
Introduction to Python
https://forge.uclouvain.be/barriat/learning-python

October 16, 2024

ELIC Training Sessions

https://forge.uclouvain.be/barriat/learning-python

Programming basics
code or source code: The sequence of instructions in a program.
syntax: The set of legal structures and commands that can be
used in a particular programming language.
output: The messages printed to the user by a program.
console: The text box onto which output is printed.

16/10/2024 | Introduction to Python 2 / 78

Compiling and interpreting
Many languages require you to compile (translate) your program into a form that
the machine understands.

compile executesource code: Hello.f90 byte code: Hello.exe output

Python is instead directly interpreted into machine instructions.

interpretcode: Hello.py output

16/10/2024 | Introduction to Python 3 / 78

Python: Overview

Python is an interpreted language

The interpreter provides an interactive environment to play with the language

Simple syntax, relatively easy to learn

Useful in many areas (science, web development, GUI programming)

Big standard library, many additional packages

Python 3: new minor version (e.g. 3.9) released every October

Python 2: support ended in 2019, 10% of developers were still using it

16/10/2024 | Introduction to Python 4 / 78

https://www.jetbrains.com/lp/python-developers-survey-2019/

Code examples
>>> 3 + 7
10
>>> 3 < 15
True
>>> 'print me'
'print me'
>>> print('print me')
print me
>>> # this is a comment
>>> a = 3
>>> b = 4
>>> a * b
12

Results of expressions are printed on the screen

16/10/2024 | Introduction to Python 5 / 78

Running Python code
write a program as a file (or collection of files), run that program

GUI applications, web applications, data processing pipelines

type code into an interactive console or notebook line by line
for quick calculations, experimenting, data exploration / analysis)

Using Python

local installation
remote Python server
online Python consoles or online Notebooks (Jupyter)

https://www.python.org/shell/
https://jupyterhub.cism.ucl.ac.be

16/10/2024 | Introduction to Python 6 / 78

https://www.python.org/shell/
https://jupyterhub.cism.ucl.ac.be/

Expressions
expression: a data value or set of operations to compute a value.

1 + 4 * 3

Arithmetic operators we will use:
+ - * / addition, subtraction/negation, multiplication, division

% modulus, a.k.a. remainder

** exponentiation

precedence: order in which operations are computed.
/ % ** have a higher precedence than + -

1 + 3 * 4 is 13

Parentheses can be used to force a certain order of evaluation.
(1 + 3) * 4 is 16

16/10/2024 | Introduction to Python 7 / 78

Variables
Variable: a named piece of memory that can store a value.

Compute an expression's result,
store that result into a variable,
and use that variable later in the program.

Assignment statement: stores a value into a variable
Syntax: name = value

Examples: x = 5 , gpa = 3.14

A variable that has been given a value can be used in expressions.
x + 4 is 9

16/10/2024 | Introduction to Python 8 / 78

Names of variables are usually written in lower case, separating words by
underscores

birth_year = 1970
current_year = 2020
age = current_year - birth_year

Variable names may only consist of letters, digits and underscores

Overwriting (reassigning) variables:

name = "John"
name = "Jane"
a = 3
a = a + 1

16/10/2024 | Introduction to Python 9 / 78

Basic (primitive) data types
int (integer)

float (floating point number)

str (string): text

bool (boolean): yes / no

none: missing / unknown value

16/10/2024 | Introduction to Python 10 / 78

Strings can be enclosed in single or double quotes

greeting = "Hello"
name = 'John'

Inserting a variable (f-strings):

message1 = f"Hello, {name}!"

Joining strings:

message2 = "Hello, " + name + "!"

16/10/2024 | Introduction to Python 11 / 78

Strings - escape sequences

text = "He said: \"hi!\""

Line break: \n

a = 'line 1\nline 2'

single Backslash: \\

b = 'C:\\docs'

16/10/2024 | Introduction to Python 12 / 78

boolean value: yes/no

In Python: True or False

note the capitalization

None represents a value that is unknown or missing

first_name = "John"
middle_name = None
last_name = "Doe"

16/10/2024 | Introduction to Python 13 / 78

Integer division

When we divide integers with / , the quotient is also an integer.

35 / 5 is 7

218 / 5 is 43

156 / 100 is 1

The % operator computes the remainder from a division of integers.

218 % 5 is 3

84 % 10 is 0

16/10/2024 | Introduction to Python 14 / 78

Real numbers
Python can also manipulate real numbers.

