diff --git a/src/q7/radiation-ELEC2795/exam/2020/Janvier/All/radiation-ELEC2795-exam-2020-Janvier-All.tex b/src/q7/radiation-ELEC2795/exam/2020/Janvier/All/radiation-ELEC2795-exam-2020-Janvier-All.tex
index c4df022966b3a2347f14f6344704d07d61054f16..43eca920d57f1e5c1e56a128b449f6d0442e16d6 100644
--- a/src/q7/radiation-ELEC2795/exam/2020/Janvier/All/radiation-ELEC2795-exam-2020-Janvier-All.tex
+++ b/src/q7/radiation-ELEC2795/exam/2020/Janvier/All/radiation-ELEC2795-exam-2020-Janvier-All.tex
@@ -5,8 +5,8 @@
 \graphicspath{{img/}}
 
 \hypertitle{Radiation and communication systems}{7}{ELEC}{2795}{2020}{Janvier}{All}
-{Martin Braquet \and Oriane de Leuze \and Sébastien Couvreur}
-{Cristophe Craeye, Danielle Janvier, Jérome Louveaux, Claude Oestges and Luc Vandendorpe}
+{Martin Braquet \and Sébastien Couvreur \and Oriane de Leuze}
+{Christophe Craeye, Danielle Janvier, Jérome Louveaux, Claude Oestges and Luc Vandendorpe}
 
 \section{(4,5 points)}
 A ground station is emitting a plane wave toward a satellite, with an elevation angle $\alpha_1=10^o$. The electric field is horizontally polarized. The atmosphere is modelled as two dielectric layers separated by a horizontal interface. The relative dielectric permittivity of the two layers is $\epsilon_1$ and $\epsilon_2 = 1.01\epsilon_1$ respectively.