From 3c7cf52379bbf3e0dae910c638f52edea1e0693e Mon Sep 17 00:00:00 2001 From: taviera <alois.tavier@student.uclouvain.be> Date: Sat, 20 May 2023 19:14:00 +0200 Subject: [PATCH] 1.5 --- .../Notebook_final-checkpoint.ipynb | 1858 +++++++++++++++++ Notebook_final.ipynb | 125 +- 2 files changed, 1894 insertions(+), 89 deletions(-) create mode 100644 .ipynb_checkpoints/Notebook_final-checkpoint.ipynb diff --git a/.ipynb_checkpoints/Notebook_final-checkpoint.ipynb b/.ipynb_checkpoints/Notebook_final-checkpoint.ipynb new file mode 100644 index 0000000..d907704 --- /dev/null +++ b/.ipynb_checkpoints/Notebook_final-checkpoint.ipynb @@ -0,0 +1,1858 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "tight-speech", + "metadata": {}, + "source": [ + "## LINMA1702 - Projet\n", + "# Utilisation optimale d'une pompe à chaleur domestique\n", + "\n", + "### Notebook pour le rapport final - version 2.1\n", + "### <font color=\"red\">Numéro du groupe : 36</font>\n", + "### <font color=\"red\">Membres du groupe : Yanis Lahrach, Gaspar Robert, Aloïs Tavier, Alexis Thieltgen </font>\n", + "\n", + "## Description générale\n", + "\n", + "Une pompe à chaleur permet de chauffer un bâtiment en consommant moins d'énergie qu'au chauffage électrique classique, grâce à un coefficient de performance (COP) supérieur à un. Elle peut également fonctionner de façon réversible, c'est-à -dire qu'elle permet de refroidir en été.\n", + "\n", + "Dans ce projet, on va utiliser une pompe à chaleur pour maintenir le température intérieur d'un bâtiment dans une plage confortable, tout en minimisant le coût de l'électricité consommée.\n", + "\n", + "### Hypothèses et données\n", + "- On considère une année entière, qu'on discrétise par intervalles de temps d'une durée de 15 minutes\n", + "- Le bâtiment est situé à Montréal, et on dispose de la température extérieure durant chaque intervalle de temps \n", + "- On suppose que la température du bâtiment est homogène, et on s'intéressera uniquement à la valeur qu'elle prend toutes les 15 minutes (on ne s'intéresse donc pas à la dynamique de la température au cours d'un intervalle de temps)\n", + "- Durant chaque intervalle de temps la température intérieure évolue en fonction la température externe : la différence de température entre le début et la fin d'un intervalle de temps est proportionnel à la différence entre la température externe et la température interne (le coefficient de proportionnalité dépendant de l'isolation du bâtiment)\n", + "- Pendant chaque intervalle de temps on peut choisir d'activer la pompe à chaleur. Plus précisément, on peut décider de la puissance qu'on va utiliser pour la pompe à chaleur, jusqu'à une certaine puissance maximale. Celle-ci va alors prélever de la chaleur extérieure et la transférer à l'intérieur du bâtiment (ou l'inverse si on décide de fonctionne en mode refroidissement, nommé \"reverse\"). La quantité de chaleur transférée est proportionnelle à la puissance électrique consommée, mais aussi au coefficient de performance (COP).\n", + "- La variation de la température du bâtiment causée par l'activation de la pompe à chaleur est proportionnelle à la chaleur/énergie transférée\n", + "- Le coefficient de performance de la pompe à chaleur est supposé dépendre uniquement de la température extérieure et du mode de fonctionnement, normal ou reverse.\n", + "- Le coût unitaire de l'électricité consommée dépend de l'heure où elle est prélevée (tarif bi-horaire)\n", + " \n", + "### Remarque à propos de la modélisation\n", + "En général, quand on modélise un problème, on décide d'effectuer certaines hypothèses et/ou approximations. Il y a certainement plusieurs façons tout à fait valides de modéliser le problème, donc pas pas forcément une unique bonne réponse. Vous pouvez interpréter l'énoncé de la façon qui vous convient le mieux du moment qu'elle reste raisonnable. \n", + "(par exemple : l'énoncé suggère de ne pas analyser/de prendre en compte ce qui se passe à l'intérieur d'un intervalle de temps, ce qui est un choix ; aussi : le fonctionnement simultané en mode chauffage et reverse pourrait être a priori permis ou interdit, mais cela change-t-il vraiment les choses ?)" + ] + }, + { + "cell_type": "markdown", + "id": "loved-savings", + "metadata": {}, + "source": [ + "## Tâches\n", + "\n", + "**Tâche 1** : on souhaite dans un premier temps que la température du bâtiment reste comprise dans une certaine plage admissible de températures, et on cherche à **minimiser le coût total de l'électricité consommée par la pompe à chaleur**. Formulez ce problème comme un problème d'optimisation linéaire, puis résolvez le.\n", + "\n", + "Pour des raisons de temps de calcul, votre modèle considérera uniquement une période de 7 jours consécutifs. Il fera l'hypothèse que la température initiale au début de la période est égale à la valeur centrale de la plage admissible, et fera en sorte que la température finale à la fin de la période revienne à la même valeur. Votre code prendra donc en entrée un paramètre indiquant le numéro de l'intervalle de temps qui début la période, qui s'étendra sur $7 \\times 24 \\times 4 = 672$ intervalles de temps.\n", + "\n", + "<div class=\"alert alert-block alert-warning\"><b>A mentionner</b> :<br> \n", + "- coût minimal + graphique de l'évolution des températures + graphique représentant l'utilisation de la pompe à chaleur (en distinguant le fonctionnement normal du fonctionnement _reverse_) + temps de calcul + bref commentaire (maximum 4 lignes)<br>\n", + "- pour deux périodes distinctes (placer les résultats côté à côté) : à gauche une période pré-déterminée (cf. fichier de données), et à droite une seconde période que vous choisirez en fonction de son intérêt\n", + "</div>\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "892c7f7b", + "metadata": {}, + "source": [ + "La pompe à chaleur constitue une solution performante et économe en énergie pour le chauffage d'un bâtiment. Son COP supérieur à un la distingue avantageusement des systèmes de chauffage classiques. Par ailleurs, elle peut être utilisée en mode réversible pour rafraîchir le bâtiment en période estivale. Dans le cadre de ce projet, nous avons recours à une pompe à chaleur pour maintenir la température intérieure du bâtiment dans une plage de confort tout en réduisant la consommation électrique. Pour cela, nous considérerons une année complète que nous discréditons en intervalles de temps de 15 minutes. Le bâtiment est situé à Montréal, et nous disposons de données de température extérieure pour chaque intervalle de temps." + ] + }, + { + "cell_type": "markdown", + "id": "79b302b5", + "metadata": {}, + "source": [ + "### Importation des modules" + ] + }, + { + "cell_type": "code", + "execution_count": 369, + "id": "08fb3b94", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\t\t\t\t# Module de manipulation de listes\n", + "import cvxpy as cp\t\t\t\t# Solver d'optimisation convexe\n", + "import matplotlib.pyplot as plt # Module de création de graphes" + ] + }, + { + "cell_type": "markdown", + "id": "71cacb8c", + "metadata": {}, + "source": [ + "### Déclaration des variables" + ] + }, + { + "cell_type": "markdown", + "id": "ff08fda0", + "metadata": {}, + "source": [ + "##### Intervalles" + ] + }, + { + "cell_type": "code", + "execution_count": 370, + "id": "30d3cb31", + "metadata": {}, + "outputs": [], + "source": [ + "heure_initiale = 22.5 # Compris dans l'intervalle [0,24[ [h]\n", + "intervalle_initial = 13050\n", + "n = 672 # Nombre de périodes/intervalles\n", + "data = np.load(\"Temperatures-Montreal.npy\")\n", + "T_ext = data[intervalle_initial:intervalle_initial+n]" + ] + }, + { + "cell_type": "markdown", + "id": "72f2ef61", + "metadata": {}, + "source": [ + "##### Coefficient de performance" + ] + }, + { + "cell_type": "markdown", + "id": "17a74ae8", + "metadata": {}, + "source": [ + "Nous posons l’hypothèse que le coefficient de performance de la pompe à chaleur dépend uniquement de la température extérieure et du mode de fonctionnement, normal ou reverse. En mode normal, le COP est fonction de la température extérieure. Tandis qu’en reverse, c’est une constante égale à 3,2." + ] + }, + { + "cell_type": "code", + "execution_count": 371, + "id": "6f3f138a", + "metadata": {}, + "outputs": [], + "source": [ + "COP_normal = lambda f: 3+10*abs(np.tanh(f/100))*np.tanh(f/100)\n", + "COP_reverse = 3.2" + ] + }, + { + "cell_type": "markdown", + "id": "2173f762", + "metadata": {}, + "source": [ + "##### Température [°C]" + ] + }, + { + "cell_type": "markdown", + "id": "edd45834", + "metadata": {}, + "source": [ + "Nous supposons que la température à l'intérieur du bâtiment est uniforme, et nous nous concentrons uniquement sur sa valeur toutes les 15 minutes. Au cours de chaque intervalle de temps, la température intérieure évolue en fonction de la température extérieure : la variation de température entre le début et la fin de l'intervalle est proportionnelle à la différence de température entre l'intérieur et l'extérieur (le coefficient de proportionnalité dépendant de l'isolation du bâtiment). Pour $n$ intervalles, il y a $n+1$ températures à prendre en compte. Les températures initiale ($T_0$) et finale ($T_n$) sont toutes deux fixées à 20°C, tandis que la plage de températures de confort est connue et comprise entre 19°C et 21°C." + ] + }, + { + "cell_type": "code", + "execution_count": 372, + "id": "55614aa7", + "metadata": {}, + "outputs": [], + "source": [ + "T_initial = 20 # [°C]\n", + "T_final = 20 # [°C]\n", + "T_min = 19 # [°C]\n", + "T_max = 21 # [°C]\n", + "eta = 0.99 # Isolation du bâtiment [/] \n", + "T_i = cp.Variable(n+1)\n", + "deltaT_i = cp.Variable(n)" + ] + }, + { + "cell_type": "markdown", + "id": "d3dbd195", + "metadata": {}, + "source": [ + "##### Coût de l'énergie [$]" + ] + }, + { + "cell_type": "markdown", + "id": "5f418ea2", + "metadata": {}, + "source": [ + "Le coût unitaire de l'électricité consommée dépend de l'heure où elle est prélevée selon tarif bi-horaire. Ce prix est plus élevé durant les heures pleines de 7h à 22h." + ] + }, + { + "cell_type": "code", + "execution_count": 373, + "id": "2aa90a1b", + "metadata": {}, + "outputs": [], + "source": [ + "cout_heures_creuses = 0.00018 # [$/(Wh*h)]\n", + "cout_heures_pleines = 0.00026 # [$/(Wh*h)]\n", + "c = np.zeros(n)\n", + "for i in range(n):\n", + " c[i]= cout_heures_creuses*0.25 if 0 <= (heure_initiale+(i+1)*0.25)%24 <= 7 or 22 < (heure_initiale+(i+1)*0.25)%24 <= 24 else cout_heures_pleines*0.25\n" + ] + }, + { + "cell_type": "markdown", + "id": "7188a70b", + "metadata": {}, + "source": [ + "##### Puissance [W]" + ] + }, + { + "cell_type": "markdown", + "id": "1ff5ea64", + "metadata": {}, + "source": [ + "Pendant chaque intervalle de temps on peut choisir d'activer la pompe à chaleur en décidant de la puissance qu'on lui fournit jusqu'à une valeur \n", + "maximale. La pompe préleve alors de la chaleur extérieure et la transférer à l'intérieur du bâtiment (ou\n", + "l'inverse si on décide de fonctionne en mode reverse). La quantité de chaleur\n", + "transférée est proportionnelle à la puissance électrique consommée et du coefficient de\n", + "performance (COP) mais est inversément proportionnelle à la capacité calorifique du bâtiment et à son volume.\n", + "On permet le mode normal et le mode reverse simultané. Cela ne posera pas de problème étant donné que la minimisation du coût fournira naturellement une solution dans laquelle maximum un des deux modes est utilisé. En effet, une utilisation simultanée des deux modes est contre-productive car la pompe consommerait alors de l'énergie pour fournir deux variations de température opposées." + ] + }, + { + "cell_type": "code", + "execution_count": 374, + "id": "fa2e9678", + "metadata": {}, + "outputs": [], + "source": [ + "p_max = 1000 # [W]\n", + "Cx = 1000/(0.4*360) # Capacité calorifique du bâtiment [Wh/(°C*m^3)]\n", + "V = 360 # Volume du bâtiment [m^3]\n", + "p_n_i = cp.Variable(n) # Normal\n", + "p_r_i = cp.Variable(n) # Reverse" + ] + }, + { + "cell_type": "markdown", + "id": "59d693bb", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 1.1</b> :<br> \n", + " Donnez votre formulation linéaire, en commentant brièvement (en particulier si vous utilisez une technique de modélisation/reformulation).\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "fe74881b", + "metadata": {}, + "source": [ + "Dans un premier temps, on impose que la température du batiment est comprise dans la plage de confort à tout instant, et on cherche alors à minimiser le coût total de l'électricité consommée par la pompe à chaleur. On peut modéliser le problème de minimisation du coût comme suit :\n", + "\n", + "On peut modéliser le problème de minimisation du coût comme suit : \n", + "$$ \\min_{p_{n_i}, p_{r_i}, T_i, \\Delta T_i} \\sum_{i=0}^{n-1}c_i(p_{n_i}+p_{r_i}) \\quad \\text{tel que}\\\\ $$\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad T_0=T_{initial}\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad T_n=T_{final}\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad T_{min} \\le T_i \\le T_{max} \\qquad ,\\forall i \\in [0,n]\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad T_{i+1}=T_i+\\Delta T_i \\qquad ,\\forall i \\in [0,n-1]\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad p_{n_i}+p_{r_i} \\le p_{max} \\qquad ,\\forall i \\in [0,n-1]\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\Delta T_i = -(1-\\eta)(T_i-T_{ext_i}) + \\frac{0,25p_{n_i}COP_n(T_{ext_i})}{C_xV} - \\frac{0,25p_{r_i}COP_r}{C_xV} \\qquad ,\\forall i \\in [0,n-1]\\\\ $\n", + "\n", + "Cette formulation à l'avantage de pouvoir se passer de variables binaires qui imposeraient que la pompe est soit en mode normal, soit en mode reverse. Comme dit précédemment, le problème de l'utilisation simultanée de la pompe dans ses deux modes ne se produit même pas car le solver privilégie évidemment une utilisation unidirectionnelle de la pompe à chaleur (voir Question 1.4)." + ] + }, + { + "cell_type": "markdown", + "id": "6e4c0afb", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 1.2</b> :<br> \n", + " Résolvez votre modèle sur les deux intervalles de temps, affichez vos résultats sous forme graphique et commentez.