diff --git a/Analytics_UI/analytics.ipynb b/Analytics_UI/analytics.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9cfe0519ab33d994c8b31824ac2198876ca498b0
--- /dev/null
+++ b/Analytics_UI/analytics.ipynb
@@ -0,0 +1,274 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "\n",
+      "Display the ratings\n"
+     ]
+    },
+    {
+     "ename": "FileNotFoundError",
+     "evalue": "[Errno 2] No such file or directory: 'data/small/evidence/ratings.csv'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
+      "Cell \u001b[0;32mIn[12], line 10\u001b[0m\n\u001b[1;32m      8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mre\u001b[39;00m\n\u001b[1;32m      9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mconstants\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Constant \u001b[38;5;28;01mas\u001b[39;00m C\n\u001b[0;32m---> 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mloaders\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m load_ratings\n\u001b[1;32m     11\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mloaders\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m load_items\n\u001b[1;32m     13\u001b[0m load_items()\n",
+      "File \u001b[0;32m~/vscodeworkspace/recomsys/Analytics_UI/loaders.py:41\u001b[0m\n\u001b[1;32m     39\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m     40\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDisplay the ratings\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 41\u001b[0m pp(\u001b[43mload_ratings\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m     42\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m     43\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDisplay the movie data\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
+      "File \u001b[0;32m~/vscodeworkspace/recomsys/Analytics_UI/loaders.py:12\u001b[0m, in \u001b[0;36mload_ratings\u001b[0;34m(surprise_format)\u001b[0m\n\u001b[1;32m     11\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload_ratings\u001b[39m(surprise_format\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m):\n\u001b[0;32m---> 12\u001b[0m     df_ratings \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[43mC\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mEVIDENCE_PATH\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mRATINGS_FILENAME\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     13\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m surprise_format:\n\u001b[1;32m     14\u001b[0m         \u001b[38;5;28;01mpass\u001b[39;00m\n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:948\u001b[0m, in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m    935\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[1;32m    936\u001b[0m     dialect,\n\u001b[1;32m    937\u001b[0m     delimiter,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    944\u001b[0m     dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[1;32m    945\u001b[0m )\n\u001b[1;32m    946\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[0;32m--> 948\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:611\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m    608\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m    610\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[0;32m--> 611\u001b[0m parser \u001b[38;5;241m=\u001b[39m \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    613\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[1;32m    614\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m parser\n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1448\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m   1445\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m   1447\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1448\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1705\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m   1703\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[1;32m   1704\u001b[0m         mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1705\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1706\u001b[0m \u001b[43m    \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1707\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1708\u001b[0m \u001b[43m    \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1709\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcompression\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcompression\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1710\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmemory_map\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1711\u001b[0m \u001b[43m    \u001b[49m\u001b[43mis_text\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_text\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1712\u001b[0m \u001b[43m    \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding_errors\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstrict\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1713\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstorage_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1714\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1715\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m   1716\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/common.py:863\u001b[0m, in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m    858\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m    859\u001b[0m     \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[1;32m    860\u001b[0m     \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[1;32m    861\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[1;32m    862\u001b[0m         \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[0;32m--> 863\u001b[0m         handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m    864\u001b[0m \u001b[43m            \u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    865\u001b[0m \u001b[43m            \u001b[49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    866\u001b[0m \u001b[43m            \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    867\u001b[0m \u001b[43m            \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    868\u001b[0m \u001b[43m            \u001b[49m\u001b[43mnewline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    869\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    870\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    871\u001b[0m         \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[1;32m    872\u001b[0m         handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n",
