
LINFO1131 - Project 2021

Captain Sonoz

1 Introduction

You are asked to implement a customized version of the popular game, Captain Sonar. In Captain Sonar,
each player is in charge of a submarine and is trying to locate enemy submarine(s) to blow it out of the water
before they can do the same to him. The game can be played in two modes: turn-by-turn or simultaneous.
In the latter set-up, all players take their actions simultaneously while trying to track what the opponents
are doing.

You are the captain of your submarine, responsible for moving the submarine and announcing some details
of this movement. And since we are putting all responsibility on the captain, you also have to manage the
sonar to listen to the opposing captain’s orders and try to decipher where that submarine might be in the
water. Also, you need to keep track of the munitions room to prepare missiles and mines that will allow for
combat!

2 Program description

This section describes the expected architecture of your program and the motivations behind it.

2.1 Requirements for the automated tests

Your project will be partially automatically tested. This requires you to: This requires you:

• Respect the file structure and the message format that is detailed in the following sections;

• Remove any call to the Oz Broswer.browse, use System.show instead.

• Only use the Delay procedure in the GUI or in the context of simulated thinking and only use the
variables in the Input.oz file (see Section 2.3). Do not hardcode the delay values!

Following these guidelines is mandatory to make the grading scripts work. The next subsection will
describe the different components of the program.

2.2 Types

To ease the modularity, we define some types to respect. There are defined with EBNF grammar.

<id> ::= null | id(id:<idNum> color:<color>) name:Name)

<idNum> ::= 1 | 2 | ... | Input.nbPlayer

<color> ::= red | blue | green | yellow | white | black

| c(<colorNum> <colorNum> <colorNum>)

<colorNum> ::= 0 | 1 | ... | 255

<position> ::= pt(x:<row> y:<column>)

<row> ::= 1 | 2 | ... | Input.nRow

<column> ::= 1 | 2 | ... | Input.nColumn

1

<carddirection> ::= east | north | south | west

<direction> ::= <carddirection> | surface

<item> ::= null | mine | missile | sonar | drone

<fireitem> ::= null | mine(<position>) | missile(<position>) | <drone> | sonar

<drone> ::= drone(row <x>) | drone(column <y>)

<mine> ::= null | <position>

More information for < color > :
https://mozart.github.io/mozart-v1/doc-1.4.0/mozart-stdlib/wp/qtk/html/node36.html#misc.

color

2.3 Parameters of the game (Input.oz)

The game has many parameters, leading to many different games. Following are the parameters and their
descriptions (the Input.oz file contains the setup parameters of the game) :

• isTurnByTurn : true means the game will be turn by turn, false means the game will be simultaneous.

• description of the map:

– nRow : the number of rows of the map;

– nColumn : the number of columns of the map;

– map : the description of the map, 0 meaning water, 1 meaning island. For example, the following
map description give a map with 5 rows and 10 columns.

NRow = 5

NColumn = 10

Map = [[0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0]

[0 0 0 1 1 0 0 0 0 0]

[0 0 1 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0]]

• Description of the players:

– nbPlayer : give the number of player;

– players : describe the types of every player (AI or human);

– colors : associate a color for every player;

– maxDamage : if the total damage taken by the submarine reaches this number, the submarine is
destroyed.

• turnSurface : the number of turns (in turn by turn) or seconds (in simultaneous) the submarine has
to wait before continuing playing.

• Loading parameters :

– missile : the number of loading charges needed to make a missile;

– mine : the number of loading charges needed to make a mine;

– sonar : the number of loading charges needed to make a sonar;

– drone : the number of loading charges needed to make a drone.

• Bound of distances for weapons : Manhattan distances are computed following the following formula

D = |x1 − x2|+ |y1 − y2|.

2

https://mozart.github.io/mozart-v1/doc-1.4.0/mozart-stdlib/wp/qtk/html/node36.html#misc.color
https://mozart.github.io/mozart-v1/doc-1.4.0/mozart-stdlib/wp/qtk/html/node36.html#misc.color

– minDistanceMine : the minimum Manhattan distance from the position to place a mine;

– maxDistanceMine : the maximum Manhattan distance from the position to place a mine;

– minDistanceMissile : the minimum Manhattan distance from the position to explode a missile;

– maxDistanceMissile : the maximum Manhattan distance from the position to explode a missile.

• Thinking parameters (simultaneous game only) :

– thinkMin : minimum time (in ms) used when thinking;

– thinkMax : maximum time (in ms) used when thinking.

• GUI delay parameters :

– guiDelay : the time between each GUI effect (in ms)

Guidelines for modularity : Don’t change any names, change only the values :)

2.4 Game controller (Main.oz)

You can see the game controller as the neutral third party nation delegated by the marine laws to be the
referee in the submarine war.

