diff --git a/.DS_Store b/.DS_Store
index 7e1cf6af650f4856839383fec3ac7e1495eaf13e..0e23e772b737faf303350bf9ce9424c18f060d1c 100644
Binary files a/.DS_Store and b/.DS_Store differ
diff --git a/100k_false/Figure_1.png b/False/100k_false/Figure_1.png
similarity index 100%
rename from 100k_false/Figure_1.png
rename to False/100k_false/Figure_1.png
diff --git a/100k_false/Figure_2.png b/False/100k_false/Figure_2.png
similarity index 100%
rename from 100k_false/Figure_2.png
rename to False/100k_false/Figure_2.png
diff --git a/100k_false/Figure_3.png b/False/100k_false/Figure_3.png
similarity index 100%
rename from 100k_false/Figure_3.png
rename to False/100k_false/Figure_3.png
diff --git a/10k_false/Figure_1.png b/False/10k_false/Figure_1.png
similarity index 100%
rename from 10k_false/Figure_1.png
rename to False/10k_false/Figure_1.png
diff --git a/10k_false/Figure_2.png b/False/10k_false/Figure_2.png
similarity index 100%
rename from 10k_false/Figure_2.png
rename to False/10k_false/Figure_2.png
diff --git a/10k_false/Figure_3.png b/False/10k_false/Figure_3.png
similarity index 100%
rename from 10k_false/Figure_3.png
rename to False/10k_false/Figure_3.png
diff --git a/1M_false/Figure_1.png b/False/1M_false/Figure_1.png
similarity index 100%
rename from 1M_false/Figure_1.png
rename to False/1M_false/Figure_1.png
diff --git a/1M_false/Figure_2.png b/False/1M_false/Figure_2.png
similarity index 100%
rename from 1M_false/Figure_2.png
rename to False/1M_false/Figure_2.png
diff --git a/1M_false/Figure_3.png b/False/1M_false/Figure_3.png
similarity index 100%
rename from 1M_false/Figure_3.png
rename to False/1M_false/Figure_3.png
diff --git a/True/.DS_Store b/True/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..65c98b221e72bb3d1db3ee1342abd30ec2bd6fe6
Binary files /dev/null and b/True/.DS_Store differ
diff --git a/True/100k_true/Figure_1.png b/True/100k_true/Figure_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..5e9a68bccaf7e4882a7cf8ea349c88b49c1a5c62
Binary files /dev/null and b/True/100k_true/Figure_1.png differ
diff --git a/True/100k_true/Figure_2.png b/True/100k_true/Figure_2.png
new file mode 100644
index 0000000000000000000000000000000000000000..e912c52e8d16cc90dfd27a6f1597f6af07650900
Binary files /dev/null and b/True/100k_true/Figure_2.png differ
diff --git a/True/10k_true/Figure_1.png b/True/10k_true/Figure_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..42e592d8867720140c20f0a6fbfb34a4bf0e520f
Binary files /dev/null and b/True/10k_true/Figure_1.png differ
diff --git a/True/10k_true/Figure_2png.png b/True/10k_true/Figure_2png.png
new file mode 100644
index 0000000000000000000000000000000000000000..cde985da26380232ec2af3f0fc2ad649531f6510
Binary files /dev/null and b/True/10k_true/Figure_2png.png differ
diff --git a/True/Figure_1.png b/True/Figure_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..24ece654432293eec22b7fffbebbe63a954af8ed
Binary files /dev/null and b/True/Figure_1.png differ
diff --git a/plot.py b/plot.py
index dd9d81a94f56c6565128e3e98c01ef73fe16aeaa..0873e38f216b3208c22fef117109412d1279ca4d 100644
--- a/plot.py
+++ b/plot.py
@@ -30,7 +30,7 @@ def plot_state_based_turns():
     plt.figure(figsize=(12, 6))
     # Simulate and plot average turns for each strategy
     for strategy, name in zip(strategies, strategy_names):
-        mean_turns = validation_instance.simulate_state(strategy, layout, circle, num_games)
+        mean_turns = validation_instance.state_simulation(strategy, layout, circle, num_games)
         plt.plot(range(len(mean_turns)), mean_turns, marker='o', linestyle='-', label=name)
 
     plt.xlabel('State')
@@ -93,11 +93,18 @@ if __name__ == '__main__':
     ##### Paramètres #####
 
     # Define the layout of the game board
-    layout = [0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 0]
+   #layout = [0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 0]
+    
+    #layout = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 1, 0]
+
+    #layoutfastlaneWt = [0, 0, 3, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0]
+    #layoutslowlaneWt = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 1, 0]
+
+    layout = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
     # Indicates whether the board is circular or linear
     circle = False
     # Number of games to simulate
-    num_games = 10000
+    num_games = 100
     # Initialize Validation instance with the specified layout and circle type
     validation_instance = Val(layout, circle)
 