6.022 , -15.9997 , 42.0 , 2.143e17

The operators + - * / % ** () all work for real numbers.
The / produces an exact answer: 15.0/2.0 is 7.5

The same rules of precedence also apply to real numbers: Evaluate ()
before * / % before + -

When integers and reals are mixed, the result is a real number.
Example: 1/2.0 is 0.5

The conversion occurs on a per-operator basis.

16/10/2024 | Introduction to Python 15 / 78

Types and type conversions
Determining the type of a variable via type :

a = 4 / 2

type(a)

Objects may be converted to other types via int() , float() , str() , bool() , ...

pi = 3.1415
pi_int = int(pi)
message = "Pi is approximately " + str(pi_int)

16/10/2024 | Introduction to Python 16 / 78

int(x) converts x to an integer

float(x) converts x to a floating point

The interpreter shows a lot of digits

>>> 1.23232
1.2323200000000001
>>> print 1.23232
1.23232
>>> 1.3E7
13000000.0
>>> int(2.0)
2
>>> float(2)
2.0

16/10/2024 | Introduction to Python 17 / 78

Functions
A function is a "sub-program" that can perform a specific task

Examples of predefined functions:

len() can determine the length of a string (or of a list, ...)

id() can determine the internal ID of an object

type() can tell us the type of an object

print() can write some output into the terminal

...

16/10/2024 | Introduction to Python 18 / 78

A function can receive so-called parameters and produce a result
(a return value)

len() can take a string as a parameter and produce an int as the return
value
print() can take various objects as parameters; it does not have an

explicit return value

A method is a function that belongs to a specific object type (e.g. to str)

Examples of string methods:

first_name.upper()

first_name.count("a")

first_name.replace("a", "@")

16/10/2024 | Introduction to Python 19 / 78

Builtins, standard library

Builtins: functions and objects that are used frequently and are available at
all times

Standard library: collections of additional modules and packages that can be
imported

Documentation: https://docs.python.org/3/library/index.html

Builtins

Amongst others: print() , input() , len() , open() , etc

16/10/2024 | Introduction to Python 20 / 78

https://docs.python.org/3/library/index.html

Standard library

The standard library contains additional modules that can be imported.

Example:

import math

print(math.floor(3.6))

or

from math import floor

print(floor(3.6))

16/10/2024 | Introduction to Python 21 / 78

Math functions

Python has useful functions for performing calculations.

Function name Description

ceil(value) rounds up

floor(value) rounds down

log(value) logarithm, base e

cos(value) cosine, in radians

sqrt(value) square root

etc...

16/10/2024 | Introduction to Python 22 / 78

Math constants

Constant Description

e 2.7182818...

pi 3.1415926...

To use many of these above, you can write the following at the top of your Python
program:

from math import *

16/10/2024 | Introduction to Python 23 / 78

Text input/output

input reads a number from user input.
You can assign (store) the result of input into a variable.

print produces text output on the console.

Prints the given text message (or expression value) on the console, and moves
the cursor down to the next line:

print "Message" , print Expression

Prints several messages and/or expressions on the same line:

print Item1, Item2, ..., ItemN

A comma at the end will not print a newline character: print 'hello',
16/10/2024 | Introduction to Python 24 / 78

Examples
>>> x = 7
>>> x
7
>>> x+7
14
>>> x = 'hello'
>>> x
'hello'
>>> print "Hello, world!"
Hello, world!
>>> age = 45
>>> print "You have", 65 - age, "years until retirement"
You have 20 years until retirement

16/10/2024 | Introduction to Python 25 / 78

Hands-on exercise
Write a program called age.py which will ask the user for their birth year and will
respond with the user's age in the year 2024.

Example:

What's your name?
> PY
What year were you born?
> 1982
Hi PY! You are 42

16/10/2024 | Introduction to Python 26 / 78

Logic
Many logical expressions use relational operators:

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 False

16/10/2024 | Introduction to Python 27 / 78

Combining comparisons

Logical expressions can be combined with logical operators:

Operator Example Result

and 9 != 6 and 2 < 3 True

or 2 == 3 or -1 < 5 True

not not 7 > 0 False

16/10/2024 | Introduction to Python 28 / 78

Selection

if

Executes a group of statements only if a certain condition is true. Otherwise, the
statements are skipped.

if/else

Executes one block of statements if a certain condition is True, and a second block
of statements if it is False.

if/elif/else

Multiple conditions can be chained with elif ("else if")
16/10/2024 | Introduction to Python 29 / 78

Examples

gpa = 3.4
if gpa > 2.0:
 print "Your application is accepted."

import math
x = 30
if x <= 15 :
 y = x + 15
elif x <= 30 :
 y = x + 30
else :
 y=x
print 'y = ',
print math.sin(y)

16/10/2024 | Introduction to Python 30 / 78

Hands-on exercise
Write a script that asks the user to input a year and tells them wheter that year is a
leap year.