It is there to ensure that submarines play by the rules and none of them performs the allowed operations
in the wrong order. It manages the broadcasting radio to ensure none of the submarines illegally share
information to make sub-coalitions. The game controller is also responsible to send the information to the
GUI, allowing the marine law judges to enjoy the spectacle and control the global behaviours of the battle
following the marine laws.

To ensure fairness and equity, the game controller is the one in charge of creating the GUI port and
giving the radio to the submarines (creating their port objects).

functor

import

GUI

Input

PlayerManager

define

%% TODO

in

%% TODO: implement the controllers:

%% - Turn-by-turn

%% - Simultaneous

end

What it should do, in the big lines:

1. Create the port for the GUI and launch its interface

2. Create the port for every player using the PlayerManager and assign a unique id between 1 and
Input.nbPlayer (< idnum >). The ids are given in the order they are defined in the input file;

3. Ask every player to set up (choose its initial point, they all are at the surface at this time);

4. When every player has set up, launch the game (either in turn by turn or in simultaneous mode, as
specified by the input file).

Let’s now explain the two game modes.

3

2.4.1 Turn by turn

The order of play follows the natural order of IDs (from player id 1 to player id Input.nbPlayer).
The game controller will trigger the action of every submarine in turns in order to guarantee every player

plays in turn and every turn follows the right order of actions. The game controller also ensures that the
number of surface turns is respected.

The possible actions for one turn of a player are summarised here:

1. Check if the submarine can play (if it is not at surface anymore). If the submarine is at the surface,
go direct to point 9;

2. If this is the first round, or if in the previous turn the submarine was surface, send the dive message
to the submarine;

3. Ask the submarine to choose its direction. If the direction isn’t going surface, continue at point 5;

4. Surface has been chosen, the turn is stopped and counted as first turn passed at surface. The game
controller broadcasts, on the radio, the information that this player has made surface. The information
is also broadcast to the GUI. The submarine stays a total of Input.turnSurface turns at the surface
before continuing. Go to 9 to finish the turn;

5. The chosen direction is broadcast trough the radio and the GUI is also informed;

6. The submarine is now authorised to charge an item. If the answer contains information about a new
item produced, the information is broadcast through the radio;

7. The submarine is now authorised to fire an item. If the answer contains information about a fired
item, the information is broadcast through the radio;

8. The submarine is now authorised to explode a mine. If the answer contains information about blowing
a mine up, the information is broadcast trough the radio;

9. The turn is finished for this submarine.

2.4.2 Simultaneous actions

In this case, the game controller launches a thread for each submarine. Each submarine loops over the
following actions:

1. If this is the beginning, or the surface has ended, send the dive message to the submarine;

2. Simulate thinking;

3. Ask the submarine to choose its direction. If the direction isn’t going surface, continue at point 5;

4. Surface has been chosen, the thread delay for Input.turnSurface seconds observed and the GUI is
notified. Then go back to point 1;

5. The chosen direction is broadcast trough the radio and the GUI is also informed;

6. Simulate thinking;

7. The submarine is now authorised to charge an item. If the answer contains information about a new
item produced, the information is broadcast through the radio;

8. Simulate thinking;

9. The submarine is now authorised to fire an item. If the answer contains information about a fired
item, the information is broadcast through the radio;

10. Simulate thinking;

4

11. The submarine is now authorised to explode a mine. If the answer contains the information about
blowing a mine up, the information is broadcast trough the radio;

12. Loop of actions is finished, go back to 1.

2.5 The graphical interface (GUI.oz)

This functor has only one export (portWindow) linked to a function creating a port object and launching in
a thread the treatment of its stream.

functor

import

QTk at ’x-oz://system/wp/QTk.ozf’ % functor for graphic interface element

Input

export

portWindow:StartWindow

define

StartWindow

TreatStream

in

fun{StartWindow}

Stream

Port

in

{NewPort Stream Port}

thread

{TreatStream Stream <p1> <p2> ...}

end

Port

end

proc{TreatStream Stream <p1> <p2> ...} % has as many parameters as you want

...

end

end

The port object has to handle the following messages:

• buildWindow : Create and launch the window (no player on it);

• initPlayer(ID Position) : ID is of type < id > and position of type < position >. If the ID isn’t
null, the window should show a submarine with its associated color (border around a picture, the whole
square in color, a flag with the color, ...) at the initial position given;

