From 5e412908c2b33bad8c769b0d022f6d30158c9cf7 Mon Sep 17 00:00:00 2001
From: Gilles Peiffer <gilles.peiffer@student.uclouvain.be>
Date: Thu, 27 Feb 2020 15:30:28 +0100
Subject: [PATCH] Autolin: Fix formula for amplitude of 1st order TF

The 1 should be inside the square root, as can be seen on the fiches (v. 2019-05-06), section 6.2.1, on p. 11. Closes #807.
---
 src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex b/src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex
index 822d6bb24..6c805d9ec 100644
--- a/src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex
+++ b/src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex
@@ -756,7 +756,7 @@ La fonction de transfert du premier ordre type est donnée par
 L'amplitude et la phase de cette fonction de transfert sont
 \begin{equation}
 \begin{array}{rcl}
-	\abs{\Gjw} & = & 20 \log_{10} \abs{\frac{k}{1 + \imagj \tau \omega}} = \frac{k}{1 + \sqrt{\tau^2 \omega^2}}\,, \\
+	\abs{\Gjw} & = & 20 \log_{10} \abs{\frac{k}{1 + \imagj \tau \omega}} = \frac{k}{\sqrt{1 + \tau^2 \omega^2}}\,, \\
 	\angle \Gjw & = & - \arctan(\tau \omega)\,,
 \end{array}
 \end{equation}
-- 
GitLab