Introduction to Python

https://forge.uclouvain.be/barriat/learning-python

A

October 16, 2024

ELIC Training Sessions o
'l UCLouvain

https://forge.uclouvain.be/barriat/learning-python

Programming basics

e code or source code: The sequence of instructions in a program.

e syntax: The set of legal structures and commands that can be
used in a particular programming language.

e output: The messages printed to the user by a program.

e console: The text box onto which output is printed.

Compiling and interpreting

Many languages require you to compile (translate) your program into a form that
the machine understands.

source code: Hello.fo90 —compile—»‘ byte code: Hello.exe }—execute

Python is instead directly interpreted into machine instructions.

code: Hello.py ——interpret:

Python: Overview

Python is an interpreted language

The interpreter provides an interactive environment to play with the language

Simple syntax, relatively easy to learn

Useful in many areas (science, web development, GUI programming)

Big standard library, many additional packages

Python 3: new minor version (e.g. 3.9) released every October

Python 2: support ended in 2019,

were still using it

https://www.jetbrains.com/lp/python-developers-survey-2019/

Code examples

>>> 3 + 7

10

>>> 3 < 15

True

>>> 'print me'

'print me'

>>> print('print me')
print me

>>> # this 1s a comment
>>> g = 3

>>> b = 4

>>> a * b

12

Results of expressions are printed on the screen

Running Python code

e write a program as a file (or collection of files), run that program
GUI applications, web applications, data processing pipelines

e type code into an interactive console or notebook line by line
for quick calculations, experimenting, data exploration / analysis)

Using Python
e |ocal installation

e remote Python server

e online Python consoles or online Notebooks (Jupyter)
https://www.python.org/shell/
https://jupyterhub.cism.ucl.ac.be

https://www.python.org/shell/
https://jupyterhub.cism.ucl.ac.be/

Expressions

e expression: a data value or set of operations to compute a value.
1+ 4 * 3

e Arithmetic operators we will use:
o + - * / addition, subtraction/negation, multiplication, division
o % modulus, a.k.a. remainder
o ** exponentiation

e precedence: order in which operations are computed.
o / % ** have a higher precedence than + -
1+ 3 *4is 13

o Parentheses can be used to force a certain order of evaluation.
(1 +3) * 41is 16

Variables

e Variable: a named piece of memory that can store a value.
o Compute an expression's result,

o store that result into a variable,
o and use that variable later in the program.

e Assignment statement: stores a value into a variable
o Syntax: name = value

o Examples: x = 5, gpa = 3.14

o Avariable that has been given a value can be used in expressions.
X + 4 1S 9

. .) g %
e Names of variables are usually written in lower case, separating words by "SR

underscores

birth_year = 1970
current_year = 2020
age = current_year - birth_year

e Variable names may only consist of letters, digits and underscores

e QOverwriting (reassigning) variables:

Basic (primitive) data types

e int (integer)

e float (floating point number)
e str (string): text

e bool (boolean):yes/no

e none: missing / unknown value

Strings can be enclosed in single or double quotes

greeting = "Hello"
name = 'John'

Inserting a variable (f-strings):
messagel = f"Hello, {name}!"
Joining strings:

message2 = "Hello, " + name + "!"

Strings - escape sequences

text = "He said: \"hi!\""

Line break: \n

a = 'line 1\nline 2'

single Backslash: \\

b = "C:\\docs'

boolean value: yes/no
In Python: True or False
note the capitalization

None represents a value that is unknown or missing

first name = "John"
middle _name = None
last_name = "Doe"

Integer division

e When we divide integers with / , the quotient is also an integer.

®)

35 / 51iS 7
218 / 5 IS 43

156 / 100 is 1
% operator computes the remainder from a division of integers.

218 % 5 IS 3

84 % 10 iS ©

Real numbers

e Python can also manipulate real numbers.
6.022 , -15.9997 , 42.0 , 2.143el7

e The operators + - * /7 % ** () all work for real numbers.
o The / produces an exact answer: 15.0/2.0 iS 7.5

o The same rules of precedence also apply to real numbers: Evaluate ()
before * / % before + -

e When integers and reals are mixed, the result is a real number.
o Example: 1/2.0 is 0.5

o The conversion occurs on a per-operator basis.

