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Modeling COVID-19 scenarios for the United
States

IHME COVID-19 Forecasting Team*

We use COVID-19 case and mortality data from 1 February 2020 to 21 September 2020 and a deterministic SEIR (suscep-
tible, exposed, infectious and recovered) compartmental framework to model possible trajectories of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infections and the effects of non-pharmaceutical interventions in the United States at
the state level from 22 September 2020 through 28 February 2021. Using this SEIR model, and projections of critical driving
covariates (pneumonia seasonality, mobility, testing rates and mask use per capita), we assessed scenarios of social distanc-
ing mandates and levels of mask use. Projections of current non-pharmaceutical intervention strategies by state—with social
distancing mandates reinstated when a threshold of 8 deaths per million population is exceeded (reference scenario)—sug-
gest that, cumulatively, 511,373 (469,578-578,347) lives could be lost to COVID-19 across the United States by 28 February
2021. We find that achieving universal mask use (95% mask use in public) could be sufficient to ameliorate the worst effects
of epidemic resurgences in many states. Universal mask use could save an additional 129,574 (85,284-170,867) lives from
September 22, 2020 through the end of February 2021, or an additional 95,814 (60,731-133,077) lives assuming a lesser adop-

tion of mask wearing (85%), when compared to the reference scenario.

syndrome coronavirus 2 (SARS-CoV-2)' first reported in
Wuhan, China’?, and the global spread of the coronavirus dis-
ease 2019 (COVID-19; https://covid19.who.int/)’ promises to be
a defining global health event of the twenty-first century*. This
pandemic has already resulted in extreme societal, economic and
political disruption across the world and in the United States (https://
www.economist.com/united-states/2020/03/14/tracking-the-
economic-impact-of-covid-19-in-real-time/)>. The establishment
of SARS-CoV-2 and its rapid spread in the United States has
been dramatic (https://www.thinkglobalhealth.org/article/updated-
timeline-coronavirus/). Since the first case in the United States
was identified on 20 January 2020 (ref. ; first death on 6 February
2020: https://www.sccgov.org/sites/covid19/Pages/press-release-04-
21-20-early.aspx), SARS-CoV-2 has spread to every state and has
resulted in more than 28.2 million cases and 199,213 deaths as of
21 September 2020 (https://coronavirus.jhu.edu/map.html)”*.
There remains no approved vaccine for the prevention of
SARS-CoV-2 infection, and few pharmaceutical options for the treat-
ment of COVID-19 are available’!". The most optimistic scientists
do not predict the availability of new vaccines or therapeutics before
2021 (refs. '*'*). Non-pharmaceutical interventions (NPIs) are, there-
fore, the only available policy levers to reduce transmission'®. Several
NPIs have been put in place across the United States in response
to the epidemic (Fig. 1), including the dampening of transmission
through the wearing of face masks and social distancing mandates
(SDMs) aimed at reducing contacts through school closures, restric-
tions of gatherings, stay-at-home orders and the partial or full closure
of nonessential businesses. Increased testing and isolation of infected
individuals and their contacts will also have had an impact". These
NPIs are credited with a reduction in viral transmission'®", along
with a host of other environmental, behavioral and social determi-
nants postulated to affect the course of the epidemic at the state level.
In the United States, decisions to implement SDM or require
mask use are generally made at the state level by government
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officials. These executives need to balance net losses from the soci-
etal turmoil, economic damage and indirect effects on health caused
by NPIs with the direct benefits to human health of controlling
the epidemic. Disease control has often been operationally defined
in this pandemic context as the restriction of infections to below
a specified level at which health services are not overwhelmed
by demand and the loss of human health and life is consequently
minimized”.

In the first months of the SARS-CoV-2 outbreak in the United
States, states enacted restrictive SDMs intended to reduce transmis-
sion (by limiting human-to-human contact)’, while there was confli
cting advice on the use of masks (https://www.npr.org/sections/
goatsandsoda/2020/04/10/829890635/why-there-so-many
different-guidelines-for-face-masks-for-the-public/). At that early
stage, relatively simple statistical models of future risk were suf-
ficient to capture the general patterns of transmission?'. As differ-
ent behavioral responses to SDMs emerged and, more importantly,
as some states began to relax SDMs (Fig. 1), a modeling approach
that directly quantified transmission and could be used to explore
these developing scenarios was necessary. As states varied in their
actions to remove and reinstate SDMs (Fig. 1) or began to issue
mandatory mask-use orders (https://www.cnn.com/2020/06/19/us/
states-face-mask-coronavirus-trnd/index.html) amid resurgences
of COVID-19  (https://www.nytimes.com/2020/07/01/world/
coronavirus-updates.html), a clear need for evidence-based
assessments of the possible effect of the NPI options available to
decision-makers became apparent.

There is now growing evidence that face masks can considerably
reduce the transmission of respiratory viruses like SARS-CoV-2,
thereby limiting the spread of COVID-19 (refs. =**). We updated
a recently published review’ to generate a new meta-analysis
(Supplementary Information) of peer-reviewed studies and pre-
prints to assess the effectiveness of masks at preventing respiratory
viral infections in humans®. This analysis indicated a reduction in
infection (from all respiratory viruses) for mask wearers by 40%
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(relative risk=0.60, 95% uncertainty interval (UI)=0.46-0.80))
relative to controls”. This is suggestive of a considerable popula-
tion health benefit to mask use with great potential for uptake in
the United States, where the national average for self-reported mask
wearing was 49% as of 21 September 2020 (https://covid19.health-
data.org/; Supplementary Information).

Here we provide a state-level descriptive epidemiological analy-
sis of the introduction of SARS-CoV-2 infection across the United
States, from the first recorded case through to 21 September 2020.
We use these observations to learn about epidemic progression and
thereby model the first wave of transmission using a deterministic
SEIR compartmental framework?>?. This observed, process-based
understanding of how NPIs affect epidemiological processes is then
used to make inferences about the future trajectory of COVID-
19 and how different combinations of existing NPIs might affect
this course. Five SEIR-driven scenarios, along with covariates that
inform them, were then projected through to 28 February 2021
(Methods). We use these scenarios as a sequence of experiments to
describe a range of model outputs, including R, (the change over
time in the average number of secondary cases per infectious case
in a population where not everyone is susceptible’*-**), infections,
deaths and hospital demand outcomes, which might be expected
from plausible boundaries of the policy options available the fall
and winter of 2020 (see Methods and Supplementary Information
for an extended rationale on scenario construction).

