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Programming basics
code or source code: The sequence of instructions in a program.
syntax: The set of legal structures and commands that can be
used in a particular programming language.
output: The messages printed to the user by a program.
console: The text box onto which output is printed.
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Compiling and interpreting
Many languages require you to compile (translate) your program into a form that
the machine understands.

compile executesource code: Hello.f90 byte code: Hello.exe output

Python is instead directly interpreted into machine instructions.

interpretcode: Hello.py output

16/10/2024 | Introduction to Python 3 / 78



Python: Overview

Python is an interpreted language

The interpreter provides an interactive environment to play with the language

Simple syntax, relatively easy to learn

Useful in many areas (science, web development, GUI programming)

Big standard library, many additional packages

Python 3: new minor version (e.g. 3.9) released every October

Python 2: support ended in 2019, 10% of developers were still using it
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Code examples
>>> 3 + 7
10
>>> 3 < 15
True
>>> 'print me'
'print me'
>>> print('print me')
print me
>>> # this is a comment
>>> a = 3
>>> b = 4
>>> a * b
12

Results of expressions are printed on the screen
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Running Python code
write a program as a file (or collection of files), run that program

GUI applications, web applications, data processing pipelines

type code into an interactive console or notebook line by line
for quick calculations, experimenting, data exploration / analysis)

Using Python

local installation
remote Python server
online Python consoles or online Notebooks (Jupyter)

https://www.python.org/shell/
https://jupyterhub.cism.ucl.ac.be
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Expressions
expression: a data value or set of operations to compute a value.

1 + 4 * 3

Arithmetic operators we will use:
+ - * /  addition, subtraction/negation, multiplication, division

%  modulus, a.k.a. remainder

**  exponentiation

precedence: order in which operations are computed.
/ % **  have a higher precedence than + -

1 + 3 * 4  is 13

Parentheses can be used to force a certain order of evaluation.
(1 + 3) * 4  is 16
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Variables
Variable: a named piece of memory that can store a value.

Compute an expression's result,
store that result into a variable,
and use that variable later in the program.

Assignment statement: stores a value into a variable
Syntax: name = value

Examples: x = 5  , gpa = 3.14

A variable that has been given a value can be used in expressions.
x + 4  is 9
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Names of variables are usually written in lower case, separating words by
underscores

birth_year = 1970
current_year = 2020
age = current_year - birth_year

Variable names may only consist of letters, digits and underscores

Overwriting (reassigning) variables:

name = "John"
name = "Jane"
a = 3
a = a + 1
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Basic (primitive) data types
int  (integer)

float  (floating point number)

str  (string): text

bool  (boolean): yes / no

none: missing / unknown value
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Strings can be enclosed in single or double quotes

greeting = "Hello"
name = 'John'

Inserting a variable (f-strings):

message1 = f"Hello, {name}!"

Joining strings:

message2 = "Hello, " + name + "!"
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Strings - escape sequences

text = "He said: \"hi!\""

Line break: \n

a = 'line 1\nline 2'

single Backslash: \\

b = 'C:\\docs'
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boolean value: yes/no

In Python: True  or False

note the capitalization

None represents a value that is unknown or missing

first_name = "John"
middle_name = None
last_name = "Doe"
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Integer division

When we divide integers with /  , the quotient is also an integer.

35 / 5  is 7

218 / 5  is 43

156 / 100  is 1

The %  operator computes the remainder from a division of integers.

218 % 5  is 3

84 % 10  is 0
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Real numbers
Python can also manipulate real numbers.

6.022  , -15.9997  , 42.0  , 2.143e17

The operators + - * / % ** ( )  all work for real numbers.
The /  produces an exact answer: 15.0/2.0  is 7.5

The same rules of precedence also apply to real numbers: Evaluate ( )
before * / %  before + -

When integers and reals are mixed, the result is a real number.
Example: 1/2.0  is 0.5

The conversion occurs on a per-operator basis.
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Types and type conversions
Determining the type of a variable via type :

a = 4 / 2

type(a)

Objects may be converted to other types via int() , float() , str() , bool() , ...

pi = 3.1415
pi_int = int(pi)
message = "Pi is approximately " + str(pi_int)
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int(x)  converts x  to an integer

float(x)  converts x  to a floating point

The interpreter shows a lot of digits

>>> 1.23232
1.2323200000000001
>>> print 1.23232
1.23232
>>> 1.3E7
13000000.0
>>> int(2.0)
2
>>> float(2)
2.0
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Functions
A function is a "sub-program" that can perform a specific task

Examples of predefined functions:

len()  can determine the length of a string (or of a list, ...)

id()  can determine the internal ID of an object

type()  can tell us the type of an object

print()  can write some output into the terminal

...
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A function can receive so-called parameters and produce a result
(a return value)

len()  can take a string as a parameter and produce an int as the return
value
print()  can take various objects as parameters; it does not have an

explicit return value

A method is a function that belongs to a specific object type (e.g. to str)

Examples of string methods:

first_name.upper()

first_name.count("a")

first_name.replace("a", "@")
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Builtins, standard library

Builtins: functions and objects that are used frequently and are available at
all times

Standard library: collections of additional modules and packages that can be
imported

Documentation: https://docs.python.org/3/library/index.html

Builtins

Amongst others: print() , input() , len() , open() , etc
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Standard library

The standard library contains additional modules that can be imported.