@@ -106,5 +113,5 @@ if __name__ == '__main__':
     # Run the defined plotting functions with specified parameters
     plot_strategy_comparison(num_games)
     plot_state_based_turns()
-    plot_state_based_comparison(num_games_list = [10, 100, 1000])
+    plot_state_based_comparison(num_games_list = [10,100,1000])
     plot_state_based_comparison_once(num_games)
\ No newline at end of file
diff --git a/validation.py b/validation.py
index 7e72b5e1340e6042451f7018ac1624e56f972c68..052645c9655c22c145ebd27e97ae0c35e5f167b3 100644
--- a/validation.py
+++ b/validation.py
@@ -42,7 +42,7 @@ class Validation:
             self.costs_by_dice_type['RiskyDice'][i] = 3 if die_type == 3 else 0
 
 
-    def simulate_game(self, strategy: list, n_iterations: int):
+    def simulate_rounds(self, strategy: list, n_iterations: int):
         """Simulate the game using a given strategy over multiple iterations."""
         transition_matrices = [self.safe_dice, self.normal_dice, self.risky_dice]
         total_turns = np.zeros(n_iterations) 
@@ -74,7 +74,7 @@ class Validation:
         return np.mean(total_turns)
 
 
-    def simulate_state(self, strategy: list, layout: list, circle: bool, n_iterations: int):
+    def state_simulation(self, strategy: list, layout: list, circle: bool, n_iterations: int):
         """Simulate game states using a given strategy."""
         safe_dice = self.tmc_instance._compute_safe_matrix()
         normal_dice = self.tmc_instance._compute_normal_matrix(layout, circle)[0]
@@ -117,7 +117,7 @@ class Validation:
 
     def play_optimal_policy(self, n_iterations : int):
         """Play using the optimal policy for a number of iterations."""
-        return self.simulate_game(self.optimal_policy, n_iterations)
+        return self.simulate_rounds(self.optimal_policy, n_iterations)
 
     def play_dice_strategy(self, dice_choice, n_iterations : int):
         """Play using a specific dice strategy for a number of iterations."""
@@ -130,17 +130,17 @@ class Validation:
         if strategy is None:
             raise ValueError("Invalid dice choice")
 
-        return self.simulate_game(strategy, n_iterations)
+        return self.simulate_rounds(strategy, n_iterations)
 
     def play_random_strategy(self, n_iterations : int ):
         """Play using a random strategy for a number of iterations."""
-        return self.simulate_game(self.random_strategy, n_iterations)
+        return self.simulate_rounds(self.random_strategy, n_iterations)
 
 
     def compare_empirical_vs_value_iteration(self, num_games : int):
         """Compare expected value iteration turns with empirical turns."""
         value_iteration_turns = self.expec
-        empirical_turns = self.simulate_state(self.optimal_policy, self.layout, self.circle, n_iterations=num_games)
+        empirical_turns = self.state_simulation(self.optimal_policy, self.layout, self.circle, n_iterations=num_games)
 
         mean_turns_by_state = {
             'ValueIteration': value_iteration_turns.tolist(),
@@ -148,34 +148,22 @@ class Validation:
         }
 
         return mean_turns_by_state
-    
-    def empirical_cost_of_square(self, strategy: list, n_iterations: int):
-        """Calculate the empirical cost of a square for a given strategy."""
-        total_square_costs = []
-
-        for _ in range(n_iterations):
-            game_cost = self.simulate_game(strategy, 1)
-            square_cost = game_cost ** 2
-            total_square_costs.append(square_cost)
-
-        empirical_cost = np.mean(total_square_costs)
-        return empirical_cost
 
 
     def compare_state_based_turns(self, num_games : int ):
          # Compare the expected turns from value iteration with empirical state-based turns
         value_iteration = self.expec
-        empirical_turns = self.simulate_state(self.optimal_policy, self.layout, self.circle, n_iterations=num_games)
+        empirical_turns = self.state_simulation(self.optimal_policy, self.layout, self.circle, n_iterations=num_games)
 
         return value_iteration, empirical_turns
 
     def compare_strategies(self, num_games : int):
         # Compare the costs of different strategies over a number of games
-        optimal_cost = self.simulate_game(self.optimal_policy, n_iterations=num_games)
-        dice1_cost = self.simulate_game(self.safe_strategy, n_iterations=num_games)
-        dice2_cost = self.simulate_game(self.normal_strategy, n_iterations=num_games)
-        dice3_cost = self.simulate_game(self.risky_strategy, n_iterations=num_games)
-        random_cost = self.simulate_game(self.random_strategy, n_iterations=num_games)
+        optimal_cost = self.simulate_rounds(self.optimal_policy, n_iterations=num_games)
+        dice1_cost = self.simulate_rounds(self.safe_strategy, n_iterations=num_games)
+        dice2_cost = self.simulate_rounds(self.normal_strategy, n_iterations=num_games)
+        dice3_cost = self.simulate_rounds(self.risky_strategy, n_iterations=num_games)
+        random_cost = self.simulate_rounds(self.random_strategy, n_iterations=num_games)
 
         return {
             'Optimal': optimal_cost,