We established three boundary scenarios. First, we forecast the
expected outcomes if states continue to remove SDMs at the cur-
rent pace of ‘mandate easing, with resulting increases in popula-
tion mobility and number of person-to-person contacts. This is an
alternative scenario to the more probable situation where states are
expected to respond to an impending health crisis by reinstating
some SDMs. In the second, ‘plausible reference” scenario, we model
the future progress of the pandemic assuming that states would
once again shut down social interaction and some economic activity
at a threshold for the daily death rate of 8 deaths per million popu-
lation—the 90th percentile of the observed distribution of when
states previously implemented SDMs (Fig. 1 and Supplementary
Information). This scenario assumes reinstatement of SDMs for 6
weeks. In addition, newly available data on mask efficacy enabled
the exploration of a third, ‘universal mask-use’ scenario to investi-
gate the potential population-level benefits of increased mask use
in addition to the same threshold-driven reinstatement of SDMs.
In this best-case scenario model, ‘universal’ was defined as 95%
of people wearing masks in public, based on the highest observed
coverage of mask use globally (in Singapore) during the COVID-19
pandemic to date (Supplementary Information). Two derivative
scenarios were also included to assist understanding, nuance and
policy resolution around the three boundary scenarios. The first
scenario, termed ‘plausible reference + 85% mask use, modeled less
than universal mask use in public (85%) in the presence of reinstate-
ment of SDMs. The second was a scenario of universal mask use
(95%) in the absence of any NPIs (termed ‘mandate easing + univer-
sal mask use’). Details and results for these additional scenarios are
in the Supplementary Information. In addition, sensitivity analyses
and detailed diagnostics are provided to help users calibrate the
effects of the covariates used in the models on the scenarios dis-
cussed (Supplementary Information).

Results

Observed COVID-19 patterns. The COVID-19 epidemic has pro-
gressed unevenly across states. Since the first death was recorded
in the United States in early February 2020, cumulative through
21 September 2020, 199,213 deaths from COVID-19 have been
reported in the United States (Fig. 2); a sixth of those (16.6%)
occurred in New York alone. Washington and California issued
the first sets of state-level mandates on 11 March 2020, prohibiting

gatherings of 250 people or more in certain counties, and by 23
March 2020, all 50 states initiated some combination of SDMs
(Fig. 1). The highest levels of daily deaths at the state level between
February and September of 2020 occurred in New York, New Jersey
and Texas at 998, 311 and 220 deaths per day, respectively (Fig. 3
and Extended Data Fig. 1). On 21 September 2020, the highest
level of daily deaths was in Florida at 101 deaths per day. A criti-
cal policy need at this stage of the modeling was the forecasting of
hospital resource demands in the US states with the worst effec-
tive transmission rates (Virginia, New York and Missouri; Fig. 4).
The highest peak demand was observed as 8,380 hospital intensive
care unit (ICU) beds in New York (estimated initial hospital ICU
bed availability of 718) on April 10 and 2,786 hospital ICU beds in
New Jersey (estimated initial hospital ICU bed availability of 466)
on April 21; demand for hospital ICU beds had receded to within
initial capacity levels across the United States by 21 September 2020
(Extended Data Fig. 3). Hospital resource demands (all bed capac-
ity) had been exceeded in the period before 21 September 2020 in
three states (New York, New Jersey and Connecticut; Extended Data
Figs. 2 and 3).

Predicted COVID-19 patterns. Under a boundary scenario where
states continue with removal of SDMs (mandate easing), our model
projections show that cumulative total deaths across the United
States could reach 1,053,206 (759,693-1,452,397) by 28 February
2021 (Fig. 2 and Table 1). At the state level, contributions to that
death toll would be heterogeneously distributed across the United
States. Approximately one-third of the deaths projected from 22
September 2020 to 28 February 2021 in this scenario would occur
across just three states: California (146,501 (84,828-221,194)
deaths), Florida (66,943 (40,826-96,282) deaths) and Pennsylvania
(62,352 (30,318-93,164) deaths). The highest cumulative death
rates (per 100,000) from 22 September 2020 to 28 February 2021
are predicted to occur in Rhode Island (605.1 (428.1-769.0) deaths
per 100,000)), Massachusetts (561.4 (315.8-901.3) deaths per
100,000), Connecticut (547.8 (209.3-978.2) deaths per 100,000) and
Pennsylvania (541.1 (294.7-778.3) deaths per 100,000; Extended
Data Fig. 4 and Table 1). By the US national election on 3 November
2020, a total of five states are predicted to exceed a threshold of daily
deaths of 8 deaths per million (Fig. 3), and a total of 40 states would
have an R, ,,,, greater than one (Fig. 4). By 28 February 2021, a total
of 45 states are predicted to exceed that threshold under this sce-
nario, and all states would reach an R, of greater than one before
the end of February 2021 (Table 1 and Fig. 4). This scenario results
in an estimated total of 152,775,751 (115,305,817-199,130,145)
infections across the United States by the end of February 2021
(Extended Data Fig. 5). The highest infection levels in states relative
to their population size are estimated to occur in Arizona (71.2%
(61.5-80.8%) infected), New Jersey (68.2% (47.5-84.1%) infected)
and Rhode Island (65.5% (50.0-79.7%) infected; Extended Data
Fig. 6). Further results for projected hospital resource-use needs are
presented in Extended Data Figs. 2 and 3, and forecasted infections
under this scenario are available in Extended Data Figs. 7 and 8.
When we modeled the future course of the epidemic assum-
ing that states will once again shut down social interaction and
economic activity when daily deaths reach a threshold of 8 deaths
per million (plausible reference scenario), the projected cumula-
tive death toll across the United States is forecast to be lower than
that under the mandate-easing scenario, with 511,373 (469,578-
578,347) deaths by 28 February 2021 (Fig. 2). Thus, across the 45
states that are projected to exceed daily deaths of 8 deaths per mil-
lion under the mandate-easing scenario by the end of February 2021
(Table 1), the reinstatement of SDMs under the plausible reference
scenario could save 541,738 (281,283-886,373) lives. This scenario
also results in 80,798,356 (47,333,280-121,526,052) fewer estimated
infections across the United States by the end of February 2021
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Fig. 1| Number of social distancing mandates by US state from 1 February 2020 to 22 September 2020. States are ordered by decreasing population size

on the y axis.

(Extended Data Fig. 5) compared with the mandate-easing scenario,
with the highest rates of infections estimated to occur in Arizona
(46.2% (38.8-55.9%) infected), New Jersey (41.1% (35.1-50.8%)
infected) and Louisiana (33.3% (29.9-37.4%) infected) (Extended
Data Fig. 6). As with the previous scenario, even with the reinstate-
ment of SDMs when daily deaths exceed 8 per million population,
all states would reach an R, greater than one before the end of
the February 2021 (Fig. 4 and Table 1). Further results for hospital
resource-use needs are presented in Extended Data Figs. 2 and 3
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and forecast infections by state under this scenario are presented in
Extended Data Figs. 7 and 8.