+      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'data/small/evidence/ratings.csv'"
+     ]
+    }
+   ],
+   "source": [
+    "#reloads modules automatically before entering the execution of code\n",
+    "# %load_ext autoreload\n",
+    "# %autoreload 2\n",
+    "\n",
+    "# third parties imports\n",
+    "import numpy as np \n",
+    "import pandas as pd\n",
+    "import re\n",
+    "from constants import Constant as C\n",
+    "from loaders import load_ratings\n",
+    "from loaders import load_items\n",
+    "\n",
+    "load_items()\n",
+    "load_ratings()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "FileNotFoundError",
+     "evalue": "[Errno 2] No such file or directory: 'data/small/content/movies.csv'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
+      "Cell \u001b[0;32mIn[10], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;66;03m# NUMBER OF MOVIES\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m df_movies \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdata/small/content/movies.csv\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m      3\u001b[0m n_movies \u001b[38;5;241m=\u001b[39m df_movies[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtitle\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mnunique()\n\u001b[1;32m      5\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m) \n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:948\u001b[0m, in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m    935\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[1;32m    936\u001b[0m     dialect,\n\u001b[1;32m    937\u001b[0m     delimiter,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    944\u001b[0m     dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[1;32m    945\u001b[0m )\n\u001b[1;32m    946\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[0;32m--> 948\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:611\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m    608\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m    610\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[0;32m--> 611\u001b[0m parser \u001b[38;5;241m=\u001b[39m \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    613\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[1;32m    614\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m parser\n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1448\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m   1445\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m   1447\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1448\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1705\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m   1703\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[1;32m   1704\u001b[0m         mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1705\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1706\u001b[0m \u001b[43m    \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1707\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1708\u001b[0m \u001b[43m    \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1709\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcompression\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcompression\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1710\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmemory_map\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1711\u001b[0m \u001b[43m    \u001b[49m\u001b[43mis_text\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_text\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1712\u001b[0m \u001b[43m    \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding_errors\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstrict\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1713\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstorage_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1714\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1715\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m   1716\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n",
+      "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/common.py:863\u001b[0m, in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m    858\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m    859\u001b[0m     \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[1;32m    860\u001b[0m     \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[1;32m    861\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[1;32m    862\u001b[0m         \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[0;32m--> 863\u001b[0m         handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m    864\u001b[0m \u001b[43m            \u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    865\u001b[0m \u001b[43m            \u001b[49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    866\u001b[0m \u001b[43m            \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    867\u001b[0m \u001b[43m            \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    868\u001b[0m \u001b[43m            \u001b[49m\u001b[43mnewline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    869\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    870\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    871\u001b[0m         \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[1;32m    872\u001b[0m         handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n",
+      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'data/small/content/movies.csv'"
+     ]
+    }
+   ],
+   "source": [
+    "# NUMBER OF MOVIES\n",
+    "df_movies = pd.read_csv(\"data/small/content/movies.csv\")\n",
+    "n_movies = df_movies['title'].nunique()\n",
+    "\n",
+    "print(\"\\n\") \n",
+    "print(f\"Number of movies: {n_movies}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# THE YEAR RANGE\n",
