from numpy import * import matplotlib.pyplot as plt # make sure warnings raise errors seterr(all='raise') def run_simulation(L, u0, dt, timesteps, nu=1): N = len(u0) # compute a vector storing the frequencies for the fourier transform, it already takes the interval [0, L] # into account, no need to divde with / L later in the computations k = fft.rfftfreq(N, d=L/(N-1)) solution = zeros((timesteps+1, N)) solution[0] = u0 previous_u2k = fft.rfft(u0 ** 2) current_uk = fft.rfft(u0) # f_L (k), this is constant so we only compute it once. # note that we don't need to divide by /L because fftfreq already does it :) fL = (2*pi * k) ** 2 - nu * (2 * pi * k) ** 4 for i in range(timesteps): # update solution (note that we don't divide by L!) current_u2k = fft.rfft(solution[i] ** 2) next_uk = (1 + dt/2 * fL) / (1 - dt/2 * fL) * current_uk - 1j * pi * k * (3 * current_u2k - previous_u2k) / (2 - dt * fL) * dt # store after inverse FFT, ignoring its imaginary part solution[i+1] = real(fft.irfft(next_uk)) # update values for the next iteration current_uk = next_uk previous_u2k = current_u2k return solution def wrap_simulation(L, N, dt=0.05, tmax=200, nu=1): x = linspace(0, L, N) time_values = linspace(0, tmax, int(tmax / dt)+1) s = run_simulation(L, cos(2*pi/L * x) + 0.1 * cos(4*pi/L * x), dt, len(time_values)-1, nu=nu) return x, time_values, s # define a few constants x, time_values, s = wrap_simulation(100, 1024, nu=1) # pick a nice color for the plot colormap = plt.get_cmap("jet") # print the values plt.pcolormesh(x, time_values, s, cmap=colormap) # print the colorbar on the right plt.colorbar() # open a window with the plot :) plt.show() # ok now let's be real and try to find the critical value of L :) Ls = linspace(1, 100, 100) def test_multiple_Ls(nu=1): As = zeros(Ls.shape) critical_L = None for i, L in enumerate(Ls): # for every L, we compute the norm A #print("Computing for L = %f" % L) tmax = 200 # testing shows that a time of 200 s is clearly enough _, _, s = wrap_simulation(L, 1024, dt=0.2, tmax=tmax, nu=nu) As[i] = sqrt(mean(s[-1]**2)) # compute with the last iteration if As[i] > 1e-1 and critical_L is None: critical_L = L return Ls, As, critical_L # Plot A as a function of L for nu = 1 Ls, As, critical_L = test_multiple_Ls(1) plt.plot(Ls, As) plt.xlabel("L") plt.ylabel("A") plt.show() # Now find the critical value for multiple nus nus_exp = linspace(-0.5, 1.75, 20) # nu between e^-0.5 and e^1.75 nus = exp(nus_exp) # use a log scale critical_Ls = zeros(nus.shape) for i, nu in enumerate(nus): _, _, critical_L = test_multiple_Ls(nu) critical_Ls[i] = critical_L print("Found critical L %10f for nu %10f" % (critical_L, nu)) plt.plot(nus, critical_Ls, label="Simulation") # Perform a linear regression to find the slope from sklearn.linear_model import LinearRegression reg = LinearRegression().fit(log(nus).reshape(-1, 1), log(critical_Ls)) # we fit the logs # because we fitted the logs, we have the predict with the log, then take the exp() plt.plot(nus, exp(reg.predict(log(nus).reshape(-1, 1))), label="Linear Regression (slope = %f)" % reg.coef_) plt.xlabel("$\\nu$") plt.ylabel("Critical L") plt.xscale("log") plt.yscale("log") plt.legend() plt.show() # notes # nu = 0.1 causes the solution to diverge! # for nu above ~6 the critical L is 1 # [0.60653066, 0.68278248, 0.76862053, 0.86524996, 0.97402745, 1.09648023, 1.23432754, 1.38950472, 1.56419047, 1.76083737, 1.98220632, 2.23140533, 2.51193314, 2.82772834, 3.18322469, 3.58341333, 4.03391288, 4.54104833, 5.11193983, 5.75460268] # [ 5.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 8.0, 8.0, 9.0, 9.0, 10.0, 10.0, 11.0, 12.0, 12.0, 13.0, 14.0, 14.0, 15.0 ]