The universal mask-use scenario where the population of each
state was assumed to adopt and maintain a 95% level of mask use
in public (Methods)—in addition to states reinstating SDM if a
threshold daily death rate of 8 deaths per million population was
exceeded—resulted in the lowest projected cumulative death toll
across US states, with a total of 381,798 (336,479-421,953) cumu-
lative deaths by 28 February 2021 (Fig. 2 and Table 1). Under this
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Fig. 2 | Cumulative deaths from 1 February 2020 to 28 February 2021. The inset map displays the cumulative deaths under the plausible reference
scenario on 28 February 2021. A light-yellow background separates the observed and predicted part of the time series, before and after 22 September
2020. The dashed vertical line identifies 3 November 2020. Solid lines represent boundary scenarios and dashed lines represent derivative scenarios.
Numbers are the means and Uls for the plausible reference scenario on the highlighted dates. An asterisk indicates states with population centers
exceeding 2 million persons. Uls are shown for only the plausible reference scenario.

scenario, on 3 November 2020, no states will have exceeded a daily
death rate of 8 deaths per million (Fig. 3), although 47 states are
still estimated to exceed an R, of 1.0 at some point in the pro-
jected period, and three states would have an R, greater than

1.0 on 28 February 2021 (Fig. 4). Through the end of the February
2021, the daily death rate is forecast to exceed 8 deaths per million
in nine states (California, Colorado, Massachusetts, New Jersey,
New Mexico, North Carolina, North Dakota, Pennsylvania and
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Rhode Island; Table 1) saving 129,574 (85,284-170,867) lives
when compared to the plausible reference scenario and 671,407
(376,883-1,046,250) lives when compared to the mandate-easing
scenario. Universal mask use combined with threshold-driven
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implementation of SDM results in 17,408,352 (11,278,442-
23,291,371) fewer estimated infections across the United States by
the end of February 2021 compared with the plausible reference
scenario, and 98,106,708 (59,908,817-142,318,907) fewer estimated
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infections compared to the mandate-easing scenario (Extended
Data Fig. 5). The highest infection rates under the 95% mask-use
scenario are estimated to occur in Arizona (38.1% (28.0-43.3%)
infected), New Jersey (35.7% (30.2-41.0%) infected) and Delaware
(28.2% (23.3-31.1%) infected) (Extended Data Fig. 6). Further
results for hospital resource-use needs are presented in Extended

Data Figs. 2 and 3, and forecast infections under this scenario are
available in Extended Data Figs. 7 and 8.

To provide additional policy nuance to the three boundary sce-
narios, we also examined plausible reference +85% mask use and
mandate-easing + universal mask-use scenarios (Figs. 24, Extended
Data Figs. 1 and 4-8 and Supplementary Information). In brief,
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the plausible reference+ 85% mask-use scenario saves a consider-
able number of lives at the national level (95,814 (60,731-133,077)
over and above the reference scenario, but is not as effective as the
plausible reference+ universal mask-use scenario. Although not
surprising, this does help to confirm that any additional coverage
that can be achieved through mask use will save lives. The mandate-
easing + universal mask-use scenario reveals substantial lives saved
(20,936 (0-102,507)) over the plausible reference scenario, even
in the absence of reinstatement of SDMs at the daily threshold of
8 deaths per one million population, underscoring the potential
effects that increased levels of mask adoption could have while
minimizing the deleterious economic repercussions of other NPIs.

Two out-of-sample (OOS) model assessments were conducted
for two different time intervals of the modeling period to investi-
gate the strength of evidence behind each of the covariate drivers of
SARS-CoV-2 transmission intensity. Full details of these sensitiv-
ity analyses are shown at the national level in the Supplementary
Information. These analyses indicate that care needs to be taken in
interpreting the strength of these relationships, which show vari-
ability in time and space. For example, our OOS tests indicate that
over some time frames, pneumonia mortality seasonality was either
the most or least useful covariate, despite in-sample tests having
consistently shown this to be an important predictor. Since pneu-
monia seasonality is one of the leading covariates driving expected
increases in COVID-19 deaths in the fall and winter, it is impor-
tant to be aware of this uncertainty when assessing the forecasts. It
is critical to note, however, that even when we completely remove
this covariate from our model, sensitivity analyses show a forecast of
over 100,000 deaths from COVID-19 by the end of winter (101,615
(81,479-126,295) additional deaths; Supplementary Information).
Since this covariate complexity makes it difficult to generalize the
effects of this uncertainty, we provide extensive diagnostics for the
covariate relationships in each of the states with examples of how to
interpret these findings (Supplementary Information).

Model performance. The models presented here have been evalu-
ated for OOS predictive validity using standard tests and metrics in
an ongoing fashion and in a publicly available framework?". These
SEIR models have consistently produced among the most accu-
rate forecasts observed across models compared”'. For example,
for models released in June, the Institute for Health Metrics and
Evaluation (IHME) SEIR model had the lowest median absolute
percentage error (MAPE) at 10 weeks of forecasting at 20.2%, com-
pared to 32.6% across models. We have included new sets of model
and covariate diagnostics with worked descriptions for the most
populous states (Supplementary Information and Supplementary
Data 1-4) for transparent evaluation of our model performance.
We emphasize that these are forecasts of possible futures, which are
subject to many model assumptions and sources of data variability.

Discussion
We have delimited three possible future scenarios of the course of the
COVID-19 epidemicin the United States, at the state level —mandate-
easing, plausible reference and universal mask-use scenarios—
to help frame and inform a national discussion on what actions
could be taken during the fall of 2020 and the public health, eco-
nomic and political influences that these decisions will have for the
rest of the winter (here defined as the end of February 2021). To help
us understand the policy nuances of these boundary scenarios, two
derivative scenarios (plausible reference + 85% mask use and man-
date easing+ universal mask use) were also explored. In addition,
selected sensitivity analyses were conducted for the covariates used
in the models, so that their influence could be better understood.
Under all scenarios evaluated here, the United States is likely
to face a continued public health challenge from the COVID-19
pandemic through 28 February 2021 and beyond, with populous

states in particular potentially facing high levels of illness, deaths
and ICU demands as a result of the disease. The implementation
of SDMs as soon as individual states reach a threshold of 8 daily
deaths per million could dramatically ameliorate the effects of the
disease; achieving near-universal mask use could delay, or in many
states, possibly prevent, this threshold from being reached and has
the potential to save the most lives while minimizing damage to the
economy. National and state-level decision-makers can use these
forecasts of the potential health benefits of available NPIs, alongside
considerations of economic and other social costs, to make more
informed decisions on how to confront the COVID-19 pandemic at
the local level. Our findings indicate that universal mask use, a rela-
tively affordable and low-impact intervention, has the potential to
serve as a priority life-saving strategy in all US states. Our derivative
scenarios suggest that this likely remains true at sub-universal levels
of mask coverage and at universal mask coverage in the absence of
any other NPIs.