Types and type conversions

Determining the type of a variable via type :
a=4/2
type(a)

Objects may be converted to other types via int(), float(), str(), bool(), ...
pi = 3.1415

pi_int = int(pi)
message = "Pi is approximately " + str(pi_int)

e int(x) converts x toaninteger
e float(x) converts x to a floating point

e The interpreter shows a lot of digits

>>> 1,23232
1.2323200000000001
>>> print 1.23232
1.23232

>>> 1.,3E7
13000000.0

>>> int(2.0)

2

>>> float(2)

2.0

Functions

A function is a "sub-program" that can perform a specific task

Examples of predefined functions:

len() can determine the length of a string (or of a list, ...)
id() can determine the internal ID of an object
type() can tell us the type of an object

print() can write some output into the terminal

& £
e A function can receive so-called parameters and produce a result o
(a return value)

o len() can take a string as a parameter and produce an int as the return
value

o print() can take various objects as parameters; it does not have an
explicit return value

e Amethod is a function that belongs to a specific object type (e.qg. to str)
Examples of string methods:

o first_name.upper()
o first_name.count("a")

© first_name.replace("a", "@")

Builtins, standard library

e Builtins: functions and objects that are used frequently and are available at
all times

e Standard library: collections of additional modules and packages that can be
imported

Documentation:

Builtins

Amongst others: print(), input(), len(), open() , etc

https://docs.python.org/3/library/index.html

Standard library

The standard library contains additional modules that can be imported.
Example:

import math

print(math.floor(3.6))
or

from math import floor

print(floor(3.6))

Math functions

Python has useful functions for performing calculations.

Function name Description
ceil(value) rounds up

floor (value) rounds down

log(value) logarithm, base e
cos(value) cosine, in radians
sgrt(value) square root

etc...

Math constants

Constant Description
e 2.7182818...
pi 3.1415926...

To use many of these above, you can write the following at the top of your Python
program:

from math import *

Text input/output f

e input reads a number from user input.
You can assign (store) the result of input into a variable.

e print produces text output on the console.

Prints the given text message (or expression value) on the console, and moves
the cursor down to the next line:

© print "Message" , print Expression
Prints several messages and/or expressions on the same line:
© print Iteml, Item2, ..., ItemN

A comma at the end will not print a newline character: print 'hello’,

Examples

>>> X = 7

>>> X

7

>>> X+/

14

>>> x = 'hello'

>>> X

'hello'

>>> print "Hello, world!"

Hello, world!

>>> age = 45

>>> print "You have", 65 - age, '"years until retirement"
You have 20 years until retirement

Hands-on exercise

Write a program called age.py which will ask the user for their birth year and will
respond with the user's age in the year 2024.

Example:

What's your name?
> PY

What year were you born?
> 1982

Hi PY! You are 42

Logic

Many logical expressions use relational operators:

Operator

Meaning
equals
does not equal
less than
greater than
less than or equal to

greater than or equal to

Example

1+ 1

3.2 1=

10 < 5

10 > 5

126 <=

5.0 >=

2.5

100

5.0

Result
True
True
False
True
False

False

Combining comparisons

Logical expressions can be combined with logical operators:

Operator Example Result
and 9 I=6 and 2 < 3 True
or 2 == 3 or -1 <5 True

not not 7 > 0 False

Selection h'ji

if
Executes a group of statements only if a certain condition is true. Otherwise, the
statements are skipped.

if/else

Executes one block of statements if a certain condition is True, and a second block
of statements if it is False.

if/elif/else

Multiple conditions can be chained with elif ("else if")

Examples

gpa = 3.4
if gpa > 2.0:

print "Your application 1is accepted."”

import math
x = 30
if x <= 15
y = x + 15
elif x <= 30
y = X + 30
else
y=X
print 'y = ',
print math.sin(y)

Hands-on exercise

Write a script that asks the user to input a year and tells them wheter that year is a
leap year.