Example:

import math

print(math.floor(3.6))

or

from math import floor

print(floor(3.6))
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Math functions

Python has useful functions for performing calculations.

Function name Description

ceil(value) rounds up

floor(value) rounds down

log(value) logarithm, base e

cos(value) cosine, in radians

sqrt(value) square root

etc...
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Math constants

Constant Description

e 2.7182818...

pi 3.1415926...

To use many of these above, you can write the following at the top of your Python
program:

from math import *
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Text input/output

input  reads a number from user input.
You can assign (store) the result of input into a variable.

print  produces text output on the console.

Prints the given text message (or expression value) on the console, and moves
the cursor down to the next line:

print "Message"  , print Expression

Prints several messages and/or expressions on the same line:

print Item1, Item2, ..., ItemN

A comma at the end will not print a newline character: print 'hello',
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Examples
>>> x = 7
>>> x
7
>>> x+7
14
>>> x = 'hello'
>>> x
'hello'
>>> print "Hello, world!"
Hello, world!
>>> age = 45
>>> print "You have", 65 - age, "years until retirement"
You have 20 years until retirement
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Hands-on exercise
Write a program called age.py which will ask the user for their birth year and will
respond with the user's age in the year 2024.

Example:

What's your name?
> PY
What year were you born?
> 1982
Hi PY! You are 42
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Logic
Many logical expressions use relational operators:

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 False
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Combining comparisons

Logical expressions can be combined with logical operators:

Operator Example Result

and 9 != 6 and 2 < 3 True

or 2 == 3 or -1 < 5 True

not not 7 > 0 False
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Selection

if

Executes a group of statements only if a certain condition is true. Otherwise, the
statements are skipped.

if/else

Executes one block of statements if a certain condition is True, and a second block
of statements if it is False.

if/elif/else

Multiple conditions can be chained with elif ("else if")
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Examples

gpa = 3.4
if gpa > 2.0:
  print "Your application is accepted."

import math
x = 30
if x <= 15 :
  y = x + 15
elif x <= 30 :
  y = x + 30
else :
  y=x
print 'y = ',
print math.sin(y)
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Hands-on exercise
Write a script that asks the user to input a year and tells them wheter that year is a
leap year.

The rules for leap years are:

in general, a year is a leap year if it is divisible by 4 (e.g. 1904 was a leap year)
exception from the above: if the year is also divisible by 100 it is not a leap
year (e.g. 1900 was not a leap year)
exception from the exception: if the year is also divisible by 400 it is a leap
year (e.g. 2000 was a leap year)

Hint: "x is divisible by y" in Python: x % y == 0
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Repetition

The for  loop

Repeats a set of statements over a group of values.

for x in range(1, 6):
  print x, "squared is", x * x

1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
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The range  function

range(start, stop [, step])

for x in range(5, 0, -1):
  print x
print "Blastoff!"

5
4
3
2
1
Blastoff!
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Cumulative loops

Some loops incrementally compute a value that is initialized outside the loop.
This is sometimes called a cumulative sum.

sum = 0
for i in range(1, 11):
  sum = sum + (i * i)
print "sum of first 10 squares is", sum

sum of first 10 squares is 385
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while  loops

Executes a group of statements as long as a condition is True.

good for indefinite loops (repeat an unknown number of times)

x=1
while x < 10 :
  print x
  x=x+1
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Loop Control Statements

break: Jumps out of the closest enclosing loop
continue: Jumps to the top of the closest enclosing loop
pass: Does nothing, empty statement placeholder

a = 1
while True:
  a = a * 2
  print(a)
  if (a > 1000):
    break
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Hands-on exercise
Someone opens a new bank account and deposits 100€ at the start of each year.
At the end of a year, they get 4% interest.