New epidemics, resurgences and second waves are not inevitable.
Several countries, such as South Korea, Germany and New Zealand
have sustained reductions in COVID-19 cases over time (https://
covid19.healthdata.org/). Early indications that seasonality may play
a role in transmission, with increased spread during colder winter
months as is seen with other respiratory viruses”~*, highlight the
importance of taking action both before and during the pneumonia
season in the United States. While it is yet unclear if COVID-19 sea-
sonality will follow the pattern of related coronaviruses™ and paral-
le] that of pneumonia seasonality, the sometimes strong associations
observed in these forecasts indicate that increased government vigi-
lance is prudent. Moreover, given the potential sensitivity of the model
to effects of seasonality, a substantial winter effect cannot be ruled out.
This effect would be against a background of more widespread and
prevalent COVID-19 infection than experienced in the first wave.

Mask use has emerged as a contentious issue in the United States
with only 49% of US residents reporting that they ‘always’ wear a mask
in public as of 21 September 2020 (https://covid19.healthdata.org/).
Regardless, toward the end of 2020, masks could help to contain a
second wave of resurgence while reducing the need for frequent and
widespread implementation of SDMs. Although 95% mask use across
the population may seem a high threshold to achieve and maintain,
on a neighborhood scale this level has already been observed in
areas of New York (https://www.nytimes.com/2020/08/20/nyregion/
nyc-face-masks.html); and on a state level, reported mask use has
exceeded 60% in Virginia, Florida and California (see Supplementary
Information for related methods). In countries where mask use has
been widely adopted, such as Singapore, South Korea, Hong Kong,
Japan and Iceland among others, transmission has declined and, in
some cases, halted (https://covid19.healthdata.org/). These exam-
ples serve as additional natural experiments™ of the likely effects of
masks and support the assumptions and findings from the universal
mask-use scenario in our study. The potential life-saving benefit of
increasing mask use in the coming fall and winter cannot be over-
stated. It is likely that US residents will need to choose between higher
levels of mask use or risk the frequent redeployment of more strin-
gent and economically damaging SDMs; or, in the absence of either
measure, face a reality of a rising death toll*". Longer term, the future
of COVID-19 in the United States will be determined by the deploy-
ment of an efficacious vaccine and the evolution of herd immunity™.

This work represents the outputs of a class of models that aim to
abstract the disease transmission process in populations to a level
that is tractable for understanding, and, in this case, that can be used
for prediction. A clear limitation of any such modeling exercise is
that it will be constrained by data (disease and relevant covari-
ates), the model of understanding developed and the length of time
available to the model to learn/train the important dynamics. We
have therefore tried to benchmark our model against alternative
models of the COVID-19 pandemic and fully document our
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predictive performance with a range of measures®.. In addition, we
have provided all the data and model code to enable full reproduc-
ibility and increased transparency, provided sensitivity analyses
to some of our core assumptions; and presented a range of likely
futures® in the form of mandate-easing, plausible reference and
universal mask-use scenarios (as well as two derivative scenarios
thereof) for decision-makers to review. In addition, triangulation of
other outputs of the SEIR model, such as the proportion of the pop-
ulation that are affected, are also provided and tested against inde-
pendent data, in this case seroprevalence surveys (Extended Data
Fig.9).Finally,becauseuncertaintycompoundswithincreaseddistance
into the future predicted, the data, model and its assumptions
will be iteratively updated as the pandemic continues to unfold
(https://www.latimes.com/opinion/story/2020-07-10/covid-
forecast-deaths-ihme-washington/).

We wish to reiterate to decision-makers that there are a mul-
titude of limitations in any modeling study of this type’*”; an
extended description of the limitations specific to this study is pro-
vided (Methods). Specifically, (1) these models are approximations
of real-world scenarios, and we have simplified many aspects of the
epidemiological process of disease transmission to make these mod-
els computationally feasible; (2) these models are driven strongly by
mortality data with all of its fidelity and recording imperfections;
(3) these models are also informed by a wealth of other data types
that each have differential availability, as well as detection and mea-
surement bias issues for which we can never fully calibrate; (4) these
models make particular assumptions about covariates, including
seasonality, that while evidence-based and explicitly stated, are sub-
ject to sensitivity analyses because their effects could be substantial;
and (5) our knowledge of this dynamic pandemic improves daily, so
there should be no expectation that this modeling framework is final
or that the data that drive it are fixed. While acknowledging all of
these policy-relevant limitations, we take care to note that our pub-
licly released model comparison framework?' supports the robust,
iterative and objective evaluation of our modeling approach. This
is especially valuable as the complexities of the pandemic response
require that our modeling efforts remain agile to epidemiological
and societal developments and that we continue to reevaluate and
post updates weekly (https://covid19.healthdata.org/). Finally, it is
especially important for decision-makers that we emphasize that we
are not forecasting a future, but rather a range of outcomes that we
believe are more probable given the scenarios tested, based on the
data observed so far and our model assumptions. These forecasts
are best considered as helpful guides, rather than definitive maps.

Online content

Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
$41591-020-1132-9.
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Methods

Our analysis strategy supports two main and interconnected objectives: (1) to
generate forecasts of COVID-19 deaths, infections and hospital resource needs
for all US states; and (2) to explore alternative scenarios on the basis of changes

in state-enforced SDMs or population-level mask use. The modeling approach to
achieve this is summarized in the Supplementary Information and can be divided
into four stages: (1) identification and processing of COVID-19 data, (2) exploration
and selection of key drivers or covariates, (3) modeling deaths and cases across
three boundary scenarios of SDMs in US states using an SEIR framework and (4)
modeling health service utilization as a function of forecast infections and deaths
within those scenarios. This study complies with the Guidelines for Accurate and
Transparent Health Estimates Reporting statement (Supplementary Information).