The rules for leap years are:

e in general, a year is a leap year if it is divisible by 4 (e.g. 1904 was a leap year)

e exception from the above: if the year is also divisible by 100 it is not a leap
year (e.g. 1900 was not a leap year)

e exception from the exception: if the year is also divisible by 400 it is a leap
year (e.g. 2000 was a leap year)

Hint: "x is divisible by y" in Python: x % y == 0

Repetition

The for loop

Repeats a set of statements over a group of values.

for x in range(1, 6):
print x, "squared 1is", x * X

squared 1is
squared 1is
squared 1is
squared 1is
squared 1is

NPRE O bh~BRE

Ok wNPRE
o1 o

The range function

range(start, stop [, step])

for x in range(5, 0, -1):
print x
print "Blastoff!"

TR, DNWS O

lastoff!

Cumulative loops

Some loops incrementally compute a value that is initialized outside the loop.
This is sometimes called a cumulative sum.

sum = 0

for 1 in range(1, 11):

sum = sum + (1 * 1)
print "sum of first 10 squares 1is'", sum

sum of first 10 squares is 385

while loops

Executes a group of statements as long as a condition is True.

good for indefinite loops (repeat an unknown number of times)

x=1

while x < 10 :
print X
X=xX+1

Loop Control Statements

e break: Jumps out of the closest enclosing loop
e continue: Jumps to the top of the closest enclosing loop

e pass: Does nothing, empty statement placeholder

a =1
while True:
a=a?* 2
print(a)
if (a > 1000):
break

Hands-on exercise

Someone opens a new bank account and deposits 100€ at the start of each year.

At the end of a year, they get 4% interest.

How much do they have after 10 years?

Composite types

dictionaries are mappings that contain "named" entries with associated values.

person = {

"first_name": "John",
"last_name": "Doe",
"nationality": '"Canada'",

"birth_year": 1980

Retrieving and setting elements:

person["first_name"]

person["first_name"] = "Jane"

A list represents a sequence of objects

primes = [2, 3, 5, 7, 11]
users = ["Alice", "Bob", '"Charlie"]

products = [
{"name": "IPhone 12", "price": 949},
{"name": "Fairphone", "price": 419},
{"name": "Pixel 5", "price": 799}

Determining the length

len(users)

Overwriting a list element

users[0] = "Andrew"

Retrieving list elements via their index (starting at 0):

users[0]
users[1]
users[-1] # last element

Appending an element

users.append("Dora")

Removing the last element:

users.pop()

Removing by index:

users.pop(0)

Object references and mutations

e \What will be the value of a after this code has run?

a = [1, 2, 3]
b = a
b.append(4)

e An assignment(e.g. b = a) assigns a new (additional) name to an object.
The object in the background is the same.

If the original should remain intact it may be copied or a derived version can be
newly created based onit:

a=1[1, 2, 3]
creating a new copy
b = a.copy()

modifying b
b.append(4)

a = [1, 2, 3]
creating a new object b based on a
b =a + [4]

e Some objects can be mutated (changed) directly
e.g.via .append(), .pop(), ...
Examples: list, dict

e Many simple objects are immutable after they have been created.
However, they can be replaced by other objects.

Examples: int, float, str, bool, tuple

tuple

e Area of application: similar to dicts

point_dict = {"x": 2, "y": 4}

point_tuple = (2, 4)

date_dict = { "year": 1973, "month": 10, "day": 23}
date_tuple = (1973, 10, 23)

Each entry in a tuple has a specific meaning

e Behavior: similar to lists

date_tuple[O@] # 1973
len(date_tuple) # 3

Unlike lists, tuples are immutable (no .append / .pop /...)

Working with files

A file is a sequence of bytes on a storage device
Many file formats are a sequence of text characters
e.g. the formats .txt, .html, .csv or .py.
The content of text files can be represented as strings (ASCII).

