From 5e412908c2b33bad8c769b0d022f6d30158c9cf7 Mon Sep 17 00:00:00 2001 From: Gilles Peiffer <gilles.peiffer@student.uclouvain.be> Date: Thu, 27 Feb 2020 15:30:28 +0100 Subject: [PATCH] Autolin: Fix formula for amplitude of 1st order TF The 1 should be inside the square root, as can be seen on the fiches (v. 2019-05-06), section 6.2.1, on p. 11. Closes #807. --- src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex b/src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex index 822d6bb24..6c805d9ec 100644 --- a/src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex +++ b/src/q6/autolin-INMA1510/summary2/autolin-INMA1510-summary.tex @@ -756,7 +756,7 @@ La fonction de transfert du premier ordre type est donnée par L'amplitude et la phase de cette fonction de transfert sont \begin{equation} \begin{array}{rcl} - \abs{\Gjw} & = & 20 \log_{10} \abs{\frac{k}{1 + \imagj \tau \omega}} = \frac{k}{1 + \sqrt{\tau^2 \omega^2}}\,, \\ + \abs{\Gjw} & = & 20 \log_{10} \abs{\frac{k}{1 + \imagj \tau \omega}} = \frac{k}{\sqrt{1 + \tau^2 \omega^2}}\,, \\ \angle \Gjw & = & - \arctan(\tau \omega)\,, \end{array} \end{equation} -- GitLab