The rules for leap years are:

in general, a year is a leap year if it is divisible by 4 (e.g. 1904 was a leap year)
exception from the above: if the year is also divisible by 100 it is not a leap
year (e.g. 1900 was not a leap year)
exception from the exception: if the year is also divisible by 400 it is a leap
year (e.g. 2000 was a leap year)

Hint: "x is divisible by y" in Python: x % y == 0

16/10/2024 | Introduction to Python 31 / 78

Repetition

The for loop

Repeats a set of statements over a group of values.

for x in range(1, 6):
 print x, "squared is", x * x

1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25

16/10/2024 | Introduction to Python 32 / 78

The range function

range(start, stop [, step])

for x in range(5, 0, -1):
 print x
print "Blastoff!"

5
4
3
2
1
Blastoff!

16/10/2024 | Introduction to Python 33 / 78

Cumulative loops

Some loops incrementally compute a value that is initialized outside the loop.
This is sometimes called a cumulative sum.

sum = 0
for i in range(1, 11):
 sum = sum + (i * i)
print "sum of first 10 squares is", sum

sum of first 10 squares is 385

16/10/2024 | Introduction to Python 34 / 78

while loops

Executes a group of statements as long as a condition is True.

good for indefinite loops (repeat an unknown number of times)

x=1
while x < 10 :
 print x
 x=x+1

16/10/2024 | Introduction to Python 35 / 78

Loop Control Statements

break: Jumps out of the closest enclosing loop
continue: Jumps to the top of the closest enclosing loop
pass: Does nothing, empty statement placeholder

a = 1
while True:
 a = a * 2
 print(a)
 if (a > 1000):
 break

16/10/2024 | Introduction to Python 36 / 78

Hands-on exercise
Someone opens a new bank account and deposits 100€ at the start of each year.
At the end of a year, they get 4% interest.

How much do they have after 10 years?

16/10/2024 | Introduction to Python 37 / 78

Composite types
dictionaries are mappings that contain "named" entries with associated values.

person = {
 "first_name": "John",
 "last_name": "Doe",
 "nationality": "Canada",
 "birth_year": 1980
}

Retrieving and setting elements:

person["first_name"]

person["first_name"] = "Jane"

16/10/2024 | Introduction to Python 38 / 78

A list represents a sequence of objects

primes = [2, 3, 5, 7, 11]
users = ["Alice", "Bob", "Charlie"]

products = [
 {"name": "IPhone 12", "price": 949},
 {"name": "Fairphone", "price": 419},
 {"name": "Pixel 5", "price": 799}
]

Determining the length

len(users)

Overwriting a list element

users[0] = "Andrew"

16/10/2024 | Introduction to Python 39 / 78

Retrieving list elements via their index (starting at 0):

users[0]
users[1]
users[-1] # last element

Appending an element

users.append("Dora")

Removing the last element:

users.pop()

Removing by index:

users.pop(0)

16/10/2024 | Introduction to Python 40 / 78

Object references and mutations

What will be the value of a after this code has run?

a = [1, 2, 3]
b = a
b.append(4)

An assignment (e.g. b = a) assigns a new (additional) name to an object.
The object in the background is the same.

16/10/2024 | Introduction to Python 41 / 78

If the original should remain intact it may be copied or a derived version can be
newly created based on it:

a = [1, 2, 3]
creating a new copy
b = a.copy()
modifying b
b.append(4)

a = [1, 2, 3]
creating a new object b based on a
b = a + [4]

16/10/2024 | Introduction to Python 42 / 78

Some objects can be mutated (changed) directly

e.g. via .append() , .pop() , ...

Examples: list , dict

Many simple objects are immutable after they have been created.
However, they can be replaced by other objects.

Examples: int , float , str , bool , tuple

16/10/2024 | Introduction to Python 43 / 78

tuple

Area of application: similar to dicts

point_dict = {"x": 2, "y": 4}
point_tuple = (2, 4)
date_dict = { "year": 1973, "month": 10, "day": 23}
date_tuple = (1973, 10, 23)

Each entry in a tuple has a specific meaning

Behavior: similar to lists

date_tuple[0] # 1973
len(date_tuple) # 3

Unlike lists, tuples are immutable (no .append / .pop / ...)
16/10/2024 | Introduction to Python 44 / 78

Working with files
A file is a sequence of bytes on a storage device

Many file formats are a sequence of text characters

e.g. the formats .txt, .html, .csv or .py.