+    "df_movies['annee'] = df_movies['title'].str.extract(r'\\((.{4})\\)')\n",
+    "df_movies['annee'] = pd.to_numeric(df_movies['annee'], errors='coerce')\n",
+    "\n",
+    "\n",
+    "# Trouver le range minimum et maximum\n",
+    "min_range = int(df_movies['annee'].min())\n",
+    "max_range = int(df_movies['annee'].max())\n",
+    "\n",
+    "# Afficher le range minimum et maximum\n",
+    "print(\"\\n\") \n",
+    "print(f\"Minimum range: {min_range}\")\n",
+    "print(f\"Maximum range: {max_range}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# LIST OF MOVIE GENRES\n",
+    "df_movies['genres'] = df_movies['genres'].str.split('|')\n",
+    "df_movies = df_movies.explode('genres')\n",
+    "\n",
+    "# Afficher tous les genres uniques\n",
+    "unique_genres = sorted(df_movies['genres'].unique())\n",
+    "print(\"List of all genres:\")\n",
+    "for genre in unique_genres:\n",
+    "    print(genre, \"|\", end = \" \")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# THE TOTAL NUMBER OF RATINGS\n",
+    "df_ratings = pd.read_csv(\"data/small/evidence/ratings.csv\")\n",
+    "n_ratings = df_ratings['rating'].count()\n",
+    "print(f\"Number of ratings: {n_ratings}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# THE NUMBER OF UNIQUE USERS\n",
+    "df_ratings = pd.read_csv(\"data/small/evidence/ratings.csv\")\n",
+    "n_users = df_ratings['userId'].nunique()\n",
+    "print(f\"Number of users: {n_users}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# THE NUMBER OF UNIQUE MOVIES (IN THE RATING MATRIX)\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# THE NUMBER OF RATINGS OF THE MOST RATED MOVIES\n",
+    "def most_rated_movies_ratings_count(csv_file):\n",
+    "    # Charger le DataFrame des évaluations à partir du fichier CSV\n",
+    "    df_ratings = pd.read_csv(csv_file)\n",
+    "\n",
+    "    # Grouper les évaluations par 'movieId' et compter le nombre de notes pour chaque film\n",
+    "    movie_ratings_count = df_ratings.groupby('movieId')['rating'].count()\n",
+    "\n",
+    "    # Trouver le(s) film(s) le(s) plus évalué(s)\n",
+    "    most_rated_movies = movie_ratings_count[movie_ratings_count == movie_ratings_count.max()]\n",
+    "\n",
+    "    # Afficher le nombre de notes du film (ou des films) le(s) plus évalué(s)\n",
+    "    print(\"Number of ratings of the most rated movie(s):\", most_rated_movies.max())\n",
+    "\n",
+    "# Exemple d'utilisation de la fonction avec le chemin du fichier CSV\n",
+    "most_rated_movies_ratings_count(\"data/small/evidence/ratings.csv\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# THE NUMBER OF RATINGS OF THE LESS RATED MOVIES\n",
+    "def least_rated_movies_ratings_count(csv_file):\n",
+    "    # Charger le DataFrame des évaluations à partir du fichier CSV\n",
+    "    df_ratings = pd.read_csv(csv_file)\n",
+    "\n",
+    "    # Grouper les évaluations par 'movieId' et compter le nombre de notes pour chaque film\n",
+    "    movie_ratings_count = df_ratings.groupby('movieId')['rating'].count()\n",
+    "\n",
+    "    # Trouver le(s) film(s) le(s) moins évalué(s)\n",
+    "    least_rated_movies = movie_ratings_count[movie_ratings_count == movie_ratings_count.min()]\n",
+    "\n",
+    "    # Afficher le nombre de notes du film (ou des films) le(s) moins évalué(s)\n",
+    "    print(\"Number of ratings of the least rated movie(s):\", least_rated_movies.min())\n",
+    "\n",
+    "# Exemple d'utilisation de la fonction avec le chemin du fichier CSV\n",
+    "least_rated_movies_ratings_count(\"data/small/evidence/ratings.csv\")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# ALL THE POSSIBLE RATING VALUES; FROM THE SMALLEST VALUE TO THE VALUE HIGHEST\n",
+    "def all_possible_ratings(csv_file):\n",
+    "    # Charger le DataFrame des évaluations à partir du fichier CSV\n",
+    "    df_ratings = pd.read_csv(csv_file)\n",
+    "\n",
+    "    # Obtenir toutes les valeurs de notation uniques\n",
+    "    rating_values = sorted(df_ratings['rating'].unique())\n",
+    "\n",
+    "    # Afficher toutes les valeurs de notation possibles\n",
+    "    print(\"All possible rating values, from smallest to highest:\")\n",
+    "    for rating in rating_values:\n",
+    "        print(rating)\n",
+    "\n",
+    "# Exemple d'utilisation de la fonction avec le chemin du fichier CSV\n",
+    "all_possible_ratings(\"data/small/evidence/ratings.csv\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# THE NUMBER OF MOVIES THAT WERE NOT RATED AT ALL\n",
+    "def unrated_movies_count(ratings_csv, movies_csv):\n",
+    "    # Charger les DataFrames des évaluations et des films à partir des fichiers CSV\n",
+    "    df_ratings = pd.read_csv(ratings_csv)\n",
+    "    df_movies = pd.read_csv(movies_csv)\n",
+    "\n",
+    "    # Obtenir la liste de tous les films présents dans le fichier de notation\n",
+    "    rated_movies = df_ratings['movieId'].unique()\n",
+    "\n",
+    "    # Comparer la liste des films notés à la liste complète des films pour obtenir les films non notés\n",
+    "    unrated_movies_count = df_movies[~df_movies['movieId'].isin(rated_movies)].shape[0]\n",
+    "\n",
+    "    # Afficher le nombre de films non notés\n",
+    "    print(\"Number of movies that were not rated at all:\", unrated_movies_count)\n",
+    "\n",
+    "# Exemple d'utilisation de la fonction avec les chemins des fichiers CSV des évaluations et des films\n",
+    "unrated_movies_count(\"data/small/evidence/ratings.csv\", \"data/small/content/movies.csv\")"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.12.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Analytics_UI/analytics.py b/Analytics_UI/analytics.py
index ebd6c1ebc7bc57e0d8f80f9504028752be4a0611..7aa68d0de5f71052528b901f02859878f90e5606 100644
--- a/Analytics_UI/analytics.py
+++ b/Analytics_UI/analytics.py
@@ -62,6 +62,84 @@ print(f"Number of users: {n_users}")
 print("\n","C") 
 
 
+print("\n","D") 
+def most_rated_movies_ratings_count(csv_file):
+    # Charger le DataFrame des évaluations à partir du fichier CSV
+    df_ratings = pd.read_csv(csv_file)
+
+    # Grouper les évaluations par 'movieId' et compter le nombre de notes pour chaque film
+    movie_ratings_count = df_ratings.groupby('movieId')['rating'].count()
+
+    # Trouver le(s) film(s) le(s) plus évalué(s)