Data identification and processing. IHME forecasts include data from local
and national governments, hospital networks and associations, the World Health
Organization, third-party aggregators and a range of other sources. Data sources
and corrections are described in detail in the Supplementary Information and in
the data availability statement. Briefly, daily confirmed case and death numbers
due to COVID-19 are collated from the Johns Hopkins University data repository;
we supplement and correct this dataset as needed to improve the accuracy of our
projections and adjust for reporting-day biases (Supplementary Information).
Testing data are obtained from Our World in Data (https://ourworldindata.org/),
The COVID Tracking Project (https://covidtracking.com/) and supplemented with
data from additional government websites (Supplementary Information). Social
distancing data are obtained from a number of different official and open sources,
which vary by state (Supplementary Information). Mobility data are obtained from
Facebook Data for Good (https://dataforgood.fb.com/docs/covid19/), Google
(https://www.google.com/covid19/mobility/), SafeGraph (https://www.safegraph.
com/dashboard/covid19-shelter-in-place/) and Descartes Labs (https://www.
descarteslabs.com/mobility/; Supplementary Information). Mask-use data are
obtained from the Facebook Global Symptom Survey (in collaboration with the
University of Maryland Social Data Science Center), the Kaiser Family Foundation,
YouGov COVID-19 Behavioural Tracker survey (https://today.yougov.com/
covid-19/) and PREMISE (https://www.premise.com/covid-19/; Supplementary
Information). Specific sources for data on licensed bed and ICU capacity and average
annual utilization in the United States are detailed in the Supplementary Information.
Before modeling, observed cumulative deaths are smoothed using a
spline-based smoothing algorithm with randomly placed knots”. Uncertainty
is derived from bootstrapping and resampling of the observed deaths. The time
series of case data is used as a leading indicator of death based on an infection
fatality ratio (IFR) and a lag from infection to death. These smoothed estimates
of observed deaths by location are then used to create estimated infections based
on an age distribution of infections and on age-specific IFRs. The age-specific
infections were collapsed into total infections by day and state and used as
data inputs in the SEIR model. Detailed descriptions of data smoothing and
transformation steps are provided in the Supplementary Information.

Covariate selection. Covariates for the compartmental transmission SEIR

model are predictors of the  parameter in the model that affects the transition
from the susceptible to exposed state; specifically,  represents the contact

rate multiplied by the probability of transmission per contact. Covariates

were evaluated on the basis of biological plausibility and on the impact on the
results of the SEIR model. Given limited empirical evidence of population-level
predictors of SARS-CoV-2 transmission, biologically plausible predictors of
pneumonia such as population density (percentage of the population living in
areas with more than 1,000 individuals per square kilometer), tobacco smoking
prevalence, population-weighted elevation, lower respiratory infection mortality
rate and particulate matter air pollution were considered. These covariates are
representative at a population level and are time invariant. Location-specific
estimates for these covariates are derived from the Global Burden of Disease Study
2019 (refs. **'%). Time-varying covariates include pneumonia excess mortality
seasonality, diagnostic tests administered per capita, population-level mobility and
personal mask use. These are described below.

Pneumonia seasonality. We used weekly pneumonia mortality data from the
National Center for Health Statistics Mortality Surveillance System (https://gis.
cdc.gov/grasp/fluview/mortality.html) from 2013 to 2019 by US state. Pneumonia
deaths included all deaths classified by the full range of the International
Classification of Disease codes in J12-J18.9. We pooled data over available years
for each state and found the weekly deviation from the annual, state-specific mean
mortality due to pneumonia. We then fit a seasonal pattern using a Bayesian
meta-regression model with a flexible spline and assumed annual periodicity
(Supplementary Information). For locations outside the United States, we used
vital registration data where available. Locations without vital registration data had
weekly pneumonia seasonality predicted based on latitude from a model pooling
all available data (Supplementary Information).

Testing per capita. We considered diagnostic testing for active SARS-CoV-2
infections as a predictor of the ability for a state to identify and isolate active
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infections. We assumed that higher rates of testing were negatively associated with
SARS-CoV-2 transmission. Our primary sources for US testing data were compiled
by the COVID Tracking Project (Supplementary Information). Unless testing

data existed before the first confirmed case in a state, we assumed that testing was
non zero after the date of the first confirmed case. Before producing predictions
of testing per capita, we smoothed the input data by using the same smoothing
algorithm used for smoothing daily death data before modeling (previously
described). Testing per capita projections for unobserved future days were based
on linearly extrapolating the mean day-over-day difference in daily tests per capita
for each location. We put an upper limit on diagnostic tests per capita of 500 per
100,000 based on the highest observed rates in June 2020.

Social distancing mandates. SDMs were not used as direct covariates in the
transmission model. Rather, SDMs were used to predict population mobility (see
below), which was subsequently used as a covariate in the transmission model. We
collected the dates of state-issued mandates enforcing social distancing, as well as
the planned or actual removal of these mandates. The measures that we included
in our model were: (1) severe travel restrictions, (2) closing of public educational
facilities, (3) closure of nonessential businesses, (4) stay-at-home orders and

(5) restrictions on gathering size. Generally, these came from state government
official orders or press releases.

To determine the expected change in mobility due to SDMs, we used a
Bayesian, hierarchical meta-regression model with random effects by location on
the composite mobility indicator to estimate the effects of social distancing policies
on changes in mobility (Supplementary Information).

Mobility. We used four data sources on human mobility to construct a composite
mobility indicator. Those sources were Facebook, Google, SafeGraph and Descartes
Labs (Supplementary Information). Each source takes a slightly different approach
to capturing mobility, so before constructing a composite mobility indicator, we
standardized these different data sources (Supplementary Information). Briefly,
this first involved determining the change in a baseline level of mobility for each
location by data source. Then, we determined a location-specific median ratio

of change in mobility for each pairwise comparison of mobility sources, using
Google as a reference and adjusting the other sources by that ratio. The time series
for mobility was estimated using a Gaussian process regression model using the
standardized data sources to get a composite indicator for change in mobility for
each location day.

We calculated the residuals between our predicted composite mobility time
series and input composite time series, and then applied a first-order random walk
to the residuals. The random walk was used to predict residuals from 1 January
2020 to 1 January 2021, which were then added to the mobility predictions to
produce a final time series with uncertainty: ‘past’ changes in mobility from
1 January 2020 to 28 September 2020 and projected mobility from 28 September
2020 to 1 January 2021.

Masks. We performed a meta-analysis of 40 peer-reviewed scientific studies in

an assessment of mask effectiveness for preventing respiratory viral infections
(Supplementary Information). The studies were extracted from a preprint
publication®. In addition, we considered all articles from a second meta-analysis*
and one supplemental publication’’. These studies included both persons working
in health care and the general population, especially family members of those

with known infections. The studies indicate overall reductions in infections due to
masks preventing exhalation of respiratory droplets containing viruses, as well as
some prevention of inhalation by those uninfected. The resulting meta-regression
calculated log-transformed relative risks and corresponding log-transformed
standard errors based on raw counts and used a continuity correction for studies
with zero counts in the raw data (0.001). We included additional specifications and
characteristics to account for differences in the characteristics of individual studies
and to identify important factors impacting mask effectiveness (Supplementary
Information).