• movePlayer(ID Position) : Move the submarine from its previous position to the new one. The
previous place of the submarine should contain an indication that it passed by this location (small
colored dot, ...). If two submarines are at the same position, one can disappear under the other.
Except for this case, hide and seek is prohibited by the marine laws, submarines can’t hide under the
mines. Two submarine on the same square don’t make them take damages. Following their marine
registration certificate, every submarine is only allowed to travel at a given depth. In this way, if two of
them are in the same square, they don’t collide. Also, as they don’t have windows on the submarines,
they can only detect the presence of another submarine when they use the sonar or a drone. Moreover,
they can deduce the place of the others by computation on what they hear on the radio;

• lifeUpdate(ID Life) : Update the life indication for the player depicted by the ID. Life is a strict
positive number. This message should ALWAYS be sent after the explosion message;

• putMine(ID Position) : Draw a mine, visually identifiable by the color of the associated player;

5

• removeMine(ID Position) : Remove the mine of the player identified by the ID that was at the given
position. If there are two mines at the same position (from the same player or other one), only one
explodes (these are special mines shielded with diamond allowing them not to blow when another mine
or a missile explode at the same position);

• surface(ID) : indicate to the GUI that a submarine has made surface. The indication of path where
the submarine went should thus disappear;

• explosion(ID Position) (not mandatory) : message to notify an explosion should be displayed (text
on the side, animation at explosion point,... feel free to be inventive!), “The explosion was triggered
by the player with ID”. If the explosion is fancy enough, you can get bonus :);

• drone(ID Drone) (not mandatory): message to notify drone inspection of a specific zone. Drone is of
type < drone >.

• sonar(ID) (not mandatory) : message to notify sonar inspection of a specific zone;

• removePlayer(ID) : The submarine and any element (mines, path,...) of the player depicted by ID
should be removed from the board. If you made a separate life board, the life should go to 0. This
message should ALWAYS be sent after the explosion message;

In every message, if the ID is null, the message should be ignored (defensive programming allowing
to handle dead submarine message). For a given ID, every message received concerning this ID after the
reception of a removePlayer(ID) message should be ignored.

Some messages are not essential for the right behaviour of the game (flagged with the not mandatory
remark). It is better to implement them, but do it only if you have time :).

The source of a working interface is given to you as you hardly never played with GUI. You are allowed to
start from it but in this case we expect you to modify it (some examples: with pictures, another arrangement,
size, texture, improving the function, change the state storage, ASCII board if you want, ...).

Guidelines for modularity : Don’t add any export, don’t import other files from the project, implement
the right behaviours for every message, don’t invent new messages, don’t modify the arguments of the
messages, program in a defensive way (ignore not stored ID, ignore other messages, ...). The GUI is only
receiving information, it is just used to display the state of the game.

Consult the following resources for designing GUI:

• Book chapter 10 (page 679-705)

• https://mozart.github.io/mozart-v1/doc-1.4.0/mozart-stdlib/wp/qtk/html/index.html

2.6 Players (PlayerXXXMyCustomName.oz)

Each player is, as the GUI, summarised by a port object. The basic structure will thus be close to the one
of the GUI.

functor

import

Input

export

portPlayer:StartPlayer

define

StartPlayer

TreatStream

in

fun{StartPlayer Color ID}

Stream

Port

in

6

https://mozart.github.io/mozart-v1/doc-1.4.0/mozart-stdlib/wp/qtk/html/index.html

{NewPort Stream Port}

thread

{TreatStream Stream <p1> <p2> ...}

end

Port

end

proc{TreatStream Stream <p1> <p2> ...} %% TODO: you may add as many argument as needed

%% TODO: complete

end

end

The handled messages are:

• initPosition(?ID1 ?Position) : player has to choose its initial position. He answers by binding ID
to its own < id > and Position to the chosen position. Initial position can only be a water square on
the map;

• move(?ID ?Position ?Direction) : player has to choose where to move, he answers by binding its
ID, new position and giving the direction as type < direction >. Going east means increasing the y
part by one, going south meaning increasing x part by one and so on. If the direction is surface, the
position remains unchanged. The submarine can only go on a square it didn’t visit since last surface
phase. The submarine also can’t go on square with island;

• dive : player is granted the permission to dive again;

• chargeItem(?ID ?KindItem) : Player increases the load (by 1) on one of its loaded items (mine,
missile, drone or sonar). If a new item is created (the loader reaches the right number of loads given in
the input file), the player should say it. It is done by binding its ID and giving the item load of type
< item >. If no item is created, the ID is still bound but the item has null value;