+    most_rated_movies = movie_ratings_count[movie_ratings_count == movie_ratings_count.max()]
+
+    # Afficher le nombre de notes du film (ou des films) le(s) plus évalué(s)
+    print("Number of ratings of the most rated movie(s):", most_rated_movies.max())
+
+# Exemple d'utilisation de la fonction avec le chemin du fichier CSV
+most_rated_movies_ratings_count("data/small/evidence/ratings.csv")
+
+
+
+
+print("\n","E")
+def least_rated_movies_ratings_count(csv_file):
+    # Charger le DataFrame des évaluations à partir du fichier CSV
+    df_ratings = pd.read_csv(csv_file)
+
+    # Grouper les évaluations par 'movieId' et compter le nombre de notes pour chaque film
+    movie_ratings_count = df_ratings.groupby('movieId')['rating'].count()
+
+    # Trouver le(s) film(s) le(s) moins évalué(s)
+    least_rated_movies = movie_ratings_count[movie_ratings_count == movie_ratings_count.min()]
+
+    # Afficher le nombre de notes du film (ou des films) le(s) moins évalué(s)
+    print("Number of ratings of the least rated movie(s):", least_rated_movies.min())
+
+# Exemple d'utilisation de la fonction avec le chemin du fichier CSV
+least_rated_movies_ratings_count("data/small/evidence/ratings.csv")
+
+
+print("\n","F")
+def all_possible_ratings(csv_file):
+    # Charger le DataFrame des évaluations à partir du fichier CSV
+    df_ratings = pd.read_csv(csv_file)
+
+    # Obtenir toutes les valeurs de notation uniques
+    rating_values = sorted(df_ratings['rating'].unique())
+
+    # Afficher toutes les valeurs de notation possibles
+    print("All possible rating values, from smallest to highest:")
+    for rating in rating_values:
+        print(rating)
+
+# Exemple d'utilisation de la fonction avec le chemin du fichier CSV
+all_possible_ratings("data/small/evidence/ratings.csv")
+
+print("\n","G")
+def unrated_movies_count(ratings_csv, movies_csv):
+    # Charger les DataFrames des évaluations et des films à partir des fichiers CSV
+    df_ratings = pd.read_csv(ratings_csv)
+    df_movies = pd.read_csv(movies_csv)
+
+    # Obtenir la liste de tous les films présents dans le fichier de notation
+    rated_movies = df_ratings['movieId'].unique()
+
+    # Comparer la liste des films notés à la liste complète des films pour obtenir les films non notés
+    unrated_movies_count = df_movies[~df_movies['movieId'].isin(rated_movies)].shape[0]
+
+    # Afficher le nombre de films non notés
+    print("Number of movies that were not rated at all:", unrated_movies_count)
+
+# Exemple d'utilisation de la fonction avec les chemins des fichiers CSV des évaluations et des films
+unrated_movies_count("data/small/evidence/ratings.csv", "data/small/content/movies.csv")
+
+
+
+
+
+
+
 # -- display relevant informations that can be extracted from the dataset
 
 
diff --git a/README.md b/README.md
index c5325380423e38d247ec8eca1d97bb15de127755..1af747fd25420affa7d4d5bb5228918a37684bf0 100644
--- a/README.md
+++ b/README.md
@@ -1,93 +1,11 @@
-# recomsys
+# Group 5 - Movie Recommender System
 
+Welcome in the README file :)
+Write here a few introduction words for your project. 
 
+If you want inspiration on how to write an awesome README, check this github repo : https://github.com/navendu-pottekkat/awesome-readme . But don't spend to much time on it. This is not the topic of this course.
 
-## Getting started
+If you need help with the Markdown syntax, you might find some help here : https://www.markdownguide.org/basic-syntax/ .
 
-To make it easy for you to get started with GitLab, here's a list of recommended next steps.
-
-Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
-
-## Add your files
-
-- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
-- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
-
-```
-cd existing_repo
-git remote add origin https://forge.uclouvain.be/recommender_system/recomsys.git
-git branch -M main
-git push -uf origin main
-```
-
-## Integrate with your tools
-
-- [ ] [Set up project integrations](https://forge.uclouvain.be/recommender_system/recomsys/-/settings/integrations)
-
-## Collaborate with your team
-
-- [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/)
-- [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html)
-- [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically)
-- [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/)
-- [ ] [Set auto-merge](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html)
-
-## Test and Deploy
-
-Use the built-in continuous integration in GitLab.
-
-- [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html)
-- [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing (SAST)](https://docs.gitlab.com/ee/user/application_security/sast/)
-- [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html)
-- [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/)
-- [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html)
-
-***
-
-# Editing this README
-
-When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thanks to [makeareadme.com](https://www.makeareadme.com/) for this template.
-
-## Suggestions for a good README
-
-Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.
-
-## Name
-Choose a self-explaining name for your project.
-
-## Description
-Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.
-
-## Badges
-On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.
-
-## Visuals
-Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.
-
-## Installation
-Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.
-
-## Usage
-Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.
-
-## Support
-Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.
-
-## Roadmap
-If you have ideas for releases in the future, it is a good idea to list them in the README.
-
-## Contributing
-State if you are open to contributions and what your requirements are for accepting them.
-
-For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.
-
-You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.
-
-## Authors and acknowledgment
-Show your appreciation to those who have contributed to the project.
-
-## License
-For open source projects, say how it is licensed.
-
-## Project status
-If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.
+Good luck with your project. 
+May the force be with you.
\ No newline at end of file