The content of text files can be represented as strings (ASCII).

Other file contents can be represented as byte sequences (binary).

16/10/2024 | Introduction to Python 45 / 78

Writing a text file

file = open("message.txt", "w", encoding="utf-8")
file.write("hello world\n")
file.close()

The file is opened for writing (w).
The character encoding will be UTF-8.

Reading a text file

file = open("message.txt", encoding="utf-8")
content = file.read()
file.close()
print(content)

Standard mode: reading (r)
16/10/2024 | Introduction to Python 46 / 78

File modes

mode: text, append
open("file.txt", mode="ta")

t : text mode (default)

b : binary

r : reading (default)

w : (over)writing

a : appending

16/10/2024 | Introduction to Python 47 / 78

Open and the with statement

with open("todos.txt", encoding="utf-8") as file_obj:
 content = file_obj.read()

The file will be closed automatically when the program leaves the indented block.

character encoding
The default character encoding for text files depends on the operating system:

import locale
locale.getpreferredencoding()

ASCII, latin1, UTF-8, etc

Recommendation: Use UTF-8 (best support for special characters)

16/10/2024 | Introduction to Python 48 / 78

Parts of programs
programs

code blocks
statements

expressions

Empty code blocks
empty code block via the pass statement:

TODO: warn the user if path doesn't exist

if not os.path.exists(my_path):
 pass

16/10/2024 | Introduction to Python 49 / 78

Statements across multiple lines

a statement can span across multiple lines if we use parantheses:

a = (2 + 3 + 4 + 5 + 6 +
 7 + 8 + 9 + 10)

Alternative: escaping newlines with \

a = 2 + 3 + 4 + 5 + 6 + \
 7 + 8 + 9 + 10

16/10/2024 | Introduction to Python 50 / 78

Expressions

expression = something that produces a value (the value might be None)

expression = anything that can be on the right-hand side of an assignment (=)

examples of expressions:

(7 - 3) * 0.5

(7 - 3)

7

round(3.5)

x == 1

16/10/2024 | Introduction to Python 51 / 78

Function parameters

Positional parameters and keyword parameters

Calling open :

with positional parameters:

f = open("myfile.txt", "w", -1, "utf-8")

with keyword parameters:

f = open("myfile.txt", encoding="utf-8", mode="w")

16/10/2024 | Introduction to Python 52 / 78

Optional parameters and default parameters

Some parameters of functions can be optional (they have a default value)

Example: For open only the first parameter is required, the others are
optional

The values of default parameters can be looked up in the documentation

16/10/2024 | Introduction to Python 53 / 78

Defining functions
def average(a, b):
 m = (a + b) / 2
 return m

Optional parameters and default parameters

This is how we define default values for parameters:

def shout(phrase, end="!"):
 print(phrase.upper() + end)

shout("hello") # HELLO!
shout("hi", ".") # HI.

16/10/2024 | Introduction to Python 54 / 78

Scope

A function definition creates a new scope, an area where variables are valid

In the following example there are two distinct variables named m :

m = "Hello, world"

def average(a, b):
 m = (a + b) / 2
 return m
x = average(1, 2)

print(m) # prints "Hello, world"

16/10/2024 | Introduction to Python 55 / 78

Scope

Inside a function, outer variables may be read but not overwritten

In other programming languages constructs like if or for usually also open a
new scope - this is not the case in Python

16/10/2024 | Introduction to Python 56 / 78

Modules and packages
Module : collection of Python objects that can be imported

Package : collection of modules

packages are actually a special type of modules

urllib = package

urllib.request = module

urllib.request.urlopen = function

sys = module

sys.path = object

16/10/2024 | Introduction to Python 57 / 78

Examples:

import module1
from package2 import module2a, module2b
from module3 import object3a, object3b
from package4.module4 import object4a, object4b

import os
from math import sqrt, pi

Short names:

import numpy as np
import matplotlib.pyplot as plt

Importing everything from a module (usually not recommended):
from math import *

16/10/2024 | Introduction to Python 58 / 78

When importing some packages, submodules will be imported automatically.

Examples:

import os
import numpy as np

os.path.join(...)
np.random.randint(10)

Counterexample - this will fail:

import urllib

urllib.request.urlopen(...)