• fireItem(?ID ?KindFire) : Player may choose to use one of his item (only possible if at least one
item is ready). He answers the message by binding its ID and the item fired (of type < fireitem >).
The item fired contains parameters specific to the item (the mine will have the position of setup, the
missile will have the position of explosion, the drone will have the kind of coordinate (row or column)
he is looking and the coordinate of it, and the sonar doesn’t have any parameters). If no item is fired,
the ID is still bounded, but the item has value null;

• fireMine(?ID ?Mine) : If a mine was already placed before, the player may decide to make one
explode. In this case he binds its ID and Mine (of type < mine >) is bound to the position of the
mine chosen. If no mine is selected, ID is still bounded and Mine has value null;

• isDead(?Answer) : player binds either true or false to indicate if it is alive;

• sayMove(ID Direction) : as all the messages beginning with say, this message is an indication from
the others. As already mentioned, the neutral referee (game controller) doesn’t want to complicate
itself and may just broadcast message to everyone. It is thus possible that the ID in the message
corresponds to the ID of the player (possible for every indication messages). This message indicates
that the player identified by ID has moved in the direction (as a < carddirection >) given;

• saySurface(ID) : Indicate that player identified has made surface;

• sayCharge(ID KindItem) : Indicate that player identified has charged the item;

• sayMinePlaced(ID) : Indicate a mine has been planted by the identified player.

1Question marks are only there to ease the reading, meaning the parameter concerned is initially unbound and the initiali-
sation is done during the treatment of the message

7

• sayMissileExplode(ID Position ?Message) : Indicate that the player identified has made a missile
explode at the given position. The receiving player has to answer its damage situation by binding
the Message variable to a message indicating its damage status (message that will be broadcast by
the game controller). The damages are computed as follows : if the Manhattan distance between the
submarine and the explosion is ≥ 2, the submarine doesn’t get damages, if the Manhattan distance is
= 1, the submarine gets 1 damage and if the Manhattan distance is = 0 (same square), the submarine
gets 2 damages. If no damage had been taken, null is sent. If the explosion leads to death, the message
sayDeath(Id) is put as Message value, Id having the identification of the dead submarine. If damages
were taken but the submarine is still alive, the message sayDamageTaken(Id Damage LifeLeft) in-
dicates the Id of the damaged submarine, the number of damage points taken and the life left of the
submarine;

• sayMineExplode(ID Position ?Message) : This one is the same as the previous one except that
it concerns mine explosion (detonators of mines and missiles emits different type of electromagnetic
waves allowing them to be distinguished);

• sayPassingDrone(Drone ?ID ?Answer) : A drone detection is occurring, the submarine has to answer
the question given in the drone (is the submarine on row/column of the number given?). To answer,
the ID is bound and Answer is put to true or false;

• sayAnswerDrone(Drone ID Answer) : These are the messages you get back after sending a drone.
They indicate for every player (may be yourself too) the answer they gave to the drone query;

• sayPassingSonar(?ID ?Answer) : A sonar detection is occurring, the submarine has to answer (it
can be its own sonar) the question by binding its id and by answering a position with one coordinate
right and the other wrong (answer pt(x : 3y : 2) when the real position is pt(x : 3y : 7) for example);

• sayAnswerSonar(ID Answer) : These are the message you get back after sending asking for a sonar.
They contain the ID of the player answering (may be yourself), and the position they return (one
coordinate true, one false);

• sayDeath(ID) : Informative message of the death of the identified player;

• sayDamageTaken(ID Damage LifeLeft) : Informative message of the damage received and the state
of life of the identified player.

If a dead submarine receives a message asking for an answer, it should just bind the ID to the null value.
For messages noticing explosions, it just bind the value of the message to null. The Game controller should
handle the case where ID is null.

Guidelines for modularity : We ask you to name your player following this rule : The file is in form
PlayerXXXMyCustomName.oz, XXX being replaced by your group number (004, 056, 103,...) and MyCustomName

by any descriptor you can chose to differentiate your different players. The name (used in the input file) asso-
ciated with your player file will be the name of your file, in lowercase. For example, Player042BasicAI.oz
contains the player named player042basicai. This will ensure every player made by each group has a
different name.

2.7 Selection of the right player (PlayerManager.oz)

This file is responsible for facilitating the selection of the player following the type of the players given in
the input file.

functor

import

Player000Basic

....

export

playerGenerator:PlayerGenerator

8

define

PlayerGenerator

in

fun{PlayerGenerator Kind Color ID}

case Kind

of player000basic then {Player000basic.portPlayer Color ID}

...

end

end

end

This file shall be the only one (with the input one to change the names) to modify to make different
players playing together. To add a new player, the name of the file should be added to the import section
and a pattern matching line should be added to create the corresponding port object for a player.

Guidelines for modularity : Nothing should be done here except adding players to the list.