Other file contents can be represented as byte sequences (binary).

Writing a text file

file = open("message.txt", "w", encoding="utf-8")
file.write("hello world\n")
file.close()

The file is opened for writing (w).
The character encoding will be UTF-8.

Reading a text file

file = open("message.txt", encoding="utf-8")
content = file.read()

file.close()

print(content)

Standard mode: reading (r)

File modes

mode: text, append
open("file.txt", mode="ta")

t.

b

text mode (default)

: binary
: reading (default)
. (over)writing

: appending

Open and the with statement

with open("todos.txt", encoding="utf-8") as file_obj:
content = file_obj.read()

The file will be closed automatically when the program leaves the indented block.

character encoding

The default character encoding for text files depends on the operating system:

import locale
locale.getpreferredencoding()

ASCII, latin1, UTF-8, etc

Recommendation: Use UTF-8 (best support for special characters)

Parts of programs

e programs
o code blocks
= statements
= expressions

Empty code blocks

empty code block via the pass statement:

TODO: warn the user if path doesn't exist

1f not os.path.exists(my_path):
pass

Statements across multiple lines

a statement can span across multiple lines if we use parantheses:

a = (2 +
7 +

Expressions

expression = something that produces a value (the value might be None)

expression = anything that can be on the right-hand side of an assignment (=)

examples of expressions:
e (7 - 3) * 0.5
* (7 - 3)
° 7
® round(3.5)

e X == 1]

Function parameters

Positional parameters and keyword parameters

Calling open :

e with positional parameters:

f = open("myfile.txt", "w", -1, "utf-8")

e with keyword parameters:

f = open("myfile.txt", encoding="utf-8", mode="w"

Optional parameters and default parameters

Some parameters of functions can be optional (they have a default value)

Example: For open only the first parameter is required, the others are
optional

The values of default parameters can be looked up in the documentation

Defining functions

def average(a, b):
m=(a+b) /2
return m

Optional parameters and default parameters

This is how we define default values for parameters:

def shout(phrase, end="1"):
print(phrase.upper() + end)

shout("hello") # HELLO!
shout("hi", ".") # HI.

Scope

A function definition creates a new scope, an area where variables are valid

In the following example there are two distinct variables named m :

m = "Hello, world"

def average(a, b):
m=(a+b) /2
return m

X = average(1, 2)

print(m) # prints "Hello, wor1ld"

Scope
Inside a function, outer variables may be read but not overwritten

In other programming languages constructs like if or for usually also open a
new scope - this is not the case in Python

Modules and packages

Module : collection of Python objects that can be imported
Package : collection of modules
packages are actually a special type of modules

e urllib = package
e urllib.request = module

® urllib.request.urlopen =function

e sys =module

e sys.path = object

.y = <,
J:‘q
Examples: P\J 2

import modulel

from package2 import module2a, module2b

from module3 import object3a, object3b

from package4.moduled4 import objectd4a, object4b

import os
from math import sqrt, pi

Short names:

import numpy as np
import matplotlib.pyplot as plt

Importing everything from a module (usually not recommended):

from math import *

When importing some packages, submodules will be imported automatically.

Examples:

import os
import numpy as np

os.path.join(...)
np.random.randint(10)

Counterexample - this will fail:

import urllib

urllib.request.ur lopen(...)

Conventions for imports

e all imports in a Python file should be at the start of the file

e imports should be split into three groups:
o imports from the standard library

o imports from other libraries

o imports within the project

Local modules

we can import local Python files as modules

example: local file messages.py

import messages

print(messages.messagel)

we can create so-called packages as folders

example: folder phrases/, files phrases/messages.py and phrases/qgreetings.py

from phrases import greetings

print(greetings.greetingl)

Resolving imports

Search order of imports:

e directory of the Python script that was originally executed
e standard library

e external libraries

Avoid name clashes with existing modules / packages!