We used MR-BRT (meta-regression, Bayesian, regularized and trimmed), a
meta-regression tool developed at the Institute for Health Metrics and Evaluation
(Supplementary Information), to perform a meta-analysis that considered
the various characteristics of each study. We accounted for between-study
heterogeneity and quantified remaining between-study heterogeneity into the width
of the UL We also performed various sensitivity analyses to verify the robustness of
the modeled estimates and found that the estimate of the effectiveness of mask use
did not change significantly when we explored four alternative analyses, including
changing the continuity correction assumption, using odds ratio versus relative
risk from published studies, using a fixed-effects versus a mixed-effects model and
including studies without information on covariates.

We estimated the proportion of people who self-reported always wearing a
face mask when outside in public for both US and global locations using data
from PREMISE (US), the Kaiser Family Foundation (US), YouGov (non-US) and
Facebook (non-US) surveys (Supplementary Information). We used the same
smoothing model as for COVID-19 deaths and testing per capita to produce
estimates of observed mask use. This smoothing process averaged each data point
with its neighbors. The level of mask use starting on 21 September 2020 (the last
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day of processed and analyzed data) was assumed to be flat. Among states without
state-specific data, a within-the-US regional average was used.

Deterministic modeling framework. Model specification is summarized in a
schematic with additional details provided in the Supplementary Information. To
fit and predict disease transmission dynamics, we include a SEIR component in our
multistage model. In particular, the population of each location is tracked through
the following system of differential equations:

S(IL+5)"
= —p(n) M

4 — () SRS _ o
% =oE -y I,

d, __

T il =1L

% =7h

where a represents a mixing coefficient to account for imperfect mixing within
each location, o is the rate at which infected individuals become infectious, y, is
the rate at which infectious people transition out of the presymptomatic phase and
7, is the rate at which individuals recover. This model does not distinguish between
symptomatic and asymptomatic infections but has two infectious compartments
(I, and L,) to allow for interventions that would avoid focus on those who could not
be symptomatic; I, is thus the presymptomatic compartment.

Using the next-generation matrix approach, we can directly calculate both the
basic reproductive number under control (R (t)) and the effective reproductive
number (Rg,...(t)) as (Supplementary Information):

Re(t) = ax p(t)x (I (t) + L(£)* ' x (i + i) and

Reﬁective(t) = Rc(t) X %

By allowing f(t) to vary in time, our model is able to account for increases in
transmission intensity as human behavior shifts over time (for example, changes in
mobility, adding or removing SDMs and changes in population mask use). Briefly,
we combine data on cases (correcting for trends in testing), hospitalizations and
deaths into a distribution of trends in daily deaths.

To fit this model, we resampled 1,000 draws of daily deaths from this distribution
for each state (Supplementary Information). Using an estimated IFR by age and the
distribution of time from infection to death (Supplementary Information), we then
used the daily deaths to generate 1,000 distributions of estimated infections by day
from 10 January to 21 September 2020. We then fit the rates at which infectious
individuals may come into contact and infect susceptible individuals (denoted as
(1)) as a function of a number of predictors that affect transmission. Our modeling
approach acts across the overall population (that is, no assumed age structure for
transmission dynamics), and each location is modeled independently of the others
(that is, we do not account for potential movement between locations).

We detail the SEIR fitting algorithm in the Supplementary Information. Briefly,
for each draw, we first fit a smooth curve to our estimates of daily new infections.
Then, sampling y,, 0 and a from defined ranges from the literature (Supplementary
Information) and using y, = 3, we then sequentially fit the E, I,, I, and R
components in the past. We then algebraically solve the above system of differential
equations for f(1).

The next stage of our model fit relationships between past changes in (t) and
covariates described above: mobility, testing, masks, pneumonia seasonality and
others. The time-varying covariates were forecast from 28 September to 28 February
2021 (Supplementary Information). The fitted regression was then used to estimate
future transmission intensity f3,,.,(t). The final future transmission intensity is then
an adjusted version of f,,.,(t) based on the average fit over the recent past (where the
window of averaging varies by draw from 2 to 4 weeks; Supplementary Information).

Finally, we used the future estimated transmission intensity to predict future
transmission (using the same parameter values for all other SEIR parameters for
each draw). In a reversal of the translation of deaths into infections, we then used
the estimated daily new infections to calculate estimated daily deaths (again using
the location-specific IFR). We also used the estimated trajectories of each SEIR
compartment to calculate R, and Rygi,-

A final step to take predicted infections and deaths and a hospital-use
microsimulation to estimate hospital resource need for each US state is described
in the Supplementary Information and the results are presented online (https://
covid19.healthdata.org/).

Forecasts/scenarios. Policy responses to COVID-19 can be supported by
the evaluation of the impacts of various scenarios of those options, against a
background of a business-as-usual assumption, to explore fully the potential
impact of policy levers available. Additional details are available in the
Supplementary Information.

We estimate the trajectory of the epidemic by state under a mandate-easing
scenario that models what would happen in each state if the current pattern of
easing SDMs continues and new mandates are not implemented. This should be

thought of as a worst-case scenario where, regardless of how high the daily death
rate becomes, SDMs will not be reintroduced and behavior (including population
mobility and mask use) will not vary before 28 February 2021. In locations where
the number of cases is rising, this leads to very high numbers of cases by the end
of the year.

As a more plausible scenario, we use the observed experience from the first
phase of the pandemic to predict the likely response of state and local governments
during the second phase. This plausible reference scenario assumes that in
each location the trend of easing SDMs will continue at its current trajectory
until the daily death rate reaches a threshold of 8 deaths per million. If the daily
death rate in a location exceeds that threshold, we assume that SDMs will be
reintroduced for a 6-week period. The choice of threshold (of a daily rate of 8
deaths per million) represents the 90th percentile of the distribution of daily death
rate at which US states implemented their mandates during the first months of
the COVID-19 pandemic. We selected the 90th percentile rather than the 50th
percentile to capture an anticipated increased reluctance from governments to
reinstate mandates because of the economic effects of the first set of mandates. In
locations that do not exceed the threshold of a daily death rate of 8 per million, the
projection is based on the covariates in the model and the forecasts for these to 28
February 2021. In locations where the daily death rate exceeded 8 per million at the
time of running our final model (21 September 2020), we assumed that mandates
would be introduced within 7 days.

The scenario of universal mask use models what would happen if 95% of the
population in each state always wore a mask when they were in public. This value
was chosen to represent the highest observed rate of mask use in the world so far
during the COVID-19 pandemic (Supplementary Information). In this scenario,
we also assumed that if the daily death rate in a state exceeds 8 deaths per million,
SDMs will be reintroduced for a 6-week period.

