From b65c84629d9be8e4cfed76e9c277777219cdb166 Mon Sep 17 00:00:00 2001
From: Adrien <adrien.payen@student.uclouvain.be>
Date: Sun, 19 May 2024 20:29:19 +0200
Subject: [PATCH] update files

---
 .gitignore    | 3 ++-
 plot.py       | 6 +++---
 validation.py | 4 ++--
 3 files changed, 7 insertions(+), 6 deletions(-)

diff --git a/.gitignore b/.gitignore
index 1cdbf95..20b5e10 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,4 +1,5 @@
 *.pyc
 *.pyd
 *.pyo
-__pycache__
\ No newline at end of file
+__pycache__
+*.DS_Store
\ No newline at end of file
diff --git a/plot.py b/plot.py
index 2dce8ea..e0222e9 100644
--- a/plot.py
+++ b/plot.py
@@ -90,7 +90,7 @@ def plot_state_based_comparison_once(num_games : int):
 
 if __name__ == '__main__':
 
-    ##### Paramètres #####
+    ##### Parametres #####
 
     # Define the layout of the game board
     layout = [0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 0]
@@ -98,8 +98,8 @@ if __name__ == '__main__':
     # All the layout for the comparison
     #classiclayout = [0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 0]
     #layout = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 1, 0]
-    #layouttpslowlane = [0, 0, 3, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0] # layout with a trapped slowlane
-    #layouttpfastlane = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 1, 0] # layout with a trapped fastlane
+    #layoutslowlanetp = [0, 0, 3, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0] # layout with a trapped slowlane
+    #layoutfastlanetp = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 1, 0] # layout with a trapped fastlane
     #zerolayout = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
     
     # Indicates whether the board is circular or linear
diff --git a/validation.py b/validation.py
index b76988c..e55680c 100644
--- a/validation.py
+++ b/validation.py
@@ -85,7 +85,7 @@ class Validation:
         total_turns = []
 
         for _ in range(n_iterations):
-            state_turns = np.zeros(len(layout) - 1)  # Utiliser un tableau numpy pour stocker les tours par état
+            state_turns = np.zeros(len(layout) - 1)  # Numpy to store the turns by state
 
             for state in range(len(layout) - 1):
                 k = state
@@ -103,7 +103,7 @@ class Validation:
 
                     if layout[k] == 3:
                         if action == 2:
-                            turns += np.random.choice([1, 2], p=[0.5, 0.5])  # Utiliser numpy pour la randomisation
+                            turns += np.random.choice([1, 2], p=[0.5, 0.5])  # Numpy for randomisation
                         elif action == 3:
                             turns += 2
                     else:
-- 
GitLab