How much do they have after 10 years?
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Composite types
dictionaries are mappings that contain "named" entries with associated values.

person = {
    "first_name": "John",
    "last_name": "Doe",
    "nationality": "Canada",
    "birth_year": 1980
}

Retrieving and setting elements:

person["first_name"]

person["first_name"] = "Jane"
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A list represents a sequence of objects

primes = [2, 3, 5, 7, 11]
users = ["Alice", "Bob", "Charlie"]

products = [
    {"name": "IPhone 12", "price": 949},
    {"name": "Fairphone", "price": 419},
    {"name": "Pixel 5", "price": 799}
]

Determining the length

len(users)

Overwriting a list element

users[0] = "Andrew"
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Retrieving list elements via their index (starting at 0):

users[0]
users[1]
users[-1] # last element

Appending an element

users.append("Dora")

Removing the last element:

users.pop()

Removing by index:

users.pop(0)
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Object references and mutations

What will be the value of a  after this code has run?

a = [1, 2, 3]
b = a
b.append(4)

An assignment (e.g. b = a ) assigns a new (additional) name to an object.
The object in the background is the same.
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If the original should remain intact it may be copied or a derived version can be
newly created based on it:

a = [1, 2, 3]
# creating a new copy
b = a.copy()
# modifying b
b.append(4)

a = [1, 2, 3]
# creating a new object b based on a
b = a + [4]
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Some objects can be mutated (changed) directly

e.g. via .append() , .pop() , ...

Examples: list , dict

Many simple objects are immutable after they have been created.
However, they can be replaced by other objects.

Examples: int , float , str , bool , tuple
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tuple

Area of application: similar to dicts

point_dict = {"x": 2, "y": 4}
point_tuple = (2, 4)  
date_dict = { "year": 1973, "month": 10, "day": 23}
date_tuple = (1973, 10, 23)

Each entry in a tuple has a specific meaning

Behavior: similar to lists

date_tuple[0] # 1973
len(date_tuple) # 3

Unlike lists, tuples are immutable (no .append  / .pop  / ...)
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Working with files
A file is a sequence of bytes on a storage device

Many file formats are a sequence of text characters

e.g. the formats .txt, .html, .csv or .py.

The content of text files can be represented as strings (ASCII).

Other file contents can be represented as byte sequences (binary).
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Writing a text file

file = open("message.txt", "w", encoding="utf-8")
file.write("hello world\n")
file.close()

The file is opened for writing (w).
The character encoding will be UTF-8.

Reading a text file

file = open("message.txt", encoding="utf-8")
content = file.read()
file.close()
print(content)

Standard mode: reading (r)
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File modes

# mode: text, append
open("file.txt", mode="ta")

t : text mode (default)

b : binary

r : reading (default)

w : (over)writing

a : appending
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Open and the with statement

with open("todos.txt", encoding="utf-8") as file_obj:
    content = file_obj.read()

The file will be closed automatically when the program leaves the indented block.

character encoding
The default character encoding for text files depends on the operating system:

import locale
locale.getpreferredencoding()

ASCII, latin1, UTF-8, etc

Recommendation: Use UTF-8 (best support for special characters)
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Parts of programs
programs

code blocks
statements

expressions

Empty code blocks
empty code block via the pass  statement:

# TODO: warn the user if path doesn't exist

if not os.path.exists(my_path):
    pass
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Statements across multiple lines

a statement can span across multiple lines if we use parantheses:

a = (2 + 3 + 4 + 5 + 6 +
     7 + 8 + 9 + 10)

Alternative: escaping newlines with \

a = 2 + 3 + 4 + 5 + 6 + \
    7 + 8 + 9 + 10
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Expressions

expression = something that produces a value (the value might be None )

expression = anything that can be on the right-hand side of an assignment ( = )

examples of expressions:

(7 - 3) * 0.5

(7 - 3)

7

round(3.5)

x == 1
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Function parameters

Positional parameters and keyword parameters

Calling open :

with positional parameters:

f = open("myfile.txt", "w", -1, "utf-8")

with keyword parameters:

f = open("myfile.txt", encoding="utf-8", mode="w")
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Optional parameters and default parameters

Some parameters of functions can be optional (they have a default value)

Example: For open  only the first parameter is required, the others are
optional

The values of default parameters can be looked up in the documentation
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Defining functions
def average(a, b):
    m = (a + b) / 2
    return m

Optional parameters and default parameters

This is how we define default values for parameters:

def shout(phrase, end="!"):
    print(phrase.upper() + end)

shout("hello") # HELLO!
shout("hi", ".") # HI.
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Scope

A function definition creates a new scope, an area where variables are valid

In the following example there are two distinct variables named m :

m = "Hello, world"

def average(a, b):
    m = (a + b) / 2
    return m
x = average(1, 2)

print(m) # prints "Hello, world"
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Scope

Inside a function, outer variables may be read but not overwritten

In other programming languages constructs like if  or for  usually also open a
new scope - this is not the case in Python
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Modules and packages
Module : collection of Python objects that can be imported

Package : collection of modules

packages are actually a special type of modules

urllib  = package

urllib.request  = module

urllib.request.urlopen  = function

sys  = module

sys.path  = object
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Examples:

import module1
from package2 import module2a, module2b
from module3 import object3a, object3b
from package4.module4 import object4a, object4b

import os
from math import sqrt, pi

Short names:

import numpy as np
import matplotlib.pyplot as plt

Importing everything from a module (usually not recommended):
from math import *
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When importing some packages, submodules will be imported automatically.