\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "2c46fc8e", + "metadata": {}, + "source": [ + "### Intervalle 13050\n", + "Cet intervalle nous est imposé." + ] + }, + { + "cell_type": "markdown", + "id": "4ff6e898", + "metadata": {}, + "source": [ + "##### Résolution du problème" + ] + }, + { + "cell_type": "code", + "execution_count": 375, + "id": "922de5b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8.182333695034458" + ] + }, + "execution_count": 375, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "objectif = cp.Minimize(c.T@(p_n_i+p_r_i))\n", + "contraintes = [T_i[0] == T_initial, T_i[n] == T_final, T_min <= T_i, T_i <= T_max, T_i[1:n+1] == T_i[0:n]+deltaT_i, (p_n_i+p_r_i) <= p_max, 0 <= p_n_i, 0 <= p_r_i,\n", + " deltaT_i == -(1-eta)*(T_i[0:n]-T_ext)+(cp.multiply(p_n_i,COP_normal(T_ext)))*0.25/(V*Cx)-p_r_i*COP_reverse*0.25/(V*Cx)]\n", + "probleme = cp.Problem(objectif, contraintes)\n", + "probleme.solve(solver=cp.SCIPY, scipy_options={\"method\":\"highs\"}, verbose=False)" + ] + }, + { + "cell_type": "markdown", + "id": "88f0fe15", + "metadata": {}, + "source": [ + "##### Affichage de la solution" + ] + }, + { + "cell_type": "code", + "execution_count": 376, + "id": "86342dc9", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAG3CAYAAAAuMzWRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hTZdrG75OeSZneYYbeQYpIkyIoqIgioJRVQVmXFdS1YllXEV357B1X14Kr4iIqKqK4IAIqWABBRHov0/skk3qe7494DpNJMpPMZCaZyfO7rrkgp77nOe099/sUgYgIDMMwDMMwDMMwDMMwTEyiiHQDGIZhGIZhGIZhGIZhmMjB4hDDMAzDMAzDMAzDMEwMw+IQwzAMwzAMwzAMwzBMDMPiEMMwDMMwDMMwDMMwTAzD4hDDMAzDMAzDMAzDMEwMw+IQwzAMwzAMwzAMwzBMDMPiEMMwDMMwDMMwDMMwTAzD4hDDMAzDMAzDMAzDMEwMw+IQwzAMwzAMwzAMwzBMDMPiEMMwDMMwTBjYvXs3Fi1ahK1bt0a6KQzDMAzDMCEhEBFFuhEMwzAMwzCtGbfbjcGDB2PXrl3IycnBnj17EBcXF+lmMQzDMAzDBAV7DjFMC2O1WvHCCy9g/PjxyMzMhFarhclkQq9evTBnzhx89tlncLvdkW5mQJYtWwZBELBo0aJIN6XJbNy4EYIgYM6cOc26H0EQ0KFDh2bdR3Ny7NgxCIKAMWPGtMj+Wru9mptFixZBEAQsW7Ys0k3xYc6cORAEARs3bmyR/Y0dOxbt2rWD3W73O7+kpASLFy/GsGHDkJqaCrVajZSUFIwePRpPPPEEioqKwtaWF198Efv27cP//vc/VFZWYvHixWHbdjTSoUMHCIIQ6Wb4pbmfIXa7HY8//jgGDhwIo9EIrVaLjh074sYbb8SRI0dC2tbJkyexdOlSzJkzBz179oRCoQjqHgq1DcePH8eLL76Iiy++GBkZGfK9cPHFF+Ozzz7zuw+Xy4VFixZh4sSJ6NSpE0wmE3Q6Hbp27Yr58+fj+PHjftdbtmwZZsyYgZ49eyIpKQkajQZZWVmYNm0avv/+e7/rbN68GTfeeCMGDhyI9PR0aDQaJCUl4YILLsA777yDhsayN23ahKlTpyIjIwNarRZZWVm45JJLAh7b3r178ac//Unuh3Xo0AE333wziouLAx6TIAgB/2bMmBGwbXv27MFVV12F1NRU6PV69O3bF8899xxEUfRZtrE2r4vD4UCvXr0gCAJUKlVQ6wDA3Llz5WP67rvvfOZL/YFAfxkZGQG3vW7dOkycOFF+FicnJ2P8+PFYtWqVz7J5eXnQ6/WYP39+0G1nGCYMEMMwLcZ3331HmZmZBIB0Oh2NHDmSpk+fTpMnT6a+ffsSAAJAvXr1inRTA/LWW28RAHrooYci3ZQm88033xAAmj17drPuBwDl5uY26z6ak6NHjxIAGj16dJO3FYzNW7u9msro0aMJAB09etTv/IceeogA0FtvvdWi7QqG2bNnEwD65ptvmn1fn3/+OQGgl19+2e/8VatWkdlsJgCUkJBAEyZMoJkzZ9L48ePl6WazmX777bcmt+XUqVNkMpnohRdeICKiFStWkFqtDrjt3NxciuYuWDD3fDQfQ3M+Q2pqamjo0KHydXXppZfSlClTqEOHDgSATCYTbdu2LejtPfvss/K7v/ZfffdQY9owYsQIAkBarZZGjx5N06dPp8GDB8v7u/322332U1VVRQDIaDTS8OHDadq0aXT55ZdTTk6OfP/8/PPPPusNGjSIVCoVDRgwgCZNmkRXXXUV9evXjwCQIAj0yiuv+Kxz5513EgDq1q0bTZgwgWbMmEEjR44kpVJJAGjmzJkB7SE9E7VaLY0dO1Ze12Aw0Ny5c32W//rrrykuLo4AUI8ePWjKlCnUrVs3AkDt2rWjkydP+qwj9X3OOeccmj17ts/f0qVL/bZty5YtpNfrCQCdd955dPXVV1NGRgYBoKuuuopEUQyLzf3ZRBAEAkBKpbLB5YmINmzYIJ8jAPTtt9/6LCM9G9LT0/3a4dZbb/W7bek6FwSBhg8fTtOnT6fhw4fL+7r//vt91rn11ltJpVLR/v37g2o/wzBNJzrf6gzTBtm+fTtptVoCQHfffTdVVFT4LHPixAm67bbbSKfTRaCFwcHiUOi0drGjpcWhvXv30qFDh5q8r9ZKQ+JQUVER7d27l8rLy1u2YUHQkuJQv379KDU1lex2u8+8L774ghQKBalUKnr66afJ4XB4zbfb7fTGG29Qenp6WNr69ddf09NPP+31offKK6/Qp59+6nf5aBZWiIK75w8dOkR79+5tuUaFQHM+c59//nkCQIMHD/a6B10uF918880EgEaNGhX09j799FO67bbb6L333qMDBw7Q+PHjG7yHGtOG6dOn04svvkiVlZVe0z///HNSqVQEgL766iuveU6nk7777jtyOp1e010uF917770EgAYNGuTTvh9++MFnP9KxKpVK0ul0VFRU5DVvz549dPr0aZ91Dh48KA+qrV692me+1CcZMmSIj6hjsVho9+7dPtPS09MJAD344IPydFEU6a677iIANH78+ID7CaXv43A4qGPHjgSAnnnmGXl6VVUVDRs2zK/I31ib1+b3338njUZDf/nLX4IWh2pqaqhr167Uu3dvGj58eIPiUCj9gcLCQtJqtaRWq2njxo1e8zZt2kRarZYEQaDDhw97zTt16hQpFAq6+uqrg94XwzBNI3p7JgzThnC73dSzZ08CQI888kiDy4cy6tjSsDgUOiwOnaWlbN6aaUgcimZaShz67rvvCADdfPPNPvOqq6spNTWVANCyZcvq3c6pU6ciYue2IA5FM835zJ06dSoBoPfff99nXmlpKQEgvV7f6O1PmDChwXso3G2QRIQ5c+YEvY7T6SSdTkcAQhKqx40bRwACCqf+eOSRR/x6N1mtVkpOTiaTyUR5eXlBbeudd94hANS9e3dyu91e8xwOh+x9tXPnTq95jen7rFixQvY2qsv27dsJAPXp0yfo7QVjc1EU6fzzz6e0tDT5WghGHLr//vtJEAT69ttv5XdQuMSh1atXEwCaMGGC3/mXX345AaAVK1b4zBs3bhyp1WrKz88Pen8MwzQezjnEMC3AF198gb179yInJwf33Xdfg8sPGjTIZ5qUQ8HhcGDx4sXo0aMHtFotJk+eDACw2Wx44403cMUVV6BTp07Q6/VISEjAqFGj8N///tfvfmrnB/nyyy9x/vnnw2g0IjExEVOmTMG+ffvqbeeJEycwa9YsOY7+3HPPxerVqwMuv3fvXsyZMwft27eHVqtFeno6ZsyYgT179vhd/osvvsBFF12E7OxsOYfA+eefj4cffrjedtVlz549mDx5MhITE2EymTBy5EisXbu23nWICO+//z7Gjh2LxMRE6HQ69OzZE4sWLYLVag1p//Vtf8aMGejWrRsMBgNMJhPOO+88LF261G8ugvooKirCvffei169esFoNCI+Ph7dunXDddddh59++sln+d9//13Ot6DRaJCdnY3rrrsO+/fvD3qfDeW+qZuTZM6cObjgggsAAG+//bZXnoLaOazqyxciXRPSOenevTvuvfdelJeX19u+3bt34/LLL0diYiIMBgNGjx6NLVu2BH2sEiUlJbj77rvRtWtX6HQ6JCUl4eKLL8b//vc/v8vXvm8feughdO7cGTqdDp06dcKDDz4Im80mLyvlcti0aRMAoGPHjl428ndctRkzZgwEQcCxY8ewYsUKDB48GHFxccjOzsbChQvhcDgAAIcPH8bMmTORlpaGuLg4XHDBBfj111992l5eXo4XX3wREyZMQG5uLrRaLZKTk3HxxRdj3bp1IdvOarViyZIlGDBgAIxGI4xGI4YOHYq333475G29/vrrAICZM2f6zPvPf/6DoqIiDBkyBLNnz653O9nZ2T7XWijnuKF8XHXPlZTnTMobUvv8hpIjZ+vWrbjiiiuQmpoq50uZP38+zpw547Ns7Txx+/fvx9SpU5GcnAyDwYARI0bgiy++8Glzx44dAXjyuNRuY+38bP5yDtW2h8ViwR133IH27dtDr9dj4MCBXu+HlStXYsiQITAYDEhPT8ett96Kmpoan/bv3LkTCxcuxKBBg+Tj7dSpU8DjbW60Wm2DyyQnJ7eqNpxzzjkAEJI9BUGAUqmEIAjQaDRBr6dWqwEgLOt8/PHHKCkpwVVXXVVvrpvabN++HQAwatQoKBTen0FqtRojRowAAHz66adBty8Qa9asAQBMmzbNZ97AgQPRqVMn/Pbbbzh27FhQ2wvG5q+++iq+++47PP3000hMTAxqu7t378aTTz6JG264Aeeff35Q64RCMNcr4P+anTVrFpxOZ1Tm2GOYNkmk1SmGiQXmz59PAOjOO+9s9DYAUPv27emSSy4hg8FAl156KV111VX017/+lYg8oTgAKCsriy644AKaPn06jR49mtRqdcDRLmmUf/78+SQIAg0ePJhmzJhBvXr1IgAUHx8fcPRs9uzZlJaWRp07d6bp06fLLtIKhcLHNZ3Ik/9DCqvr378/TZs2jYYMGUKCIFBcXBxt2rTJa/mXXnpJHvEaNWoUzZw5ky666CJq165dSCPuP//8MxmNRnmEbsaMGTRo0CASBEE+L3W9WNxuN82cOVOO+x8zZgxdeeWV1L59ezlvgNVqDboN8DOKXVNTQwAoOTlZzj114YUXynkQQvGsqayslF3X27dvT5MnT6Zp06bReeedR2q12ufcr1+/Xs6BMGDAAJoxYwb1799fPt7Nmzd7LR9opLCh3Dd1vSP+/e9/y6PinTt39spTsGrVqnrtRUT02GOPEQBSqVQ0btw4mj59unw9dOvWzWdkUWrfggULKC4ujvr27UvTp0+nc845hwBP3q+6IQf1cerUKerUqRMBoJycHJo+fTqNHTtWzolRO2yg9rHk5OTQZZddRnq9ni677DKaMmUKxcfHEwAaN24cuVwuIvKEi82ePVsOeZg6daqXjRqyuzTae9ttt5FKpaILL7yQrrzySkpJSSEAdN1119GBAwcoJSWFevToQdOnT5dznSUlJfnY78svvyQA1KFDB7rooovk+1wQBBIEgd544w2f4w3kOVRQUCDnHMnIyKBLL72ULrnkEtkO/jyA6iM1NZX0er1P6AUR0cSJEwkAPf/88yFtkyj0c9zQKHrdc7V3716aPXs2GQwG+T6X/oJ9P7zzzjtye0aMGEEzZsyQ86Wkp6f7hHpJz+xrrrmG4uPjqWPHjjRjxgwaNWqUfC7ffPNNeflVq1bJnil184r8+9//lpfz5/0k2WPYsGE0ZMgQSktLo2nTptGYMWNIoVCQUqmkdevW0TPPPCPfx1deeSUlJycTAJo1a5bP8U6fPp1UKhUNHDiQJk+eTJMnT5a9OzIzM/2GIgV6hoSDZcuWNRjS1RTP2mA8h8LdBinfz3XXXRfU8qIo0j//+U8CQGPHjg16P+vXryeNRkOJiYlUVlYW1DonTpyQz3fdfsINN9xAAOj111+nsrIyeumll+ivf/0r3X777bRy5Uq/z4cbb7yRANDChQv97u/WW28lADRlyhSv6dJ9dNlll9Fdd91Ff/nLX+jBBx/0CZOqjfSuWbNmjd/506ZNC9qLKhibnzlzhuLj42ncuHHyNKkfFQi3201Dhw6l1NRUKikpISIKynOoR48e9OCDD9KNN95Id911F61cudJviC8RUXl5OSUkJNQbVta1a1e/6x8+fJgA0MiRIwMeA8Mw4YPFIYZpAaREkO+++26jtwF4kkZ26dKFTp065TO/uLiY1q1b55Pc8MiRI9ShQwdSKBQ+4RPShxwAeu211+TpoijSPffcIws5tZE6SJLYVdstW0o4WPclfvToUTIYDGQ0GmndunVe87788ktSq9XUvn17r45BTk4OCYLgk3hRFMWgQ1ZEUZSFrtq5BYiIXn75Zfk46goxTzzxBAGgMWPGeLmq2+12mjt3LgGge+65J6g2EPn/UHE6nbRq1SqfXCiFhYV07rnn+u0IB+LNN98kAHT55Zf7uMkXFhZ6CSDV1dWy+PDSSy95LfvMM88Q4EnIWVNTI08PlzhE1PiE1D/99BMpFAoyGo30ww8/yNNtNhtdddVVspjir33+hILbbruNANC1114bsB11ueyyy+QP2NrX6rfffktxcXGkVCrpl19+8TkWyaa18ykUFhZSnz59CAA9++yzXus0NiG1tJ7RaPS6b/Ly8ig9PZ0EQaCePXvSvffeKz8nRFGka6+91u89cuTIEdq6davP/nfs2EEJCQlkNpupqqrKa14gcejSSy8lAPS3v/2NbDabPD0/P1++3r/88ku/x1sXSQgfPny43/nZ2dkBP2waItRzHKo4JNHYsLITJ06QXq8npVLp9UHpdrvla/rcc8/1Wqf2M/u6667z+mBevXo1KZVKiouL83qvNDYhtbSe9AFbXV3t044uXbpQYmKi1zV6+vRpSktLIwA+eUc2bNjgI1y63W56+OGHCQBdf/31Pm0LJA5JbQ7lr+617HK5aMaMGQR4kkFPnDiRpk6dSh06dCC9Xk933323LPg2hmDEoXC2oaysTA7D/OijjwIut3DhQpo9ezZdeeWV1LlzZwJAPXv2pCNHjgRc580336TZs2fT9OnT5fs8Pj6e1q5dG3CdLVu20OzZs+maa66hsWPHkkajIYVCQY8++qjPslJS7iVLlsh5iWr/9e3bl06cOOG1zv33308AaPr06X73P2nSJAJ88/rUvo/q/o0ePdpv2FNiYiIBoF27dvndl3TPSons6xKqzadMmUJardYrgXND4tALL7xAAOjtt9+WpwUjDvn7y8nJoR9//NHvfj766CM5t9CIESNo+vTpNGLECBIEgc4///x6r6OUlBTSarVe/RKGYZoHFocYpgXo0aMHAQjYIbrhhht8Kj7UfSlLL9+VK1eGvP9///vffjsg0oecv48sh8Mhe2XUbovUQerYsaPPKI/T6aTExERSq9Ve8/72t78RAHrxxRf9tk8aqfv444/laXq9nhITE0M+1tpIlTc6derkt6M8ZMgQH6HC6XRSSkoKGQwGv509q9VKGRkZlJiY6CPEBCLQh0og1q1bRwDojjvuCGr5xx9/nADQc8891+CykpA0bNgwv/MHDRrkI2RGgzh03XXXEQC67777fJYvKCggvV5PCoXC60NAat+IESN81ikuLg7pvEijl0ajUR5drc0dd9xBAOjPf/6zz7HUFV8lJM+czp07e01vqjj0wAMP+Kxz++23y/dCXUFy165dDQoBdfn73/9OAOizzz7zmu5PHPrll18I8Hg5+LtnduzYIYubwSDl8fAnChCRnJNj3759QR8PUePOcUuLQw8++CAB/is32Ww2ysrKIgD03XffydOlZ7bRaKTS0lKf9aZPn06Adz68popDCoXCp8KQ2+2Wvdjqu0ZDqcKXnZ1NycnJPtMD3dt33nmn3wpL9f35S7rtcrlo4cKFPh/HAwcOrFf4CIZgxKFwtkE6/0OHDvUZXKqNJE5If/369aNff/213m1LgynSX1JSUr0CFNHZnEDSn1KppEcffdRLVJbo3r07AR5v0t69e9O3335LlZWV9OOPP9LAgQPl507t41q7dq18P9RNin3q1Cn5+dGtWzeveWvXrqVFixbRL7/8QhUVFZSfn0+fffaZ3L8799xzffoZkuf2wYMH/R6r9Bz95z//6Xd+KDb/5JNPCPD1GKtPHDp58iSZTCYaM2aM1/T6xKEzZ87QTTfdRBs3bqSCggKqrKykrVu3ygMACQkJdOzYMb/727Bhg/wMkP7MZjMtXrw4oNcR0dkB1h07dgRchmGY8MA5hxgmCnj77bd9/g4dOuSznCAImDRpUr3b+u677/Doo4/ipptuwvXXX485c+Zg5cqVAICDBw/6XWfGjBk+09RqtRwn/+233/rMHzNmjE/Mu0qlQseOHeF0OlFSUiJPl3J1TJkyxe/+R44cCQBeuXEGDRqEsrIyzJ07N2BOooaQ2j1t2jQolUqf+f7ylezYsQPFxcUYPnw40tPTfebr9Xq5bYHsGQo7d+7EE088gQULFsjn65VXXgEQ+HzVRcpR9eSTT+K///0vqqqqAi4r2eRPf/qT3/nXXHON13LRQn3tTktLw/jx4yGKIr7//nuf+ePHj/eZlpycjKSkJOTl5QW1/++++w4AcPHFFyMpKcln/rXXXuvVzrr4u8cuvvhiJCYm4vDhw0G3Ixj8HW+nTp0AeO5bKX9H3Xn+2uB2u/G///0PixYtwrx58zBnzhzMmTMH33zzDYDgrlHp/p88ebJPjg8Acg4if7mx/FFYWAgAQefTCJamnuOWoL77QKvV4qqrrvJarjbjx4/3azPpORjO4+rQoQO6devmNU2hUCA3N1duS13quw5LSkrw1ltv4c4778TcuXPl61B615SWlgbVrqeeegrLli0L6a9Hjx5e2ygrK8O4cePw0ksv4fnnn8epU6dQWlqKTz75BEVFRbj00kuxYsWKoNrTWMLVhscffxwrVqxAUlIS3nvvPZ8cUrU5dOgQiAhFRUVYu3Yt1Go1Bg0aVG/OsNdffx1EhKqqKmzbtg0XXnghpk6dir/85S8B17nmmmtARLDb7di/fz/uvfdeLF68GKNHj0ZZWZnXslJuPqVSKedNlHL3ffnllzAYDPj555+xfv16eZ3x48dj4MCBqK6uxiWXXIKffvoJ1dXV2Lp1Ky655BK4XC4A8HlWTZgwAQ899BD69+8Ps9mM9PR0TJo0CT///DO6deuGbdu24YMPPghs7EYQrM2rqqpw8803o1u3bkHltZRYsGAB7Ha73OcIhszMTCxduhSjR49GWloaTCYThg4dijVr1mDWrFkoLy/HY4895rPe008/jQsvvBCjRo3Cr7/+iurqavz6668YO3YsHnzwwYD9QwDy87ioqCjodjIM0zhUkW4Aw8QCUpK94uJiv/OlzggA/PWvf8Wrr77qd7m0tLSAif0qKiowZcoUbNiwIWA7AokGUoe9LlKCVH9JKtu1a+d3HZPJBACw2+3yNCnZYnZ2dsC2Ad72efnllzF58mS8+eabePPNN5Geno7Ro0djypQpAcWeukjtbuj4aiO1dd26dfV2lKX2du/evcF2+MPhcGDOnDl4//33Ay5Tn8hTm3HjxuH222/Hc889h5kzZ0KlUmHgwIG46KKLcMMNN8gfXcBZmwRKfitNP336dHAH0kI0pd31XavBflQ2Zf9SInR/5ObmoqysDGfOnEFmZmZQbWkIf/eZ0WhscF7texYATp06hcsuuwy7du0KuK9grlHpnvr73/+Ov//97wGXq52cuz4qKioAIKBNk5OTcfr0aRQVFYV0f7aGe6MpbWzMc76xBHrWN+Y6fP/99/GXv/wF1dXVAfdXVVXlV9BrDm6//XZs2rQJzz77LG699VZ5+hVXXIHs7Gycd955uPPOOzFlyhQfITaa2vDuu+/ivvvug8FgwJo1a7zeE/WRkpKCCRMmYOjQoejbty9uuukmjB07Fu3btw+4jtFoxKBBg7BixQrYbDb8+9//xoQJEzB16tSA62g0GnTr1g2PPvookpKScOedd+LBBx/Eiy++6LVdwPMOrLv/tLQ0TJw4ER988AE2bdqEiy66CIBnkO3jjz/GxIkTsW3bNgwZMkReJz09HYsWLcIDDzwQtPhsNBpx66234uabb8ZXX33lNehkNBpRVlYWsIiFxWIBEPhZJtGQze+//36cOnUK69evDzr580cffYTPPvsM//jHP3wE0MZy//33Y/ny5fjqq6+8pm/cuBF33XUXBg4ciJUrV8rCW9++ffHhhx/i3HPPxZo1a/Dll1/ikksu8dmu2WwGAL+FJxiGCS8sDjFMC3DOOefg+++/xy+//BLQYyMYdDpdwHn33HMPNmzYgNGjR+Phhx9Gnz59kJCQAKVSif/973+YMGECiKjR+66LPw+AQEijew1VDqrdSevXrx9+//13rF27Fl988QU2btyIDz74AB988AGGDRuGjRs3hlTtJNS2dunSRa5aEoimVKR55pln8P7776Nv37544oknMHDgQCQmJkKtVuPAgQPo3r17SOfrmWeewbx58/Dpp59i/fr1+P777/HTTz/hiSeewPvvv19vJ7w2DQlioRBqxbWmUF+7Q7lWm2P/LU19xxuKLf785z9j165dmDp1KhYuXIju3bvDZDJBoVDgtddew7x584K6RqXr4Pzzz0fnzp2D3n8g4uPjAQQWpvr374/Tp09jx44dYa2805hz3JL3ABA912FD11mw1+Hx48flCmnPPfccJk6ciOzsbOj1egDA8OHDsXXr1qCflXfddVfAQZpA3HvvvfLHs9vtlgV9fxWozj33XHTs2BFHjhzBkSNHGj14UB/haMPnn3+O66+/Hmq1Gh9//DGGDh0acjvi4+MxadIkLF26FOvWrcMNN9wQ1HrXXHMNPvvsM3z66adBv5euvfZa3Hnnnfj000+9xKHc3Fz88ssvDYqlkrdh7fV27tyJVatWYcuWLaipqUHv3r3xpz/9CR9//DEAoHfv3kG1DQC6du0KwNfrLScnB2VlZTh16hT69evns96pU6fk9gRDIJuvXr0aOp0OjzzyCB555BGf9dxut1xR8bnnnkP//v3lyoHr1q3D5s2bvZbfuXMnAOCWW25BfHy87KnXEIHs8M477wAArrzySp97X6lUYsqUKdi5cyc2b97sVxySBgQSEhIabAPDME2DxSGGaQEuueQSLF26FCtXrsTjjz8elNdLqKxatQpKpRKfffaZPMoiceTIkXrXlcoqB5qelZXVpLa1a9cOhw8fxtNPPx2SoKLT6TB58mRMnjwZgKck/axZs7B161a8/vrrmD9/fr3rS54YDR1f3bYCQI8ePZq1dOqqVasAeEbF63ZCGzpfgejevTsWLlyIhQsXwmaz4aWXXsLdd9+Nm266Se6ES+cykE2C9fICzpYV9jei73a7kZ+f35jD8EtWVhaOHj2K48ePo1evXj7zQ2l3Y/cPNM5uZWVlqKqq8js6fOLECa/tRwsWiwXr1q1Deno6VqxY4fPMCuUale6pyZMn484772xy29LS0gAgoNfXxIkTsWbNGrz//vteXhUN0ZhzXN89AAAnT54Mev/BkJWVhf379+P48eN+P17ruw6b+znfHHzxxRdwOBy466678Le//c1nfqjPyg8//DCgHQIxZ84cWRwqLCyEw+EAcFakrIs0vW4IVLhoahs2bdqEq666CkSE5cuX+w3xC5aUlBQAoYX7NGadpKQkKBQKn3UGDBiATz75JKCtpWeE5GFUG5VKhauuukoOxZTYsmULAMhiSjBI+zcYDF7TzznnHOzatQs7duzApZde6rPejh07AMCvcBSIQPaz2WzYtGlTwPWkeXW9b3744YeA60giUbC2CGQHSQRr7D0jTU9NTQ2qHQzDNB7OOcQwLcCll16Knj174sSJE1iyZEmz7KOsrAxms9lHGALQYBy8v/kulwsfffQRADR59F1y55YEkcbSu3dvLFiwAADw22+/Nbi8lMvoo48+8juC/9///tdn2uDBgxEfH49NmzYFHXLUGKTOjr+Qp3DkLdDpdLjrrruQmZmJoqIieeRUskmgcLZ3333Xa7n6kMS3AwcO+Mz75ptv4HQ6faZLH9O1QymDob52FxUV4auvvoIgCA16ezUW6R5Yu3atX9f2huzm75z+73//Q2lpKTp16uQVUtZYG4WTiooKiKKIzMxMH2HI6XSGdC+H6/6XOOeccwAA+/fv9zv/uuuuQ2pqKn744Yd686EAnlAqSVBpzDlOSUmBSqXC0aNHfc6X0+kM+LHWHPeBw+GQ88v5uw7/97//+T0u6TlY+zkfDdcgUP9zcvPmzSgoKAhpe8eOHQN5irEE/Vf7wzgpKUm2zbZt23y2X1lZKV+XwXqDhEpT2rBjxw5cfvnlsNvteP3114P23AmEdH2H4hHYmHW+/fZbiKLos87ll18OwCPo1H3fiKIo5xEbMGBAUPvJz8/Hhx9+iOTk5Hpz4NRF6isNHDjQa/rEiRMBeETJuvzyyy84cuQI+vTpE9DzyR/+7FffdQ14vHPqXs/Lli0LuM7o0aMBeOxORFi0aFGT7JCRkQHA//UKAD///DOAwOGy+/btg1arRc+ePYNqB8MwTaB5810zDCOxbds20mq1BIDuvvtuKi8v91mmuLiYxowZ47diCxqorNS7d28CQP/973+9pkvlyeGnQlTtUvZvvPGG1zyp3Gu/fv28pkuVb+pWxJDwV2np4MGDpNfrKT4+3m+lEpvNRitXrqSTJ08SEZHFYqHnn3+eysrKvJZzu9105ZVXEgB67LHHAtqi9vJSJZGHH37Ya96//vWvgHb55z//KVfqqVtWmchT0eQ///lPg/uX8HfuJk6cSADo//7v/7ymr1y5kpRKZUjVo1atWuW35Pi2bdvk8u9SJZDapexfffVVr+Wff/55AkDZ2dlBlbI/dOgQAaDExESv833kyBHq2bOnbN/aSNuqW267Nv7s9eOPP5JCoSCz2exVAttut8vVdgKVsg+lmlp9SOfsuuuu86r4tWXLFjIYDPWWsm/fvr2XjYqKiqhfv34EgJ5++mmvdaT78vPPP/fbjoaqlfmrctbQfVvX5k6nk+Lj40mlUnlVvnK5XHJVKX/bC1TK/qKLLiIANH/+fKqoqPDZ/86dO4MuZU9ElJaWRnq93qsse23WrFlDCoWCVCoVPfPMMz4V2pxOJ7399tuUkZHh1dbGnOORI0cS6lQLdDqddMstt8h2CnSufvvtt6CPmYjo+PHjpNfrSaVSeV0fbreb7rzzTgLqL8F9/fXXe9nsiy++IKVSSXq9Xn7+EnnuK7VaTRkZGQFLotdXrSzQsyvUa3TlypXy86K6ulqefurUKa9nTN3tNfS+bAqXX345AaD+/fvTmTNn5Ok1NTX0pz/9iQDfComnTp2i7t27U/fu3RvcfjDVyhrThn379skl6wOVTq/L559/Tt9//73PdIvFIvcRMjIyqKqqSp73+++/04oVK3yqT4miSO+//z7p9XoSBIF++uknr/lPPPGE32p6P/30E3Xp0oUA0FNPPeUzX3q2LFy40Ksq2cMPP0wAKC0tzevaISLavXu3T1n0kydP0nnnnUcAaNmyZT77eeyxx3yqmzkcDlq0aBEBIL1eT6dOnfKZ37FjRwJAzzzzjDy9urqahg0b5vfZ0Bib1wfqqVYWiPqqlb322mt+K/h99NFHZDKZCPCuPEtE9PHHH8vtWL16tde8Tz75hBQKBSkUCr8VJqV+xsiRI0M6BoZhGgeLQwzTgnz77beUkZFBAEir1dKoUaNoxowZNHnyZDr33HPlsqc9evSg3bt3e63bUGf33XfflTvKI0eOpJkzZ1KvXr1IoVDIH3OBxKGbbrqJBEGg8847j2bOnCkLTWaz2ad0aGPEISJPByAuLo4AUJcuXWjSpEk0Y8YMGjlyJBkMBgIgf3SVlZURAFKr1TR06FCaMWMGTZkyhdq3b08AqEOHDlRcXByMyemHH36Qt9+3b1+aOXMmDR48mARBoPnz5/u1i9vtpmuvvZYAkEajoSFDhsht6N27NwmCQOecc05Q+yfyf+42bdoki0CDBg2imTNn0rnnnksA6K677gpJHPrb3/4mizqXXXYZzZo1i8aMGSNvv674sH79etLr9V77HjBgAOGP8r6bN2/2Wr6+Dz6pxHx8fDxNmjSJxo0bRwaDga666qqA4oskigwePJjmzJlDc+fOpU8//bReexGdFe1UKhVdeOGFNGPGDPma6Nq1K+Xn53stH25x6NSpU3JHPzc3l2bMmEHjxo0LaGfpWHJycuiyyy6juLg4mjRpEk2ZMoUSEhIIAF1wwQU+AsdHH30k33/Tpk2juXPn0ty5cxs8rnCKQ0Rn7a1UKumiiy6i6dOnU4cOHUiv19OCBQtCEocKCgrkaywhIYHGjBlDs2bNookTJ8rn8G9/+5vftvljzpw5BHiXbK/Lxx9/LH+sJCQk0MUXX0yzZs2iCRMmyPZPSEigPXv2yOs05hyvW7eOFAoFAaBhw4bRlVdeSTk5OZSSkiLbo+65evrppwkApaen04wZM2ju3Ll0zz33BHXs//nPf0ihUJAgCHT++efTzJkz5ZLe6enpPh9u0rn/05/+RPHx8dSxY0eaMWMGjR49mgRBIAD073//22c/kyZNIgDUu3dvuvbaa2nu3Ln05ptvyvNbQhyy2+3y+ygjI4OmTp1KEydOpLi4OBo+fDgNHz68xcWhQ4cOyQK7yWSi8ePH0xVXXEFZWVkEeMq1131/S3bx97w5c+YMDRkyRP6Lj48nANSzZ0952uLFi5vchv79+xMASk1NpdmzZ/v9W7Jkidc60rMmOzubJk6cSLNmzaKxY8dSUlKS/Nyv+7745ptv5Hljx46lWbNm0aWXXkodOnQgAKRQKOjZZ5/1sUPt9+306dPpyiuvpHPOOUe229VXX+1XDD5x4gRlZ2cT4Ck/P3XqVOrVq5cs2Kxbt85nndmzZ5PZbKYxY8bQzJkzady4cfLg3T/+8Q+f5aX2abVaGjFiBM2YMYMuvfRS2d46nc7vwBcR0ffffy+/b4cMGUJXX301ZWZmEgCaNm2al6DVWJvXR7jFIWlev379aNq0aTRlyhR5EA7wDH7WRRRFuuqqq+Rlzj33XLrqqqvkPg8A+uc//+m3La+//joBvgNpDMM0DywOMUwLI3nFjBs3jtLT00mtVpPRaKTu3bvTn/70J1q1apXfDlAwnd01a9bQ0KFDyWQyUUJCAl144YW0ceNGubMWSBz65ptvaPXq1TRs2DCKi4uj+Ph4uuKKK7w+miQaKw4ReTq08+fPp65du5JOpyOTyUTdu3enGTNm0AcffCCPNDqdTnr55ZdpypQp1LlzZ4qLi6OEhATq168fPfzww1RSUlKvHery66+/0qRJkyg+Pp4MBgMNGzaMPv/884B2kfj0009p4sSJlJaWRmq1mtLS0mjQoEG0cOFC2r59e9D7D3Tutm7dSmPHjqXExEQymUw0fPhw+uijjxr8wKrLL7/8QnfeeScNHjyY0tLSSKvVUm5uLk2aNInWr1/vd53ffvuNZs6cKV+DmZmZdM011/gduauvPXa7ne69915q3749aTQa6ty5Mz366KPkcrkCii8HDx6kyZMnU3JysvxRXft6qu9a//zzz2ncuHEUHx9PGo2GunTpQgsXLvQ74hxucYjI49135513UufOnUmj0VBCQgKNHz+evvrqK7/LS8dis9no/vvvpw4dOpBGo6Hc3Fz6+9//Tlar1e96zz77LPXq1Uv+YKndzpYSh4iI3n77bRowYADFxcVRcnIyXXHFFbRr166A2wskDhF5vBpeeOEFGj58uHz+2rdvT6NHj6Ynn3zSy3OlIb7//nsCPJ5I9VFUVESLFi2iIUOGUFJSEqlUKkpOTqZRo0bRk08+6fdZEuo5JvJcl4MHDyatVktJSUl09dVX09GjRwOeK6fTSQ888AB17txZHhQIRcz4/vvvadKkSZScnExqtZpycnLopptu8vFcIPI+97///jtdccUVlJiYSHq9noYNG+Yzki9RUFBA1157LWVkZMjiWO1nZUuIQ0REpaWldNNNN1GHDh1Iq9VSp06d6J577iGLxRJwe80pDhER5efn0+233049evQgnU5HWq2WunTpQgsWLPB7HdcnDtWeF+jP3zsq1DZI56u+v7rnbdeuXXTHHXfI7xaVSkUmk4kGDBhA9913n5fXkkRhYSEtXryYxo4dS+3atSOtVkt6vZ66du1KN9xwQ8B354svvkhTpkyhTp06kcFgII1GQ9nZ2XTFFVfQqlWr/J+IWvtcsGAB5eTkyO/qGTNm+AhkEqtWraIJEyZQRkaGvPwVV1xRr7fWgw8+SBdddBHl5OSQXq8nnU5HXbp0oXnz5vl9b9bmt99+o6lTp1JycjLpdDrq3bs3PfPMM+R2u32WbYzN6yPc4tC7775L06ZNoy5dupDZbCa1Wk1ZWVk0ZcoUv0KchCiK9MYbb9CoUaMoISGBVCoVpaSk0KWXXlqv1+jYsWNJrVb7DP4wDNM8CEQhlMNhGKZNMWfOHLz99tv45ptvQkq+yDBMcAiCgNzcXDmvDRM+BgwYgFOnTuHUqVNBl2+ORZYtW4brr78eDz30UNC5QxiGYSLNqVOnkJubi2nTpmHFihWRbg7DxASckJphGIZhmFbHP//5TxQXF+Pf//53pJvCMAzDhJknn3wSCoUCixcvjnRTGCZmYHGIYRiGYZhWx6WXXooLLrgA//d//we73R7p5jAMwzBhIi8vD6+99hpuvPFGdO/ePdLNYZiYQRXpBjAMwzAMwzSGDRs2RLoJDMMwTJjJzMxETU1NpJvBMDEH5xxiGIZhGIZhGIZhGIaJYTisjGEYhmEYhmEYhmEYJoZhcYhhGIZhGIZhGIZhGCaGYXGIYRiGYRiGYRiGYRgmhmFxiGEYhmEYhmEYhmEYJoZhcYhhGIZhGIZhGIZhGCaGYXGIYRiGYRiGYRiGYRgmhmFxiGEYhmEYhmEYhmEYJoZhcYhhGIZhGIZhGIZhGCaGYXGIYRiGYRiGYRiGYRgmhmFxiGEYhmEYhmEYhmEYJoZhcYhhGIZhGIZhGIZhGCaGYXGIYRiGYRiGYRiGYRgmhmFxiGEYhmEYhmEYhmEYJoZhcYhhGIZhGIZhGIZhGCaGYXGIYRiGYRiGYRiGYRgmhmFxiGEYhmEYhmEYhmEYJoZhcYhhGIZhGIZhGIZhGCaGYXGIYRiGYRiGYRiGYRgmhmFxiGEYhmEYhmEYhmEYJoZhcYhhGIZhGIZhGIZhGCaGYXGIYRiGYRiGYRiGYRgmhmFxiGEYhmEYhmEYhmEYJoZhcYhhArB582YsXrwYFRUVkW5KzPDiiy/inXfeiXQzWowTJ05g0aJF+P333yPdlIjjdDrxf//3f1i9enWkm8IwDNPqiNU+S0VFBRYvXowtW7ZEuilNgt+BLcN7772HV199NdLNYJiohcUhhvHD8ePHMXnyZJhMJsTHx0e6OTHBiy++iMWLF2Po0KFBr7Nx40YIgoCNGzc2X8OakZycHBQXF2Pq1KmwWCyRbk5Euffee/H666+HdP5rc+zYMQiCgGXLlgW1/AcffICkpCRUV1f7zLPb7Y1qQ21KSkpgMBjwxRdfNHlbDMMw9RHLfZb4+HjExcXhyiuvRF5eXkjrLlu2DIIg4NixYwGXCfXd0lga8w4Mpv3RhCAIWLRoUdi2N2bMGPTp0yfo5X/66SfccsstWLRoEdasWRPSvhYtWgRBEEJtYqvgp59+gkajwfHjx33mORyOJm/f6XSiffv2WLp0aZO3xTQ/LA4xYUcQhKD+ovWD3ul0Yvr06ZgzZw5uv/32ZtnH0qVLm72jES089thj+OSTT+pd5ueff8aDDz6I1atXo2vXri3TsCjhhRdeQLdu3fDXv/41pPWkjopCocDJkyd95ldWVkKv10MQBNx8883haq5fvvjiiyZ1+D799FO8++67WLt2LVJTU8PXsAC43W489NBDuOWWW2A0GuXpJSUlmDBhAuLi4tCxY8eAz6idO3fimmuuQfv27aHVapGUlIQLL7wQb731FtxuNwAgOTkZf/7zn/GPf/yj2Y+HYZjGw32Whon2Pstdd92Fq666CjNnzpSfwY1lzJgxmDNnTljaZbVasWjRogavnZZ+B8YiDocD119/PZYuXYp3330XN910k4+XXbDnK5oJps9dl7///e+YOXMmcnNz5Wk2mw2zZs2CwWBAeno6PvjgA7/rHj58GPPmzUOnTp2g0+lgNpsxYsQIPP/886ipqQEAqNVq3HHHHfjnP/8Jm83W6GNjWgZVpBvAtD3qhgX95z//wbp163ym9+zZsyWbFTR79uzBjBkz8Le//a3Z9rF06VKkpKSErQMSzTz22GOYNm0aJk+eHHCZPXv24KOPPgrZa2TUqFGoqamBRqNpYisjh0KhwPvvv49nn30WZ86cQVZWVkjra7VavP/++1i4cKHX9I8//jiczayXL774Ai+//HKjBaJjx47hyy+/RJcuXcLbsACsXr0a+/fvx1/+8hev6ffeey9sNhs++ugjbNu2DVdffTWOHj0Kg8EgL/P666/jr3/9K9LT03Httdeia9euqKqqwtdff425c+ciLy8P999/PwDgr3/9K1544QVs2LABY8eObZFjYxgmNLjP0jCtoc/ywgsv4Nlnn8X+/fvRq1evsG03NzcXNTU1UKvVIa9rtVrx8MMPA/CIToFo7Dvw2muvxYwZM6DVakNuW6yxf/9+3HbbbZgxYwYA4PHHH8fvv/+OYcOGycvUd74eeOAB3HvvvS3W3sYSTJ+7Njt37sT69et9wjKffvpp7N69G++//z6OHz+OP//5zxg6dChycnLkZdasWYOrrroKWq0W1113Hfr06QOHw4HvvvsOd999N/bs2YPXXnsNAHD99dfj3nvvxfLly3HDDTeE7XiZ8MPiEBN2rrnmGq/fP/zwA9atW+czPVrp378/+vfvH/TyRASbzQa9Xt98jWpF7WgMoXY4bTYbNBoNFAoFdDpd8zSqHkRRhMPhCNu+4+Li8Pe//71R61566aV+xaHly5dj4sSJ+Oijj8LRxLDhcrkgiqKXoNecHzX+eOuttzBixAhkZ2d7Td+6dSvee+89nHPOOZg8eTLWrFmDffv2YdCgQQA8z7K//vWvGDZsGL744guYTCZ53dtuuw3btm3Db7/9Jk/r2bMn+vTpg2XLlrE4xDBRCvdZIkO426FQKHDnnXeGZVu1EQSh2fsZob4DLRYLDAYDlEollEplM7UqMP7e49FO37590bdvX/n3zJkzQ1pfpVJBpWp7n81vvfUWcnJyfAZnt27dikcffRRXXHEFAOC7777Dzz//LItDR48exYwZM5Cbm4sNGzYgMzNTXnfBggU4dOiQV+heQkICxo8fj2XLlrE4FOVwWBkTEURRxHPPPYfevXtDp9MhPT0d8+bNQ1lZmddyHTp0wGWXXYaNGzfi3HPPhV6vR9++fWWXz48//hh9+/aFTqfDoEGD8Msvv3itP2fOHBiNRhw5cgQTJkyAwWBAVlYWFi9eDCJqUpu++uoruU1Scru33noLY8eORVpaGrRaLXr16oVXXnnFZ/09e/Zg06ZNsru6NEIRKKbZX1x5fe0oLy/HbbfdJoe9dOnSBY8//jhEUQzq/Hz55ZcYOXIkDAYDTCYTJk6ciD179sjzN2zYAIVCgQcffNBrveXLl0MQBPmYBUGAxWLB22+/LR9rbSHo9OnTuOGGG5Ceng6tVovevXvjzTff9NqmlFfov//9Lx544AFkZ2cjLi4OlZWVAXMO/fjjj7j44ovlXASjR4/G999/77XMnDlz0KFDB59j93cOpNCs9957D71794ZWq8XatWuDPoZABHO9NMSsWbOwc+dO7Nu3T56Wn5+PDRs2YNasWX7XKSwsxNy5c5Geng6dTodzzjkHb7/9ttcyUp6Fp556Cq+99ho6d+4MrVaLwYMH4+eff5aXmzNnDl5++WXZTtJf3W0899xz8jakBNz79u3DtGnTkJSUBJ1Oh3PPPRefffaZVztKS0tx1113oW/fvjAajTCbzbjkkkuwa9eukOwkYbPZsHbtWlx44YU+8zp16oQXXngBhw8fxsqVK3Ho0CEvN+uHH34YgiDgvffe8xKGJM4991wfofOiiy7C6tWrfZ43DMO0HrjPEr19lk8//RQTJ05EVlYWtFotOnfujEceeaTJ4WUS/nIOSefp9OnTmDx5MoxGI1JTU3HXXXfJ+z127JgcIia9O+rm3AnmHSjZctOmTZg/fz7S0tLQrl07r3l1cw411IcDPJ4x/ryZ6vaNGnqP+8Nut+P2229HamoqTCYTLr/8cpw6darBfUmEmt9n+/btGD58OPR6PTp27Ih//etfXvMdDgcefPBBDBo0CPHx8TAYDBg5ciS++eYbr+Os73zV1zdcuXIlevXqBb1ej2HDhmH37t0AgFdffRVdunSBTqfDmDFj/OaGCqa/Ku370KFDmDNnDhISEhAfH4/rr78eVqvVqz319bn98cknn2Ds2LE+x9apUye89tpr2L9/P9atW4fNmzd7ebY98cQTqK6uxhtvvOElDEl06dLFR/S86KKL8N1336G0tLTeNjGRpe1JoEyrYN68eVi2bBmuv/563HrrrTh69Cheeukl/PLLL/j++++93HcPHTqEWbNmYd68ebjmmmvw1FNPYdKkSfjXv/6F+++/H/PnzwcALFmyBFdffTX2798PheKs7ul2u3HxxRdj6NCheOKJJ7B27Vo89NBDcLlcWLx4caPatH//fsycORPz5s3DjTfeiO7duwMAXnnlFfTu3RuXX345VCoVVq9ejfnz50MURSxYsAAA8Nxzz8m5TiRvkfT09EbZ0V87rFYrRo8ejdOnT2PevHnIycnBli1bcN999yEvLw/PPfdcvdt85513MHv2bEyYMAGPP/44rFYrXnnlFZx//vn45Zdf0KFDB4wdOxbz58/HkiVLMHnyZAwcOBB5eXm45ZZbcOGFF8r5c9555x38+c9/xnnnnSeH8HTu3BkAUFBQgKFDh8ov19TUVHz55ZeYO3cuKisrcdttt3m165FHHoFGo8Fdd90Fu90ecMRqw4YNuOSSSzBo0CA89NBDUCgUcgf422+/xXnnndcoW2/YsAEffPABbr75ZqSkpKBDhw4hH0NdgrleGmLUqFFo164dli9fLl/PK1asgNFoxMSJE32Wr6mpwZgxY3Do0CHcfPPN6NixI1auXIk5c+agvLzc52W+fPlyVFVVYd68eRAEAU888QSmTJmCI0eOQK1WY968eThz5ozfMAyJt956CzabDX/5y1/kHD179uyRvXfuvfdeGAwGfPDBB5g8eTI++ugjXHnllQCAI0eO4JNPPsFVV12Fjh07oqCgAK+++ipGjx6N33//PeQwvO3bt8PhcGDgwIE+8x577DFMmDABb775JlQqFZ577jmkpKQA8Libf/311xg1apSXW3VDDBo0CM8++yz27NkTUuJMhmGiB+6zRG+fZdmyZTAajbjjjjtgNBqxYcMGPPjgg6isrMSTTz7ZqHYGg9vtxoQJEzBkyBA89dRTWL9+PZ5++ml07twZN910E1JTU/HKK6/gpptuwpVXXokpU6YAAPr16wcAQb8DJebPn4/U1FQ8+OCD9RawCKYP1xj8vccD8ec//xnvvvsuZs2aheHDh2PDhg1++yPhoKysDJdeeimuvvpqzJw5Ex988AFuuukmaDQa2UOlsrISr7/+OmbOnIkbb7wRVVVVeOONNzBhwgT89NNP6N+/f4PnKxDffvstPvvsM/l+WbJkCS677DIsXLgQS5cuxfz581FWVoYnnngCN9xwAzZs2CCvG2p/9eqrr0bHjh2xZMkS7NixA6+//jrS0tLw+OOPA6i/z+2P06dP48SJE377Q/fddx8uuOAC9OjRA4An7P6cc86R569evRqdOnXC8OHD67VPbQYNGgQiwpYtW3DZZZcFvR7TwhDDNDMLFiyg2pfat99+SwDovffe81pu7dq1PtNzc3MJAG3ZskWe9tVXXxEA0uv1dPz4cXn6q6++SgDom2++kafNnj2bANAtt9wiTxNFkSZOnEgajYaKiooa3aa1a9f6HKvVavWZNmHCBOrUqZPXtN69e9Po0aN9ln3ooYfI32351ltvEQA6evRog+145JFHyGAw0IEDB7ym33vvvaRUKunEiRM+25eoqqqihIQEuvHGG72m5+fnU3x8vNd0i8VCXbp0od69e5PNZqOJEyeS2Wz2OidERAaDgWbPnu2zr7lz51JmZiYVFxd7TZ8xYwbFx8fLtvzmm28IAHXq1MnHvtI86ZyLokhdu3alCRMmkCiK8nJWq5U6duxIF110kTxt9uzZlJub69Muf+cAACkUCtqzZ0+jjiEQwV4v/pDaWVRURHfddRd16dJFnjd48GC6/vrr5bYvWLBAnvfcc88RAHr33XflaQ6Hg4YNG0ZGo5EqKyuJiOjo0aMEgJKTk6m0tFRe9tNPPyUAtHr1anla3XtcQtqG2WymwsJCr3njxo2jvn37ks1mk6eJokjDhw+nrl27ytNsNhu53W6f7Wq1Wlq8eLHPvt5666167fb6668TANq9e7ff+RaLhX788UfKy8vzmr5r1y4CQH/729/q3X5dtmzZQgBoxYoVIa3HMExk4D5L6+mzBDqGefPmUVxcnNf7xR/+2lkXf+8W6TzVfgcREQ0YMIAGDRok/y4qKiIA9NBDD/lsN9h3oNTG888/n1wuV73tD6UPN3r0aL/ntG7fqL73uD927txJAGj+/Ple02fNmuVji1D6Yf4YPXo0AaCnn35anma326l///6UlpZGDoeDiIhcLhfZ7XavdcvKyig9PZ1uuOEGeVp95ytQ31Cr1XpdP9J9nZGRIfeniIjuu+8+r3MVSn9V2nftthIRXXnllZScnOw1LVCf2x/r16/36c/Vxm6307Zt2+jYsWNe0ysqKggAXXHFFUHtR+LMmTMEgB5//PGQ1mNaFg4rY1qclStXIj4+HhdddBGKi4vlv0GDBsFoNHq5eQJAr169vBLGDRkyBAAwduxYrxF8afqRI0d89lm7WpPk5eFwOLB+/fpGtaljx46YMGGCz35qx85XVFSguLgYo0ePxpEjR3yqIoQDf+1YuXIlRo4cicTERK9jufDCC+F2u7F58+aA21u3bh3Ky8sxc+ZMr3WVSiWGDBniZYe4uDgsW7YMe/fuxahRo7BmzRo8++yzQXlVEBE++ugjTJo0CUTkta8JEyagoqICO3bs8Fpn9uzZDeYm2LlzJw4ePIhZs2ahpKRE3qbFYsG4ceOwefPmoEPr6jJ69GivJJeNOYa6hOt6mTVrFg4dOoSff/5Z/jdQSNkXX3yBjIwMr3h7tVqNW2+9FdXV1di0aZPX8tOnT0diYqL8e+TIkQD832eBmDp1qlcFltLSUmzYsAFXX301qqqqZLtJ1cIOHjyI06dPA/Ak3JZG1d1uN0pKSmA0GtG9e/cG7euPkpISAPA6ptrExcXhvPPOQ0ZGhtf0yspKAPAbTlYf0n6Ki4tDbSrDMFEA91nCR7j7LHWPQXqfjBw5Elar1SvcujmoW2V05MiRQb0bQ3kHStx4440N5hcKpQ8XKnXf44H44osvAAC33nqr1/SGPKkbi0qlwrx58+TfGo0G8+bNQ2FhIbZv3w4AUCqVsre5KIooLS2Fy+XCueee26h+RG3GjRvn5Y0l3ddTp0716i/Uvd8b01/1d72VlJTI/ZNQaag/pNFoMGjQIK/weoD7Q20dDitjWpyDBw+ioqICaWlpfucXFhZ6/a4rNsTHxwMA2rdv73d63Xh7hUKBTp06eU3r1q0bAMjxv6G2qWPHjn6X+/777/HQQw9h69atXnHAgKfjJbUxXPhrx8GDB/Hrr78GfInXPZa66wIImDzXbDZ7/R4xYgRuuukmvPzyy5gwYULQSeaKiopQXl6O1157Ta5k0FA7A9m8NlL7Z8+eHXCZioqKgC/C+qi7/8YcQ13Cdb0MGDAAPXr0wPLly5GQkICMjIyA5/D48ePo2rWrVxgDcLYSz/Hjx72m173/JNvVvc/qo67tDh06BCLCP/7xj4Cl3gsLC5GdnQ1RFPH8889j6dKlOHr0qFceieTk5KDbUBcKMQeQdO1XVVU1aj+h5E9gGCZ64D5L+Ah3nwXwhGc98MAD2LBhg89HcnMIXBI6nc6nzYmJiUG9G0N5B0qE0gcKtg8XCsHsH/D0IRQKhU84kxTKGG6ysrK8KooC3veLlGj57bffxtNPP419+/bB6XTKywZ7XIFo7P3emP5qff2xppxb7g8xtWFxiGlxRFFEWloa3nvvPb/z675sA42UBJoe6kOuMW3y58Fy+PBhjBs3Dj169MAzzzyD9u3bQ6PR4IsvvsCzzz4blMdKoAdmoMSK/tohiiIuuugin+pVEtJL0x9SG9955x0fzwkAPpUa7Ha7nGjz8OHDsFqtiIuLC7j9uvu55pprAr4Y68Z5B1PRRNruk08+GbB6i9FoBNB0WzfmGGoTjuulNrNmzcIrr7wCk8mE6dOn+4g/jSUc91kg2911111+R7MByIkPH3vsMfzjH//ADTfcgEceeQRJSUlQKBS47bbbGuUFJglKZWVlclLPYOjSpQtUKpWcaDJYpI6glLuIYZjWBfdZAhPpPkt5eTlGjx4Ns9mMxYsXo3PnztDpdNixYwfuueeeRnsKB0NTqoSF8g6UCKUPFEwfThAEv9deKOeuqYR6/TSWd999F3PmzMHkyZNx9913Iy0tDUqlEkuWLMHhw4ebtO3G3u+h9FeD3Wao1O4PhYLZbEZWVpZXddZg4P5Q64DFIabF6dy5M9avX48RI0a0SClVURRx5MgRrw7GgQMHAEB2BQ1Hm1avXg273Y7PPvvMS93358Yb6IUojQKUl5cjISFBnl7Xm6M+OnfujOrqar/VmIJZFwDS0tKCWv+hhx7C3r178dRTT+Gee+7BvffeixdeeMFrGX/HKlWwcLvdjWpnIKT2m83mBrebmJiI8vJyn+nB2rqpxxDK9RIMs2bNwoMPPoi8vLyAiaEBIDc3F7/++itEUfQSkCT3+7ruw8EQ6iiQNCquVqsbtN2HH36ICy64AG+88YbX9PLy8kZ1MKTkikePHvUqa9sQcXFxGDt2LDZs2ICTJ0/6jAoG4ujRowDOemYxDNO64D5L9PZZNm7ciJKSEnz88ccYNWqUPF167kaaQHYL5R0YCqH04RITE/2GwIVy7vyRm5sLURRx+PBhL2+h/fv3+21DU/phAHDmzBlYLBYv76G698uHH36ITp064eOPP/Y6Jw899JDXtlrSoyWU/moohHIMtftDoXLZZZfhtddew9atW73CaOuD+0OtA845xLQ4V199NdxuNx555BGfeS6Xy++Loqm89NJL8v+JCC+99BLUajXGjRsXtjZJin5tBb+iogJvvfWWz7IGg8HvNqWXRe0Ye6ksZbBcffXV2Lp1K7766iufeeXl5XC5XAHXnTBhAsxmMx577DEvt1uJoqIi+f8//vgjnnrqKdx222248847cffdd+Oll17yyVnj71iVSiWmTp2Kjz76yO/IQ+39hMKgQYPQuXNnPPXUU6iurq53u507d0ZFRQV+/fVXeVpeXh5WrVoV1L6aegyhXC/B0LlzZzz33HNYsmRJvRXZLr30UuTn52PFihXyNJfLhRdffBFGoxGjR48Oed9SpyzYezctLQ1jxozBq6++iry8PJ/5tW2nVCp9RsVWrlzpk48hWAYNGgSNRoNt27aFvO5DDz0EIsK1117r9/ravn27z726fft2xMfHo3fv3o1qL8MwkYX7LNHbZ/F3DA6HA0uXLg16/82J5Eld13ahvANDIZQ+XOfOnbFv3z6vabt27fIpox4ql1xyCQD4DBT6qzrX1H4Y4LneX331Vfm3w+HAq6++itTUVAwaNAiA/+vkxx9/xNatW722Feh8NQeh9FdDIdC96o/s7Gy0b9++Uf2hhQsXwmAw4M9//jMKCgp85h8+fBjPP/+817Tt27dDEISgxSQmMrDnENPijB49GvPmzcOSJUuwc+dOjB8/Hmq1GgcPHsTKlSvx/PPPY9q0aWHbn06nw9q1azF79mwMGTIEX375JdasWYP7779fdr0OR5vGjx8PjUaDSZMmYd68eaiursa///1vpKWl+bz8Bw0ahFdeeQWPPvoounTpgrS0NIwdOxbjx49HTk4O5s6di7vvvhtKpRJvvvkmUlNTceLEiaCO9+6778Znn32Gyy67DHPmzMGgQYNgsViwe/dufPjhhzh27FhAjwuz2YxXXnkF1157LQYOHIgZM2bI+16zZg1GjBiBl156CTabDbNnz0bXrl3xz3/+EwDw8MMPY/Xq1bj++uuxe/duWTAYNGgQ1q9fj2eeeQZZWVno2LEjhgwZgv/7v//DN998gyFDhuDGG29Er169UFpaih07dmD9+vUoLS0N6nhro1Ao8Prrr+OSSy5B7969cf311yM7OxunT5/GN998A7PZjNWrVwMAZsyYgXvuuQdXXnklbr31Vrnca7du3YJOUNiUYwjlegmWumXo/fGXv/wFr776KubMmYPt27ejQ4cO+PDDD/H999/jueeeCznBIAC5A3brrbdiwoQJUCqVmDFjRr3rvPzyyzj//PPRt29f3HjjjejUqRMKCgqwdetWnDp1Crt27QLgGZ1avHgxrr/+egwfPhy7d+/Ge++955OTI1h0Oh3Gjx+P9evXe5WFDobhw4fj5Zdfxvz589GjRw9ce+216Nq1K6qqqrBx40Z89tlnePTRR73WWbduHSZNmsQx9gzTSuE+S/T2WYYPH47ExETMnj0bt956KwRBwDvvvNPoMJtwo9fr0atXL6xYsQLdunVDUlIS+vTpgz59+gT9DgyFYPtwAHDDDTfgmWeewYQJEzB37lwUFhbiX//6F3r37t3oBMcA0L9/f8ycORNLly5FRUUFhg8fjq+//hqHDh3yWTYc/bCsrCw8/vjjOHbsGLp164YVK1Zg586deO2116BWqwF4+hEff/wxrrzySkycOBFHjx7Fv/71L/Tq1ctLmKnvfIWbUPqroRCozx2IK664AqtWrQIRhdRP6dy5M5YvX47p06ejZ8+euO6669CnTx84HA5s2bIFK1euxJw5c7zWWbduHUaMGNGkfJFMC9BCVdGYGCZQmevXXnuNBg0aRHq9nkwmE/Xt25cWLlxIZ86ckZfJzc2liRMn+qyLOuW5ic6W23zyySflabNnzyaDwUCHDx+m8ePHU1xcHKWnp9NDDz3kUx67qW0iIvrss8+oX79+pNPpqEOHDvT444/Tm2++6VMqNT8/nyZOnEgmk4kAeJUT3b59Ow0ZMoQ0Gg3l5OTQM888E7AsbKB2VFVV0X333UddunQhjUZDKSkpNHz4cHrqqafk0p718c0339CECRMoPj6edDodde7cmebMmUPbtm0jIqLbb7+dlEol/fjjj17rbdu2jVQqFd10003ytH379tGoUaNIr9cTAK8SmwUFBbRgwQJq3749qdVqysjIoHHjxtFrr73m1RYAtHLlSr/tRJ1SwEREv/zyC02ZMoWSk5NJq9VSbm4uXX311fT11197Lfe///2P+vTpQxqNhrp3707vvvtuwHKlda+3UI4hEMFeL/6oXcq+Pvy1vaCggK6//npKSUkhjUZDffv29SkB7+9+qr3N2qVeXS4X3XLLLZSamkqCIMj2q28bRESHDx+m6667jjIyMkitVlN2djZddtll9OGHH8rL2Gw2uvPOOykzM5P0ej2NGDGCtm7d6lOGN9hS9kREH3/8MQmC0GCJ5EBs376dZs2aRVlZWaRWqykxMZHGjRtHb7/9ttdzZe/evQSA1q9f36j9MAzT8nCfpXX1Wb7//nsaOnQo6fV6ysrKooULF9JXX33lt29Ql6aUsjcYDD7L+us/bNmyhQYNGkQajcbn3RnMO1Bq488//xx0+xvqw0m8++671KlTJ9JoNNS/f3/66quvApayD/Qe90dNTQ3deuutlJycTAaDgSZNmkQnT570WyY+2H6YP0aPHk29e/embdu20bBhw0in01Fubi699NJLXsuJokiPPfYY5ebmklarpQEDBtDnn3/uc6xEgc9XsH3DQPYK1JcNpr8aqL/n7/zX1+f2x44dOwgAffvtt/UuF4gDBw7QjTfeSB06dCCNRkMmk4lGjBhBL774ItlsNnm58vJy0mg09PrrrzdqP0zLIRBFibzOMM3AnDlz8OGHH/p12WQYJjZxu93o1asXrr76ar9hGeHitttuw+bNm2VXaoZhmPrgPgvDMC3NuHHjkJWVVW++yqby3HPP4YknnsDhw4dbJHcb03g45xDDMAwTUyiVSixevBgvv/xys32ElZSU4PXXX8ejjz7KwhDDMAzDMFHJY489hhUrVjQ5GXkgnE4nnnnmGTzwwAMsDLUCOOcQwzAME3NMnz4d06dPb7btJycn8+g/wzAMwzBRzZAhQ+BwOJpt+2q1OugcZEzkYc8hhmEYhmEYhmEYhmGYGIZzDjEMwzAMwzAMwzAMw8Qw7DnEMAzDMAzDMAzDMAwTw7A4xDAMwzAMwzAMwzAME8O02YTUoijizJkzMJlMXCmGYRiGYWIYIkJVVRWysrKgULTucTHu3zAMwzAMA4S/f9NmxaEzZ86gffv2kW4GwzAMwzBRwsmTJ9GuXbtIN6NJcP+GYRiGYZjahKt/02bFIZPJBMBjKLPZHNZti6KIoqIipKamtvoRyHDCdvEP28U/bBf/sF38w3bxD9vFP3XtUllZifbt28t9g+ZiyZIl+Pjjj7Fv3z7o9XoMHz4cjz/+OLp37y4v89prr2H58uXYsWMHqqqqUFZWhoSEhKD30Zz9G4CvqUCwXXxhm/iH7eIftot/2C7+Ybv4p7n7N21WHJJcrc1mc7OIQzabDWazmS/WWrBd/MN28Q/bxT9sF/+wXfzDdvFPILs0dxjWpk2bsGDBAgwePBgulwv3338/xo8fj99//x0GgwEAYLVacfHFF+Piiy/GfffdF/I+mrN/A/A1FQi2iy9sE/+wXfzDdvEP28U/bBf/NHf/ps2KQwzDMAzDMC3J2rVrvX4vW7YMaWlp2L59O0aNGgUAuO222wAAGzdubOHWMQzDMAzDBIbFIYZhGIZhWhS3043ivcVwO9wQFAJSeqZArVdHullhp6KiAgCQlJTU6G3Y7XbY7Xb5d2VlJQDP6KEoik1roB9EUQQRNc+2XSJKD5UiuXtyq0umHW67kEgoOVCCpK5JUChb56h4OG1ScqAE8bnxUGlb/6dJU+1SdqQMhnQDNAZNmFsWWRpjl4oTFdDGa6GL1zVjyyJLcz5zWzNsF//UtUu47dP6n8AMwzAMw0Q9JBJObjkJR7UD9io7bGU2eZ7b4Ua7oa07UXRdRFHEbbfdhhEjRqBPnz6N3s6SJUvw8MMP+0wvKiqCzWbzs0bTEEURFRUVIKKwu/KX7S9D3k95yHXkwpBhCOu2m5tw26XqZBVObjyJ7BHZiO8UH4YWtjzhsklNcQ2OfnkUaQPSkNInJYwtjAxNsYvT6sTBVQeR1D0JGedlNFMLI0OodiGRsO+jfTC1M6Hd6Lb1fqhNcz5zWzNsF//UtUtVVVVYt8/iEMMwDMMwzU51fjWKfi+CoBAgKASk9UlDaq9UHPj8AMqPlyPr3CwoVG2nA7hgwQL89ttv+O6775q0nfvuuw933HGH/FtKPpmamtpsOYcEQWiWJKDOo06YTWbEG+KRlNZ4b6pIEG67CCUCzCYzzHFmpKWlhaGFLU+4bFJhq4DZZIZJZ2q1tqhNU+xSU1oDs8kMg9rQJmxRm1Dt4rK5YDKYoFfq25wtatOcz9zWDNvFP3XtotOF16uOxSGGYRiGYZqNmtIaWEusKD9aDgDocWUPxCXHyfPN7cwoOVCC31b8hn5/6hehVoaXm2++GZ9//jk2b97c5NKyWq0WWq3WZ7pCoWi2DrMgCM2yfafVCUEhgJytcyQ4nHYRHSIEhQDRIbZKW0iEwyai02MLt83dqm1Rm8baRbKFq8bVZmxRm1DsQi7y2MLaNm1Rm+Z65rZ22C7+qW2XcNuGxSGGYRiGYZqNg18chNPqBABoTBovYQgAMvpnAALaRK4RIsItt9yCVatWYePGjejYsWOkmxRVOC2e68Bld0W4JZHHVeOxgcvGtnDb3QAgPydiGbfDYwuHxRHhlkQeyRYumwuiS2xTnqWNwWFxQKFUQKVr/e9KJnrhq4thGIZhmGbB7XTDaXXClG1CWp806JP0PsvoEnToMLpDyzeuGViwYAGWL1+OTz/9FCaTCfn5+QCA+Ph46PWeY8/Pz0d+fj4OHToEANi9ezdMJhNycnKalLi6NSB98EpiQCwjiUIsDp0VC501LA5J94arxgUSPZ4zsUptEdlhcbTppNTBcHDNQWiMGnS9tGukm8K0YWJbgmUYhmEYptlwVHnEAGO6EQm5CdCafMOj2hKvvPIKKioqMGbMGGRmZsp/K1askJf517/+hQEDBuDGG28EAIwaNQoDBgzAZ599FqlmtwhExJ5DtWBx6CzsOXQWyVsGYHvUtoWjmj2pHNUOWIutkW4G08ZhzyGGYRiGCTP2SjvslXZAAAypBig1ykg3KSLYKz0l2LXmti0KSRBRg8ssWrQIixYtav7GRBmSJwTAnkMAi0O1kcRC0SnGfPhQXUFEY2xb5exDgcWhs5BIEF2e+8Nlc3FoGdNs8JXFMAzDMGFAdIlwWBywV9hx6KtDwB86QUKHBHQe3zmyjYsARCSLQxpT7H7gMB5q51Cp/dEXq7A4dJbaYqGzxtnmPQzrgz2HzuJlC0ts20J0ifL/beU2GDOMEWwN05ZhcYhhGIZhwsDeVXthK7MBAASFgHbD2qH0UCkqTlSgaG8RFCoFEjokQKlu+15Ep344hYJfC+Tfsfyxx3io/XHHYWXe4hARQRA4twzgEURi+XnhlWcnxr1l2HPoLLVtweIQ05ywOMQwDMMwTcRpdcJWZoMhzQBTlgnmdmaYskxQx6lxZP0RnPj2BABPZa7s87Ij3Nrmp/RQKVQ6FUzZJujidTEdGsF48PIcivGwMik8RMJtd8d0mEjt60Gq4harsOfQWWpfFzEvDjm9xSGGaS5i903EMAzDNAsuuwvlR8tBRFCqlUjomACFsm3nkLAUWgAAKT1SkNIjRZ6e2CkR3SZ1g+gSceLbEyg5WAKNUQNLkQXV+dUAPF41XS7u0iaq0ohuEY4qB5xWJ1J7pSLn/JxIN4mJEqSPO41JE/OhVHWPP9ZziNT1HIpl3HY3FCqFJ0w51gWRP4QytUEd87YQnd5hZQzTXMTum4hhGIZpFs78fAZFvxednSAACqUCGpMGPa7o0aaSMxf8WoD8XfmyF4AhzeCzjCnTBABI6pqE/F/yceI7jxeR5E1TeaoS5cfLkdAhoVWHlpQeKsXRDUfl3+z2ztRGCivTJ+lRcbwipst0S+KQSqeCy+aKebHMbXdDY9J4hOUYL2fvdrih0qsgOkUWyhxuQAB0CTpYCiyRbk5E8Qorq2BxiGk+WBxiGIZhmozT6kTBrwVwO9woPVwKfZIe7Ya2kz1kRKeI6vxq7Pt0H9R6NcztzMjonxHpZjeZsqNlcDvcMKQaoI3XQpeoC7hs5sBMmLPNskeVIc0Ap9WJX9/7FUfWHQHQupNXS95TiZ0TodarkdAhIbINYqIKh8UBlU4FdZwawB8fwTHqLSOJQboEHarzq2NaHBJdIkgk6BJ0stdhLON2uKHSqgAth1K5HW4oNUpoTVpUna6Cy+7y2CYGkcPKBE8VUNEttnmPbCYyxOYdxjAMwzQZ0SXi949+h6PK4SnhXauKd3q/dJjbmWFuZwbgqVx1+KvDqC6ohr3Sjqq8KiR3S5Y/FFsrTosT+kQ9ul/evcFlFUoFTFkmr2nqODXaD2uP6vxqVOdXo/J0ZXM1tdmRRvw7XtAxZj1CmMA4LU6oDWr5485lj91QKhaHziKFlOnidR4BIMZzDrnsLmiMGihUCtSU1sR0snJJHFIbPP0ER7UjZsUhKaxMn6hHTWkN7JV26BP1EW4V0xaJzTuMYRiGaTK2chvsFXboEnXQmrVI6pwEc3szBIXgU5FLEAR0ubgLAKDsSBmOrD+CPSv3QKFSIHNAJlJ7pUbiEJoEEcFpdUKf3LQOWlqfNKT1ScOxjcdQcqBE7hC3Nlw1Lii1ShaGGB+ICI5qB8ztzFBqPdd2LCellsWhPzwNY1kckq4DpVYJlV7FnkOSIBKnBokEl80Ftb51D6I0FskWUgi2o9qBuOS4CLcqMkieQ3EpcagprYGt3MbiENMssD8awzAM0yjslXYAQOaATHSZ0AVJXZKg0qoaLNUenxuPxE6J0CXo4LQ6UX6svAVaG35cNhdIpLB5P8kdYEvrDCVw1jhj9iOGqR/pXtEYNV6eQ7GK5GWnS2BxSLoOVFoV1Hp1TItDbqcbII9QJr1XpFxdsUhdcSiWbSF5Dkl5DTkpNdNcsDjEMAzDNApJHNKatSGtp1Aq0OnCTuhxRQ9ojJpWm4BU+ojRGMJTpl1ynW+tHWBXjQsqPTskM75I17TaoGbPIXiHldX+HYvU9hxSx6lb7fsgHEhJh728ZVrpYEE48Oc5FKtI10ZcqsdzisUhprlgcYhhGIZpFI0Vh2qj1qtbXY4JIoK1xIrqPE8peknUaSqSyNQaO8CxHv7A1I/0gasxsOcQ8IcYJHi8BQWFENPiUG3PIZVeBXKTV2WmWEIWyjTsOSQlKldpVa363RgupLAyjUEDdZwa9gp7hFvEtFV4iI9hGIYJibwdeag8XYma0hoo1IomJZVVx6lhKbK0qqSbRXuKcHLLSfm3NKrZVKTtFPxagPJj5UjtnYr49vFh2XZzU7s0N8PURfqoUxvUcj6tWPccUmlVEARBLmcfq9T1HAI8XpmtMe9aU5FEMZVWFfOeQ7W9qBQqTz8jlsUhKaxMoVZAl6CDtdga4RYxbRXuxTEMwzBBQ0TI+yXPkxdBo0Ri58QmbU+lVwHk+UBoLcKC5M6dOSgT6jg1TJmmBtYIDq1Z6ynnXO3w7ENA1ItDNWU12P/p/rMfNRxWxvhB8n7QGDxVmADErHcI8Ic49MfzLtbFobo5hwBPTiYp5C6WqC2IxLrnkHRdSCKhxqiJaXFI8hxSqDziUNWZKjitzlZf8ZWJPrgXxzAMwwSN0+oEuQmpvVORMyKnyduTPwaszlYjDkk5MTIHZIa1MpdCpUDvq3sDAHb9Z1er8KywFlnhdrhhzDBCbVAjqUtSpJvERCGS94PaoAbIMy2mBRGbC7p4j/ih0qli2gsgkOdQLFJbEFFqlFCoFew59Ic4pDaoYS2xtiov43AiOkUoVAoIgiALp7ZyG4tDTNhpHT1xhmEYJioIR56h2kgdm+oCT/4efVL0l2Z11XhG/ZuzZLtKp2oVOVmkj7h2w9rBkGqIcGuYaEUKE5IrGQqx6zlE5MnPpUo/6znkdrhBIjXrMyVa8fIc+uN90Nry0IULWRD5I2m7xqCJWc+huuKQxqgByPMsCVcRiNaE2+mWbVFbHDJlhcdzmWEkWBxiGIZhgibs4tAfyZxPfHsCAJA7KhcpPVLCsu3mwmVr/qpcSq0SjqroHzGWxCEevWTqw2nxDn9QaVuH+NkcuB2ecuW1w8oAj0gSiwnd3XY3FGoFBIUgP1dj1XOodkJqwPN+tBRaItmkiOFXHIInf1ksikOiU4RC7QnJrS0OtUYqT1WieH8xDKkGGNINMKQaQhbGbeU2kEitYkCxtcHiEMMwDNMgVWeqUHKgBDWlNQDCJw7Ft49Hzvk5sFfZUbCrQBafohlnjRNxyXHNug+VtnWEmsjiUAx+1DLB47A4YEg761mm1ChbRdhkc1A3ebssDsVotT+X3SVXsKudcygWqZ2QGvB4DlU5q+SS7rFEIHEoZj2pnO6z94lBDYVK0SrFIZfdhaPfHIWrxoWyw2UAAGOGEd0v7x7Sdo5tPAan1Ym+s/o2RzNjGhaHGIZhmAbJ+yUPVaerAHg6aeEShwSFgNReqXDZXCjYVRD13gQkkid5dgt4DpGbILpEOYFvNCLliorFcBgmONxON0Sn6DXar9KpYjaXihQyJT1DaotDsYjb7pbDqKTKVDHrOeQnzw7gEVf1mtjykPARh2K8nL3oFKEwevoCgiBAG69tleLQ6R9Pw1XjQs7IHGjNWhTuLkTFiQpU51fDmGEMejsumwuOaodXcn8mPLA1GYZhmAZxWp3QmrXoNa0XBKUQ9oSQraG8tcPikEO9mnuEXxohdNld0Kii14Weq6UwDSGN9Ne+TpQaJdyl0XuvNyf1eQ7FIi67C3HGs56YKr0q5nMOSeFDkiDitDihT4wxccheJ/+SMbbFIbfTfTZnGzyhZWWHy6J+AKk21fnVKN5XDFO2Cak9UwF43gsVJypQtLcoJHFIqt5mLbHCnG1ulvbGKhG5mpYsWYLBgwfDZDIhLS0NkydPxv79+72WsdlsWLBgAZKTk2E0GjF16lQUFBREorkMwzAxj6vGBXWcWq6WEW4EhQClRhm1nkOWQgt2v7cb+z/zvKuaWxCRPhijUSwjIhzbeAz7V++Ho9rB4hBTL3LooaGWOKRVQnSJIJEi1ayIweLQWYjIy3MI8DxbY9VzyGV3QalRyu/Y2p5DsYaPF1WcGhBiUxwikUBukkVDoFbeoYrW4T0kukUc33wcglJAzvlnK93qE/UwZhhRdqQspP6f6BQBADUlNWFva6wTEXFo06ZNWLBgAX744QesW7cOTqcT48ePh8VyNuna7bffjtWrV2PlypXYtGkTzpw5gylTpkSiuQzDMDENiZ7qOs0tAii10ZuHRMr/k9Q1CVnnZiG5e3Kz7k/6WIpGscxeaUfJgRJYi6xQapSIz42PdJOYKEb6sPUKK6vlGRdryOKQlsWhujl2AI9XprPGCaLYEw7r5haq7TkUa9QVhwSFAI1BE5PikOQlU9dzCGg9SalLDpTAVm5D5oBM6OJ1XvNSeqSA3ITSg6VBbYvIE3IPQM6DyYSPiISVrV271uv3smXLkJaWhu3bt2PUqFGoqKjAG2+8geXLl2Ps2LEAgLfeegs9e/bEDz/8gKFDh0ai2QzDMDGJlBy0ufPsRHMFI6lDmjkgU+6UNSfSx9LpH09DY9Ig69wsnw5VpJBCPrIGZyG9b3qEW8NEO37DyrRnw0hjLQmzXLqdPYd8QoeAP64T8syLtVwiPl5Uf3gOxaInldvhhqAUoFCe9WNQG9StomhFuJG8ZPx6DrUScaj0YCkUKgXS+qb5zEvslIiTW06ieF8x0vr4zq+LZA8AraJwR2sjKoIUKyoqAABJSUkAgO3bt8PpdOLCCy+Ul+nRowdycnKwdevWiLSRYRgmVpHEgOb+iItmzyFJHJLyHjQ3cSlxUGqUsBRaUHa4DGVHylpkv8EgfcTG2kc90zgkz6HaYWWx7DkkPeNYHKollNXyHIrlcvZ1PYekZP8x6S3jp0KbxqiBq8YF0S0GWKtt4tdzKL71iEP2Kjuq86sRnxvvdQwSCpUCSV2TUFNag+qC6ga3J3kNAWdL2jPhI+KSvCiKuO222zBixAj06dMHAJCfnw+NRoOEhASvZdPT05Gfn+93O3a7HXb7WTW5srJS3r4ohvchIoqix6UtzNtt7bBd/MN28Q/bxT/RaBd7tR0kEpQ6ZbO2S6FWwGVzwe1y+1S/irRdbBU2z4iuAi3SBo1Zg37X9YO90o49/90Dl83ld7+RsIvd4rkeFBpFVF2ntalrl2htZyzgtDgBwVtMrO05FGu4bC5AOBsuo1ApoFApYlIcCug5BI84pE+KsSTMDreXUCYIAtSG2MzBFEgcAjzPlHBVTG0N+PMcUqgU0Bg1rUIcKj3kCRdL7ho4HD+1ZyqK9hShZH8JjOn1J6aWQg4heNIe1JTVIC45rt51mOCJuDi0YMEC/Pbbb/juu++atJ0lS5bg4Ycf9pleVFQEmy28N44oiqioqAARQaGICuerqIDt4h+2i3/YLv6JJrtUnqjEme/PgNwEIkKFpQJiYfN9ZFfVVKGyqhIn9p+A2qD2CimIlF1qSmrgsrpQdKoIaoMahYWFLbZvwPMhWVlVCWWhEupCX0+dSNil6HQRKqsqUV5dDlthdHZM69qlqqoq0k2KWZxWJ9R6tZfgG8ueQy6by0sAADweIrEoDvnzHJJERCmcOVaQErT7CCKG1iEAhBu3w+0Tyl67YlksiUP+PIcAT2hZdX41iKhZCoWEi9JDpVDpVDC3C1xVTJ+khy5Bh4qTFQ1uT/IcikuOg7XYipoSFofCSUTFoZtvvhmff/45Nm/ejHbt2snTMzIy4HA4UF5e7uU9VFBQgIyMDL/buu+++3DHHXfIvysrK9G+fXukpqbCbA5viTtRFCEIAlJTUyP+8RZNsF38w3bxD9vFP9FkF8dhB4x6I0ztTFDHqdG+b3ufjms4cWW64M5zo+TbEkAAek7tKY8cR8IuLpsLv376K0BAnDoOiTmJSEtrOB4+nIhuEfmmfJgNZr/7joRd7Ho77CY7MnMyo7ZSWV276HTRka8pFnFYHF4hZcBZr5mY9Byyu3xy6cSqOFSf51CslbOXhLK671i1QY3q/GqIbtEr/05bx2V3QRvvLQBJCbpjLczOn+cQ4BGHKk9VwmlxtljIe6hYS6ywldmQ2ivVxyO8LqZsE4r2FMFWYas3x6LkOWTMMHrEIU5KHVYiIg4REW655RasWrUKGzduRMeOHb3mDxo0CGq1Gl9//TWmTp0KANi/fz9OnDiBYcOG+d2mVquFVuurIisUimbpMAuC0Gzbbs2wXfzDdvEP28U/0WIX0SlCUAjoMqGL3zjxcJPWKw0CBNSU1aDieAUclQ4YUgzy/Ja2i9vmhiAISOiUgMSOiTBlmVr8nCgUnpATcgf2DGpxu9g9YX+aOE2Dnb1IUtsukb6XYhUigtPqhCHV4DVdDitzxKA4ZHP5eD2odKpWU5I6nHDOobPUrc4lIVcsszqhNcWGtwwRQXSKPh52tT2HYon6PIcAT96daBWHpApkSV2TGlzWnG1G0Z4iVJ2uqlcckjyH9Ml6KFQKTkodZiIiDi1YsADLly/Hp59+CpPJJOcRio+Ph16vR3x8PObOnYs77rgDSUlJMJvNuOWWWzBs2DCuVMYwDNNCuGwuCAqhRYQhwNPxyz4vG5WnK1FxvCLiI+nSh4sp04SkLg13bJoLpUYZFR/RJQdLUJ1XjeqCaii1yqgWhpjowFXjAgg+HmaxHFbmrwqXSqeC6BRjzjvEr+eQPjYrdMnikNbXcwj4I89OjIhDkqdMoJxDsSYO1ec5BHjEofpCtiIFEaH0cCk0Jk2DeYQAwJhpBASg8nQlUnulBlxOFss0SuiT9FHtOXT0m6NQ6VRoP6x9pJsSNBERh1555RUAwJgxY7ymv/XWW5gzZw4A4Nlnn4VCocDUqVNht9sxYcIELF26tIVbyjAME7v4C39oCaKlek/dqkKRQqFWeJVujRSntp6Sz4m5ffR1RJnow1+lMiB2E1K7nW6QSH5zDgGeZ57kKRIL+PMcUqgUUGqUMZdzSBbKAngOSfdSLBAoxE6lU0GhUsScOBSM51A0YimwwGlxImOA/5QwdVFpVYhLiUPVmSoQBa5AJouHaiX0yXpYCi1wWBxR9+wU3SJKD5VCY9SwONQQ9Z1wCZ1Oh5dffhkvv/xyC7SIYRiGqYvL5vIZxWwJoiUhqdxBjYANaqNUR95ziIjgsrmQ0CEBHcZ08BnBZBh/SN4fdTvtSrXH8yzWPIckcdWf55A0P9o+cJoTt90NCL4eEeq42KvQJT3j6wqHtT2HYoVAIXaAxx6xJg4F8qRSx6mhUCuiVhwqP1YOAEjsmBj0OuZsM/KL8lFTUgNdkv/QMkksU6gVciLqmpKaqHt21pTWANT6vCC5d8cwDMP4xV/4Q0sQdZ5D2sh6Dik1SrkzFClkW+hVUGqUUV0ZhYkepA/aup5DwB/Xdax5DgXwRpR+x5o9XHaX3+eJSq+KuYTUDeUciiXPofrEIY1RE1O2AM7aQ6Hy/WzXxetgr7S3dJOCovx4OdRxasSlBF9JzJRlAuAJLQtEXc8hAFEZWiblQiI3taqBEBaHGIZhGB+IPC+zSAgjgkKAUqOMuDgk7T/inkNRkHPIX/gHwzSE9BHnb0RXqVW2qg5zOAj0TIkWQbylcdvdfp8par0aLpsLJDYcadBWCFitLI49h2qjMWogOsVW9+ywFFpQtLeoUde0lIDZnz20Zi0c1Q55mWjBVm6DvcKOhA4JIa1nzDBCUAqoOl0VcJnankNSRdtoTEpdu02t6f5lcYhhGIbxQXSKAEUu345KF/mR42gRRBRqT7WySH4oRUv+JaZ1IXsOxfl6Dqm0qtjzlLH5f6bEqjjksvsPXZYFkRjKOxQoIbWgEKDSq2IqlKohcQhoXR/bNaU1OLDmAE58ewK/f/Q7qvOrQ1q/Ps8hbbwnSbm9Krq8h8qPlwMA4nPjQ1pPoVLAmG5EdX51wD5Pbc8hpVoJrVkblZ5DNSVn29SaQstYHGIYhmFkiAjlx8tRcqAEQOS8ZlQ6T2c4b0ceSg+VRqQN/irpRAIpCWUkQ8uixYuKaV04rU45wXBdlNrIe8S1NLLgXE/OoVgioOfQH+JQpAcIWpJACamB2AulasgWQOupWOasceLQ2kMgNyG1VyrsFXbs/2w/8nbkBb0N0SVCUAp+K4RKJd/tFdElDlUcr4BCrZDDxELBlG2C6BJRXeBfRJM9h/4Qy+JS4mCrsEWV9xSJBGuJVT5nren+ZXGIYRiGkak6XYXDXx3GyS0nAZztiLU0ugQd3A43zmw7g6MbjrboCLKj2oHKU5WwV9qjIr+O1EE+ueUkTv90GqK75TtA0eJFxbQuHBaH33xDgOdaEl1iRK7nSNFQzqFYEodIJIgu0a/grNJ77NGaRtubiuwto/YjiBg0cFqdMRNmF8iLCmhd4pDoFnH4f4fhqHYg5/wc5Jyfg17TekGfpEfejrygBQO3w+33ugA8YWUAYKuInqTULpsL1fnVMLczQ6EMXWowZ3uqoQYKLROdoieR/R/ikD5JD1B05R2yldtAbpLFsdb0LGNxiGEYhpGROiuZAzPR5ZIuSOmREpF25I7KRa9pvZDeLx0AWjTh4oE1B3Dwi4OwFlv9hsO0NFJMfenBUuTvzK83Fr+5CFRliWHqw2lxBqwgE4vl7AN54Em/Y0kcqk9wjpaKlS2J2+GGQq3w6x2iMWpaZdWjxlJvWJmh9YhDBbsKYCmwIL1futyX0iXokH1eNkgkFPxaENR23E53wAqhclhZFHkOVZyoAAAk5CY0av24lDgoNcqAfR2301ssk5JSW0uiJ++QlG9IEodak5cs9/IYhmEYGelDLT4nHoY0Q8TaISgE6JP0MKR72mCvtAOhha43GqfFCX2SHml90iJqA4nkbslI6JCAipMVOPr10Yh8IERLiB3TehBdItwOd72eQ4BHJIgGEbYlCJRzSKFUQKFWxJQ4VG+5cinnUIyIIYDHHoE8M2VvGYsjYt68LUkwOYeiXRwiIhTvL4Y6To3s87K95sXnxEOfrEfx3mJkDsiEQlO/r4boFAN6Dqn1aig1yqiqWFZ+rBwQPMfZGASFAGOmERXHK2B2mn3mi07RSyyrXc4+WpCEKmOGEcDZPEmtAfYcYhiGCRG30w2XzdWqRgKCJdpyy2hNnlExR1XLdASlUAddog4pPVJkr51Io9Qo5dwCLfnBlL8zHzuX7UT+znwAHFbGBE99lcqAsx9+MeU5ZHdBoVL4TSyr0qliSxyqR3COxZxDLrvLrxgCQBZYo10QCRf1iUMKlULOSRjNVOdVw1HlQHK3ZL/eYBn9MyC6RBTuKWxwW26nO+C1AXhCy6IlrEx0iag8VQljurFJnsbmbLMnb0+BrzdQXc8hjVEDpVYZVWFl1mKrp5raH15N0ZQPqSG4l8cwDBMClkIL9n26D/gj9L/ThZ2Q2Ckxso0KI9GWW0aKp6/Or4ZSoUSiMRFao7bZ9iclOgw0ShdJIjGaXnGiAqJbhDHTCF28LmY8PJimU1+lMuBsiGJbFNkD4bL5r84FREeFxpZEOu/+3jXStRFrnkPqeP/3iiSwtqYKXU1BDrELkO9PY9REvThUvL8YgMfz1x+JHRNxxnwGhb8VIrVPar3bEp2iX0FZQhuvhbXYCtFV/3ItQdWZKoguMeQS9nWRwrEs+RafeaJTlPOSScQlx8FSZAERRTxPJBGhpqQGcclxZwuKtKL3HHsOMQzDhEDp4VKAIL/4ommkIhxEW/iQUqOEOk6NqlNVOPH1CRz84mCz7q++EctIo9KrAKFlP5icVid0CTp0m9gNOefntNh+mdaPdJ0GCiuT7rFY85YJNJoea55D0kCEv2etoBCg0qliSxyyuwO+d1tLKFW4cDvq95SRqrcRRWeCbrfDjfKj5TCkG6BL0PldRlAISD8nHW67G8X7igNui+iPxO312EOuWBYFoWWNLWFfF32SHiq9Ctb8hj2HpOVFp9hiXub14ahywO1wIy7FE+6mUCtalecQi0MMwzANQEQ49eMpHPn6CEoPlkJtUMsfylIHt60gubZHeuSlNl0u7oKcUTnQJeqaPemiFBcejeKQIAhQ69UtKw7VOOXksAwTCg2GlWlb34hqU3HZXAG9MlW6P6q3taKPiKbQ0ECEOk4dMwmpRZcIEilwWFmcGhBaVznsphCMOBTNCbpLD5dCdIlI6V5/QY/kbslQapQoPVAacBmpTxIoITVw1sM60uIQEaHieAV0CTpZsGoKpmwTbGU2n+dA3ZxDQHQlpZaSUUvikFKtlL3SWwPRETfAMEyr5OiGo6g6UwUS6ewfEVJ6pCC1VyoEhRCWF0SksRZZUbDrbFWJjAEZbbbSTn0j25EiLiUOuiQdTh84DXe+J99Tc7VR+lCtryMWSdRxatgr7SjYXQCtWQtze99kjeHC7XRDdIocSsY0igbDymolpI4FSCRP0uF6PIcAj4AU60mHAY+npLUo8h96LUFDthAUAtRx6pjxHHLZXbLg4Y/aOZgCic+RpPRQKQSl0GDKAYVSgYQOCSjeV+wRdtJ8l5HE4vpC3eWKZREWh6xFVjitTiR1TQrL9kxZJuAXT6iatqvnGKVvjbr2qJ2UOrFjZFM91BWHFGpFq0pIHV1fAAzDtBpqympQeqgUGqMG2ngtBIUAQSHAaXGiaE8RivYUAQDM7czQJ+uhVCuRfk46FMro/Oiuj6o8TznNrpd2hSnLJCcXFJRCmxv1dtlcPrHc0YIqTgU33HBUO5pdHIpGzyHAUwbXWmzFqa2nAAC9Z/Rutn1J+U+i9Xpgohs5rCyAONRWBfZAyM+WenIOAbEjDjWU304dp4bb4Y6KPCrNTX35lyQ0hujPsxMu6qvcBtQJs0tvqVYFh9PqRHVeNRI7JQbVj0jsnIjifcWoPFYJdPGdH8yAlSSkRToptRRS1tgS9nUxZXvyDlWdrkJKV48XluSBU/eZoEvUQVAIUZHqwVpshaAU5JBCpVrZqgZBuMfHMExInP7ptFy5CAA6XNABpkyT/Ft0iSjaWwS3ww1rkRUVJypQeaoSgOfDtjUlbz659SSqTlfBYXF4SmtmGL2qTqi0qlb1wK+P4v3FcFQ54KxxBoyRjzRqgxp22OGwOOQRmXATzQmpASB3VC5Se6WiOr8ap3867bm3wjNI50NDH/cMUx8OiwMqvcpvpR4g9jyH5DL2QXgOxQINCfFSOKuzxilXrWyr1Jd/SUJj1MBSaAGJFPCeaguIbhHkDhxiB5wVh6IxQXfZkTIACLqva842Q6lToupEld/5wfRJ1Ho1FGpFxD2HKo5XQKVTwZBuCMv2tCYtNEYNqs6ctU2g0H+FUuEZPIuSsDJ9kl6+TxVqBcRq9hxiGKaNUn6sHEqNEuZ2ZmhMGhgzjF7zFSoF0vueHcpxWBywldtwcM1BWAotrUYcEt0iCn8rhFKthEqvQny3eJ+RCqVG2ahRbyKCrcwm5xioz326JXBanTi+6bj8W3JRjjbkal3N2CGMds8hhUoBY4YRugQdTv90Gqd/PA2rywpnXyfaD20fln247C6UHS6TXaM55xDTGJwWZ70hHwqVAoJCiBnPIVkcqifnUO3l2jpyzqH68uzA835q6+JQMO8dOZTK4mjT9gjGFtGcoLv0cCkUKgXic4JLyCwoBCR0SEDZz2WoKauBIdlbWAkm5xDgSUrd3DkZ68NR7UBNaQ2SuyWHNWdlXHocHIUOOCyeEMJAnkOAJyl16aHSBnNWNScOiwMumwsJHRPkaa0t51Db9tNkGCasiC4RtgobTNkmdLqwE9oNadfgS0Bj0MCUZYJSo0Tl6UqUHy+PCrfPhrCV2wAC0vqkoc/0Pmg/zPfDW6lV+g0rO7nlJPZ8sAd7PtiDUz+e8plf+Fshfv/wd+z9eC9+++9v8kd4pJCOIaVnCnpf3Rvth4dHZAg3qjjPx9PJrSex8+2dKNhd0MAaoRPNCalro9KpkNo7FSq9Sg7lDBeFvxXixHcn5Aoq0SoWRiNLlizB4MGDYTKZkJaWhsmTJ2P//v1ey9hsNixYsADJyckwGo2YOnUqCgrCfy1HEiKC0+oMWKlMQqltXe72TUEOo2LPIQC1ypUH8iz7I5xVCm9tyzQUcghEt7dMOAlKKJMSdEeZOOSodsBSYEFCh4SQQiETO3sGTcuPlPvMC9abWWvWwlHtgOiOjIeKFCEQ7jyIhgyPWFadVw2gfrFMn+RJSl1TFrlvjLr5hgBPW8ntyZXUGmBxiGGYoLCV21BxogKgs4nfgkUQBBjSDagpqcHhrw5j78d7o15FlwQs6WXjj0BhZcX7iuGwOOCodqBkf4nvtks8207ulgwg8tUVpISHGqMGugRdVFUqq43GrEFy92QY040QXSLKj5aHfR/R7jlUm5wROeh9dW/Ed4yH6BTDVrlF6nB3uaQLek3rBUNqeFzEY4FNmzZhwYIF+OGHH7Bu3To4nU6MHz8eFotFXub222/H6tWrsXLlSmzatAlnzpzBlClTItjq8OOyuUAiNZgsVqVVxYznkHScLA55cNkDV24DvD2H2joNeVEBZ6v+RZsgEm6CeQcLghCVOZhKD3uqjoXqIW/KNEGlVcnr1yZYzyHJAz1SpdxlcSg7vOKQLsWT5sBS6HmH1ieWSRXLpD52JJD2XVscktraWipRclgZwzANUvhbIU5uOSn/lh7AoZA7MhdVZ6pQfqwc5cfKo+6lLpG/Mx8FuwvkF3J94pBSqwS5CaJblBNtSwk0k7snQ3SKKDtS5pMjwF5ph1KrRHq/dJQcKInYy1wimGoY0YAgCMgdnQuFQoH9n+33eHeFCUuRBWWHy+TY9mitVuYPjVmDmrwa2CpsYckP5LQ6ISgFxLcPzi2eOcvatWu9fi9btgxpaWnYvn07Ro0ahYqKCrzxxhtYvnw5xo4dCwB466230LNnT/zwww8YOnRoJJoddhqqVCah0qkinkS1pZBEn2ASUscCbnv9oR+1cw61dYJKSB3FoVThJNgBGo1RE9Y+QDgoP1oOhVoRsveMoBBgyjXBnmdHTWmNV78zaM+h+LNJqVs6byQRofJUJeJS48JeLERr1kKpVcriUFCeQxGMTrAWWwHB+9tB8iJzOyMX7hYKLA4xDNMgkptk5sBMqHSqRn00aowaJHdL9nh8HCv3jAZGYSqTwj2FIDchLiUO2nhtvSE10kO+9KCnapu5nRkOi6fjpjFo5E6O0+r0qj5jr7JDa9ZCY9LIvyOJJA61poowugQdqvOrw1bWPm97nsczDp6Pt+aqhtYcaEwa1KAGVaeroFQrvRIhNgan1clJqMNERYXnmkpK8mQN3759O5xOJy688EJ5mR49eiAnJwdbt271Kw7Z7XbY7WefEZWVnhFaURQhiuEdiXRanSjcUwi7xo6UlJRGb8debffkVNMr622jQq2Aq8YV9uNoDkRRBBE1uq3OGidIJE9yUj/bUKgVIJHgsDpahT2AptnEaXNCn6gPuK5Sp/TYo7r12EMiVLs4bZ5rQ1AJAddRxalAIsFeZW919pAIxi7B2ALw2MN5xgmXwxUVfRen1Ynq/GpPiJiAkM6RKIowtTeh9Ewpyo6VQZtwtt/psnu8MKGsf5tqoxokEmrKa8Ie2tUQlkILXDYXUnqlhPXalK4XfaoeljwL3C43nPY/rg+l7/Wh0qug0ChgKbJE7B6pLqz2fDfUugYElQASyeMtGYbqr3Xvo3Afa+vp/TIMEzEc1Q4oNUpknZvV5G15uYpHiWMCiQRLoQVOqxNOixOpvVORMyKnwfUkN+/jmz3JnLtd1g1EnphidZxa7rDUFodEtwinxQljutGT7FqnirjnUH0J/qIVSbTL35kPrVmLpC5JTRqRkV7aPa/sCaVWKXuCtQakjmTejjzk7ciDIc2AlB4pnkSXHRNC9ghzWp0RT5LeFhBFEbfddhtGjBiBPn36AADy8/Oh0WiQkJDgtWx6ejry8/P9bMWTx+jhhx/2mV5UVASbLbwj5/YKOw5tOgRdBx3i0uOgUDTuPig7UYbKqkpU1lRCLAzcca2qqUJFRQXyTudFveeiKIqoqKgAETXKLkX5RaisqkRpRSlUDv/db4vdAneBG8ZCo9/50UZTbFJeUg6X1oXCwkK/84kIVdVVoDyCrjA6K2gGIlS7FOcXo7KqEiXlJVDZ/F8bRIQqSxXoFEFb2Dqfz8HYpeyM59lRXlUOV2FgLzqL04LKqkqcPnY6Kt5XZfs97TaZTAGv6UCIogi72o5qSzVO7T0FRdZZ2xQXeK6N0vJSWIXAKQicdicqqyqhPKaEkN6yqQGKdnmebUm6pJCPvT6k68WhcqCivAIn9p2ArcSGyqpKlFWUwVHo23d2KB2oOF6BhIKEFk+R4LK5UJJXgoTOCV52KK8sR2VVJQrOFEDvCD3yoi5176OqKv+V7hoLi0MMwzSIvdIue7k0ldrikCI+Oj7AC38rxKkfziaONrcLbtQlrU8adAk62CpsOP3jaVTnV8t2qisO2SpsOLT2kOwSK3VmNCYNrMVWHPzyIHTxOmQPzQ7noQVFa/QckvLgFPzqSeTrtDqbJF66HW6otCovD6/WgsaoQYexHeCyulBTWoPSQ6WyC3ZqYSpyzm9Y6JQgkeCqcflUIWRCZ8GCBfjtt9/w3XffNWk79913H+644w75d2VlJdq3b4/U1FSYzeEdIXYnuFFgKoBSpURaWlqjxSHXCRcsJgsyczLrDc11ZDggFopIMidFfQUmURQhCAJSU1MbZZdqfTXcJjcy22cG9OwrTC2EQqVAWlpaU5vbIjTWJm6nGyaDCUnpSfUea0FaATQaTauxh0SodrEYLJ5ro13gawMACtMLoVKrWp09JIKxC+UTLCYL0rLSYEwL/B4S2gtwHHcgXh8Pc1rLesr4o2JbBeLj49Gpf6eQB6okuwidBdhKbUhNSZWvA4fJAbvJjvSs9AafkUWJRYhTxrX49VFmLUNCUgJye+U2yWu5LpJdtDotnMec0JMeunid5/rITIMhzTcfor2jHUWWIiToE1pcNKw8XQmzyYysLlle5yBpeBI6DeoEjVETloHHuveRThde8ZzFIYZh6oVEgsPiQEJKQli2V7scuRbR8TEgxa23G9rOU7Y+yBKkCpUCCR0SILpEnPn5DKzFVvnFqI5TyzHRTqsTlkIL7BV2OVxNSliYkJuA/LJ8VJ2uQuXJSqT0anwoR2NpjeKQKcuEnlN7QnSKOPjFQVTlNW3kRHSKrTqUKqlLktzZTuuTBpfdhTPbzqDo9yIU/V4ElU6F3NG50CfqodKp/HZe7ZV2OZ9Fa7ZFNHDzzTfj888/x+bNm9GuXTt5ekZGBhwOB8rLy728hwoKCpCRkeF3W1qtFlqt77NSoVA0WrwJhEKngFKlhLvG3aTtu21uCAoBWpO23m2o9WoICgHkbJw3TksjCEKj7UIuglKrhFJVT9LhOE+S3dZgC4nG2MTlckFQCFDr1PWupzVq4bK7WpU9JEKxi+gSodTUf20AgM6sg63c1irtIdGQXchFQV0bOrMOgkKAyxr568PtcMOSb4G5vRlqXePenYIgwJxlRk1RDWxlNnkAjNx/2ENbvz0AT7i9s9rZovZwO9ywFluRkJvQ4PXbGARBgDHdCEEhoKaoBlqzFoJCgEqr8nuchhQDihXFsJfboU9oupdOKNhKbRAUAgypBq+2aeI00MSFd+Cx9n0U7vPN4hDDBIHT6oS90pPzQZeoqzdpYFvBZXPh5NaTnuSYhLAp8NJHZ01pDZynnUgwJEBniqzLuNPqhKAQkN4vvVHrK1QK6BJ1KD9eLldsUBvUUDg8D+yCXwvgsrugjlOjx5U9vFxdMwdmInNgJor3FeP45uMeoaqFzdEaxSHgbNU8Y4YRVXlVOLPtDBRqBdL6pIU8OuN2uNtMyXZpNE2tVyN/Z76cLPLwV4cBeHJl9f1TX68wnqq8KhxYfUD+3VCVKcY/RIRbbrkFq1atwsaNG9GxY0ev+YMGDYJarcbXX3+NqVOnAgD279+PEydOYNiwYZFosg/qODXstqblQXNYHFCoFA2+K6X5sVDOvqHqXIAnKbWU468tI1fnqqd0O+C5FiNZlrqlcDuCS1SrNqhRnV/tVQSjrRFsQmq1wdOXjIYE3RUnK0AiIaFDQpO2Y8w0omBXAarzqmVxKNhqZYCnn15+vNynCEpzUp1fDRBgyjY12z5UOhW08VpYCi3yN0SgMGS5YllpTZPPR6jIZexDrOgcbbT9L1yGCQP7Ptknv4BUOhUyBmRAEATE58RHRaxzc1B+vBylB0sBwSMamLLC8+AXFIKng3OmGpX7K2E7bEOfq/uEZduNxVnT9AS8GedkoGhvEQBAF6+DxqCBqBOhT9Z7cgoJQFrftIAx0LpEjyJUU1YDRWbLdvpC6XxEI+b2ZlSeqkTejjwAHmEzsVMi1HHqoEUOt8Md9TlPQiUuJQ6dLuwEwNNpKTtSBmuJFZUnK2EptHiVnK067fG8SuuTBrVBjZTuLe/B1hZYsGABli9fjk8//RQmk0nOIxQfHw+9Xo/4+HjMnTsXd9xxB5KSkmA2m3HLLbdg2LBhUVOpTKVXwVXWNLHGaQnumSolfo+FcvZuu7tBMUSl8yQddjvb3vOoNsFU5wI81yK5KWjxpLUS7PFJYc9OS9vNCxdKtTIgOsSh8mPlADye4E3BkG4ABM9gjTRY6XZ6vDCDEQO18VqAPEVOdPEtM8ooeW2bMptPHAI8g16lB0vlAi6B+qv6xMhVLLMWWz3V1Vr5s4rFIYZpAGuJFY5qB8ztzTCkGpD3Sx5ObfXkpyk7Uobul3ePcAubB+nB2md6n7B3QrpM6ILqomoc2nII9nI7iKjFE8fVxml1NtlTIqlLEpK6JHlNUygV6DW1V1DrS6VHK45VQCwXYYABpozmfdlKtFbPIYn0vumIz4kHiYRDaw+hYFcBCnYVQKFSoN+1/Rr8yJJLxbbyF3p9xKXEIS4lDtUF1R5xqMBbHLIUWSAoBLQb2q7FRhzbIq+88goAYMyYMV7T33rrLcyZMwcA8Oyzz0KhUGDq1Kmw2+2YMGECli5d2sItDYw6Tg23zS0n128MDouj3lxDEpJYEgvl2112F+KM9Y8o1y5n35bFIclTrEHvEP3ZHIVt+fnsdriD6oNIyziqHW1bHBIaLt2u0qqgUCvgtDhbqGX+IZFQedJTxr2pg4xKtRKGVAOq86vlfrHoFIMeuJOuCXtly4lD1XnVUGqU8gBncyGJQ1VnPGJUoOtDoVJAG69tcXHI7XTDXmGXU0a0ZlgcYpgAVJyoQPH+YrmSVHrfdJjbmZHcPRlOixP5u/JRcbwCRzcchUKlQEb/jDb1sq4prYFCpQhbIuraxKXEQZekw+kDp+HOc8NV44pYjhMiTwJeyYU3Uqi0KmjNWlgKLKg8VAnXaRfOueacFtl3axeHAMgdoS4TuqDiRAWq86tRcaLCE7vvJ2lhbSTPqbb88SERlxIHQSHgzLYzOLP9DFRaT/4hR7VDnsc0nmAEFZ1Oh5dffhkvv/xyC7QodNRxas9z0eaC0hD6PSG6RLjtwX3sxkpYGREF7TkEeMShaE/Q3RRCCSsDPN690gBKW8TtcEOZGLznUDR4yzQXoXiJaQyaiNvCUmSB2+FGfPvwlN81ZhphKbTAVmaDPkkfkheh1A+yV9iB9mFpTr2ILhHWYivM7czNPsAr9ePcdo8nVX19FX2SHuXHyiG6xBbr19aUeMSouJTWHVIGAK33S4Bhmpm8HXkoP1ouuwlK1Xu0Js//Mwd4qkqUHipF8b5iOaSoNUNEOLn1JA7/7zAsBRboEnXN+sCPdMy46BbhqHKARIJKH3mtvPsV3dHtim4wZhvhrHbK7tXNjSQOtYWRan2SHhn9M5DSwxMWJSUbrw/Jzq01rC4UFEoF2g1th4SOCUjITYA2XguF2pMzK7V3aqSbx0QBtStKNgZpPQ4rO0vQYVS1xKG2TNB5Zf64hlw1bdceJBJEpxhSWJnDwuIQ4LFHpMWhypOePJPBFjJpCCk8S/KQaaznUEtgKbSARIIxs/mrm8Ylx0FQer5HGrKHPkkPUHD9v3Ah5xtqA+JQ5L+GGCYKIZFgLfGo4V0v7ep3GUOaAQNuGADRLeLXd36VVePWjL3SjsLdhQA8uYGaO5mb2qCGDTY4qh0NeneEG2uJFftW7QOJnpH+aEjAq9arodQqEZcWB1ulDTVlNTCmN/9Lty14DtVFGmUOJplpLISV1SatTxrS+rTOUshM8xM2ccjQsDgUK2FlwXrKxIo4JHmKBZNzCGj8tdgaCOX9E+kBtZYgmMTtEhqjBqJLhMvmku+dlqbiZIWn35YaHlFAGoiuyqtCWp80uJ3BeWECnutDUAotJg5J+YakNjcngkJAXHIcLIWWBgcypYTQ1hJri4k11hIWhximzUIioaa0BuSmBm9yQSFAqVBCn6RvExVGpNjt9sPbt8jHo9TRqcqrgkqnQlxqXIt5r9SU1IBEgrmdGVqzFkldkxpeqYXQJmhhgw3lx8o912Ez20V0iQ266bY2pHKnRXuKUHqoFAkdEpAzIsfvsvIodhvwnGKYpiJ9kDfWW0Pyagjmg0apVnrKUbfxsLKgxZAYEYdC9Rxq0+JQkLYAPANIgkKIeJ6d5sTtcAcdUlk7zC4S4pCzxglrkRWJnRPD5mWv1Cg9+QHzqgGE5jkkCAK0Ji1sFS3jMVOdXw2FStFiaRlMWSZYCi0NiqNSvruWzDtkLbZCbVBHTKQMJ21nmJhhwkDJwRLseH0H9n68F8DZkogNoU/Ww2Vz4Ze3fsHu5btb7aiO1KkPZsQ3HKiNnv0U7SnCgc8P4OSWky2yX+BsZzNrcBZyzs+JqvwOUmK/gl0FLWIXt9PdpryGAI9wm35OOvRJeoguESX7SwLmg4mlnEMM0xBN9hyyBO85BHi8adp8WBl7DnkRdM4h/dmcQ22VUMQhIDpCqZqTUMPKgMh5UlWe+iOkLEz5hiSMmUa4bC7UlNWEXLlQG6+V0yU0JyQSLAUWGNIMLTawKKULaAiNSQOFStFi4pDoFmErs7UJryGAPYcYxouKExUAPJWnlFpl0GUpU3umwmlxwml1wlpsRVVeFZK7JjdjS5sH6WOgpUKs1HFqdL64M1xWF85sO9OioXly6IM+Momw60NtaBm7VOVVwVJogb3S3ubEIQDIHpwNDAZObj2Jwt2FngovtUTAmtIa5O3Ik0ujsjjEME0Xh+RBhiCLDKi0qjYvhrDnkDfBVqRSapQQlAJ7DtVCbVBHpEx3S+B2ugEKTSgDIpeDSco3ZG5nbmDJ0DBlmlC4u9CzfQotH6LWrAWJBIfF0ayDntZiK0SX2CIhZRJasxbthrVr8BtFEATok/Qt9k1hK7OBxIajTVoLLA4xTC2sxVZo47XoOLZjSOvFpcShy8VdUFNag98//N1TKaAVEuqIbziIz4mHQqFA6eHSlhWH/hiJjIZE1P5oCbsc3XBUPufhipePRvSJHg9AW5nNq7NU+Fshyo6UAYLno6y5S7EyTGugdvnwxhDqIINKp2qxMIhIEaynTKzkYAolr4w6Tt2mE1LL10YIgkh1XnWLVmJqKRrjRQVExnOIiFB5qhJxKU0vYV8XSXCRBqxD8RyqXbGsOcWh6nxP2FtLJKOuTXrf9KCW0yfpYSm0wGl1Nns1ZDkZdXLb6EdH51cRw7QgJBLKj5XDZXfBXmFHYqfERm9LqhTQGju6oluUX7CR8KbRmrWozqsOqdPYFFw1Lii1SiiU0d25ku3SDAkX3XY3DGkGtB/evk2XCZaO7cy2Myg5WIKUHikwZ5tRlVcFjUmDvjP7RriFDBM9CAoBKq2qSWFlKp0q6FCDWAgrC9ZzSBAEqHRt35PKbQ8+dEitV7f5MCogBEHEcFYQaWvv7cZ4UQGREYesRVa4bC6k9Awu1CkUVDoV9El6uWJZKF7NLVWxrCqvCoJCaJGiKY2hdt6hFhOH2HOIYdoGlacrcWT9Efm3Ib3xidUUKoWnAleZDfYqO1RaFQRV9Cf5PbDmAKpOe15C6jh1RBITSy+06vxqxKXENXtom9PqjMqQsrpIdqk87RmhkkaFwoHoEqE2qFu8UlxLo0/WQ21Qw1pshbXYiorjFTBmGmGvsCO5W+sL/2SY5kYVp2pSQupQvE9VWhVIpJBza7QmgvUcAhAb4pDDHbTXrjpODUuRBUQUtqS/0URTvGViXRxSKBVQ6VUREYcqTnq8esKdb0jCkGaQwwdD8RBrCXGIiOS+erR6r0k5Y2tKa8Ie9lcXa7EVKp1KvjdbOxE5o5s3b8akSZOQlZUFQRDwySefeM0nIjz44IPIzMyEXq/HhRdeiIMHD0aiqUwMIL1Uss/LRrfLuiGtd9OqdOnidagprcFv7/+G3ct3y2XCoxlLgQVqgxpJXZKQfV52RNogiR6HvzqM3e/tRsmBkmbZT9mRMhT8WuD5gGnm0YRwINnl6NdHsWfFHhTtLQrLdkV32ytfHwilWol+f+qHgTcORPfLu0OlU6E6rxpKrbJJnoIM01ZR6pRNCisLRdyXBJO27D0UrOcQEDviULACgEqvAqjtXh+yIBKEcAhEPs9OcxKqOARELkF35clKKDXKZhtcq73dUO0hKIRmjWCwldngtrtbNN9QqLRUxTIiT4XrtuI1BERIHLJYLDjnnHPw8ssv+53/xBNP4IUXXsC//vUv/PjjjzAYDJgwYQJsttYXqsNEP9LoqLm9GaYsU5O9ZrKHZCP9nHQYM41wO9ywlUf3dSu6RIguEeZsMzqO7RgxT4r4nHhknZuFtL4ecU6KZw4njmoHjqw/glM/nILoFKGNj54KZYGIz41Hu2HtkDkwE0D47CJV6IoFcUhCEAQYM4zoO6svBtwwAP1n90d8TvOM+jFMa0alV0F0iiEPbrhsLpCbQhLeYyEJs9vuScAcTGJZSRwKVF2xtUNEHs+hEHIOAW23nH1jQ6naYjn7xopDTquz2atz1cZlc8FSaIEpu+nfDIGoHcUQSkJqQSFAY9I0q+eQnG8oisUhlVbVIsnbbeU2iC4x6OrWrYGIhJVdcskluOSSS/zOIyI899xzeOCBB3DFFVcAAP7zn/8gPT0dn3zyCWbMmNGSTWViACkxcbhCjAypBhhSDSg9XIrqvGqPONS8Ho1NQuqQhzufTagoVApZACk9WNosD3TpZZneLx2JnRJbxcNcoVTICfhKDpSELTm19NEXS+IQwzDBodKr4ISnAqcUphAMchXIEMPKgLPeNW0RKZdeMGFRKt0fnjIhCCitiZDFkFrl7PWI/nd2qLSmJMzNjTRoFZI4ZNAA5Lk+WqrSbuXp5ilhX5vaIYOhhtvq4nWoPF3ZbKGYrUEcAiDnbSKRmk3Ea2v5hoAozDl09OhR5Ofn48ILL5SnxcfHY8iQIdi6dWtAcchut8NuP6uSVlZ6blxRFCGK4Q3rEUURRBT27bZ2WqtdHBYHSCQoNIqwtl1j1oBEgrXUCrVJHbV2cVib5/gbor7rRZughbXIGvb21FTUeMpNpsdBn6KX2/H/7d13eFRl2gbw+0wmU1InIY1QEiChV0MLWBdWxAbK2l1BVCygIu6q6K7K6q51WcunoOsKq+yqWMAuoCAIAgKSUKQESAglDVJm0ss83x+zc8xkTvqkzdw/r1wy55w5884zJ5NnnnlLZ9JQXEzhJhQdL0JWShaqy6vVYpcx2Ijuo7s3a3Lt6spq9Q9mZ4uBlq76/tLWGBdtdePC+DSP3tTK4lAzvmzxhWFlzZmAuXZPKq8sDjVj/iXAh3oONbEAoDfqodPrvLI41JKeQ7Wvj3YrDjmXsO/Vdt/8KoqjB1ClrbLZPTiNIUZIpqCqpKpN5sGxZdlgCjN1+JfKjTGHm2E9YUWFtaLN5udyfmHL4lAbys7OBgBER7suVRcdHa3u0/LMM89g0aJFbtvz8vI8PhzNbrejqKgIIgKdjt+6O3XVuJzJPoOKygrknfHMXC5O9mo7rDYrylLKIEcERf2KYOlj8ehjeELx6WJYbVYElgRCl9t+r1tD10s5ylGYX4jv//49/Ax+iJ8SD6Ol9UPA8o7nwWqzwlpuRWVu50ysGopLpX8lrFYrrOusbvdL25wGRVFgtBgR2D0QUIDQ+FCYwrX/IJadLYPVZoXJaoI+t9P9KXDTVd9f2hrjoq1uXGw2W0c3qUtxThbc3A/kanGoOcPKjN4/rKy6orrJH1xdhtl54ahXZwGgqYUv57XorcvZ11TWQKfXNatng3+gv1fPOdScYVTtXTwUERSdKII53NzmxagBVwxA1u6sZs+NWHtSak8XhypsFagqqYIlzuLR87YF59LypWdL26w4VHqmFDp/XbO+ROnsOv8ngiZauHAhFixYoN62Wq3o1asXIiMjERLi2cqu3W6HoiiIjIxkMl5LV41LniEPgVGBiIpq3UTUWgr7FaI4pxjFWcUoKS9B4pjEDlkJrCF6qx6FwYWI7hENS5Sl3R63oesleEIwss3ZqKmqgTXTiprTNQgMC4T1hFWdwym4RzAiBjRvCdFSQykqgivQo0+PZn0z1Z4aiktkRCR6D+3t6Onlp3NMuKcAOak5jp5W1XbYTtlQdcKRJFXYK9B7YG/Nxym2F+Ns8FlEREe0ybXvaV31/aWtMS7a6sbFZPKuVX3amlocKmuH4pDJ+4eV1VTUwC+s+T2HvJHzdW7ysDIf6DnU3HzEEGRASW5JG7Wo47S251B7KDtbhuqy6naZn9MQZEDceXHNvp9zPs3yonIExwZ7tE3FWV1jSBlQZ1Lqfm3zGKVnShHQLcCrVlLsdMWhmJgYAEBOTg66d++ubs/JycHIkSPrvZ/RaITR6F610+l0bZIwK4rSZufuyrpSXIpzilFVUoWa8hqYu5nbpM2Dpg9CVXkVDm48iMrjlSg7U9bp3lBrKmocE9gFGNr9davvegmMCES/3zreyX/56BcUHClAwZECl2OsmVZE9I9o0lCq45uOw3rSiqqyKujNevibOvcqZfX+HumA4Gj3P/Sx58Sq/66prEF1RTWOfXsMZWfL6n9N7Y6JC/UGfZf4fQW61vtLe2JctNWOC2PTPC3uOVTW/OKQtw8rs9c4JvZu6hAM53HeGo9mDysz+0BxqImxcDIEGmCrsrWosNSZtao41E4TdLf1Evae0JbL2avzDXXvXJ9ltJgsJig6pc0mpa6wVqCmssarhpQBnbA41KdPH8TExOC7775Ti0FWqxXbt2/H3Xff3bGNI69RVVqFQ58dAv63uIExuG26Ayo6BXqTHkE9gpB/PB+HPj8ERVHQPak7uo/q3vgJ2pDYBeVF5WpPnM46drjPb/qg8HghAEdCFNY3DDl7c3B6x2mcPXQW5nCzY1UXccQ7MCrQpXdWTVUNzhw8A71JD3O4uUt0hW0NP4Mf/Ax+CIoOQmleKYqzi2EMMbp9WOOE1ERUH+ffg3YdVualPYfUYkgL5hzyRs0tAOj0OvgZ/Jrdi62rqKmsgSG4eUN/ai9nbzZ4zyTdzZ1/CWj/nkPWE1bo/HWd7ove2ozBRkABKoo8XxyyZdlgCDa02/xOraHoFJgsJo8t5FJXSZ6j9x6LQx5QXFyMI0eOqLfT09ORkpKC8PBw9O7dG/Pnz8fTTz+NxMRE9OnTB3/+858RGxuL6dOnd0RzqQmKThTBetKK/IJ82GPs6jc9ob1C22QytNYqKygDBIgYGIGQniEe73ZZlznSjMghkagqrUJxVjEKjhZ0eHEo4/sM5B/JV287vynubMzhZrVrqJMlzoLTO04jc3Om2/Gxo2PVVc+AXyeLix4RjZgRMW3b2E4kINLxx+rQZ4cAOIps4Qnh6n4Wh4ioPn5GPyg6pdnzvFSVVkFv0jdr+LSf4X+P5eXFkOb2HPLWeDiLgM2ZbFtv1nv1nEMtGVYGOFYsM4d5UXGoqvmxcL7ftEdxqKayBsU5xbDEWTrdFBG1KToFxmCjx3sOVZVVoaKoAuGJ4Y0f3EmYw83IP5LfJr3sutIQu+bokE+DO3fuxEUXXaTeds4VNHPmTCxfvhwPPfQQSkpKMGfOHBQWFuLcc8/FN998wzkDOpkKawWsJ62oqarBqZ9OQWoEVpsVVZlV6ptmSM8QJF6a2MEtdeesplv6WNqla6iiKOg1sRd0Oh2OrjuKwvRCxx/BZi5P6Um20zYYggzoNqAbTKGmLrUqijncjD6T+ji6ESuO+EIBsndnI++XWhOLK0BpnmOZycDIwA5qbccI6xOGCqtj4sAzB884CqK11FT9b+JHFoeISIPerG/RnEPN6TXk5Gf089phVM2dY8fbi0MtGjpk9ld7OXsTsQvs1fZmf2j1D2zfoVTtpaUf4P0D/NulOGQ9aQWkbVcp8xRjiBHF2cUeXc7eOaQsuHvbfqHuSbXnHfJ0Eac4uxj+Af5eNRk10EHFoQsvvNAxDKQeiqLgL3/5C/7yl7+0Y6uouY7/cBy2U44VYBSdgoTLE1BUVgRLkAWwA1k/Z8F22obi7GL4Gf061bcbzmq6KbT9C46BUYEoTC9E2pdp8DP4IbR3KPwD/OFn8ENwj2AoioKayhr1D50h2NCsJcqborK4ElWlVYgcHInYpNjG79AJhfdz/+aiprIGp3ecxumdp1226/Q6r+v22RidXofYpFhUl1fjzMEzbh+82HOIiBrSkt4aVaVVCIxqfiFeb9R7/bCypvYc8jP4AYoXF4eaOecQ4PjwX5xdDLFLp+6x0VwtKZQBUIf0eNty9q0pDrVHLLrCfENOJosJ1pNWVBZXemzqjK7YU8bczfHZs/RsqUfbXVNZg7L8smavJNcVdJ2uAtSpiF1QklOCwKhA9BjbA8YQI/QBepTlliEoKgg6nQ6VtkoUZxWrw1piRsYgeng0dHpdh30gLcosQnF2MYoyixyTMHfAkDdLnAV5+/NQXlQOe5Xd8U3E/xhDjfDz90N5Ybn64d1kMaH/5f2h+Cmt7t1jPWlF5uZMtdeIc+iRt4gZGYOwPmEQu6jzEImIWnzzRc7nXfeDBotDRNQQf7M/iouKm3y8vdoOe5W9xT2HKm3e9UHXqbk9hwBHIclri0OtmXS4rKpLzHXSVC0uDgV5b3HIP7T57x/+Af4oySvxaC8ZLdYTVpgspk45XUZdzqXbywvLPVYcsmXZoDfr22xZ+Lbg/GK49EypR8+rTszdhQplTcXiEDVLdXk18o/ko7KkEvZqO0J6/Tpfj91udzm2W/9ujmSx2o78I/nITslGdko2FJ2CgdMHdkhPjozvM9SEq+7Exe3FZDFh2I3DADiSRttpGyCOYV5FmUWorqmGOdyM4NhgVBZXIv9IPvas2AMAiBoahV4TerX4sQuPF6LCWoGAiAAEdAvwusmZFUXpUn+02oOiU+Bn8HP7Vp7FISJqiN6sh9RIk4dAt2QyavWxjHp1CLC3aW7PIeex3locqq6odnxJ2Iwe0c45EavLqlkc+t/xOn8dKku8qzhkr7JD59/8nMQ/wB8Qx/XRkvefpijLL0NVaRXC+nWNniKmsP8VhwrKPdLTqbqiGmVnu15PGX+zP/wD/VkcagYWh6hZsn7OQu6+XPV2SM/6x90qOgVRQ6MAAGH9wpC7Nxc1lTU4e/gs8n7JQ+zoWMcfuHb6cGqvtqO6vBqWeAt6jOvRKRIMvVGPsD6ON1qtN1wRQUBEAMqLymE9YcWZQ2fU3lctWV2s0lbpKM5dNbBNv12hzkVv0qsfUMQujmGF/5uroCWJGBF5P+fCEtVl1W1fHDLpIfamF6K6kpb2HCov8L45dgBHsazZc+y084pU7aWlxSHA0XvIm3oOtXT+JaDWHEwtnPOsKbrSkDLAteeQJ6jzDbXxAj5tISAiANYTVthr7B6bpqM4uxh+Bj912Jo3YXGImsRebYfYBYXHC2EIMqDPpD6OX4omziNkDDaqPV5Kcktw5uAZnDl4Bn5GPwy9bmi7LKPu/IbFZDF1yFxDLaEoCqKHRwMAcvbm4OTWk9j7370AgPgL49Gtf7dmna+yuBKGIAMLQz7Gz+inzh1yfNNxnD189td9XvZBjIg8w9lbo6q0qkkTbramOOScf6amwvuKQy2ZY8fZc6ith8l0hJrKmmbFAvi1UOlty9m3qjgUaFA/sHuD1sSiPYqH1hNW6PQ6BHXvGj1F/M3+8DP6eaw4ZDvtmGO2qzz/2gIiAlB0vAjlBeUeGbVir7ajJLcEIT1DvO79GWBxqEUqbBUoyS5BVXAVjIHeNUO5ltIzpTi4+iDE7phEPHJIJIKiW/7mEHd+HPKP5qOqtAqF6YXI3JwJczczgqKD2rQi7ewp0VbfKrS1iIERqC6rRk1VDfL256Eos6jZxaEKW0WLJgulrk1v1KsJgi3LBv8Af3Tr380xx5WPzsVERA1Th/I0cXhTa4eVAY5eNl1hPo/maNHS7f/7wqymoqZdvjxrTzWVNTAEN+81Zs8hd4Ygg6NHfEV1l1pttj6duThUU1WD4uxihPQM8fgCMW3JZDF5rudQVjH0Jn2nWlyoqZwFoZK8Eo8Uh4pzHJPjd8VCWVN0/XeTDpB/OB/Hvz+O8rRyDLlmSEc3p81ZT1ohdoGljwX+Zn+1J0tLBcUEISgmCGIX7Ht/HwqOFaDgWAF0eh2GXj8Ufka/NnnzdfYc6qqJp5+/H3qM7QHA8SZdnFMMe7Udik5pdO6kyuJKxzxRVfYu+/yp5fyMfrBXOYZVVtoqEZ4Qrl5LRERa1N4aTfzApRaHzC0bVgbAK5ezr6mogeKnNGsIfe3l7L2tOFRdUd3sD2i15xzyJq0tDgGO/M4rikP/WyilJT0H27o4ZDtlg9ilSyxhX5s5zIySnJJWv4/UVNag9Expl5tvyMnTk1I7V20L7t71htg1Rdd/N+kAzjeHiqKKDm5J+yjJLQEUoM9FfTw6P5CiUzDo6kGoLK5EcXYxTvx4Qp14OWZUDHqM8eyH167ec6i2wOhAnDlwBrvf3g2dXodBMwbVO1SuOKcYhz49pN5uyvAA8i7OpMA5X5g5vOt980NE7as9ew45hxl54yTMLenZUbs45E3sNXZIjTR/zqFmFiq7CmdxqCXFHXWenZIqoHmdyDulztxzqKvNN+TknHeorKCsVYUMW1bXHVIGOIZg6s2eW/TAlmWDzl/XIQsrtQcWh1ogMCoQln4W2HPtXjl5IuCYCPnk1pOoLK6E9ZQV5jBzm0wcrTfpHd0Uu5lRVVqFypJKFGYUwnbKBozxzGOc2nEK2buz1dvOP6hdWfSwaHViYdspG0pySuotDjkntezWvxtMFhMiBka0Z1OpE3BOvp71cxYAICDSO/+gEZHnNLvnUFkVdHpdiz7c1R5W5m1qKpo/x463FodaMv8S4PgyUW/Sc86hWpx/171lUurWxEJv0kPRKW1WHLKesMIYYuxyX67WnpS6NcUhb+gpExgZCOvJ1k9Kba9xzDcU3D24Q1a8bg8sDrWQn8kPdtibvIpHV1N2tkztZaDolDZfulFRFHWYy6HPD6HsbJnHzl2cVQydXofQ3qEwhho7xSplrWWymBB/QTzKCsrwy4e/oLyo/jHFzuF00cOj2WPER0UOiYQxxAixO76xDenRtbpGE1H7cxYomvqBvDUrBXnzsLLqiupmL4LhtcWhVvSU0Zv1XttzqLXDyrxBa2KhKAr0Zr2a73pSWUEZKosr1dWXu5Lay9m3hu20DXqTXj1fVxQYFYiizCKUnilt1by5JTklkBrpkqu2NRWLQy2kN+lRhaomr+LR1ZTklQAA+k3pB0ucpV0f22QxoTir2GNLUlaVOV6jvpP7eqB1nYvz2mtoiGNruvqTd/Dz9+uyY8WJqGM4e2s0dZ6XqtKqFq8E6s3Dythz6FfOnmEtHTrkqWEhnYUzHjr/5vdkUItDbVAQ6Qj2KjuAll0bgOP6aIviofWEFQAQ0rPrfalmCDJA8VNaNSl1TWUNSs+WwhJv6dIrczkX4ynNa11xqKsPsWuKrjPleiejLvHqZV1cy4vKUZhRiMKMQgCObnjtzdkN8uT2kzi141Sr3+yry6rV18vb6Px0MAQZUFZQhrL8Ms3rsaqkSk3yiYiImkpvbtpQHrELqsuqW95zyEuHldVU1UDs0uyeMl67dHsLh5UBjpjUVNbAXm33dLM6TE1lDXT+uhZ96NbpdfAz+qnzaXZ1rek5BDiKQ9Vl1RARTzYLRSeKoPgpXbKniKIorV6xrDi7GJCuPaQM+LU4VJJb0qrzOEejdMTn4/bCT4stpBaHvKyL6+EvDqt/aAzBhg7pbeKs6Oan5QNwFEC6n9O9Reey19hRU1nTotVTugqTxQTrSSt++egX6PQ6DL95uMsfV0/1wCIiIt/ib/Zv0govzh4uLf0ixs/gByjeN6yspcUQb+055JFJh8uqYAz2jh77NZU1LS6GAI55h7xtWFlLelEBjliIXVBdXu2xnN9ebUdxVjGCY4PbZN7V9mCymFBwtKDFc+TaTjt6ynTF4lhtfgY/mCymVhWH7DV2FOcUIygmyGvnGwLYc6jFnH+48/bn4ciaI7CetHZwi1qvqrQKVSVVCOkZgj6/6YPEqYkd0o7AqEAM//1wDJoxCABQYWv5qnBqwurFvWZ6ju+J2NGxCI0Lhb3arg4JLD1TiqLMIlQWV3rFJNxERNS+9Ga9o7dGTcO9NTwxfFlv1HtdMcTZE6q5PYd0eh10ep3XLd3e0ngAv15b3hSTmsqaVi1DbwgyeM2wMk/0HAI8+6W97XTXXMK+NnOYY67Rlq6wbcvq+vMNOQVEBqDCWtHivzOleaWO+Ya6eC+qxnjvJ+Y25h/kD2OoERXWCpQXljvePLrgeNTaSs86vh20xFsQnhDeoW3xN/vD3+wPnb+uVd+KOJMIbx1WBjiWJTeHm1GcXYyi40UoyS2B3qTHgU8OqMd09WuTiIjan/Mb+OqyanWOEy0eKQ6Z9N43rKwVw6j0Ju8rlrVqRSov7LFfU1kD/9CW/84YggyQGkFVWVWX7yHv0eJQN8+0qasuYV9b7eXsm7v0ek1lDUrPdP35hpwCowKRn5aPkrySFr2mzvmGunovqsZ47yfmNqbT6zDkuiHQ6XTY9/6+Lj3mtyS3BAXpBWrXcXO3zrOilSGodV1mneP1u/ofzaYIiAgAFCB7dzayU7IBAD2Te0Jv1LM4REREzeb8QF5d3vbFIT+jHypt3tELwqk1PWW8sjjUyjmHAO8rDrVqWJlzUmpbZZfPc2uqaqDolBYvM94WPYesJ6wwBBvUAktXVHs5++bylvmGnGrPO9Si4tBpGxQ/BQGRzSuydTUsDnmAf6A/yvI9t/R6e8vcnKkWhvwMfp1quXNjsBHWU1aISLOq1kUninB803F19QNv7jnkpNPrEDMyRh0fHNIjBNHDoju4VURE1FU19QO5p4aVedtqVK3qOWTWt2oi2c6oNUvZ155zyBvYa+yQGmldcSj41+XsnR98u6rWFso8XRwqLypHhbUCkYMjPXK+jmIMNQJKy5az95b5hpwCugVA8VNaNO+Q2AUlOSUIig5qcQGzq/D+T8ztwBBkQHFWMezV9i4zYZmIoLygHNXl1Y4ug30s6DmuJ/QmfYsmLGsrzi6zR745Ar1Jj94Tezfpj0fR8SJUlVQhMCoQepMeQTHeu+RgbT3G9OjoJhARkZdo6gdyTw0rE7t0qVyqMa3tOWSvtntlPFoy6bDai81L5hxq7TAq4NeeQ62Zm7Oz6GzFofwjjkVxQuO67pAywLGoj3PqieZ+0W7LssHP6OcV8w0BgKJTEBgZ6PjMXmNvVpGnJK8E9mq7Vy9h78TikAcYAv9XuS+phCm0a/wCZe/Oxumdp9XbYX3DYAzpfKs/BPcIxtnDZx0TfgsQ2jsU4f0anw+psrgSik7BgGkDvGKcLBERUXtTV81q5AN5VWkVoLRu8Qdn75rGhrB1JR4ZRuVNq3NVOAoALcnL9CY9oHjPsDJPFIec14U3DMds7eTcerNnr4/8tHz4B/gjpEfXn5YhpEcIcvbkoLygvMmjQypLKlGaV4qwvmFe9TkqNC4UxdnFsJ22NWtoWXFWMQDvGWLXEO/4KqKDOVeCyk/LR8GxAtirG17VoyOVni2F9ZQVZw6dgd6sR4+xPdBrYi+E9Qnr6KZpCusThlGzR2Hw7wYDAMrONm34XmVxJQxBBq96QyMiImpPzek55G/2b9XfXOcHQ2+alLq1PYcA71rOvqaypkWFMgBQFAV6k95rhpV5ojikN+uh6BSvWM7eXmVvVSwURYG/2d8jc8AWZxejwlqB8IRwr1iy3DnvaHNW1i44WgAACOvXOT8ftpQlzgIAKMwobNb9bFk2R8+jLj58synYc8gDnL2Fsn7OAgDEjolF91HdO7JJLqorqlFTUYPC44U4ufWkuj16RDRiRsZ0YMuazhRqgqJT1LmdSs+UoqzA8e+AiAB1qUanCluFT/wCExERtZXm9BxqzZAy4NfeNc7eNt5A7TnUktW5mhj7rqTVQ4fM/l4TD08UhxRFafXCLZ1FTWVNi4Yb1uYf4O+RnkNnD58FAHTr76FlzzpYUEwQFJ0C6ykrooc3bS7Ss2ln4WfwQ2jvrj2sri6TxQRjqBFFx4sg5zZtmF11eTVsp2wI6h7kNUN8G8LikAcE9whG4mWJqKmsQfr6dEfXs1Ed3SqH6opq7P3PXrU3k3+gP7qP6g5FpyCsb9epBis6BeZwM6wnrdj7370ufwgNwQYMu2EYAEc3yOqyatir7F7TLZ2IiKgj6PQ66Px1jfccKqtq9WIWas8hL+opU11R7RhG1YLeB7VXivMW1RXVCAhq+Uo/erO+RZPJdkaeKA4Bjhy4q8fEXm2H2Fs3OTfw6wJBzZ1bp25b8o/mO7547kQL9LSGTq9DUExQk+faKSsoQ9nZMkQMjPDKyZct8RbkpOag9EwpAiMb70iQfyQfYhevKRY2hsUhD1AURR2TmhuZi+KcYhQcK4Cfwa/DlxAvyXVMoBXaOxTmcDPCE8Pdetl0FZFDIpG3Pw8AYO5mRnhCuGM+ohNWVJdXo6ygDIc/P6we7y1j9ImIiDpKY701qiuqITXS6p5Dak8ZLxpW5pxjpyW8bViZiHik55C9yjsm6fZUccgYbITtlA3VFdWtmrOnI3msUBZogNgF1WXVLX4/KswohL3K7nWFgOAewbCdtqEkt6TReXOck3GHJzQ+x2tXZIlzFIcKMwqbVBw6c+gM/Ax+nXYKFk/rmu8inVhwbDCKs4tx7NtjAIDEyxI7dDIz5xL13c/p3uWHWUUMiEDEgAiXbdVl1bCesKL0TKk6fjRqaBT8jH6IGBShcRYiIiJqKr1Zjwpr/asheWKlMsA7h5VVV1S3eJJu54TU3lIcslfZAWnZ5NxOzmvMGyYtd76urZnEHfh1xbJKW2XXLQ5Veag4FPTrAkEtfT86e/gsFJ3idYWRkB4hOL3jNGynbA0Wh0TEMRl3oL/XrswVGO1YybroeFGjqzyXnil19KIaFNHlC9JN5RvPsh3FjIxBv4v7oef4ngCAkpyO6ep55uAZZHyfgbOHzgIKvKZrZF0BEY7uyZmbM3E27SwMwQb0mtALsUmxamJFRERELeNv9kd1eTVERHO/s1dRq3sOeeGwMk/0HPK2CZhbvSIVvGPFMo8Vh4L/VxDpwvMOqT2H/Fs/rAxAiyelLi8sh/WUFaG