9-bf4b-fb8fc14df3ae" + +[compat] +PlutoUI = "~0.7.60" +Primes = "~0.5.6" +""" + +# â•”â•â•¡ 00000000-0000-0000-0000-000000000002 +PLUTO_MANIFEST_TOML_CONTENTS = """ +# This file is machine-generated - editing it directly is not advised + +julia_version = "1.11.1" +manifest_format = "2.0" +project_hash = "c18f2dc82a5fa9b4f1b8bdf216d21c9674fba955" + +[[deps.AbstractPlutoDingetjes]] +deps = ["Pkg"] +git-tree-sha1 = "6e1d2a35f2f90a4bc7c2ed98079b2ba09c35b83a" +uuid = "6e696c72-6542-2067-7265-42206c756150" +version = "1.3.2" + +[[deps.ArgTools]] +uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" +version = "1.1.2" + +[[deps.Artifacts]] +uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" +version = "1.11.0" + +[[deps.Base64]] +uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" +version = "1.11.0" + +[[deps.ColorTypes]] +deps = ["FixedPointNumbers", "Random"] +git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d" +uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" +version = "0.11.5" + +[[deps.CompilerSupportLibraries_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" +version = "1.1.1+0" + +[[deps.Dates]] +deps = ["Printf"] +uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" +version = "1.11.0" + +[[deps.Downloads]] +deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] +uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" +version = "1.6.0" + +[[deps.FileWatching]] +uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" +version = "1.11.0" + +[[deps.FixedPointNumbers]] +deps = ["Statistics"] +git-tree-sha1 = "05882d6995ae5c12bb5f36dd2ed3f61c98cbb172" +uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" +version = "0.8.5" + +[[deps.Hyperscript]] +deps = ["Test"] +git-tree-sha1 = "179267cfa5e712760cd43dcae385d7ea90cc25a4" +uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" +version = "0.0.5" + +[[deps.HypertextLiteral]] +deps = ["Tricks"] +git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653" +uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" +version = "0.9.5" + +[[deps.IOCapture]] +deps = ["Logging", "Random"] +git-tree-sha1 = "b6d6bfdd7ce25b0f9b2f6b3dd56b2673a66c8770" +uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" +version = "0.2.5" + +[[deps.IntegerMathUtils]] +git-tree-sha1 = "b8ffb903da9f7b8cf695a8bead8e01814aa24b30" +uuid = "18e54dd8-cb9d-406c-a71d-865a43cbb235" +version = "0.1.2" + +[[deps.InteractiveUtils]] +deps = ["Markdown"] +uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" +version = "1.11.0" + +[[deps.JSON]] +deps = ["Dates", "Mmap", "Parsers", "Unicode"] +git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" +uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" +version = "0.21.4" + +[[deps.LibCURL]] +deps = ["LibCURL_jll", "MozillaCACerts_jll"] +uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" +version = "0.6.4" + +[[deps.LibCURL_jll]] +deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] +uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" +version = "8.6.0+0" + +[[deps.LibGit2]] +deps = ["Base64", "LibGit2_jll", "NetworkOptions", "Printf", "SHA"] +uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" +version = "1.11.0" + +[[deps.LibGit2_jll]] +deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll"] +uuid = "e37daf67-58a4-590a-8e99-b0245dd2ffc5" +version = "1.7.2+0" + +[[deps.LibSSH2_jll]] +deps = ["Artifacts", "Libdl", "MbedTLS_jll"] +uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" +version = "1.11.0+1" + +[[deps.Libdl]] +uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" +version = "1.11.0" + +[[deps.LinearAlgebra]] +deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] +uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" +version = "1.11.0" + +[[deps.Logging]] +uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" +version = "1.11.0" + +[[deps.MIMEs]] +git-tree-sha1 = "65f28ad4b594aebe22157d6fac869786a255b7eb" +uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65" +version = "0.1.4" + +[[deps.Markdown]] +deps = ["Base64"] +uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" +version = "1.11.0" + +[[deps.MbedTLS_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" +version = "2.28.6+0" + +[[deps.Mmap]] +uuid = "a63ad114-7e13-5084-954f-fe012c677804" +version = "1.11.0" + +[[deps.MozillaCACerts_jll]] +uuid = "14a3606d-f60d-562e-9121-12d972cd8159" +version = "2023.12.12" + +[[deps.NetworkOptions]] +uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" +version = "1.2.0" + +[[deps.OpenBLAS_jll]] +deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] +uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" +version = "0.3.27+1" + +[[deps.Parsers]] +deps = ["Dates", "PrecompileTools", "UUIDs"] +git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821" +uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" +version = "2.8.1" + +[[deps.Pkg]] +deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "Random", "SHA", "TOML", "Tar", "UUIDs", "p7zip_jll"] +uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" +version = "1.11.0" + + [deps.Pkg.extensions] + REPLExt = "REPL" + + [deps.Pkg.weakdeps] + REPL = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" + +[[deps.PlutoUI]] +deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "FixedPointNumbers", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "MIMEs", "Markdown", "Random", "Reexport", "URIs", "UUIDs"] +git-tree-sha1 = "eba4810d5e6a01f612b948c9fa94f905b49087b0" +uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" +version = "0.7.60" + +[[deps.PrecompileTools]] +deps = ["Preferences"] +git-tree-sha1 = "5aa36f7049a63a1528fe8f7c3f2113413ffd4e1f" +uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" +version = "1.2.1" + +[[deps.Preferences]] +deps = ["TOML"] +git-tree-sha1 = "9306f6085165d270f7e3db02af26a400d580f5c6" +uuid = "21216c6a-2e73-6563-6e65-726566657250" +version = "1.4.3" + +[[deps.Primes]] +deps = ["IntegerMathUtils"] +git-tree-sha1 = "cb420f77dc474d23ee47ca8d14c90810cafe69e7" +uuid = "27ebfcd6-29c5-5fa9-bf4b-fb8fc14df3ae" +version = "0.5.6" + +[[deps.Printf]] +deps = ["Unicode"] +uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" +version = "1.11.0" + +[[deps.Random]] +deps = ["SHA"] +uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" +version = "1.11.0" + +[[deps.Reexport]] +git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" +uuid = "189a3867-3050-52da-a836-e630ba90ab69" +version = "1.2.2" + +[[deps.SHA]] +uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" +version = "0.7.0" + +[[deps.Serialization]] +uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" +version = "1.11.0" + +[[deps.Statistics]] +deps = ["LinearAlgebra"] +git-tree-sha1 = "ae3bb1eb3bba077cd276bc5cfc337cc65c3075c0" +uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" +version = "1.11.1" + + [deps.Statistics.extensions] + SparseArraysExt = ["SparseArrays"] + + [deps.Statistics.weakdeps] + SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" + +[[deps.TOML]] +deps = ["Dates"] +uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" +version = "1.0.3" + +[[deps.Tar]] +deps = ["ArgTools", "SHA"] +uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" +version = "1.10.0" + +[[deps.Test]] +deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] +uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" +version = "1.11.0" + +[[deps.Tricks]] +git-tree-sha1 = "7822b97e99a1672bfb1b49b668a6d46d58d8cbcb" +uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" +version = "0.1.9" + +[[deps.URIs]] +git-tree-sha1 = "67db6cc7b3821e19ebe75791a9dd19c9b1188f2b" +uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" +version = "1.5.1" + +[[deps.UUIDs]] +deps = ["Random", "SHA"] +uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" +version = "1.11.0" + +[[deps.Unicode]] +uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" +version = "1.11.0" + +[[deps.Zlib_jll]] +deps = ["Libdl"] +uuid = "83775a58-1f1d-513f-b197-d71354ab007a" +version = "1.2.13+1" + +[[deps.libblastrampoline_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" +version = "5.11.0+0" + +[[deps.nghttp2_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" +version = "1.59.0+0" + +[[deps.p7zip_jll]] +deps = ["Artifacts", "Libdl"] +uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" +version = "17.4.0+2" +""" + +# â•”â•â•¡ Cell order: +# ╟─736307ec-a2a4-11ef-0f85-ad1a0093e06a +# ╟─cbabee34-2ca2-4ad4-93ba-2ec3c941da5e +# ╟─909b8a36-79bb-4c1a-9dd7-4acaffc0434e +# ╟─08b18315-c28e-44ed-beb2-5b17421b0224 +# ╟─7bad8c6c-45c7-402f-ad59-6857e9268901 +# ╟─cd481f6c-66f4-4ebf-9769-c3edc24f403b +# ╟─37585789-bd43-4ce5-b550-ad712b70d226 +# ╟─6e59ee60-ef73-45ca-86eb-4d8a44c73771 +# ╟─d6b89fda-308f-43da-8028-1a812b4516cf +# ╟─d1b260fb-7500-47fb-bb48-21b5857ab55a +# ╟─9207b107-e1b0-4328-a004-f4b8152b423f +# ╟─48eba223-6cce-4aa2-9977-4883ba7903fc +# ╟─bd0c0258-7040-42e7-a20e-532b55af3a62 +# â• â•97736c6a-3f5d-4978-8dd2-0a11c09ba9f0 +# ╟─1a4da418-147f-46f4-9b95-7955183aa5cf +# ╟─f39cccac-5b24-46e4-8749-1b0a944542ef +# â• â•fe2af566-4a8b-4052-9915-85266ee5ce98 +# ╟─03e49669-cdee-4241-862d-33ee91214455 +# ╟─83852dd5-3546-45af-a845-b01dab0aa2a6 +# ╟─352b26e4-1cc3-47d5-a772-b460f718ebf8 +# ╟─2cb5c6e0-b431-4d2e-b023-cd2131112eca +# ╟─f4895654-d684-42d2-ae4c-de72e6824484 +# â• â•f855a589-36c2-4b77-9f01-17da963658f4 +# ╟─457a1da2-3f87-43e6-a9cf-8dbfb225c4dc +# â• â•06679a09-47d7-4024-8232-4954c08747a0 +# â• â•1b1d5c9b-5fc7-480e-9649-e9c44a49c38d +# ╟─00000000-0000-0000-0000-000000000001 +# ╟─00000000-0000-0000-0000-000000000002 diff --git a/utils.jl b/utils.jl new file mode 100644 index 0000000000000000000000000000000000000000..9b289cb36453573b68d4512e6608199599fd1b39 --- /dev/null +++ b/utils.jl @@ -0,0 +1,83 @@ +begin + function CenteredBoundedBox(str) + xbearing, ybearing, width, height, xadvance, yadvance = + Luxor.textextents(str) + lcorner = Point(xbearing - width/2, ybearing) + ocorner = Point(lcorner.x + width, lcorner.y + height) + return BoundingBox(lcorner, ocorner) + end + function boxed(str::AbstractString, p) + translate(p) + sethue("lightgrey") + poly(CenteredBoundedBox(str) + 5, action = :stroke, close=true) + sethue("black") + text(str, Point(0, 0), halign=:center) + #settext("<span font='26'>$str</span>", halign="center", markup=true) + origin() + end + + # `Cols` conflict with `DataFrames` + struct HAlign{T<:Tuple} + cols::T + dims::Vector{Int} + end + function HAlign(a::Tuple) + n = length(a) + return HAlign(a, div(100, n) * ones(Int, n)) + end + HAlign(a, b, args...) = HAlign(tuple(a, b, args...)) + + function Base.show(io, mime::MIME"text/html", c::HAlign) + x = div(100, length(c.cols)) + write(io, """<div style="display: flex; justify-content: center; align-items: center;">""") + for (col, p) in zip(c.cols, c.dims) + write(io, """<div style="flex: $p%;">""") + show(io, mime, col) + write(io, """</div>""") + end + write(io, """</div>""") + end + function imgpath(file) + if !('.' in file) + file = file * ".png" + end + return joinpath(joinpath(@__DIR__, "images", file)) + end + function img(file, args...) + LocalResource(imgpath(file), args...) + end + section(t) = md"# $t" + frametitle(t) = md"# $t" # with `##`, it's not centered + + struct Join + list + Join(a) = new(a) + Join(a, b, args...) = Join(tuple(a, b, args...)) + end + function Base.show(io::IO, mime::MIME"text/html", d::Join) + for el in d.list + show(io, mime, el) + end + end + + struct HTMLTag + tag::String + parent + end + function Base.show(io::IO, mime::MIME"text/html", d::HTMLTag) + write(io, "<", d.tag, ">") + show(io, mime, d.parent) + write(io, "</", d.tag, ">") + end + + function qa(question, answer) + return HTMLTag("details", Join(HTMLTag("summary", question), answer)) + end + + function qa(question::Markdown.MD, answer) + # `html(question)` will create `<p>` because `question.content[]` is `Markdown.Paragraph` + # This will print the question on a new line and we don't want that: + h = HTML(sprint(Markdown.htmlinline, question.content[].content)) + return qa(h, answer) + end +end