Two additional, derivative scenarios were included to assist understanding
and policy resolution of these main framework scenarios: a less comprehensive
mask-wearing scenario of 85% public use of masks and a scenario of universal
mask use in the absence of any additional NPIs. The less comprehensive
mask-wearing scenario evaluated what would happen if 85% of the population
in each state always wore a mask when they were in public. As with the universal
mask-use scenario, we also assumed that if the daily death rate in a state exceeds
8 deaths per million, SDMs will be reintroduced for a 6-week period. For
completeness, we also evaluated universal mask use by 95% of the population in a
scenario that assumes no implementation of other NPIs at any threshold value of
daily deaths—the results from this scenario, which did not differ notably from the
more probable version where states respond to rising numbers of daily COVID-19
deaths by reinstating SDM, are provided in the Supplementary Information and
Figs. 2-4. SEIR model vetting plots for scenarios of 95% mask use with mandates
(Supplementary Data 1), 95% mask use without mandates (Supplementary Data 2)
and 85% mask use with mandates (Supplementary Data 3), as well as detailed
regression diagnostics (Supplementary Data 4) and the spatial distribution of select
covariates (Supplementary Data 5) are available in the Supporting Information. All
scenarios assume an increase in mobility associated with the opening of schools
across the country.

Model validation. OOS predictive performance for IHME SEIR models has
been assessed against subsequently observed trends in an ongoing fashion and
compared to other publicly available COVID-19 mortality forecasting models
in a publicly available framework?'. The IHME SEIR model described here has
consistently demonstrated high accuracy, as measured by a low MAPE, when
compared to models from other groups. For example, among models released in
June, at 10 weeks of extrapolation, the IHME SEIR model had the lowest MAPE of
any observed forecasting group at 20.2%, compared to an average of 32.6% across
groups. Numerous other aspects of predictive performance are assessed in our
publicly available framework?'.

The increasing number of population-based serology surveys conducted
also provides a unique opportunity to cross-validate our forecasts with modeled
epidemiological outcomes. In Extended Data Fig. 9, we compare these serology
surveys (such as the Spanish ENE-COVID study"’) to our estimated population
seropositivity, time indexed to the date that the survey was conducted. In general,
across the varied locations that have been reported globally, we note a high degree
of agreement between the estimated and surveyed seropositivity. As more serology
studies are conducted and published, especially in the United States, this will allow
an ongoing and iterative assessment of model validity. Two sensitivity analyses
were conducted; the first assessed the importance of specific model assumptions
on OOS predictive validity, while the second assessed the robustness of our
conclusions to these same model assumptions (Supplementary Information).

Limitations. Epidemics progress based on complex nonlinear and dynamic
biological and social processes that are difficult to observe directly and at scale.
Mechanistic models of epidemics, formulated either as ordinary differential
equations or as individual-based simulation models, are a useful tool for
conceptualizing, analyzing or forecasting the time course of epidemics. In the
COVID-19 epidemic, effective policies and the responses to those policies have
changed the conditions supporting transmission from one week to the next,
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with the effects of policies realized typically after a variable time lag. Each model
approximates an epidemic, and whether used to understand, forecast or advise,
there are limitations on the quality and availability of the data used to inform it
and the simplifications chosen in model specification. It is unreasonable to expect
any model to do everything well, so each model makes compromises to serve a
purpose, while maintaining computational tractability.

One of the largest determinants of the quality of a model is the corresponding
quality of the input data. Our model is anchored to daily COVID-19-related
deaths, as opposed to daily COVID-19 case counts, due to the assumption that
death counts are a less biased estimate of true COVID-19-related deaths than
COVID-19 case counts are of the true number of SARS-CoV-2 infections.
Numerous biases such as treatment-seeking behavior, testing protocols (such as
only testing those who have traveled abroad) and differential access to care greatly
influence the utility of case count data. Moreover, there is growing evidence that
inapparent and asymptomatic individuals are infectious, as well as individuals
who eventually become symptomatic and are infectious before the onset of any
symptoms. As such, our primary input data for our model are counts of deaths;
death data can likewise be fallible, however, and where available, we combine death
data, case data and hospitalization data to estimate COVID-19 deaths.

Beyond the basic input data, a large number of other data sources with their
own potential biases are incorporated into our model. Testing, mobility and mask
use are all imperfectly measured and may or may not be representative of the
practices of those that are susceptible and/or infectious. Moreover, any forecast of
the patterns of these covariates is associated with a large number of assumptions
(Supplementary Information), and as such, care must be taken in the interpretation
of estimates farther into the future, as the uncertainty associated with the
numerous submodels that go into these estimates increases in time. Moreover,
although our time-invariant covariates are simpler to estimate, some of them may
be more associated with disease outcome than transmission potential, and thus
their impact on the model may be more muted.

For practical purposes, our transmission model has made a large number
of simplifying assumptions. Key among these is the exclusion of movement
between locations (for example, importation) and the absence of age structure
and mixing within location (for example, we assume a well-mixed population).

It is clear that there are large, super-spreader-like events that have occurred
throughout the COVID-19 pandemic, and our current model is unable to fully
capture these dynamics. Another important assumption to note is that of the
relationship between pneumonia seasonality and SARS-CoV-2 seasonality. To
date, across both the Northern and Southern Hemispheres, there is a strong
association between COVID-19 cases and deaths and general seasonal patterns
of pneumonia deaths (Supplementary Information). Our forecasts to the end of
February 2021 are immensely influenced by the assumption that this relationship
will maintain throughout the year and that SARS-CoV-2 seasonality will be well
approximated by pneumonia seasonality. While we assess this assumption to the
extent possible (Supplementary Information), we have not yet experienced a full
year of SARS-CoV-2 transmission, and as such cannot yet know if this assumption
is valid. Additionally, our model attempts to account for some of the associated
uncertainties in the process but does not fully capture all levels of uncertainty.
Future iterations should track uncertainties that arise from more complex
processes such as demographic stochasticity. There is also uncertainty (and
unidentifiability) surrounding a number of the parameters of the transmission
model. Here we have chosen to incorporate this lack of knowledge by drawing
key transmission parameters from plausible distributions and then presenting
the average result across these potential realities. As more information becomes
available, we hope to tune these parameters to each location in turn.