NumPy

Library for efficient data processing

Data are stored in multidimensional arrays of numeric values which are
implemented in an efficient way:

e smaller memory use than e.q. lists of numbers in Python

e much faster execution of operations like element-wise addition of arrays

Data can represent images, sound, measurements and much more

Common import convention:

import numpy as np

Pandas

Pandas is a data analysis library; it is based on NumPy

import pandas as pd

Series and DataFrame

e Series: Collection of values for some keys (table column)

e DataFrame: Collection of associated series (table)

Plotting

Basic (low-level) library for plotting: matplotlib
Higher-level interfaces:

e pyplot (contained in matplotlib, similar to matlab's plotting interface)

e pandas plotting functions (based on pyplot)

Simple plot with pyplot

import numpy as np
import matplotlib.pyplot as plt

X = np.array([0, 1, 2, 3])

X*2
X**2

yl
y?2

plt.plot(x, y1)
plt.plot(x, y2)

In Jupyter plots are shown automatically

In a regular terminal / program:

plt.show()

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Pyplot: Configuration and Styling

We'll create a plot that shows the sine and cosine functions in the interval from 0

to 27

sin
COS

np.linspace(0, 2*np.pi,

np.sin(x)
np.cos(X)

1.0 o
.
0.5 R
&
L
F
0.0 L
-0.5 .
— = sin(x)
----- cos(x
-1.0)
0.000

16/10/2024 | Introduction to Python

1.571

Trigonometric functions

S
N
.
"
*
\
L §
~
Y
"
i,‘
L
RN
] Sy
s -..-l L
3.142
X (radians)

6.283

69 /78

In the following examples we will show how to use Cartopy with netCDF
ClimateData.

Daily Pressure at Mean Sea Level

170°W 98°W 26°W 46°E 118°E

96000 97500 99000 100500 102000 103500 105000
Pa

106500

Daily Pressure at Mean Sea Level

162°UV.18D W 162°E

126°E I

lo08°*W 108°E

90°W 90°E
T2°W 12°E

54°W

96000 97500 99000 100500 102000 103500 105000 106500
Pa

16/10/2024 | Introduction to Python 72178

Working with various file formats

Possibilities:
e textfiles
e JSON
e CSV
e XML
e Python object files (via pickle and shelve)

e binary files

JSON ugj

JSON: popular and standardized data file format
can represent the fundamental Python datatypes (none, bool, int, float, list, dict)

Saving JSON:

import json

data = ["one", "two", "three"]

jsonstring = json.dumps(data)

with open("numbers.json", mode="w", encoding="utf-8") as jsonfile:
jsonfile.write(jsonstring)

Reading JSON:

import json

with open("numbers.json", encoding="utf-8") as jsonfile:
jsonstring = jsonfile.read()

data = json. loads(jsonstring)

CSv

CSVis a file format which can hold tabular data; entries are separated by commas

Example:

IS0, Country, Capital, Languages
AD, Andorra, Andorra la Vella, "ES, FR"
AE,United Arab Emirates, Abu Dhabi, "AE, fa,en,hi,ur"

AF,Afghanistan, Kabul, "AF, tk"

Python libraries:
e csv (part of the standard libary)

e pandas

Writing CSV via pandas:

import pandas as pd
data = pd.DataFrame(

[
["CN", 9.6, 1386],
["RU", 17.0, 144],
["US", 9.8, 327],
1,

columns=["code", "area", "population"],

)

data.to_csv("countries.csv")

Reading CSV via pandas:

import pandas as pd

data = pd.read_csv('"countries.csv'")
print(data)
print(data.values.tolist())

Reading and writing CSV

import csv

data = [
['code', 'area', 'population'],
['CN', 9.6, 1386],
['RU', 17, 144],
['US', 9.8, 327]
]

with open('countr.csv', 'w', encoding='utf-8', newline='"') as f:

writer = csv.writer(f)
writer.writerows(data)

with open('countr.csv', encoding='utf-8',
reader = csv.reader(f)
for row in reader:
print(row)

newline="'"') as f:

<R &,
< S
W m
L] L]
v &
1
STITO

Thank you for your attention

