diff --git a/user_based.ipynb b/user_based.ipynb
index fded6f506d137724a7ccf2cad09be556cf85ebc0..a113588359331ef129b21e0cd1c5e24f37842c16 100644
--- a/user_based.ipynb
+++ b/user_based.ipynb
@@ -11,19 +11,10 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 1,
"id": "00d1b249",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# reloads modules automatically before entering the execution of code\n",
"%load_ext autoreload\n",
@@ -56,53 +47,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "aafd1712",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Computing the msd similarity matrix...\n",
- "Done computing similarity matrix.\n",
- "user: 11 item: 364 r_ui = 4.00 est = 3.42 {'was_impossible': True, 'reason': 'User and/or item is unknown.'}\n"
- ]
- }
- ],
- "source": [
- "\n",
- "# Create Surprise Dataset from the pandas DataFrame and Reader\n",
- "surprise_data = load_ratings(surprise_format=True)\n",
- "\n",
- "trainset = surprise_data.build_full_trainset()\n",
- "\n",
- "\n",
- "testset = trainset.build_anti_testset()\n",
- "\n",
- "\n",
- "sim_options = {\n",
- " 'name': 'msd', # Mean Squared Difference (Mean Square Error)\n",
- " 'user_based': True, # User-based collaborative filtering\n",
- " 'min_support': 3 # Minimum number of common ratings required\n",
- "}\n",
- "\n",
- "\n",
- "# Build an algorithm, and train it.\n",
- "algo = KNNWithMeans(sim_options=sim_options, k=3, min_k=2)\n",
- "algo.fit(trainset)\n",
- "algo.test(testset)\n",
- "\n",
- "\n",
- "uid = str(11) # raw user id (as in the ratings file). They are **strings**!\n",
- "iid = str(364) \n",
- "\n",
- "pred = algo.predict(uid, iid, r_ui=4, verbose=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
+ "execution_count": 2,
"id": "cf3ccdc0",
"metadata": {},
"outputs": [],
@@ -132,7 +77,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 3,
"id": "e6fb78b7",
"metadata": {},
"outputs": [
@@ -169,7 +114,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 4,
"id": "ffe89c56",
"metadata": {},
"outputs": [
@@ -330,7 +275,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 5,
"id": "cc806424",
"metadata": {},
"outputs": [
@@ -482,7 +427,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 6,
"id": "d03ed9eb",
"metadata": {},
"outputs": [
@@ -626,7 +571,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 7,
"id": "be53ae27",
"metadata": {},
"outputs": [
@@ -683,7 +628,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 8,
"id": "c20d8e19",
"metadata": {},
"outputs": [
@@ -695,10 +640,10 @@
"Done computing similarity matrix.\n",
"Computing the cosine similarity matrix...\n",
"Done computing similarity matrix.\n",
- "RMSE: 0.9501\n",
- "RMSE: 0.9613\n",
- "RMSE with MSD similarity: 0.9500902346226462\n",
- "RMSE with Jaccard similarity: 0.9612909313186003\n"
+ "RMSE: 0.9683\n",
+ "RMSE: 0.9824\n",
+ "RMSE with MSD similarity: 0.9682664011125741\n",
+ "RMSE with Jaccard similarity: 0.9824127884570012\n"
]
}
],