16/10/2024 | Introduction to Python 59 / 78

Conventions for imports

all imports in a Python file should be at the start of the file
imports should be split into three groups:

imports from the standard library
imports from other libraries
imports within the project

16/10/2024 | Introduction to Python 60 / 78

Local modules
we can import local Python files as modules

example: local file messages.py

import messages

print(messages.message1)

we can create so-called packages as folders

example: folder phrases/, files phrases/messages.py and phrases/greetings.py

from phrases import greetings

print(greetings.greeting1)

16/10/2024 | Introduction to Python 61 / 78

Resolving imports

Search order of imports:

directory of the Python script that was originally executed
standard library
external libraries

Avoid name clashes with existing modules / packages!

16/10/2024 | Introduction to Python 62 / 78

NumPy
Library for efficient data processing

Data are stored in multidimensional arrays of numeric values which are
implemented in an efficient way:

smaller memory use than e.g. lists of numbers in Python
much faster execution of operations like element-wise addition of arrays

Data can represent images, sound, measurements and much more

Common import convention:

import numpy as np

16/10/2024 | Introduction to Python 63 / 78

Pandas
Pandas is a data analysis library; it is based on NumPy

import pandas as pd

Series and DataFrame

Series: Collection of values for some keys (table column)
DataFrame: Collection of associated series (table)

16/10/2024 | Introduction to Python 64 / 78

Plotting
Basic (low-level) library for plotting: matplotlib

Higher-level interfaces:

pyplot (contained in matplotlib, similar to matlab's plotting interface)
pandas plotting functions (based on pyplot)

16/10/2024 | Introduction to Python 65 / 78

Simple plot with pyplot

import numpy as np
import matplotlib.pyplot as plt

x = np.array([0, 1, 2, 3])

y1 = x*2
y2 = x**2

plt.plot(x, y1)
plt.plot(x, y2)

In Jupyter plots are shown automatically

In a regular terminal / program:

plt.show()

16/10/2024 | Introduction to Python 66 / 78

16/10/2024 | Introduction to Python 67 / 78

Pyplot: Configuration and Styling
We'll create a plot that shows the sine and cosine functions in the interval from 0
to 2

x = np.linspace(0, 2*np.pi, 100)

sin = np.sin(x)
cos = np.cos(x)

16/10/2024 | Introduction to Python 68 / 78

16/10/2024 | Introduction to Python 69 / 78

In the following examples we will show how to use Cartopy with netCDF
ClimateData.

16/10/2024 | Introduction to Python 70 / 78

16/10/2024 | Introduction to Python 71 / 78

16/10/2024 | Introduction to Python 72 / 78

Working with various file formats
Possibilities:

text files
JSON
CSV
XML
Python object files (via pickle and shelve)
binary files

16/10/2024 | Introduction to Python 73 / 78

JSON

JSON: popular and standardized data file format
can represent the fundamental Python datatypes (none, bool, int, float, list, dict)

Saving JSON:

import json
data = ["one", "two", "three"]
jsonstring = json.dumps(data)
with open("numbers.json", mode="w", encoding="utf-8") as jsonfile:
 jsonfile.write(jsonstring)

Reading JSON:

import json
with open("numbers.json", encoding="utf-8") as jsonfile:
 jsonstring = jsonfile.read()
data = json.loads(jsonstring)

16/10/2024 | Introduction to Python 74 / 78

CSV

CSV is a file format which can hold tabular data; entries are separated by commas

Example:

ISO,Country,Capital,Languages
AD,Andorra,Andorra la Vella,"ES,FR"
AE,United Arab Emirates,Abu Dhabi,"AE,fa,en,hi,ur"
AF,Afghanistan,Kabul,"AF,tk"

Python libraries:

csv (part of the standard libary)
pandas

16/10/2024 | Introduction to Python 75 / 78

Writing CSV via pandas:

import pandas as pd
data = pd.DataFrame(
 [
 ["CN", 9.6, 1386],
 ["RU", 17.0, 144],
 ["US", 9.8, 327],
],
 columns=["code", "area", "population"],
)

data.to_csv("countries.csv")

Reading CSV via pandas:

import pandas as pd
data = pd.read_csv("countries.csv")
print(data)
print(data.values.tolist())

16/10/2024 | Introduction to Python 76 / 78

Reading and writing CSV

import csv

data = [
 ['code', 'area', 'population'],
 ['CN', 9.6, 1386],
 ['RU', 17, 144],
 ['US', 9.8, 327]
]

with open('countr.csv', 'w', encoding='utf-8', newline='') as f:
 writer = csv.writer(f)
 writer.writerows(data)

with open('countr.csv', encoding='utf-8', newline='') as f:
 reader = csv.reader(f)
 for row in reader:
 print(row)

16/10/2024 | Introduction to Python 77 / 78

Thank you for your attention

16/10/2024 | Introduction to Python 78 / 78