9Q1v9unQ2AREB8DP4NTopdUlOCSqLKx2TcXvpoj6KoiA0LhRl+WUNfvEBOHoNAUDEQN/pcMDikIfp9DpY4i2IHBIJRaegJK/9i0P2Gjsyt2Ti7OGzqLBWIKRHiNdWOwMiAxAYFQh7tR1+/n6IHta0idaIiIiocXqzHpD6e/Q4P6g7P7i3+HG8bFiZ2B3DqFr6IdM5V5G3FMucr2urhpU5V8/zhuJQmWeKQ84pFCpsDX/Iba6CYwU4uPqg2qunLXlyWBng6DnUEqd2nAIEXWaxnuZQdAqCY4NRkleixluLOhl3oncNq6tLXbXseGG9x9hr7MhPy4c53Nyk4WfewrvKop2Izk8Hc7gZRZlFSH0nFcYQI/pf0b9dJvYqzSuF1Ai6J3VHzIgYry0MAY44D5w+sKObQURE5JWcvXCrSqs0P8h6bFiZwQ9QvGdYmfMDamuGP/kHeGZp7s7A2bPF2bujJVr74b+9FR4vRFBUkNru2qrLq6HoFM8NpbJ5NiaFGYUoyS1BcVZxm69Y5alCmfPaakkvqpLcEhSmF8ISb+ny03DUJ7hHMAozCmE7bYMl3uK2vzi7GGcOnUFgdKDXjjhxCukZAj+DH/L25yFqSJTmogGF6YWoqaxBtwHeXSiry3urBp1A9IhoBHcPVldXsJ5ouCtfaxUcK8CRb44gc3MmAHh1jyEiIqLOZtOmTbjiiisQGxsLRVGwevVql/05OTmYNWsWYmNjERAQgEsuuQRpaWkd09gmUntr1DO8yVPFIcAx5Mhbeg45P6C2pjhkCDY0Ouyhq3AWL1qzWEhrhw21h9x9uTibdhaVtkocW3MMhz49pHlcdXl1q3vbAY6YKDrF49eJsyeS9VTLP7uUF5aj9Gxp44/1v7YbQ1q3kIwx2AgoQEVR82Nx6qdTgALEjoltVRs6M+ciSTl7c9yGCddU1SB9Qzp0fjrEXxDfAa1rXzq9DjEjY1BhrUDeL3lu++3VdmT9nAVFp3h9L6q6WDloQ+H9wtH/8v5InJoIAMjYmIF9H+zDiR9PtPrcZfllKMkrQenZUseSgwVlyNyciaITRaiwVsAcbkZAZMuXCyUiIqLmKSkpwYgRI/Daa6+57RMRTJ8+HceOHcOnn36K3bt3Iy4uDpMnT0ZJSeddilod7lXPimVl+WVQ/BTN3hHN5Wf0856eQ7bWF4eMIUbUVNZ4RcFMLZYFt6JYFti559cRu+DEjydwfMNxVBQ6ChT1tbWqTLsnXnMpigJDkMHjw8qc16/ttK3F59i/cj8OfHyg3vnKnDxVHFJ0CozBRpQXlTfrftaTVthO29Ctf7cuu6JzU5hCTYgcEonirGJk78522Xdy60lU2irRY1wPmCymDmph+4oaGgX/QH+c3nXa7T32xI8nUF5Yjh5je3jd/FON8a1n20EMQQZEDY2C7bQNVaVVyN2fi+5J3VFpq0Ta12mwV9uhKAqCewTD3+wPxU+BOdwMRVFw5uAZtepuCDTAEGRAVVkVys6WaT5Wrwm9EDU0qj2fHhEREQGYOnUqpk6dqrkvLS0N27Ztw759+zBkyBAAwJIlSxATE4P33nsPt99+e3s2tcmcwwuKc4o1V/ApyStBQLcAzW75zaU36jvtB//m8kTPIeeH5QprBfSRXTtlr7BVAApaVUTU6XXwM/p12mFltXvJFJ8uVv8tIm6T+1aXV8MU6pkP4cYQI4qzixs/sIns1Xa1R2DZ2TJHL6dmfkCuPVdWeUF5g8OUKqwV8DP6tXqIHQCYLCZYT1k1Y16XiKDgaAFObjsJxU9BbJL39hpy6jmuJ4qzinF612kE9wiGyWJC3v48nDl4BiE9QxA5OLKjm9hudHodeozpgYzvM5C9O1tdTKrgWIEaj6hhvveZumv/pelCek3oBcCxitjxTcdxYssJlBeVo7qsGiE9Q1BVVoXC9ELN+wbHBkPRKSgvLEdJruPbRUsfCwIjAyEiELvjR6fXcfl2IiKiTqiiwvHtuMn06wdCnU4Ho9GIzZs311scqqioUO8LAFarY5iH3W6H3W73eDvtdjtERD23IcQA/yB/5B/Jh87ftcO5vdqO6rJqmPuZPdIWQ7ABxdnFOL75uEc+KHqS3W5HYWEhKi2V0Oka73hvPWGF2AX6AH2LY+Mf5A+xC7J2Z3XKb/ObE5Pi7GLozXoIHDlrS+nNepSeLcXJn062+BxtpexsGcQusIsdxenFCDAGQGfXIXNLpuv1/L8J3nUGnUd+b/wD/VFTWYOMTRke6eVQU1HjuHbNelSXVeP45uPN7tVTaatUX+eTP52EOdxc7/VSeqYUxlCjx95D7FV2nPjxhNv7lQsBik4UoexMGfwMfug1sVerfldbo+57bpvSAXEXxeHgJweR9nUapFpgr7bDP8gfvc7r5fhc2UhPr/bSHnGx9LPAlGpCzp4c4H+1xLz9edAZdOh9fu9OFQ+nunHxdHxYHGpnoXGh0Ol1yD+SDwAI6xeGvpP6AnDM1i92QXV5tdol0hBkQEA3Dg8jIiLqygYOHIjevXtj4cKFeOONNxAYGIh//OMfOHnyJLKysuq93zPPPINFixa5bc/Ly0N5efOGTzSF3W5HUVERROTXD3BhQP6+fOTn5mveJ9QYitzc3FY/tn+8P0r3l+Lo1qOtPpeniQjKysqQZ85r8hLP/gH+yLfmAy2ctqVCKmC1WWFNbds5K1uquTEJ7hXc6uukwq8CRXlFKNhY0KrztCVnXGrMNVAUBdat2q+f0W70yO+NPcyOkooSWLd79jqJ7h+Ngt0FsO5u3Xmtex33b+h6CesW5pFYlPmVOX5nfmy8zYpOQfjAcEQMjUCNscYjj98Smu+5bSxgYACytmXB3M2M8OHhCIkPQWFJIdCJRji3V1xMiSbkrMtB0aYiAI7roucFPVFQXAB4rkOex9SNi83W8qGfWlgcamf+Zn8Mu3GY2t2ydiXe+a2C3qTvlN8QERERUcv4+/vjk08+wW233Ybw8HD4+flh8uTJmDp1aoPfTC5cuBALFixQb1utVvTq1QuRkZEICQnxeDvtdsdQ98jISDUhj7w4EhXjKwCNZur0ulYNnaorZk5Mp1yq3G6348yZM4iIiGjyBxX/AP/W9YCKAmLujmlw6emO1NyYGEOMrR5+GDktslNP0q036VFTU4OcUzmIjY+FvdIOe7XGN/sKPDasDFFArwG9PDpRt+LnmL8nYVxCi+cB8zP4QdEp6meehq4XY6ixyUXXhkRFRaH3oN6QmsZ7e+hN+k4xn4zWe25bi4qKQr+kfp3i+den3eISBfTo1wP2KsfvqZ/RT12lszOqG5favZE9ofNeEV6ss7wZERERUftJSkpCSkoKioqKUFlZicjISIwbNw6jR4+u9z5GoxFGo/uQDp1O12YJs6IobucPCGufXsw6kw7+ps6XmNvtdpiqTQgID2i3D3AAYAxq3SS9balDYqIDAsI7d496u90Ok8UEvUEPnal94qIz6uBv9PzvjTHQCLRyZXdDgKN43F7Xizm0600qrfWe29acr0tn1l5xMQV3rU4ZtePi6dhwtTIiIiKidhQaGorIyEikpaVh586dmDZtWkc3iYiIiHwcu68QEREReUBxcTGOHDmi3k5PT0dKSgrCw8PRu3dvfPjhh4iMjETv3r2xd+9e3H///Zg+fTouvvjiDmw1ERERkRcXh5zj952reniS3W6HzWaDyWRq1+5/nR3joo1x0ca4aGNctDEu2hgXbXXj4swF2nrVkZ07d+Kiiy5SbzvnCpo5cyaWL1+OrKwsLFiwADk5OejevTtuueUW/PnPf27WY7RlfgPwmqoP4+KOMdHGuGhjXLQxLtoYF21tnd8o0tnWZ/OQkydPolevXh3dDCIiIuokTpw4gZ49e3Z0M1qF+Q0RERHV5qn8xmuLQ3a7HadPn0ZwcLBHZr+vzblSyIkTJ9pkpZCuinHRxrhoY1y0MS7aGBdtjIu2unEREdhsNsTGxnb5byDbMr8BeE3Vh3Fxx5hoY1y0MS7aGBdtjIu2ts5vvHZYmU6na/NvB0NCQnixamBctDEu2hgXbYyLNsZFG+OirXZcQkNDO7g1ntEe+Q3Aa6o+jIs7xkQb46KNcdHGuGhjXLS1VX7Ttb8+IyIiIiIiIiKiVmFxiIiIiIiIiIjIh7E41AJGoxFPPPEEjEZjRzelU2FctDEu2hgXbYyLNsZFG+OijXFpOcZOG+PijjHRxrhoY1y0MS7aGBdtbR0Xr52QmoiIiIiIiIiIGseeQ0REREREREREPozFISIiIiIiIiIiH8biEBERERERERGRD2NxiIiIiIiIiIjIh7E41AKvvfYa4uPjYTKZMG7cOPz0008d3aQ2tWnTJlxxxRWIjY2FoihYvXq1y34RweOPP47u3bvDbDZj8uTJSEtLczkmPz8fN910E0JCQmCxWHDbbbehuLi4HZ+FZz3zzDMYM2YMgoODERUVhenTp+PQoUMux5SXl2Pu3Lno1q0bgoKCMGPGDOTk5Lgck5mZicsuuwwBAQGIiorCH//4R1RXV7fnU/GoJUuWYPjw4QgJCUFISAiSk5Px9ddfq/t9MSZann32WSiKgvnz56vbfDE2Tz75JBRFcfkZOHCgut8XY+J06tQp3HzzzejWrRvMZjOGDRuGnTt3qvt98X03Pj7e7XpRFAVz584F4NvXi6cwv1ntst8Xf8+Y32hjftM0zG8cmN/Uj/mNu06V3wg1y/vvvy8Gg0Hefvtt2b9/v9xxxx1isVgkJyeno5vWZr766it57LHH5JNPPhEAsmrVKpf9zz77rISGhsrq1aslNTVVrrzySunTp4+UlZWpx1xyySUyYsQI2bZtm/zwww+SkJAgN9xwQzs/E8+ZMmWKLFu2TPbt2ycpKSly6aWXSu/evaW4uFg95q677pJevXrJd999Jzt37pTx48fLhAkT1P3V1dUydOhQmTx5suzevVu++uoriYiIkIULF3bEU/KIzz77TL788ks5fPiwHDp0SB599FHx9/eXffv2iYhvxqSun376SeLj42X48OFy//33q9t9MTZPPPGEDBkyRLKystSfvLw8db8vxkREJD8/X+Li4mTWrFmyfft2OXbsmKxZs0aOHDmiHuOL77u5ubku18q6desEgGzYsEFEfPd68RTmN8xvRJjf1If5TeOY3/yK+Y025jfaOlN+w+JQM40dO1bmzp2r3q6pqZHY2Fh55plnOrBV7adu8mS32yUmJkZeeOEFdVthYaEYjUZ57733RETkl19+EQCyY8cO9Zivv/5aFEWRU6dOtVvb21Jubq4AkI0bN4qIIwb+/v7y4YcfqsccOHBAAMjWrVtFxJGU6nQ6yc7OVo9ZsmSJhISESEVFRfs+gTYUFhYmb731FmMiIjabTRITE2XdunVywQUXqMmTr8bmiSeekBEjRmju89WYiIg8/PDDcu6559a7n++7Dvfff7/069dP7Ha7T18vnsL8hvmNFuY39WN+8yvmN66Y32hjftM0HZnfcFhZM1RWVmLXrl2YPHmyuk2n02Hy5MnYunVrB7as46SnpyM7O9slJqGhoRg3bpwak61bt8JisWD06NHqMZMnT4ZOp8P27dvbvc1toaioCAAQHh4OANi1axeqqqpc4jJw4ED07t3bJS7Dhg1DdHS0esyUKVNgtVqxf//+dmx926ipqcH777+PkpISJCcnMyYA5s6di8suu8wlBoBvXy9paWmIjY1F3759cdNNNyEzMxOAb8fks88+w+jRo3HNNdcgKioKo0aNwj//+U91P993HX+PV6xYgdmzZ0NRFJ++XjyB+Y07/p45ML9xx/zGHfMbd8xv3DG/aVxH5zcsDjXDmTNnUFNT4xJ4AIiOjkZ2dnYHtapjOZ93QzHJzs5GVFSUy369Xo/w8HCviJvdbsf8+fMxceJEDB06FIDjORsMBlgsFpdj68ZFK27OfV3V3r17ERQUBKPRiLvuugurVq3C4MGDfTomAPD+++/j559/xjPPPOO2z1djM27cOCxfvhzffPMNlixZgvT0dJx33nmw2Ww+GxMAOHbsGJYsWYLExESsWbMGd999N+677z78+9//BsD3XQBYvXo1CgsLMWvWLAC++zvkKcxv3PH3jPlNXcxvtDG/ccf8Rhvzm8Z1dH6jb1mzichp7ty52LdvHzZv3tzRTekUBgwYgJSUFBQVFeGjjz7CzJkzsXHjxo5uVoc6ceIE7r//fqxbtw4mk6mjm9NpTJ06Vf338OHDMW7cOMTFxWHlypUwm80d2LKOZbfbMXr0aPztb38DAIwaNQr79u3D0qVLMXPmzA5uXefwr3/9C1OnTkVsbGxHN4XIazG/ccX8xh3zG23Mb7Qxv2lcR+c37DnUDBEREfDz83ObHTwnJwcxMTEd1KqO5XzeDcUkJiYGubm5Lvurq6uRn5/f5eM2b948fPHFF9iwYQN69uypbo+JiUFlZSUKCwtdjq8bF624Ofd1VQaDAQkJCUhKSsIzzzyDESNG4OWXX/bpmOzatQu5ubk455xzoNfrodfrsXHjRrzyyivQ6/WIjo722djUZrFY0L9/fxw5csSnr5fu3btj8ODBLtsGDRqkdkn39ffd48eP49tvv8Xtt9+ubvPl68UTmN+48/XfM+Y37pjfuGN+0zTMbxyY3zSsM+Q3LA41g8FgQFJSEr777jt1m91ux3fffYfk5OQObFnH6dOnD2JiYlxiYrVasX37djUmycnJKCwsxK5du9Rj1q9fD7vdjnHjxrV7mz1BRDBv3jysWrUK69evR58+fVz2JyUlwd/f3yUuhw4dQmZmpktc9u7d6/IGt27dOoSEhLi9cXZldrsdFRUVPh2TSZMmYe/evUhJSVF/Ro8ejZtuukn9t6/Gprbi4mIcPXoU3bt39+nrZeLEiW5LRx8+fBhxcXEAfPd912nZsmWIiorCZZddpm7z5evFE5jfuPPV3zPmN03H/Ib5TVMxv3FgftOwTpHfeGJGbV/y/vvvi9FolOXLl8svv/wic+bMEYvF4jI7uLex2Wyye/du2b17twCQxYsXy+7du+X48eMi4lhy0GKxyKeffip79uyRadOmaS45OGrUKNm+fbts3rxZEhMTu/SSg3fffbeEhobK999/77L0YGlpqXrMXXfdJb1795b169fLzp07JTk5WZKTk9X9zmUHL774YklJSZFvvvlGIiMju/QylY888ohs3LhR0tPTZc+ePfLII4+Ioiiydu1aEfHNmNSn9moeIr4ZmwcffFC+//57SU9Ply1btsjkyZMlIiJCcnNzRcQ3YyLiWA5Yr9fLX//6V0lLS5P//Oc/EhAQICtWrFCP8cX3XRHHClq9e/eWhx9+2G2fr14vnsL8hvmNCPOb+jC/aTrmN8xv6sP8pn6dJb9hcagFXn31Vendu7cYDAYZO3asbNu2raOb1KY2bNggANx+Zs6cKSKOZQf//Oc/S3R0tBiNRpk0aZIcOnTI5Rxnz56VG264QYKCgiQkJERuvfVWsdlsHfBsPEMrHgBk2bJl6jFlZWVyzz33SFhYmAQEBMhVV10lWVlZLufJyMiQqVOnitlsloiICHnwwQelqqqqnZ+N58yePVvi4uLEYDBIZGSkTJo0SU2cRHwzJvWpmzz5Ymyuu+466d69uxgMBunRo4dcd911cuTIEXW/L8bE6fPPP5ehQ4eK0WiUgQMHyptvvumy3xffd0VE1qxZIwDcnquIb18vnsL8hvkN8xttzG+ajvkN85uGML/R1lnyG0VEpHl9jYiIiIiIiIiIyFtwziEiIiIiIiIiIh/G4hARERERERERkQ9jcYiIiIiIiIiIyIexOERERERERERE5MNYHCIiIiIiIiIi8mEsDhERERERERER+TAWh4iIiIiIiIiIfBiLQ0TUauPHj8eLL77YYY+/YsUKxMTE1Lt/wIAB+Oc//9mOLfK83/3ud5g/f756e/To0XjppZc6rD1ERES+gDlO22OOQ9Q5sDhERK1it9uxd+9ejBgxosPakJqaipEjRwJwJBQrVqxw2b9p0ybMmjWrWefT6XQoKiryYCtbJyUlRX2O1dXV2L9/v3qbiIiIPI85TvtgjkPUObA4REStcvjwYZSWlmL48OFNvk9VVZVH21A7cdISHR0Nf3//Jp/vp59+QkJCAkJDQ1vVLk89T5vNhmPHjqnP8eDBgygvL+/QZJWIiMjbMcepH3McIu/D4hCRFzh69CgURcEXX3yBSZMmISAgAAMGDMD27dtdjlu1ahXGjBmDgIAAJCQkYNmyZS774+Pj8dxzz+Gmm25CcHAw4uLisHbtWpw4cQJXX301goODMXDgQOzevVu9T0pKCqKjo7FhwwYMGjQIwcHBuPrqq1FQUKAeM2vWLNx444147LHHEBMTg6SkJABAaWkpHn30UfTs2ROBgYE4//zzsW/fvkaf6+WXX46AgAD0798fGzdubDBxWr58OeLj49Xbf/7znzF58mS89tprSExMRGBgIK666ipUVFQAAG655RbMmTMHaWlpUBQFiqLg4MGDAID9+/fj8ssvR1BQEKKiojBv3jz1fgBw4YUXYsGCBbjnnnsQHh6OGTNmYOzYsfjTn/7k0qYTJ07AbDZjy5YtAIDvvvsOkydPRkREBAIDA3Heeedh79696vGpqanQ6/UYPHiwGvPevXsjLCxMPebzzz/H6NGjYTKZ0LdvX7zxxhsuj/nGG29g2LBhCAgIQLdu3XDJJZfAbrc3GGsiIqKOxhyHOQ5zHKJ2IkTU5X388ceiKIpcdNFFsmHDBjl8+LBMnjxZLrzwQvWYN998U0JDQ2X58uVy7NgxWb58ueh0Otm0aZOIiBQUFAgASUxMlJUrV0paWppMmTJFEhMT5cILL5Qvv/xSDh48KBMnTpQrr7xSPe/DDz8sgYGBcvXVV8v+/ftl48aN0qNHD5k7d656zMiRIyU4OFgWLlwoBw8elMOHD0tZWZmMGTNGZsyYITt27JDDhw/L7NmzJSEhQex2u+bzzMnJkR49esicOXPkwIEDsm7dOklMTBQAcuDAARERSUpKknfffVe9z/z582XatGnq7SuuuEJCQ0PlgQcekP3798v69eslMDBQli9fLiIi+fn5Mn78eFm4cKFkZWVJVlaW2O122bJli4SGhspLL70kaWlpsmnTJklISJCnnnpKPXdYWJiEh4fL3//+d0lLS5Njx47J7Nmz5aqrrnJ5HrfeeqtLDFesWCGrVq2Sw4cPy549e+SKK66QsWPHqvtfffVVGT58uHr7wQcfdLn/iy++KHFxcfLRRx/JsWPH5P333xeTyaS+titWrJCePXvKF198IRkZGbJjxw555ZVXNGNMRETUmTDHYY7DHIeofbA4ROQFHn/8cQkLC5Pc3Fx12yuvvCJDhgwREUfCYTabZeXKlS73mzBhgjz00EMiIvL9998LAFm/fr26/6233hJFUWTfvn3qtmeffdblj/qUKVNk5MiRUlNTo27761//qj52ZWWlGAwGl0TKecwFF1zgkiSdOXNGAMjx48c1n+fs2bPl/PPPd9n2hz/8QQICAlwev7YLL7xQHn/8cfV279695aabbnI55pxzzpEXXnhBvW2xWOTzzz9Xb1dXV8vAgQPl7bffdrnfiy++KBdddJGIiGRkZAgAl/OIiCxevFgGDBig3t6/f78YDAbZv3+/ZntFRNasWSOhoaHq7dtuu01uueUW9fakSZPU55Seni6BgYFy8OBBl3NcfvnlsmjRIhER+f3vfy833nhjvY9HRETUWTHHYY7DHIeofXBYGZEXSE1NxbRp0xAZGaluS09PR0JCAgDgk08+gcViwYwZM1zuZzAY1C7Dqamp6NevHy666CJ1f2ZmJsaOHYshQ4a4bOvTp496OyUlBffddx90ul/fTsLCwtTuvAcOHEBlZSXuu+8+l8d+6623sHXrVgQHByMoKAhBQUGIi4sDAOj1erfnWF5ejvfee89lNQsA8Pf3x7Bhw1wev25snN2xCwsLkZmZiTvuuMPlmIyMDDVW6enpKCwsdBnrvmXLFhw8eBDz5s1T2xoUFIRHH31UbWtqaioMBgPuvPNOl3MPGzYMR48eRWVlJQDg0Ucfxc0336x2n66qqsLrr7+OCRMmoHv37ggKCsKVV16Jnj17usS4dntSU1PV2++88w5KS0uRlJTk0ravv/5abdull16KlStXYuLEiXj55ZeRlZWlGSsiIqLOhjkOcxzmOETtw/3diYi6nNTUVCxcuNBlW0pKCs4//3wAjnHkgwcPdkku7HY7Dh48iJtvvlk9fty4cW7nGD9+vNu2yy+/HACQnZ2NnJwct7Hw27Ztw6hRo9Tju3fvjv79+6v7rVYr0tPT8fXXX6sJS22xsbFu2w4dOoSysjKcc845Ltt//vnnesfiZ2ZmoqCgQE0yUlNT4efnh7Fjx7ock5+fr54jJSUF4eHh6NWrl8tzHj58OD7++GO3xwgODlaPSUpKUm87DR06FNXV1UhLS4PVasXatWtx+PBhdf+cOXOwefNmPP744xgyZAhCQkKwYMEC9Tx1V+04efIkzpw549Le22+/HQ899JBb26KiogAA119/PSZOnIjVq1fjP//5DxYuXIjvvvsOycnJmnEjIiLqLJjjjHQ7HmCOwxyHyPNYHCLq4oqKipCRkaEmKk7Ob7sAxx/3srIyl/3vvfcebDYbpk+fDsCRVNxwww1u57j66qvV2yKCPXv24LHHHlP3A0BNTY16zOnTp/HBBx/giy++UM9bt21+fn5QFAV6vV4zcdLiTPpqP499+/Zh7dq1eP311zXvk5qaipCQEPVbwNTUVAwYMABms1k9Zvfu3bBYLOqEjlpL1vr7+yM/Px/9+vWDoij1Plbd5wkAMTExiIiIwC+//IJXX30V9957r/qNWWVlJd5991188sknuPLKKwE44rdx40Z1gkfnqh21E6Xaz8nf3x+lpaWNxrFXr1649957MW/ePMTHx+Pnn39m4kRERJ0acxzmOMxxiNoPh5URdXF79uyBXq/HsGHD1G3Hjx9HQUGB+sd26tSp2LZtG959911kZGTgnXfewdy5c/HKK6+gW7dubt/cAEBBQQEyMzNdvsU6cuQIiouL3f6IP/HEEzh69Ci2bduG3/72t7j66qsxefJk9Zi6CUVgYCAuuOACPPDAA/j++++RkZGBzZs345FHHkFGRobm80xMTERkZCQeffRRHD58GBs2bMA111wDEan3WzXnt2HOZEcruanbndlutyMvLw9Hjx5FdnY2AGDSpEnIy8vDvHnzcODAARw6dAiffvopHn/8cZfzaCVOgOObtcWLF2Pfvn0u3376+/sjJCQEn3/+OY4dO4ZvvvkGM2bMgNVqdflWsmfPnggPD9d8Tpdeeik++OADLF26FMeOHUNqair+9a9/4d///jcAR9f2JUuWYO/evTh69Cief/55FBQUYMqUKZptJSIi6iyY4zDHYY5D1I46dsoj8mYA5IknnujoZnRqF1xwgVxwwQWtOserr76qTow4c+ZMiYuLk1WrVonFYnE5bunSpdK3b18xmUySlJQkq1atUvft3btXAEheXp66bcOGDWI0GqWqqkrd9uGHH0pERIR6+7rrrpO5c+fKww8/LCEhIRIZGSmPP/64y326desmH374oVu7T58+LTfeeKNER0eLyWSShIQEueuuu1zuW9eaNWskMTFRDAaDnHPOOfK3v/1NdDqdlJSUaB4/Y8YMmTdvnno7KSnJbTLFadOmyf3336/ezszMlHHjxonBYHB5rl9//bWMGTNGAgMDJSwsTJKTk+W///2viIhYrVZRFEV27Nih2Y57771XAMjzzz/vtu/TTz+VuLg4MZvNMnnyZPnvf//r8lo8+OCDcvnll9f7nEQcE0ImJiaK0WiU6Ohoueyyy9S2LF26VIYNGyYBAQFisVhk0qRJ8uOPP6r3feKJJ4R/ChrXnN9Vm80mkZGRsmLFCo89/pkzZyQgIEC+/PJLj52TiJqHeU3jPJHX1DZ27Fjx9/d32cYcx4E5jnaOM3v2bOY17eC5556TAQMG1DtZeks8/PDDLhPCU/vjbw6JiMiyZcsEgPpjNBolMTFR5s6dK9nZ2S06J5Ooxnk6iXIWh4iaisWhpmnO7+rTTz8tffv2lerqahFxJFAA5Oeff3Y5zm63i8ViEQBy7Ngxl31lZWViMBjkhhtuULfdd999cs4557TuiRD5COY1HYN5DXU05jVtr6ioSMLDw9UV7qqrqyU4OFiuvPJKt2MXL14sAFxWpHP685//LADk0KFDIiKSlZUlRqNRPv3007Z9AlQvzjlELv7yl7+gT58+KC8vx+bNm7FkyRJ89dVX2LdvHwICApp1rrKyMs0VGYiIvFVVVRVefvllPPDAA/Dz8wMAnHvuuQCAzZs3u3TL379/PwoLC6HX67FlyxaXFXJ27NiByspK9b4AcNddd+GVV17B+vXr8Zvf/KadnhFR18a8hojIs95++21UV1er83j5+flh/Pjx+PHHH92O3bJli5rnaO2LiopSJ3SPiYnBtGnT8OKLL6rzVFH74pxD5GLq1Km4+eabcfvtt2P58uWYP38+0tPT8emnnzb7XCaTiUkUEXmciLhNPtpZfPHFF8jLy8O1116rbhs9ejRMJhM2b97scuyWLVvQrVs3TJo0yW2f83bt4tCgQYMwdOhQLF++vO2eAJGXYV5DRJ5WUlLS0U1w055tWrZsGa688kqYTCZ127nnnoszZ87gwIEDLsdu2bIF1157rcs8V4Bjpbrt27dj4sSJLsdfe+212Lx5M44dO9a2T4I0sThEDXJ+O52eng4AuPDCC3HhhRe6HTdr1ix1JQQnRVHw5JNPqrdtNhvmz5+P+Ph4GI1GREVF4be//S1+/vln9Zi0tDTMmDEDMTExMJlM6NmzJ66//noUFRWpxyxbtgy/+c1vEBUVBaPRiMGDB2PJkiVubYqPj8fll1+OzZs3Y+zYsTCZTOjbty/eeecdt2MLCwvxwAMPqG3r2bMnbrnlFpw5c0Y9pqKiAk888QQSEhJgNBrRq1cvPPTQQ6ioqGhSLN98803069cPZrMZY8eOxQ8//KB5XGsfp64XX3wREyZMQLdu3WA2m5GUlISPPvqoSfe98MILMXToUOzatQsTJkyA2WxGnz59sHTpUrdjc3NzcdtttyE6OhomkwkjRoxQJwx0ysjIgKIoePHFF/Haa6+hb9++CAgIwMUXX4wTJ05ARPDUU0+hZ8+eMJvNmDZtGvLz813O4Xxd165di5EjR8JkMmHw4MH45JNP3NpUWFiI+fPno1evXjAajUhISMBzzz0Hu93epOf/9ddf47zzzkNgYCCCg4Nx2WWXYf/+/S7HzJo1C0FBQTh16hSmT5+OoKAgREZG4g9/+IPLCif1cT6f77//HqNHj4bZbMawYcPw/fffAwA++eQTDBs2DCaTCUlJSdi9e7fbOdavX6+202KxYNq0aW5/nAFHwWHMmDEwmUzo168f3njjjXrbtWLFCiQlJcFsNiM8PBzXX389Tpw40ejzefLJJ6EoCo4cOYJZs2bBYrEgNDQUt956K0pLS12Ora6uxlNPPYV+/frBaDQiPj4ejz76qNu17ozRmjVr1Bi98cYb+P7776EoClauXIlFixahR48eCA4Oxu9+9zsUFRWhoqIC8+fPR1RUFIKCgnDrrbe6nbup7ydNtXr1asTHx6Nfv37qNoPBgDFjxrh9a7ZlyxYkJydj4sSJmvssFguGDh3qsv23v/0tPv/8c4hIi9tI5MuY1zCvYV7DvKYlec0vv/yCG2+8EWFhYS5f3DR23nnz5iEoKMgtBwKAG264ATExMS5xbc5rdPToUVx66aUIDg7GTTfdBKBp7zmtiUd6ejr27NmjTsru5IxJ7Xzm2LFjyM7Oxrx582AymVz2paSkoKSkxCWWANTztqSATx7QsaPaqLNwjs2vO9ncyy+/LABk6dKlIlL/WHKtMeGoMzb/xhtvFIPBIAsWLJC33npLnnvuObniiivUSVsrKiqkT58+EhsbK08//bS89dZbsmjRIhkzZoxkZGSo5xkzZozMmjVL/vGPf8irr74qF198sQCQ//u//3N5/Li4OBkwYIBER0fLo48+Kv/3f/8n55xzjiiKIvv27VOPs9lsMnToUPHz85M77rhDlixZIk899ZSMGTNGdu/eLSIiNTU1cvHFF0tAQIDMnz9f3njjDZk3b57o9XqZNm1ao/F96623BIBMmDBBXnnlFZk/f75YLBbp27evSzxb+zhar0PPnj3lnnvukf/7v/+TxYsXy9ixYwWAfPHFF42e74ILLpDY2FiJioqSefPmySuvvCLnnnuuAJB//etf6nGlpaUyaNAg8ff3lwceeEBeeeUVOe+88wSAvPTSS+px6enpAkBGjhwpgwcPlsWLF8uf/vQnMRgMMn78eHn00UfVGN13332iKIrceuutLm2Ki4uT/v37i8VikUceeUQWL14sw4YNE51OJ2vXrlWPKykpkeHDh0u3bt3k0UcflaVLl8ott9wiiqK4TM5Yn3feeUcURZFLLrlEXn31VXnuueckPj5eLBaLpKenu8TcZDLJkCFDZPbs2bJkyRKZMWOGAJDXX3+90cdxXqfdu3eXJ598Uv7xj39Ijx49JCgoSFasWCG9e/eWZ599Vp599lkJDQ2VhIQEl8n/1q1bJ3q9Xvr37y/PP/+8LFq0SCIiIiQsLMylnXv27BGz2Sy9e/eWZ555Rp566imJjo6W4cOHu43Nf/rpp0VRFLnuuuvk9ddfV88ZHx8vBQUFDT4f51j/UaNGydVXXy2vv/663H777QJAHnroIZdjZ86cKQDkd7/7nbz22mtyyy23CACZPn26W4wSEhIkLCxMHnnkEVm6dKls2LBBNmzYoF5PycnJLtfN9ddfLzfeeKNMnTpVXnvtNfn9738vAGTRokUu527q+0lT59FISEiQq6++2m37woULBYDLa9K3b1/529/+Jt9++60oiqLG1m63S1hYmEydOtXtPCtWrBAAsnfv3kbbQuTLmNcwr9HCvIZ5TUvzmsGDB8u0adPk9ddfl9dee63J5920aZMAkJUrV7qct6SkRAIDA2Xu3Lkteo2MRqP069dPZs6cKUuXLpV33nmnye85rYmHMw/Zs2eP2/PR6/Uyc+ZMl+cTGBgoVVVVcu6558oDDzyg7nvppZcEgGzfvt3tMRISEmTGjBkNtoPaBotDJCK/JlHffvut5OXlyYkTJ+T999+Xbt26idlslpMnT4pI65Ko0NBQlzfAunbv3i0ANFd9qK20tNRt25QpU6Rv374u2+Li4gSAbNq0Sd2Wm5srRqNRHnzwQXXb448/LgDkk08+cTuv3W4XEZF3331XdDqd/PDDDy77ly5dKgBky5Yt9ba3srJSoqKiZOTIkVJRUaFuf/PNNwWASzxb8zgi2q9D3XhVVlbK0KFD5Te/+U2D5xJxvN4A5O9//7u6raKiQkaOHClRUVFSWVkpIr++wddenamyslKSk5MlKChIrFariPyaREVGRkphYaF6rPOD84gRI1xW8rjhhhvEYDBIeXm5us35un788cfqtqKiIunevbuMGjVK3fbUU09JYGCgHD582OU5PfLII+Ln5yeZmZn1Pm+bzSYWi0XuuOMOl+3Z2dkSGhrqst1Z4PjLX/7icuyoUaMkKSmp3seo+3xqryC2Zs0aASBms1mOHz+ubn/jjTcEgGzYsEHd5nwtzp49q25LTU0VnU7nMvnf9OnTxWQyuZzvl19+ET8/P5ckKiMjQ/z8/OSvf/2rSzv37t0rer3ebXtdziRq9uzZLtuvuuoq6datm3o7JSVFAMjtt9/uctwf/vAHASDr1693i9E333zjcqyzODR06FD1WhRxXDeKorgVV5KTkxv9/RDRfj9pSnGoqqpKFEVxeX9x+vLLLwWAvPvuuyLimHQRgGzcuFFsNpv4+fmpK5Ht27dPAGjG+scffxQA8sEHHzTYFiJfx7yGeY0W5jXMa5yam9fUXiCiOee12+3So0cPt2LHypUrXX6fW/IaPfLIIy7HNuU9p7Xx+NOf/iQAxGazue0bM2aM9OvXT7195513ykUXXSQiIg899JCMGTNG3fe73/1OAgICNFfwu/jii2XQoEENtoPaBoeVkYvJkycjMjISvXr1wvXXX4+goCCsWrUKPXr0aPW5LRYLtm/fjtOnT2vuDw0NBQCsWbNGs+ulk9lsVv9dVFSEM2fO4IILLsCxY8fcukwOHjwY5513nno7MjISAwYMcBnH+vHHH2PEiBG46qqr3B5LURQAwIcffohBgwZh4MCBOHPmjPrj7J6+YcOGetu7c+dO5Obm4q677oLBYFC3z5o1S33OTq15nPrUjldBQQGKiopw3nnnuXR7b4her8edd96p3jYYDLjzzjuRm5uLXbt2AQC++uorxMTEqBPTAYC/vz/uu+8+FBcXY+PGjS7nvOaaa1ye+7hx4wAAN998s8t8DuPGjUNlZSVOnTrlcv/Y2FiX1yskJAS33HILdu/erY5n/vDDD3HeeechLCzMJZaTJ09GTU0NNm3aVO9zXrduHQoLC3HDDTe43NfPzw/jxo3TfB3uuusul9vnnXdek8dLDx48GMnJyW7x+M1vfoPevXu7bXeeNysrCykpKZg1axbCw8PV44YPH47f/va3+OqrrwAANTU1WLNmDaZPn+5yvkGDBmHKlCkubfnkk09gt9tx7bXXujz3mJgYJCYmNvka1IrH2bNnYbVaAUBt24IFC1yOe/DBBwEAX375pcv2Pn36uLXV6ZZbboG/v796e9y4cRARzJ492+W4cePG4cSJE6iurla3Nef9pDH5+fkQEYSFhbntmzBhAnQ6nTqX0JYtW+Dv748xY8YgKCgIw4cPV7tbO/9ft6s1APXctYeGEFH9mNe4Yl7DvIZ5jWfymqaeV1EUXHPNNfjqq69QXFys3v+DDz5Ajx491L/1LXmN7r77bpfbTXnPaW08zp49C71ej6CgILd95557rsvcQlu2bMGECRMAABMnTsTu3bvVdm3ZsgXjxo3TnMfNeY1T++OseuTitddeQ//+/aHX6xEdHY0BAwZAp/NMDfH555/HzJkz0atXLyQlJeHSSy/FLbfcgr59+wJwfPhbsGABFi9ejP/85z8477zzcOWVV+Lmm292+YO7ZcsWPPHEE9i6davbG19RUZHLsbX/YDiFhYWhoKBAvX306FHMmDGjwbanpaXhwIEDiIyM1Nyfm5tb732PHz8OAEhMTHTZ7u/vrz53TzxOfb744gs8/fTTSElJcRnf70wQGxMbG4vAwECXbc5VBTIyMjB+/HgcP34ciYmJbtfKoEGDAPwaA6e6r4vzNevVq5fm9tqvFwAkJCS4tb92m2JiYpCWloY9e/a0KJZpaWkAUO+KUCEhIS63TSaT2+PUvc4a0tJ4OOM6YMAAt3MOGjQIa9asQUlJCWw2G8rKytyuQed9nckW4HjuIqJ5LACXIkxznpOzqFFQUICQkBAcP34cOp0OCQkJLsfFxMTAYrG4XTO1V/Jq7LEaip/dbkdRURG6desGoHnvJ00lGvMBWSwWDBkyxKUANGrUKPVDzoQJE1z2GQwGjB07tt5zN/X3l8jXMa/RxryGeU1tzGsaVzcPac55r7vuOrz00kv47LPPcOONN6K4uBhfffUV7rzzTvV1b+5rpNfr0bNnT7c2Nvae46l4aDn33HPxj3/8A1u2bMGkSZOwf/9+PP/88wAceU51dTV++uknxMXFISsrC7fffrvmeUSEeU4HYXGIXIwdOxajR4+ud7+iKJoffJoyQd21116L8847D6tWrcLatWvxwgsv4LnnnsMnn3yCqVOnAgD+/ve/Y9asWfj000+xdu1a3HfffXjmmWewbds29OzZE0ePHsWkSZMwcOBALF68GL169YLBYMBXX32Ff/zjH24T8jmXkq5L6zk0xG63Y9iwYVi8eLHm/rp/7FrK04/zww8/4Morr8T555+P119/Hd27d4e/vz+WLVuG//73v55ocovU97p46vUCHLH87W9/i4ceekhzvzPpqu++APDuu+8iJibGbX/dbznqa3dTtUc8msput0NRFHz99deaj6/1TZGWpra9qX/8a39T3NTHaqwNzX0/aUx4eDgURak3eT733HOxdOlSFBYWunybBjiSprfffhtVVVXYvHkzkpKSXFYBcXKeOyIiolltI/JVzGu0Ma/xLOY1rrwxr6mbhzTnvOPHj0d8fDxWrlyJG2+8EZ9//jnKyspw3XXXuZwPaPprZDQaNQvdjb3ntDYe3bp1Q3V1NWw2G4KDg132OXtBbd68GQEBAQCg9iCLiIhAYmIiNm/erE58rdVDGnDkOsxzOgaLQ9QsYWFhml1K636DUp/u3bvjnnvuwT333IPc3Fycc845+Otf/6omUQAwbNgwDBs2DH/605/w448/YuLEiVi6dCmefvppfP7556ioqMBnn33m8q1ES7olO/Xr1w/79u1r9JjU1FRMmjSp2ZXsuLg4AI5Kfe1vA6qqqpCeno4RI0Z45HG0fPzxxzCZTFizZg2MRqO6fdmyZU0+x+nTp1FSUuLyLdvhw4cBQF3JJS4uDnv27IHdbnf5Q3Xw4EF1vycdOXLE7VuFum3q168fiouL3VZTaArnSlNRUVEtun97ccb10KFDbvsOHjyIiIgIBAYGwmQywWw2q99K1Vb3vv369YOIoE+fPg0mmq0VFxcHu92OtLQ09ZtYAMjJyUFhYaHHrxktnn4/0ev16Nevn7oKUl3nnnsulixZgm+//Ra7d+/GH//4R3XfhAkTUFZWhi+//BLHjh2r91t/57lrx4yIWo55DfMagHlNZ9GV8prmnvfaa6/Fyy+/DKvVig8++ADx8fEYP368y/kAz7xGDb3ntDYeAwcOBODIR4YPH+6yLyoqSi0ABQYGYvDgwbBYLOp+Zy/pkydPws/Pz2XoYW1130eo/XDOIWqWfv364eDBg8jLy1O3paamui3DXFdNTY3buPmoqCjExsaqXYKtVqvLXCCA481Np9Opxzgr3LW/YSgqKmpWUlDXjBkzkJqailWrVrntcz7Otddei1OnTuGf//yn2zFlZWUoKSmp9/yjR49GZGQkli5disrKSnX78uXLUVhY6HJsax5Hi5+fHxRFcfkGNCMjA6tXr27yOaqrq12WBq2srMQbb7yByMhIJCUlAQAuvfRSZGdn44MPPnC536uvvoqgoCBccMEFzWp3Y06fPu3yelmtVrzzzjsYOXKk+m3Ltddei61bt2LNmjVu9y8sLHS71mqbMmUKQkJC8Le//Q1VVVVu+2tf/x2pe/fuGDlyJP7973+7XEv79u3D2rVrcemllwJwXAdTpkzB6tWrkZmZqR534MABt/hcffXV8PPzw6JFi9y+yRMRnD171iNtd7btpZdectnu/Hb5sssu88jjNKQt3k+Sk5Oxc+dOzX3Ob8gWL16Mqqoql55D8fHx6N69u9r9ur5v03bt2oXQ0FAMGTKkxW0kol8xr2Few7yGeU1LNPe81113HSoqKvDvf/8b33zzDa699lqX/Z54jZryntPaeDgLOg3lOikpKVi7dq1LngM4ikNbt27FDz/8gOHDh7v1PAIc739Hjx51uy+1D/YcomaZPXs2Fi9ejClTpuC2225Dbm4uli5diiFDhqgTzWqx2Wzo2bMnfve732HEiBEICgrCt99+ix07duDvf/87AGD9+vWYN28errnmGvTv3x/V1dV499134efnp36LfvHFF8NgMOCKK67AnXfeieLiYvzzn/9EVFQUsrKyWvSc/vjHP+Kjjz7CNddcg9mzZyMpKQn5+fn47LPPsHTpUowYMQK///3vsXLlStx1113YsGEDJk6ciJqaGhw8eBArV67EmjVr6u227u/vj6effhp33nknfvOb3+C6665Deno6li1b5jY2vzWPo+Wyyy7D4sWLcckll+DGG29Ebm4uXnvtNSQkJGDPnj1NOkdsbCyee+45ZGRkoH///vjggw+QkpKCN998Ux2XPGfOHLzxxhuYNWsWdu3ahfj4eHz00UfYsmULXnrpJc03/9bo378/brvtNuzYsQPR0dF4++23kZOT45JM//GPf8Rnn32Gyy+/HLNmzUJSUhJKSkqwd+9efPTRR8jIyKi3y2pISAiWLFmC3//+9zjnnHNw/fXXIzIyEpmZmfjyyy8xceJE/N///Z9Hn1NLvfDCC5g6dSqSk5Nx2223oaysDK+++ipCQ0Px5JNPqsctWrQI33zzDc477zzcc889apI7ZMgQl2uhX79+ePrpp7Fw4UJkZGRg+vTpCA4ORnp6OlatWoU5c+bgD3/4Q6vbPWLECMycORNvvvkmCgsLccEFF+Cnn37Cv//9b0yfPh0XXXRRqx+jMW3xfjJt2jS8++67OHz4sNs3cr1790avXr2wdetWxMfHIzY21mX/hAkT8PHHH0NRFEycOFHz/OvWrcMVV1zBsfhEHsK8hnkN8xrmNS3Ja5p73nPOOQcJCQl47LHHUFFR4TKkDPDMa9SU95zWxqNv374YOnQovv32W7eFPwBHcWjZsmXYsWMH5s6d67JvwoQJKCoqQlFREe69917N83/77bcQEUybNq3B50ptpA1XQqMuxLnk644dOxo9dsWKFdK3b18xGAwycuRIWbNmTaNLvlZUVMgf//hHGTFihAQHB0tgYKCMGDFCXn/9dfX4Y8eOyezZs6Vfv35iMpkkPDxcLrroIvn2229dzvvZZ5/J8OHDxWQySXx8vDz33HPy9ttvCwBJT09Xj4uLi5PLLrvMrf1ay9aePXtW5s2bJz169BCDwSA9e/aUmTNnypkzZ9RjKisr5bnnnpMhQ4aI0WiUsLAwSUpKkkWLFklRUVGjcXv99delT58+YjQaZfTo0bJp0ybNtrTmcbReh3/961+SmJgoRqNRBg4cKMuWLVOX5WzMBRdcIEOGDJGdO3dKcnKymEwmiYuLk//7v/9zOzYnJ0duvfVWiYiIEIPBIMOGDZNly5a5HONc8vWFF15w2e5ckrzu0pta16XzdV2zZo0MHz5cfV5ay3babDZZuHChJCQkiMFgkIiICJkwYYK8+OKLLkuf12fDhg0yZcoUCQ0NFZPJJP369ZNZs2bJzp071WNmzpwpgYGBbvdtaozru04BuC2RXF/8vv32W5k4caKYzWYJCQmRK664Qn755Re3c27cuFGSkpLEYDBI3759ZenSpfW28+OPP5Zzzz1XAgMDJTAwUAYOHChz586VQ4cONfh8nOfLy8tz2e58LWv/jlZVVcmiRYukT58+4u/vL7169ZKFCxe6LPHbUIyac93U17amvp80ZSl7Ecd7XUREhDz11FOa+2+44QYBIDfeeKPbvsWLFwuAepdvPXDggOB/S3MTUcOY1zCv0cK8hnmNp/Kalpz3scceEwCSkJBQ7+O15jVq6ntOa+Ih4shXgoKCpLS01G3foUOHBIAAkMOHD7vss9vtYrFYBIB88MEHmue+7rrr5Nxzz220DdQ2FJE2nAGMiLq0Cy+8EGfOnGl07oL2FB8fj6FDh+KLL77o6KYQaXrqqaewbNkypKWltXpSz9rmz5+PTZs2YdeuXew5RETUAsxriFqvqKgIffv2xfPPP4/bbrvNY+fNzs5Gnz598P7777PnUAfhnENEREQe9MADD6C4uBjvv/++x8559uxZvPXWW3j66adZGCIiIqIOExoaioceeggvvPBCs1d2bchLL72EYcOGsTDUgTjnEBERkQcFBQUhNzfXo+fs1q0biouLPXpOIiIiopZ4+OGH8fDDD3v0nM8++6xHz0fNx55DREREREREREQ+jHMOERERERERERH5MPYcIiIiIiIiIiLyYSwOERERERERERH5MBaHiIiIiIiIiIh8WLNXK9u0aRNeeOEF7Nq1C1lZWVi1ahWmT5+u7hcRPPHEE/jnP/+JwsJCTJw4EUuWLEFiYqJ6TH5+Pu699158/vnn0Ol0mDFjBl5++WUEBQWpx+zZswdz587Fjh07EBkZiXvvvRcPPfRQk9tpt9tx+vRpBAcHc9lfIiIiHyYisNlsiI2NhU6n/b0Y8xsiIiLqSpqS3zT3hM3y1VdfyWOPPSaffPKJAJBVq1a57H/22WclNDRUVq9eLampqXLllVdKnz59pKysTD3mkksukREjRsi2bdvkhx9+kISEBLnhhhvU/UVFRRIdHS033XST7Nu3T9577z0xm83yxhtvNLmdJ06cEAD84Q9/+MMf/vCHPwJATpw4wfyGP/zhD3/4wx/+eNVPQ/lNc7RqtTJFUVy+WRMRxMbG4sEHH8Qf/vAHAEBRURGio6OxfPlyXH/99Thw4AAGDx6MHTt2YPTo0QCAb775BpdeeilOnjyJ2NhYLFmyBI899hiys7NhMBgAAI888ghWr16NgwcPNqltRUVFsFgsOHHiBEJCQlr6FOtlt9uRl5eHyMhIz1TpvATj4o4x0ca4aGNctDEu2hgXbXXjYrVa0atXLxQWFiI0NLTR+zO/4TVVF+OijXHRxrhoY1y0MS7uGBNtrc1vGtPsYWUNSU9PR3Z2NiZPnqxuCw0Nxbhx47B161Zcf/312Lp1KywWi5o4AcDkyZOh0+mwfft2XHXVVdi6dSvOP/98NXECgClTpuC5555DQUEBwsLC3B67oqICFRUV6m2bzQYACAoKcunO7Sl2ux1lZWUICgriBVsL4+KOMdHGuGhjXLQxLtoYF21142K32wGgxcOwmN8Q46KNcdHGuGhjXLQxLu4YE22ezm/q8mhxKDs7GwAQHR3tsj06Olrdl52djaioKNdG6PUIDw93OaZPnz5u53Du00qennnmGSxatMhte15eHsrLy1v4jOpnt9tRVFQEEWnWBXvkmyMutxMuScCRb46o/6+9vStqTVzqxgDounGorbkxqe8acf7bWzQ1Lt58bWhpKC51Y+DkrbGorbG4eOvvSWPqi4svxqK2unFxFlRaivkNMS7aGBdtjIs2xkUb4+KOMdHm6fymLo8WhzrSwoULsWDBAvW2s4tVZGRkm3W7VhSl2V3dTlaedLkdFRWFk5Un1f/X3t4VtSYudWMAdN041NbcmNR3jTj/7S2aGhdvvja0NBSXujFw8tZY1NZYXLz196Qx9cXFF2NRW924mEymjm5Si3WV/MbbMS7aGBdtjIs2xkUb4+KOMdHW1vmNR4tDMTExAICcnBx0795d3Z6Tk4ORI0eqx+Tm5rrcr7q6Gvn5+er9Y2JikJOT43KM87bzmLqMRiOMRqPbdp1O12YXlKIozT6/AtcuXzqdDgoU9f+1t3dVLY1L3RgAXTsOtTUnJvVdI85/e5OmxMXbrw0t9cWlbgycvDkWtTUUF2/+PWmMVlx8NRa11Y5La+PA/IYAxqU+jIs2xkUb46KNcXHHmGjzZH5Tl0fP1qdPH8TExOC7775Tt1mtVmzfvh3JyckAgOTkZBQWFmLXrl3qMevXr4fdbse4cePUYzZt2oSqqir1mHXr1mHAgAGaXa6JiIiI2grzGyIiIvJ2zS4OFRcXIyUlBSkpKQAckzSmpKQgMzMTiqJg/vz5ePrpp/HZZ59h7969uOWWWxAbG6uu+DFo0CBccskluOOOO/DTTz9hy5YtmDdvHq6//nrExsYCAG688UYYDAbcdttt2L9/Pz744AO8/PLLLt2qiYiIiDyF+Q0RERH5smYPK9u5cycuuugi9bYzoZk5cyaWL1+Ohx56CCUlJZgzZw4KCwtx7rnn4ptvvnEZD/ef//wH8+bNw6RJk6DT6TBjxgy88sor6v7Q0FCsXbsWc+fORVJSEiIiIvD4449jzpw5rXmuRERERJqY3xAREZEva3Zx6MILL4SI1LtfURT85S9/wV/+8pd6jwkPD8d///vfBh9n+PDh+OGHH5rbPCIiIqJmY35DREREvoyzOxERERERERER+TAWh4iIiIiIiIiIfBiLQ0REREREREREPozFISIiIiIiIiIiH8biEBERERERERGRD2NxiIiIiIiIiIjIh7E4RERERERERETkw1gcIiIiIiIiIiLyYSwOERERERERERH5MBaHiIiIiIiIiIh8GItDREREREREREQ+jMUhIiIiIiIiIiIfxuIQEREREREREZEPY3GIiIiIiIiIiMiHsThEREREREREROTDWBwiIiIiIiIiIvJhLA4REREREREREfkwFoeIiIiIiIiIiHwYi0NE1GntenNXRzeBiIiIiIjI67E4RERERERERETkw1gcIiIiIiIiIiLyYSwOERERERERERH5MBaHiIiIiIiIiIh8GItD7YQT6xIRERERERFRZ8TiEBERERERERGRD2NxiIiIiIiIiIjIh7E4RERERERERETkw1gcIiIiIiIiIiLyYSwOERERERERERH5MBaHiIiIiIiIiIh8GItDREREREREREQ+jMUhIiIiIiIiIiIfxuIQEREREREREZEPY3GIiIiIiIiIiMiHsThEREREREREROTDWBwiIiIiIiIiIvJhLA4REREREREREfkwFoeIiIiIiIiIiHwYi0NERERERERERD6MxSEiIiIiIiIiIh/G4hARERERERERkQ9jcYiIiIiIiIiIyIexOERERERERERE5MNYHCIiIiIiIiIi8mEsDnVRu97chV1v7nL5t/M2EREREREREXWcrvb5nMUhIiIiIiIiIiIfpu/oBpBn1a5OJs1J6sCWEBEREREREVFX4PGeQ08++SQURXH5GThwoLq/vLwcc+fORbdu3RAUFIQZM2YgJyfH5RyZmZm47LLLEBAQgKioKPzxj39EdXW1p5vaLrpaVzIiIiJyx/yGiIiIvFmb9BwaMmQIvv32218fRP/rwzzwwAP48ssv8eGHHyI0NBTz5s3D1VdfjS1btgAAampqcNlllyEmJgY//vgjsrKycMstt8Df3x9/+9vf2qK5Xs1ZnPL2XkS+8jyJiKjjML8hIiIib9UmxSG9Xo+YmBi37UVFRfjXv/6F//73v/jNb34DAFi2bBkGDRqEbdu2Yfz48Vi7di1++eUXfPvtt4iOjsbIkSPx1FNP4eGHH8aTTz4Jg8HQFk0mIiIiahDzGyIiIvJWbVIcSktLQ2xsLEwmE5KTk/HMM8+gd+/e2LVrF6qqqjB58mT12IEDB6J3797YunUrxo8fj61bt2LYsGGIjo5Wj5kyZQruvvtu7N+/H6NGjdJ8zIqKClRUVKi3rVYrAMBut8Nut3v8OdrtdoiI5rl/futn92Mh6v+bsq+xNjuP1Tpn3XM35Xye0lBcGtJQfJp6fwDY+eZOAMA5t5/TrMdvS82NSX3XiPPf3qIpcWnoOvemWNTWUFwa+l33do3FxVt/TxpTX1x8MRa11Y2Lp+Lg6/mNL2NctDEu2hgXbYyLNsbFnbfExJmjekpb5TdOHi8OjRs3DsuXL8eAAQOQlZWFRYsW4bzzzsO+ffuQnZ0Ng8EAi8Xicp/o6GhkZ2cDALKzs10SJ+d+5776PPPMM1i0aJHb9ry8PJSXl7fyWbmz2+0oKiqCiECnc526qdzg+ni5ubkoN5Sr/2/Kvtzc3AYf33ms1jnrnhsAfnznRwBAwiUJTXh2LddQXBrSUHyaev+W3K89NDcm9V0jzn97i6bEpaHr3JtiUVtz3lucvDUWtTUWF2/9PWlMfXHxxVjUVjcuNput1edkfuPbGBdtjIs2xkUb46KNcXHnLTFx5qie0hb5TW0eLw5NnTpV/ffw4cMxbtw4xMXFYeXKlTCbzZ5+ONXChQuxYMEC9bbVakWvXr0QGRmJkJAQjz+e3W6HoiiIb6SjFQAAIYBJREFUjIx0u2BPVp50uR0VFYWTlSfV/zdlX1RUVIOP7zxW65x1z+1yv88ct9uqZ01DcWlIQ/Fp6v1bcr/20NyY1HeNOP/tLZoSl4auc2+KRW3NeW9x8tZY1NZYXLz196Qx9cXFF2NRW924mEymVp+T+Y1vY1y0MS7aGBdtjIs2xsWdt8TEmaN6SlvkN7W1+VL2FosF/fv3x5EjR/Db3/4WlZWVKCwsdPl2LScnRx3DHxMTg59++snlHM7VPrTG+TsZjUYYjUa37Tqdrs0uKEVRNM+vQHFrgwJF/X9T9jXWZuexWuese+769rWV+uLS4H0aiE9T79+S+7WX5sSkvmvE+W9v0lhcGrrOvS0WtTX1vcXJm2NRW0Nx8ebfk8ZoxcVXY1Fb7bi0RRx8Mb/xdYyLNsZFG+OijXHRxri484aYOHNUj56zDfObNo90cXExjh49iu7duyMpKQn+/v747rvv1P2HDh1CZmYmkpOTAQDJycnYu3evS/erdevWISQkBIMHD27r5vqUXW/uUn+IiIio6ZjfEBERkTfxeHHoD3/4AzZu3IiMjAz8+OOPuOqqq+Dn54cbbrgBoaGhuO2227BgwQJs2LABu3btwq233ork5GSMHz8eAHDxxRdj8ODB+P3vf4/U1FSsWbMGf/rTnzB37lzNb86I6uMserH4RURErcX8hoiIiLyZx4eVnTx5EjfccAPOnj2LyMhInHvuudi2bRsiIyMBAP/4xz+g0+kwY8YMVFRUYMqUKXj99dfV+/v5+eGLL77A3XffjeTkZAQGBmLmzJn4y1/+4ummUi21CyhJc5I6sCVERESdD/MbIiIi8mYeLw69//77De43mUx47bXX8Nprr9V7TFxcHL766itPN42IiIioRZjfEBERkTfrurM7EVGjOKSOiIiIiIiIGsPiEGniRNVEREREREREvoHFISIiIiIiIiIiH8biEBERERERERGRD2NxiBrE4WVERERERERE3s3jq5URdUa1C1xJc5I6sCVEREREREREnQuLQ0Q+gMUxIiIiIiIiqg+HlVGTcHgZERERERERkXdicYg6hLPYxIITdWVd+frtym0nIiIiIiLPYnGIiIiIiIiIiMiHsTjkQb7yTXxLe/04j/eVOBERERERERF1BSwOUZvqjEPHOlubahfN2qNdLNIRERERERFRbVytjFqFq2C1DAszRERERERE1FmwOEQe9fNbP6PcUI6TlSehQOno5hARERERERFRIzisjMjHdbZhdkRERERERNS+2HOIfJqzKNJeQ+JYhCEiIiIiIqLOhj2HiKjdsUhGRERERETUebA4RNTGfn7rZxz55khHN6PLYQGJiIiIiIiofbA4REQ+ozMWnDpjm4iIiIiIyLewOERERERERERE5MNYHCIin8LV2YiIiIiIiFxxtTKiNsDiQ8swbtp2vbmr3VbUIyIiIiIi38PiEBFcixK++iHcGQNfff5ERERERES+isPKiIiIiIiIiIh8GItDREQ+jHMwERERERERi0NEdTg/KDf3A3NL70eMmZaf3/qZhRsiIiIiImoXLA4REREREREREfkwFoeIyI2v9FZx9szxledLRERERESkhauVETWgsVXMWFQgIiIiIiKiro7FISKiTuTnt35GuaEcJpg6uilEREREROQjWBwiaiJnL6GkOUnsMeQBziJI1C1RHd0UIiIiIiIin8Y5h4ioXpyTp/nqxorxIyIiIiKizo7FISIiIiIiIiIiH8biEBER2qeXlPPcWo/B3kVERERERNRRWBwiImolDh0jIiIiIqKujMUhImqShnq9eCNfeZ5EREREREQsDhFRu2LRhYiIiIiIqHPhUvZERG2gsSIYi2RERERERNRZsDhERNQAZxEnaU5SB7ekbdUuVnn7cyUiIiIiIlcsDhFRizS1aMKiAxERERERUefG4hARtUrd4VFJc5I4ZKqT4+tDRERERES1cUJqIqIm4HL11FXwOiUiIiKi5mJxiMgL8cMhERERERERNRWLQ0REzcTiGxEREREReRMWh4iIiIiIiIiIfBiLQ0REREREREREPozFISIicuEcNsfhc0REREREvqFTF4dee+01xMfHw2QyYdy4cfjpp586uklERERErcYch4iIiDqTTlsc+uCDD7BgwQI88cQT+PnnnzFixAhMmTIFubm5Hd00IiIiohZjjkNERESdTactDi1evBh33HEHbr31VgwePBhLly5FQEAA3n777Y5uGhEREVGLMcchIiKizkbf0Q3QUllZiV27dmHhwoXqNp1Oh8mTJ2Pr1q2a96moqEBFRYV622q1AgDsdjvsdrvH22i32yEiLucWOG4LxP3YZu5rrM3OY7XOWffc7b3P+Z/WvpbEpymac87mPBdP7HPGwxPnbE48WhPzluxr7nOpG5fmnrMlv9d1f8cae7ymxKDu6+OJuDb0O1Rfe5ujOe8fbfH+2RJa77lOWq+Dr6jvb1Ht/b6oblw6Uxyam+N0hvyGGJf6MC7aGBdtjIs2xsWdt8TE07l0W+c3iohofzLoQKdPn0aPHj3w448/Ijk5Wd3+0EMPYePGjdi+fbvbfZ588kksWrTIbfvhw4cRHBzs8Tba7XYUFRUhNDQUOl2n7YDV7hgXd4yJNsZFG+OijXHRxrhoqxsXm82G/v37o6ioCCEhIR3atubmOMxvOgfGRRvjoo1x0ca4aGNc3DEm2to6v+mUPYdaYuHChViwYIF622q1olevXoiMjGyTRNBut0NRFERGRvKCrYVxcceYaGNctDEu2hgXbYyLtrpxMZlMHd2kFmN+0zkwLtoYF22MizbGRRvj4o4x0dbW+U2nLA5FRETAz88POTk5LttzcnIQExOjeR+j0Qij0ei2XafTtdkFpShKm56/q2Jc3DEm2hgXbYyLNsZFG+OirXZcOlNsmpvjML/pPBgXbYyLNsZFG+OijXFxx5hoa8v8plMWhwwGA5KSkvDdd99h+vTpABxVsu+++w7z5s1r0jmco+WcY/M9zW63w2azwWQy8YKthXFxx5hoY1y0MS7aGBdtjIu2unFx5gKdYSR9a3Mc5jcdg3HRxrhoY1y0MS7aGBd3jIm2ts5vOmVxCAAWLFiAmTNnYvTo0Rg7dixeeukllJSU4NZbb23S/W02GwCgV69ebdlMIiIi6iJsNhtCQ0M7uhmtynGY3xAREVFtnspvOm1x6LrrrkNeXh4ef/xxZGdnY+TIkfjmm28QHR3dpPvHxsbixIkTCA4OhqIoHm+fc8z/iRMnOnxyy86EcXHHmGhjXLQxLtoYF22Mi7a6cRER2Gw2xMbGdnTTALQux2F+0zEYF22MizbGRRvjoo1xcceYaGvr/KZTrlbWFVitVoSGhnaKlU86E8bFHWOijXHRxrhoY1y0MS7aGJeWY+y0MS7aGBdtjIs2xkUb4+KOMdHW1nHhAD4iIiIiIiIiIh/G4hARERERERERkQ9jcaiFjEYjnnjiCc3lZX0Z4+KOMdHGuGhjXLQxLtoYF22MS8sxdtoYF22MizbGRRvjoo1xcceYaGvruHDOISIiIiIiIiIiH8aeQ0REREREREREPozFISIiIiIiIiIiH8biEBERERERERGRD2NxiIiIiIiIiIjIh7E41AKvvfYa4uPjYTKZMG7cOPz0008d3aQ2tWnTJlxxxRWIjY2FoihYvXq1y34RweOPP47u3bvDbDZj8uTJSEtLczkmPz8fN910E0JCQmCxWHDbbbehuLi4HZ+FZz3zzDMYM2YMgoODERUVhenTp+PQoUMux5SXl2Pu3Lno1q0bgoKCMGPGDOTk5Lgck5mZicsuuwwBAQGIiorCH//4R1RXV7fnU/GoJUuWYPjw4QgJCUFISAiSk5Px9ddfq/t9MSZann32WSiKgvnz56vbfDE2Tz75JBRFcfkZOHCgut8XY+J06tQp3HzzzejWrRvMZjOGDRuGnTt3qvt98X03Pj7e7XpRFAVz584F4NvXi6cwv1ntst8Xf88A5jj1YY7TOOY3Dsxv6sf8xl2nym+EmuX9998Xg8Egb7/9tuzfv1/uuOMOsVgskpOT09FNazNfffWVPPbYY/LJJ58IAFm1apXL/meffVZCQ0Nl9erVkpqaKldeeaX06dNHysrK1GMuueQSGTFihGzbtk1++OEHSUhIkBtuuKGdn4nnTJkyRZYtWyb79u2TlJQUufTSS6V3795SXFysHnPXXXdJr1695LvvvpOdO3fK+PHjZcKECer+6upqGTp0qEyePFl2794tX331lURERMjChQs74il5xGeffSZffvmlHD58WA4dOiSPPvqo+Pv7y759+0TEN2NS108//STx8fEyfPhwuf/++9XtvhibJ554QoYMGSJZWVnqT15enrrfF2MiIpKfny9xcXEya9Ys2b59uxw7dkzWrFkjR44cUY/xxffd3Nxcl2tl3bp1AkA2bNggIr57vXgK8xvmN07McbQxx2kY85tfMb/RxvxGW2fKb1gcaqaxY8fK3Llz1ds1NTUSGxsrzzzzTAe2qv3UTZ7sdrvExMTICy+8oG4rLCwUo9Eo7733noiI/PLLLwJAduzYoR7z9ddfi6IocurUqXZre1vKzc0VALJx40YRccTA399fPvzwQ/WYAwcOCADZunWriDiSUp1OJ9nZ2eoxS5YskZCQEKmoqGjfJ9CGwsLC5K233mJMRMRms0liYqKsW7dOLrjgAjV58tXYPPHEEzJixAjNfb4aExGRhx9+WM4999x69/N91+H++++Xfv36id1u9+nrxVOY3zC/qQ9znPoxx3FgfuOK+Y025jdN05H5DYeVNUNlZSV27dqFyZMnq9t0Oh0mT56MrVu3dmDLOk56ejqys7NdYhIaGopx48apMdm6dSssFgtGjx6tHjN58mTodDps37693dvcFoqKigAA4eHhAIBdu3ahqqrKJS4DBw5E7969XeIybNgwREdHq8dMmTIFVqsV+/fvb8fWt42amhq8//77KCkpQXJyMmMCYO7cubjssstcYgD49vWSlpaG2NhY9O3bFzfddBMyMzMB+HZMPvvsM4wePRrXXHMNoqKiMGrUKPzzn/9U9/N91