3 Functors and compilation

For syntax and use of functors, consult book pages 220–230.
Compiling functors : ozc -c myfunctor.oz

Executing functors : ozengine myfunctor.ozf

To make the whole project working, first compile the Input.oz file, PlayerManager.oz file, players files,
GUI.oz and Main.oz. Then execute the created functor file Main.ozf. For simplicity, we also ask you to
provide a Makefile with (at least) the possibility to compile everything (make all) and clean the *.ozf

(make clean).

3.1 On mac Os

You can find the path to ozc and ozengine by going to your application folder, ”click with two fingers” on
Mozart, chose the second item in the menu (something about seeing the content), the folder of the application
will open and you will be able to find the bin folder somewhere containing all the oz binaries. By going to
the properties of the ozc or ozengine, you will be able to get their full path and execute them by command
lines. Do not forget to adapt your Makefile before the submission.

4 What do you have to do (summary)

This work has to be done by groups of maximum 2 persons. The deadline is Wednesday, the 14th of
December at 18:00. Your code should only use threads, instructions to create ports and send messages for
the communication between the Game Controller, the Players and the GUI. Your code should not contain
explicit cells, but only declarative code and possibly2 active objects for the internal structure of your elements.

4.1 Submission

Before being able to submit your project, you must be registered in a group on INGInious.
All of the following files must be submitted in the following task in a .zip archive. It should at least

contain:

• A GUI.oz file for the GUI or modify the one given;

• A Main.oz file for the game controller that should be able to handle both turn by turn and simultaneous
game modes (it should adapt according to the variable specified in the Input file);

2The whole project is feasible only with declarative code.

9

https://inginious.info.ucl.ac.be/course/LINGI1131/captain-soniz-2021

• Two different players (the first two should have strictly different behaviours for everything). Beginning
with a random one is a good idea to make you used to the rules.

• Your report as a pdf file.

This report must not exceed 5 pages (all included) and must at least detail the following things:

• Each of the player strategies;

• The design of your implementation and the choices that you made;

• Any extension (see next section) that you implemented;

• Results of the interoperability, and possibly how you improved your players (see section 5).

4.2 Extension Part (how to get more points)

This is a list of ideas to improve the project; you don’t have to do them all to gain a bonus and you don’t
have to do them in order. Feel free to follow your own ideas (you can post them on the forum, so we can
discuss about them)!

• Create a human player file, creating its own window making it possible for a human player to answer
the messages sent by the game controller;

• Create a generator of maps in the Input file, creating the map used;

• Create other players files, with other behaviours and strategies. There can be overlap of strategies in
these files (same displacement but different firing approach,...);

• Manage to implement a GUI allowing us to display only one submarine at a time (button to select
either every submarine or one in particular);

• Add awesome sounds to the GUI, making submarine war great again! ;)

Your extensions must be detailed in your report to be fully evaluated. You may add up to 2 pages
explaining your extensions, for a total of 7 pages for the whole document, figures included.

5 Interoperability

If you follow the specification in a right way, you will be able to test your implementation with players of
other groups. We ask you to test with at least 5 other different players (the basic random players excluded)
from at least 3 different groups. Feel free to test with more.

When sharing your player with another group, you can’t share the code! You have to compile it on your
side and give only the .ozf compiled file to the other group so they won’t access your code (as sharing code
is forbidden). The list of players you have tested should be given in the report with some remarks on how
it went, if it helped you find mistakes,...

6 Q & A

6.1 General

• Can we consider the input file as correct? Do we have to check the values? The input file
is considered as right. No need to check the type of the variables.

6.2 Modularity

• Can we put utility functions in another file for the methods used by all the players? No,
your players should be self-contained for the interoperability sessions.

10

6.3 Positions

• How do we chose the starting position? Random, always in the corner, always at a fix position,...
It’s a strategic decision, you can chose how you want. But keep in mind the starting point should be
a water square and not an island one.

• How do we read the position? The (1, 1) point is at the left top corner. The squares positions are
read as matrix cells. (1, 7) is the square at the 1st line, 7th column. (5, 2) is the square at the 5th line,
2nd column.

11

	Introduction
	Program description
	Requirements for the automated tests
	Types
	Parameters of the game (Input.oz)
	Game controller (Main.oz)
	Turn by turn
	Simultaneous actions

	The graphical interface (GUI.oz)
	Players (PlayerXXXMyCustomName.oz)
	Selection of the right player (PlayerManager.oz)

	Functors and compilation
	On mac Os

	What do you have to do (summary)
	Submission
	Extension Part (how to get more points)

	Interoperability
	Q & A
	General
	Modularity
	Positions