Finally, the model presented herein is not the first model our team has
developed to predict current and future transmission of SARS-CoV-2. As the
outbreak has progressed, we have attempted to adapt our modeling framework
to both the changing epidemiological landscape, as well as the increase in data
that could be useful to inform a model. Changes in the dynamics of the outbreak
overwhelmed both the initial purpose and some key assumptions of our first
model, requiring evolution in our approach. While the current SEIR formulation
is a more flexible framework (and thus less likely to need complete reconfiguration
as the outbreak progresses further), we fully expect the need to adapt our model to
accommodate future shifts in patterns of SARS-CoV-2 transmission. Incorporating
movement within and without locations is one example, but resolving our model
at finer spatial scales, as well as accounting for differential exposure and treatment
rates across sexes and races are other dimensions of transmission modeling that we
currently do not account for but expect will be necessary additions in the coming
months. As we have done before, we will continually adapt, update and improve
our model based on need and predictive validity.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Results specific to the model run for this publication are accessible for each state
(http://ghdx.healthdata.org/record/ihme-data/united-states-covid-19-scenarios-
2020-2021). The estimates viewable in our online tool (https://covid19.healthdata.
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org/) will be iteratively updated as new data are incorporated and will ultimately
supersede the results in this paper. The findings of this study are supported by
data available in public online repositories and data that are available upon request
from the data provider; non-publicly available data were used under license for
the current study but can be made available with permission of the data provider;
contact information is provided where applicable. Data citations for COVID-19
metrics (cases, hospitalizations and deaths) include the COVID-19 Repository
by the Center for Systems Science and Engineering at Johns Hopkins University
(cases and deaths; https://github.com/CSSEGISandData/COVID-19) and the
COVID Tracking Project (hospitalizations; https://covidtracking.com/data/api).
State-level datasets were replaced in the following locations, using the following
sources: Alaska hospitalizations from https://coronavirus-response-alaska-dhss.
hub.arcgis.com/; Delaware cases and deaths from https://www.dhss.delaware.gov/
dhss/dph/index.html; Hawaii cases and deaths from https://health.hawaii.gov/
coronavirusdisease2019/what-you-should-know/current-situation-in-hawaii/;
Illinois cases and deaths from https://dph.illinois.gov/covid19/covid19-statistics;
Indiana cases and deaths from https://www.coronavirus.in.gov/2393.htm;
Kentucky cases and deaths from https://govstatus.egov.com/kycovid19; Maryland
cases and deaths from https://coronavirus.maryland.gov/; Nebraska cases

and deaths from http://dhhs.ne.gov/Pages/Coronavirus.aspx; New York cases
and deaths from https://github.com/nychealth/coronavirus-data and https://
covid19tracker.health.ny.gov/views/NYS-COVID19-Tracker/NYSDOHCOVID-19
Tracker-Map?%3Aembed=yes&%3Atoolbar=no&%3Atabs=n; North Carolina
cases and deaths from https://covid19.ncdhhs.gov/dashboard; and Washington
cases, hospitalizations and deaths from https://www.doh.wa.gov/Emergencies/
COVID19/DataDashboard. The timing of mandate implementation for each
state was derived from a preprint study*’ and supplemented with ad hoc
additional resources available at http://ghdx.healthdata.org/record/ihme-data/
united-states-covid-19-scenarios-2020-2021. The mobility covariate was
constructed using data from Google Community Mobility Reports (https://www.
google.com/covid19/mobility/); Facebook Data for Good Disease Prevention
Maps (https://dataforgood.fb.com/tools/disease-prevention-maps/; with access
coordinated via diseaseprevmaps@fb.com); SafeGraph Shelter in Place Index
(https://www.safegraph.com/dashboard/covid19-shelter-in-place?s=US&
d=09-13-2020&t=counties&m=index; with access coordinated through the
SafeGraph COVID-19 Data Consortium via https://www.safegraph.com/covid-19-
data-consortium/); and Descartes Labs (https://github.com/descarteslabs/
DL-COVID-19). The testing covariate was constructed using data from the
COVID Tracking Project (https://covidtracking.com/data/api/). State-level
datasets for the testing covariate were replaced in Washington, using https://
www.doh.wa.gov/Emergencies/ COVID19/DataDashboard. Mask-use data were
obtained from Premise COVID-19 Global Impact Survey (https://www.premise.
com/the-dos-and-donts-of-conducting-surveys-during-covid-19/; with access
coordinated through info@premise.com); the Facebook (COVID) Symptom
Survey (with access coordinated through University of Maryland Joint Program
in Survey Methodology via admin-C19survey-fb@umd.edu); and the YouGov
COVID-19 Behavioural Tracker Survey (https://github.com/YouGov-Data/
covid-19-tracker). Pneumonia seasonality estimates, particulate matter air
pollution estimates, lower respiratory infection country-specific mortality

rate estimates and smoking estimates were generated by the Global Burden of
Disease study (http://ghdx.healthdata.org/record/ihme-data/united-states-covid-
19-scenarios-2020-2021/). Altitude was sourced from the National Oceanic and
Atmospheric Administration National Centers for Environmental Information
Global Land One-km Base Elevation Project (https://www.ngdc.noaa.gov/mgg/
topo/globe.html) and population data were obtained from WorldPop Population
Counts (https://www.worldpop.org/project/list/). These sources are further
detailed in the Supplementary Information*-"'. Source data are provided with
this paper.

Code availability

All code used for these analyses was custom created for this study and is publicly
available online (https://github.com/ihmeuw/covid-model-seiir-pipeline/ and
https://github.com/ihmeuw/covid-model-deaths-spline/).

Analyses were carried out using R version 3.6.1, Python 3.8 and R-INLA version
20.01.29.9000. All maps presented in this study are generated by the authors using
RStudio (R Version 3.6.3) and ArcGIS Desktop 10.6, and no permissions were
required to publish them. Administrative boundaries were retrieved from the
Database of Global Administrative Areas. Land cover was retrieved from the online
Data Pool, courtesy of the NASA Earth Observing System Data and Information
System Land Processes Distributed Active Archive Center, United States Geological
Survey Earth Resources Observation and Science Center.
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Extended Data Fig. 1| Estimated daily COVID-19 death rate (per 100,000 population) by state for all five scenarios. The inset map displays the
estimated daily deaths from COVID-19 death per 100,000 population by state on 28 February 2021. The light yellow background separates the observed
and predicted part of the time series, before and after 21 September 2020. The dashed vertical line identifies 03 November 2020. Numbers are the means
and uncertainty interval (Ul) for the plausible reference scenario on dates highlighted.
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Extended Data Fig. 2 | Estimated total hospital beds needed for COVID-19 patients by state from 01 February 2020 to 28 February, 2021, under the
plausible reference scenario. The inset map displays the estimated peak number of all COVID-19 beds above capacity by state between 22 September
2020 and 28 February 2021. The light yellow background separates the observed and predicted part of the time series, before and after 21 September
2020. The dashed vertical line identifies 03 November 2020. Numbers are the means and uncertainty interval (Ul) for the plausible reference scenario on

dates highlighted.
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Extended Data Fig. 4 | Estimated cumulative deaths from COVID-19 per 100,000 population from 01 February 2020 to 28 February 2021, by state, for
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Extended Data Fig. 8 | Estimated daily SARS-CoV-2 infection rate (per 100,000 population) by state, for all five scenarios. The inset map displays the
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