Examples:

import os
import numpy as np

os.path.join(...)
np.random.randint(10)

Counterexample - this will fail:

import urllib

urllib.request.urlopen(...)

16/10/2024 | Introduction to Python 59 / 78



Conventions for imports

all imports in a Python file should be at the start of the file
imports should be split into three groups:

imports from the standard library
imports from other libraries
imports within the project
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Local modules
we can import local Python files as modules

example: local file messages.py

import messages

print(messages.message1)

we can create so-called packages as folders

example: folder phrases/, files phrases/messages.py and phrases/greetings.py

from phrases import greetings

print(greetings.greeting1)
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Resolving imports

Search order of imports:

directory of the Python script that was originally executed
standard library
external libraries

Avoid name clashes with existing modules / packages!
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NumPy
Library for efficient data processing

Data are stored in multidimensional arrays of numeric values which are
implemented in an efficient way:

smaller memory use than e.g. lists of numbers in Python
much faster execution of operations like element-wise addition of arrays

Data can represent images, sound, measurements and much more

Common import convention:

import numpy as np
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Pandas
Pandas is a data analysis library; it is based on NumPy

import pandas as pd

Series and DataFrame

Series: Collection of values for some keys (table column)
DataFrame: Collection of associated series (table)
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Plotting
Basic (low-level) library for plotting: matplotlib

Higher-level interfaces:

pyplot (contained in matplotlib, similar to matlab's plotting interface)
pandas plotting functions (based on pyplot)

16/10/2024 | Introduction to Python 65 / 78



Simple plot with pyplot

import numpy as np
import matplotlib.pyplot as plt

x = np.array([0, 1, 2, 3])

y1 = x*2
y2 = x**2

plt.plot(x, y1)
plt.plot(x, y2)

In Jupyter plots are shown automatically

In a regular terminal / program:

plt.show()
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Pyplot: Configuration and Styling
We'll create a plot that shows the sine and cosine functions in the interval from 0
to 2

x = np.linspace(0, 2*np.pi, 100)

sin = np.sin(x)
cos = np.cos(x)
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In the following examples we will show how to use Cartopy with netCDF
ClimateData.
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Working with various file formats
Possibilities:

text files
JSON
CSV
XML
Python object files (via pickle and shelve)
binary files
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JSON

JSON: popular and standardized data file format
can represent the fundamental Python datatypes (none, bool, int, float, list, dict)

Saving JSON:

import json
data = ["one", "two", "three"]
jsonstring = json.dumps(data)
with open("numbers.json", mode="w", encoding="utf-8") as jsonfile:
    jsonfile.write(jsonstring)

Reading JSON:

import json
with open("numbers.json", encoding="utf-8") as jsonfile:
    jsonstring = jsonfile.read()
data = json.loads(jsonstring)
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CSV

CSV is a file format which can hold tabular data; entries are separated by commas

Example:

ISO,Country,Capital,Languages
AD,Andorra,Andorra la Vella,"ES,FR"
AE,United Arab Emirates,Abu Dhabi,"AE,fa,en,hi,ur"
AF,Afghanistan,Kabul,"AF,tk"

Python libraries:

csv (part of the standard libary)
pandas
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Writing CSV via pandas:

import pandas as pd
data = pd.DataFrame(
    [
        ["CN", 9.6, 1386],
        ["RU", 17.0, 144],
        ["US", 9.8, 327],
    ],
    columns=["code", "area", "population"],
)

data.to_csv("countries.csv")

Reading CSV via pandas:

import pandas as pd
data = pd.read_csv("countries.csv")
print(data)
print(data.values.tolist())
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Reading and writing CSV

import csv

data = [
    ['code', 'area', 'population'],
    ['CN', 9.6, 1386],
    ['RU', 17, 144],
    ['US', 9.8, 327]
]

with open('countr.csv', 'w', encoding='utf-8', newline='') as f:
    writer = csv.writer(f)
    writer.writerows(data)

with open('countr.csv', encoding='utf-8', newline='') as f:
    reader = csv.reader(f)
    for row in reader:
        print(row)
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Thank you for your attention
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