/H3eMWKFZg9ezYURfHp68UTmN+44+/Zr5jjuGOO44r5jTvmN+6Y3zSuo/MbFoea4cyZM6ipqXEJPABER0cjOzu7g1rVsZzPu6GYZGdnIyoqymW/Xq9HeHi4V8TNbrdj/vz5mDhxIoYOHQrA8ZwNBgMsFovLsXXjohU3576uau/evQgKCoLRaMRdd92FVatWYfDgwT4dEwB4//338fPPP+OZZ55x2+ersRk3bhyWL1+Ob775BkuWLEF6ejrOO+882Gw2n40JABw7dgxLlixBYmIi1qxZg7vvvhv33Xcf/v3vfwPg+y4ArF69GoWFhZg1axYA3/0d8hTmN+74e+bAHMcVcxx3zG/cMb/RxvymcR2d3+hb1mwicpo7dy727duHzZs3d3RTOoUBAwYgJSUFRUVF+OijjzBz5kxs3Lixo5vVoU6cOIH7778f69atg8lk6ujmdBpTp05V/z18+HCMGzcOcXFxWLlyJcxmcwe2rGPZ7XaMHj0af/vb3wAAo0aNwr59+7B06VLMnDmzg1vXOfzrX//C1KlTERsb29FNIfJqzHFcMcdxxfxGG/MbbcxvGtfR+Q17DjVDREQE/Pz83GYHz8nJQUxMTAe1qmM5n3dDMYmJiUFubq7L/urqauTn53f5uM2bNw9ffPEFNmzYgJ49e6rbY2JiUFlZicLCQpfj68ZFK27OfV2VwWBAQkICkpKS8Mwzz2DEiBF4+eWXfTomu3btQm5uLs455xzo9Xro9Xps3LgRr7zyCvR6PaKjo302NrVZLBb0798fR44c8enrpXv37hg8eLDLtkGDBqld0n39fff48eP49ttvcfvtt6vbfPl68QTmN+58/fcMYI6jhTmOK+Y3TcP8xoH5TcM6Q37D4lAzGAwGJCUl4bvvvlO32e12fPfdd0hOTu7AlnWcPn36ICYmxiUmVqsV27dvV2OSnJyMwsJC7Nq1Sz1m/fr1sNvtGDduXLu32RNEBPPmzcOqVauwfv169OnTx2V/UlIS/P39XeJy6NAhZGZmusRl7969Lm9w69atQ0hIiNsbZ1dmt9tRUVHh0zGZNGkS9u7di5SUFPVn9OjRuOmmm9R/+2psaisuLsbRo0fRvXt3n75eJk6c6LZs9OHDhxEXFwfAd993nZYtW4aoqChcdtll6jZfvl48gfmNO1/+PWOO03S+nuMwv2ka5jcOzG8a1inyG0/MqO1L3n//fTEajbJ8+XL55ZdfZM6cOWKxWFxmB/c2NptNdu/eLbt37xYAsnjxYtm9e7ccP35cRBxLDlosFvn0009lz549Mm3aNM0lB0eNGiXbt2+XzZs3S2JiYpdecvDuu++W0NBQ+f77712WHiwtLVWPueuuu6R3796yfv162blzpyQnJ0tycrK637ns4MUXXywpKSnyzTffSGRkZJdepvKRRx6RjRs3Snp6uuzZs0ceeeQRURRF1q5dKyK+GZP61F7NQ8Q3Y/Pggw/K999/L+np6bJlyxaZPHmyRERESG5uroj4ZkxEHMsB6/V6+etf/yppaWnyn//8RwICAmTFihXqMb74viviWEGrd+/e8vDDD7vt89XrxVOY3zC/cWKOo405TtMwv2F+Ux/mN/XrLPkNi0Mt8Oqrr0rv3r3FYDDI2LFjZdu2bR3dpDa1YcMGAeD2M3PmTBFxLDv45z//WaKjo8VoNMqkSZPk0KFDLuc4e/as3HDDDRIUFCQhISFy6623is1m64Bn4xla8QAgy5YtU48pKyuTe+65R8LCwiQgIECuuuoqycrKcjlPRkaGTJ06Vcxms0RERMiDDz4oVVVV7fxsPGf27NkSFxcnBoNBIiMjZdKkSWrSJOKbMalP3eTJF2Nz3XXXSffu3cVgMEiPHj3kuuuukyNHjqj7fTEmTp9//rkMHTpUjEajDBw4UN58802X/b74visismbNGgHg9lxFfPt68RTmN8xvRJjj1Ic5TtMwv2F+0xDmN9o6S36jiIg0r68RERERERERERF5C845RERERERERETkw1gcIiIiIiIiIiLyYSwOERERERERERH5MBaHiIiIiIiIiIh8GItDREREREREREQ+jMUhIiIiIiIiIiIfxuIQEREREREREZEPY3GIiFpt/PjxePHFFzvs8VesWIGYmJh69w8YMAD//Oc/27FFnve73/0O8+fPV2+PHj0aL730Uoe1h4iIyBcwx2l7zHGIOgcWh4ioVex2O/bu3YsRI0Z0WBtSU1MxcuRIAI6EYsWKFS77N23ahFmzZjXrfDqdDkVFRR5sZeukpKSoz7G6uhr79+9XbxMREZHnMcdpH8xxiDoHFoeIqFUOHz6M0tJSDB8+vMn3qaqq8mgbaidOWqKjo+Hv79/k8/30009ISEhAaGhoq9rlqedps9lw7Ngx9TkePHgQ5eXlHZqsEhEReTvmOPVjjkPkfVgcIvICR48ehaIo+OKLLzBp0iQEBARgwIAB2L59u8txq1atwpgxYxAQEICEhAQsW7bMZX98fDyee+453HTTTQgODkZcXBzWrl2LEydO4Oqrr0ZwcDAGDhyI3bt3q/dJSUlBdHQ0NmzYgEGDBiE4OBhXX301CgoK1GNmzZqFG2+8EY899hhiYmKQlJQEACgtLcWjjz6Knj17IjAwEOeffz727dvX6HO9/PLLERAQgP79+2Pjxo0NJk7Lly9HfHy8evvPf/4zJk+ejNdeew2JiYkIDAzEVVddhYqKCgDALbfcgjlz5iAtLQ2KokBRFBw8eBAAsH//flx++eUICgpCVFQU5s2bp94PAC688EIsWLAA99xzD8LDwzFjxgyMHTsWf/rTn1zadOLECZjNZmzZsgUA8N1332Hy5MmIiIhAYGAgzjvvPOzdu1c9PjU1FXq9HoMHD1Zj3rt3b4SFhanHfP755xg9ejRMJhP69u2LN954w+Ux33jjDQwbNgwBAQHo1q0bLrnkEtjt9gZjTURE1NGY4zDHYY5D1E6EiLq8jz/+WBRFkYsuukg2bNgghw8flsmTJ8uFF16oHvPmm29KaGioLF++XI4dOybLly8XnU4nmzZtEhGRgoICASCJiYmycuVKSUtLkylTpkhiYqJceOGF8uWXX8rBgwdl4sSJcuWVV6rnffjhhyUwMFCuvvpq2b9/v2zcuFF69Oghc+fOVY8ZOXKkBAcHy8KFC+XgwYNy+PBhKSsrkzFjxsiMGTNkx44dcvjwYZk9e7YkJCSI3W7XfJ45OTnSo0cPmTNnjhw4cEDWrVsniYmJAkAOHDggIiJJSUny7rvvqveZP3++TJs2Tb19xRVXSGhoqDzwwAOyf/9+Wb9+vQQGBsry5ctFRCQ/P1/Gjx8vCxculKysLMnKyhK73S5btmyR0NBQeemllyQtLU02bdokCQkJ8tRTT6nnDgsLk/DwcPn73/8uaWlpcuzYMZk9e7ZcddVVLs/j1ltvdYnhihUrZNWqVXL48GHZs2ePXHHFFTJ27Fh1/6uvvirDhw9Xbz/44IMu93/xxRclLi5OPvroIzl27Ji8//77YjKZ1Nd2xYoV0rNnT/niiy8kIyNDduzYIa+88opmjImIiDoT5jjMcZjjELUPFoeIvMDjjz8uYWFhkpubq2575ZVXZMiQISLiSDjMZrOsXLnS5X4TJkyQhx56SEREvv/+ewEg69evV/e/9dZboiiK7Nu3T9327LPPuvxRnzJliowcOVJqamrUbX/961/Vx66srBSDweCSSDmPueCCC1ySpDNnzggAOX78uObznD17tpx//vku2/7whz9IQECAy+PXduGFF8rjjz+u3u7du7fcdNNNLsecc8458sILL6i3LRaLfP755+rt6upqGThwoLz99tsu93vxxRfloosuEhGRjIwMAeByHhGRxYsXy4ABA9Tb+/fvF4PBIPv379dsr4jImjVrJDQ0VL192223yS233KLenjRpkvqc0tPTJTAwUA4ePOhyjssvv1wWLVokIiK///3v5cYbb6z38YiIiDor5jjMcZjjELUPDisj8gKpqamYNm0aIiMj1W3p6elISEgAAHzyySewWCyYMWOGy/0MBoPaZTg1NRX9+vXDRRddpO7PzMzE2LFjMWTIEJdtffr0UW+npKTgvvvug07369tJWFiY2p33wIEDqKysxH333efy2G+99Ra2bt2K4OBgBAUFISgoCHFxcQAAvV7v9hzLy8vx3nvvuaxmAQD+/v4YNmyYy+PXjY2zO3ZhYSEyMzNxxx13uByTkZGhxio9PR2FhYUuY923bNmCgwcPYt68eWpbg4KC8Oijj6ptTU1NhcFgwJ133uly7mHDhuHo0aOorKwEADz66KO4+eab1e7TVVVVeP311zFhwgR0794dQUFBuPLKK9GzZ0+XGNduT2pqqnr7nXfeQWlpKZKSklza9vXXX6ttu/TSS7Fy5UpMnDgRL7/8MrKysjRjRURE1Nkwx2GOwxyHqH24vzsRUZeTmpqKhQsXumxLSUnB+eefD8Axjnzw4MEuyYXdbsfBgwdx8803q8ePGzfO7Rzjx49323b55ZcDALKzs5GTk+M2Fn7btm0YNWqUenz37t3Rv39/db/VakV6ejq+/vprNWGpLTY21m3boUOHUFZWhnPOOcdl+88//1zvWPzMzEwUFBSoSUZqair8/PwwduxYl2Py8/PVc6SkpCA8PBy9evVyec7Dhw/Hxx9/7PYYwcHB6jFJSUnqbaehQ4eiuroaaWlpsFqtWLt2LQ4fPqzunzNnDjZv3ozHH38cQ4YMQUhICBYsWKCep+6qHSdPnsSZM2dc2nv77bfjoYcecmtbVFQUAOD666/HxIkTsXr1avznP//BwoUL8d133yE5OVkzbkRERJ0Fc5yRbscDzHGY4xB5HotDRF1cUVERMjIy1ETFyfltF+D4415WVuay/7333oPNZsP06dMBOJKKG264we0cV199tXpbRLBnzx489thj6n4AqKmpUY85ffo0PvjgA3zxxRfqeeu2zc/PD4qiQK/XayZOWpxJX+3nsW/fPqxduxavv/665n1SU1MREhKifguYmpqKAQMGwGw2q8fs3r0bFotFndBRa8laf39/5Ofno1+/flAUpd7Hqvs8ASAmJgYRERH45Zdf8Oqrr+Lee+9VvzGrrKzEu+++i08++QRXXnklAEf8Nm7cqE7w6Fy1o3aiVPs5+fv7o7S0tNE49urVC/feey/mzZuH+Ph4/Pzzz0yciIioU2OOwxyHOQ5R++GwMqIubs+ePdDr9Rg2bJi67fjx4ygoKFD/2E6dOhXbtm3Du+++i4yMDLzzzjuYO3cuXnnlFXTr1s3tmxsAKCgoQGZmpsu3WEeOHEFxcbHbH/EnnngCR48exbZt2/Db3/4WV199NSZPnqweUzehCAwMxAUXXIAHHngA33//PTIyMrB582Y88sgjyMjI0HyeiYmJiIyMxKOPPorDhw9jw4YNuOaaayAi9X6r5vw2zJnsaCU3dbsz2+125OXl4ejRo8jOzgYATJo0CXl5eZg3bx4OHDiAQ4cO4dNPP8Xjjz/uch6txAlwfLO2ePFi7Nu3z+XbT39/f4SEhODzzz/HsWPH8M0332DGjBmwWq0u30r27NkT4eHhms/p0ksvxQcffIClS5fi2LFjSE1Nxb/+9S/8+9//BuDo2r5kyRLs3bsXR48exfPPP4+CggJMmTJFs61ERESdBXMc5jjMcYjaUcdOeURErfXqq6+qEyM6rVq1SiwWi8u2pUuXSt++fcVkMklSUpKsWrVK3bd3714BIHl5eeq2DRs2iNFolKqqKnXbhx9+KBEREert6667TubOnSsPP/ywhISESGRkpDz++OMu9+nWrZt8+OGHbu0+ffq03HjjjRIdHS0mk0kSEhLkrrvucrlvXWvWrJHExEQxGAxyzjnnyN/+9jfR6XRSUlKiefyMGTNk3rx56u2kpCS3yRSnTZsm999/v3o7MzNTxo0bJwaDweW5fv311zJmzBgJDAyUsLAwSU5Olv/+978iImK1WkVRFNmxY4dmO+69914BIM8//7zbvk8//VTi4uLEbDbL5MmT5b///a/La/Hggw/K5ZdfXu9zEnFMCJmYmChGo1Gio6PlsssuU9uydOlSGTZsmAQEBIjFYpFJkybJjz/+qNlOIiKizoQ5DnMc5jhE7UcREenI4hQREREREREREXUcDisjIiIiIiIiIvJhLA4REREREREREfkwFoeIiIiIiIiIiHwYi0NERERERERERD6MxSEiIiIiIiIiIh/G4hARERERERERkQ9jcYiIiIiIiIiIyIexOERERERERERE5MNYHCIiIiIiIiIi8mEsDhERERERERER+TAWh4iIiIiIiIiIfBiLQ0REREREREREPuz/Ae7SI3DPBI27AAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 1400x400 with 4 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig1, axs1 = plt.subplots(2, 2, figsize=(14, 4))\n", + "\n", + "fig1.subplots_adjust(wspace=0.1, hspace=0.5)\n", + "\n", + "axs1[0,0].plot(np.arange(n), T_ext, color='purple', linewidth=1.2, alpha=0.4)\n", + "axs1[0,0].set_title(\"Température extérieure à Montréal (°C)\")\n", + "axs1[0,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[0,1].plot(np.arange(n+1), T_i.value, color='purple', linewidth=1.2, alpha=0.4)\n", + "axs1[0,1].set_title(\"Température à l'intérieur du bâtiment (°C)\")\n", + "axs1[0,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,1].grid('on', alpha=0.3)\n", + "\n", + "axs1[1,0].bar(np.arange(n), p_n_i.value, color='purple', alpha=0.4)\n", + "axs1[1,0].set_title(\"Puissance de la pompe en mode normal (W)\")\n", + "axs1[1,0].set_ylim(-30,1030)\n", + "axs1[1,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[1,1].bar(np.arange(n), p_r_i.value, color='purple',linewidth=1.2,alpha=0.4)\n", + "axs1[1,1].set_title(\"Puissance de la pompe en mode reverse (W)\")\n", + "axs1[1,1].set_ylim(-30,1030)\n", + "axs1[1,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,1].grid('on', alpha=0.3)\n", + "\n", + "title1 = fig1.suptitle(\"Graphes de la solution optimale (Coût optimal={})\".format(objectif.value),y=1.05)\n", + "title1.set_fontsize(15)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2464e1b7", + "metadata": {}, + "source": [ + "### Intervalle 22504" + ] + }, + { + "cell_type": "markdown", + "id": "ee2956e1", + "metadata": {}, + "source": [ + "Nous choisissons cet intervalle car le premier contient principalement des températures inférieures à 20°C. L'intervalle choisi contient des températures plus estivales dépassant parfois les 25°C. Nous allons pouvoir observer les différences de comportement de la pompe pour les deux intervalles." + ] + }, + { + "cell_type": "markdown", + "id": "ff637cd4", + "metadata": {}, + "source": [ + "##### Résolution du problème" + ] + }, + { + "cell_type": "code", + "execution_count": 377, + "id": "3c2a6c3e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.9645635951448925" + ] + }, + "execution_count": 377, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Modification de l'intervalle.\n", + "intervalle_initial = 22504\n", + "heure_initiale = 0\n", + "T_ext = data[intervalle_initial:intervalle_initial+n]\n", + "objectif = cp.Minimize(c.T@(p_n_i+p_r_i))\n", + "contraintes = [T_i[0] == T_initial, T_i[n] == T_final, T_min <= T_i, T_i <= T_max, T_i[1:n+1] == T_i[0:n]+deltaT_i, (p_n_i+p_r_i) <= p_max, 0 <= p_n_i, 0 <= p_r_i,\n", + " deltaT_i == -(1-eta)*(T_i[0:n]-T_ext)+(cp.multiply(p_n_i,COP_normal(T_ext)))*0.25/(V*Cx)-p_r_i*COP_reverse*0.25/(V*Cx)]\n", + "probleme = cp.Problem(objectif, contraintes)\n", + "probleme.solve(solver=cp.SCIPY, scipy_options={\"method\":\"highs\"}, verbose=False)" + ] + }, + { + "cell_type": "markdown", + "id": "4d2a8259", + "metadata": {}, + "source": [ + "##### Affichage de la solution" + ] + }, + { + "cell_type": "code", + "execution_count": 378, + "id": "cefbc06c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAG3CAYAAAAuMzWRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUxfvHP3u9JZdeSSEJxQQQCEgTgiKgAoogClgIoiJi+1oQ+aog+pUfKooFsQsKWCgqSBOkFwu9t5BCer/kepvfH+euudxdcpfc5S4w79crL7gts8/Ozs7MPvMUhhBCQKFQKBQKhUKhUCgUCoVCuSbh+VsACoVCoVAoFAqFQqFQKBSK/6DKIQqFQqFQKBQKhUKhUCiUaxiqHKJQKBQKhUKhUCgUCoVCuYahyiEKhUKhUCgUCoVCoVAolGsYqhyiUCgUCoVCoVAoFAqFQrmGocohCoVCoVAoFAqFQqFQKJRrGKocolAoFAqFQqFQKBQKhUK5hqHKIQqFQqFQKBQKhUKhUCiUaxiqHKJQKBQKhUKhUCgUCoVCuYahyiEKhUKhUCgUNzl58iTmzZuHgwcP+lsUCoVCoVAoFK/BEEKIv4WgUCgUCoVCCXQsFgv69u2L48ePIzExEadPn4ZMJvO3WBQKhUKhUCithloOUSg+QKvV4oMPPsCIESMQGxsLsViMoKAgpKenIzs7G+vXr4fFYvG3mC5ZtmwZGIbBvHnz/C1Kq9m1axcYhkF2drZPr8MwDJKTk316DV+Sl5cHhmEwdOjQNrlee68vXzNv3jwwDINly5b5WxQHsrOzwTAMdu3a1SbXu/nmm9GhQwcYDAan+6uqqjB//nwMGDAAkZGREAqFiIiIQFZWFt566y1UVFR4TZYPP/wQ586dw2+//Ya6ujrMnz/fa2UHIsnJyWAYxt9iOMWXfYhGo8G3336LJ598Ev369YNYLG71mKjVavHGG28gIyMDUqkU4eHhuO2229x6j44fP44HHngAHTp0gFgsRnR0NIYOHYqvv/662XONRiPS09PBMAwEAoHTY9gx39XfxIkTm7zG7t27MX78eMTExEAsFiMuLg633XYb1q9f73Dsu+++i3HjxqFTp05QKpUQi8VISkrCgw8+iJMnTzotn+0PXf3Nnj3b6XkWiwUffvghMjMzIZfLoVQqMWTIEKxbt87lvbBt3tXfuXPnHM45f/483nvvPUyaNAmpqancsXl5eU3WW2OmTZvGnbtv3z63zvn222+5c9544w2Xx23btg2jRo3i+sjw8HCMGDECP/30k8tzzp49i/vuu4+bxyYnJ+OJJ55AZWWl0+MPHz6MefPmYeDAgQgJCYFIJEJCQgLuv/9+nDhxwuk57NzD1V9MTIzDOUePHgXDMHjrrbeaqR0KheIpzkcJCoXSYvbv348JEyagpKQEEokEffv2RVxcHAwGA3JycrB8+XIsX74c6enpOH36tL/FpVC8zq5du3DTTTdhypQpAancCASGDh2K3bt3Izc3lyrJmmDjxo3YuXMnlixZArFY7LD/559/xpQpU1BXV4eQkBD069cPYWFhqKqqwh9//IE9e/bgf//7Hw4cOICMjIxWyVJUVIRXX30VCxcuxLBhw7B06VLcf//9eOCBB5yWnZycjPz8fASqgXZeXh46duyIrKysNlP0tRcuXryIBx980GvlqdVq3HTTTTh06BDCwsJwyy23QKVS4ffff8fWrVvxxRdf4KGHHnJ67hdffIEZM2aAEIL+/ftj8ODBKCsrw7Fjx7By5UpMnTq1yWu/+eabThUazrj++uvRs2dPh+39+vVzec68efPw2muvQSwWY9CgQYiKikJRURH27t2L+Ph43HHHHQ7yaDQa9OjRA927dwcAnD59Gt9++y2+//57rFu3DqNHj3Z6rUGDBiEtLc1he2ZmpsM2i8WCsWPH4tdff4VCocCNN94Iq9WKAwcOYPz48Zg7d26Tyr4pU6Y43a5UKh22LV26FO+//77Lstxh586d+Oqrr8AwjNt9RmVlJZ599tlmz1m8eDH+85//gGEYDBgwAAkJCbhy5Qq2b9+Obdu2Yc6cOfjf//5nd86OHTswZswYaLVadO3aFQMHDsSpU6ewZMkS/PLLLzh48CA6dOjAHW82m9GnTx8AQFhYGAYOHAi5XI6jR49i5cqVWL16NVauXIm7777bqYzR0dG49dZbHbY7q+9evXrhjjvuwIIFC/Dwww8jLCzMrfqiUChuQCgUitc4fPgwEYvFBAB54YUXiEqlcjimoKCAPPPMM0QikfhBQvf4+uuvCQAyd+5cf4vSanbu3EkAkClTpvj0OgBIUlKST6/hS3JzcwkAkpWV1eqy3Knzs2fPkkuXLrX6Wu2VrKwsAoDk5uY63V9RUUHOnj1Lamtr21YwN5gyZQoBQHbu3Onza/Xo0YNERkYSg8HgsG/Tpk2Ex+MRgUBAFi1aRIxGo91+g8FAvvzySxIdHe0VWX///XeyaNEiYrVauW1Lly4lv/zyi9Pjk5KSSCBPs9x55y9dukTOnj3bdkJ5gC/73EuXLpFp06aRTz75hBw+fJjMnz+/VWPiE088QQCQzMxMUl5ezm3fv38/USgURCQSkby8PIfzfv/9d8IwDElLSyNnzpyx22cwGMiRI0eavO6ZM2eISCQijz76KAFA+Hy+0+NaOuaz5/Xr149cuXLFbp9GoyEnT550OGffvn1Ep9M5bF+yZAkBQKKjo4nJZLLbN3fuXAKAfP31127L9s477xAAJDk52W6sOXv2LImLiyMAyIEDBxzOa8l7+8UXX5AXX3yRrFmzhuTl5ZEuXbo02b83RqfTkU6dOpGMjAwycOBAAoDs3bu32fPuv/9+IpVKyQMPPEAAkNdff93hmPLyciIWi4lQKCS7du2y27d7924iFosJwzAkJyeH267RaEh0dDQBQF599VVuu9VqJc8//zwBQEaMGGFXlslkIn379iU///wzMZvN3HaLxUL++9//EgAkKCiIVFRU2J3X0rnHwYMHCQAya9Ysj86jUChNE7izFgqlnWGxWMh1113ncoBuzKFDh9pAqpZBlUOeQ5VD/9JWdd6eaU45FMi0lXJo3759BAB54oknHPap1WoSGRlJAJBly5Y1WU5hYaFf6vlqUA4FMm3Z5y5YsKDFY6LBYCAymYwAIPv373fYP2fOHAKAPPPMMw770tPTCY/HIydOnPD4ularldx4440kKiqKVFdXe105pNVqSXh4OAkKCiIlJSUey+eM1NRUAoAcP37cbntLlENsWStXrnTY99lnnxEAZOzYsQ77vPHeeqocmjNnDmEYhuzdu5cbG5pTDv32228EAHnjjTe4+nE299ywYQMBQEaOHOm0nDvuuIMAID/88AO37dtvvyUASJcuXYjFYrE73mg0kuTkZAKAHDt2zK37s1qtXJ007q9b0w+lpaWRiIgIp4sHFAqlZdCYQxSKl9i0aRPOnj2LxMREvPTSS80e78wMmo2hYDQaMX/+fHTt2hVisRhjx44FAOj1enz55Ze48847kZKSAqlUipCQEAwZMgTff/+90+s0jA+yefNm3HjjjVAoFAgNDcW4ceOaNTcvKCjA5MmTERkZCalUij59+mDDhg0ujz979iyys7ORkJDAxUaYOHGiSxe6TZs2Yfjw4YiPj+diFdx444147bXXmpSrMadPn8bYsWMRGhqKoKAgDB48GFu2bGnyHEIIvvvuO9x8880IDQ2FRCLBddddh3nz5kGr1Xp0/abKnzhxIjp37gy5XI6goCDccMMN+Pjjj2G1Wj0qr6KiArNnz0Z6ejoUCgWUSiU6d+6MBx98EH/99ZfD8WfOnOHiBYhEIsTHx+PBBx/E+fPn3b5mc7FvGsckyc7Oxk033QQAWL58uV3sgIYm/E3FC2HbBPtMunTpgtmzZ6O2trZJ+U6ePIk77rgDoaGhkMvlyMrKwoEDB9y+V5aqqiq88MIL6NSpEyQSCcLCwnDrrbfit99+c3p8w/d27ty5SE1NhUQiQUpKCl599VXo9XruWDa+wu7duwEAHTt2tKsjZ/fVkKFDh3KxLH744Qf07dsXMpkM8fHxmDVrFoxGIwAgJycHkyZNQlRUFGQyGW666SanMR9qa2vx4YcfYuTIkUhKSoJYLEZ4eDhuvfVWbNu2zeO602q1WLBgAXr16gWFQgGFQoH+/ftj+fLlHpf1xRdfAAAmTZrksO+bb75BRUUF+vXr59L9gyU+Pt6hrXnyjJuLx9X4WbFxzvLz8wHA7vl64kJ48OBB3HnnnYiMjOTifTz++OMoLi52OLZhnLjz589j/PjxCA8Ph1wux6BBg7Bp0yYHmTt27AjAFi+moYwN47M5iznUsD40Gg2effZZJCQkQCqVonfv3nbjw+rVq9GvXz/I5XJER0fjqaeegk6nc5D/2LFjmDVrFjIzM7n7TUlJcXm/7YmzZ89Cq9VCLBZjwIABDvvZ/vKXX36x275//36cOXMGQ4cO5dyvPOHTTz/Fvn37sGjRIoSGhrZM+CZYt24dqqqqMGHCBKdxYVqCUCgEAIhEolaVo1KpkJOTAwBO31u2zrdu3eoylllbcfLkSbz99tt46KGHcOONN7p1jlarxWOPPYbrrrsOL7zwQpPHOnPHdUZ4eDj3/8OHDwMAhgwZAh7P/lNRKBRi0KBBABzbrCsYhkGPHj0AwKvv86RJk1BZWdlk3CQKheIZNOYQheIlNm/eDACYMGEC+Hx+i8uxWq0YO3Ys9uzZg6ysLPTo0YMbtPPy8vDwww8jLi4OXbp0wQ033IDS0lIcOHAAe/fuxblz51z60K9evRpLly5Fnz59MGbMGJw4cQI//fQTduzYgd27d+P66693OCcvLw99+/ZFUFAQhg0bhoKCAhw8eBBjx47F5s2bMWLECLvjf/75Z0ycOBEGgwE9e/ZE//79ceXKFfz444/YsGEDNm/ejCFDhnDHL1myBE888QT4fD4GDRqErKwsVFZW4uzZs5g3bx7mzp3rVp0dOnQIN910E9RqNbp164Zu3brh4sWLuP322zFjxgyX9Xz//ffju+++g0KhQJ8+fRAaGopDhw7htddew+bNm7Fr1y5IpVK3ZHCGwWDA5MmTER4ejvT0dPTu3RtVVVU4cOAAZs6cib/++svtmDz19fXo168fcnNzkZCQgOHDh0MgEKCgoADff/89UlJScMMNN3DH//777xgzZgx0Oh169eqFoUOH4ty5c/j222/x008/YdOmTRg8eHCL780VN954I0pLS7F161akpqbaTXadxbJozIIFCzBnzhwIBAJkZWUhIiIC+/fvx8KFC/HTTz9hz549iI6Odjjv0KFDmDlzJlJTUzFy5EicO3cOe/bswbBhw/D333+jW7dubslfVFSEIUOG4PLly0hMTMTYsWNRUVGB7du3Y+vWrXj33Xfxn//8x+E8QgjGjx+P33//HcOGDUPPnj3x+++/4/XXX8eBAwewdetW8Pl8KBQKTJkyBVu2bEFZWRnGjx8PhULhlmwNef/99/HRRx9h6NChuPXWW7F37168/fbbKCsrw8svv4yBAwciIiICN998M86cOcPFgTpz5oxd/f3xxx946qmnkJycjC5dumDAgAEoKCjAb7/9ht9++63JWCiNKS8vx/Dhw3HixAnExMQgKysLhBAcOHAA2dnZOHToED788EO373Hjxo2QSqV27brhPgCYPHmy2+WxtPQZu0tMTAymTJmCNWvWQKPR2CmvIiIi3CpjxYoVyM7OhsViwaBBg5CQkIAjR45g6dKlWLduHXbt2oWuXbs6nJeTk8PFXRoxYgSKi4uxd+9ejB49Gl9++SUXn6Znz54YP3481q5d6xDrw90PVKPRiGHDhiE3NxdDhgxBZWUl9uzZg7vuugtbtmzByZMnMWvWLGRlZWHkyJHYs2cPPvzwQ1RVVWHlypV2Zf3f//0f1q5dix49enDXP3bsGJYuXYqff/4Zhw4dQlxcnFtyBRoajQaALXaKs+De7Piem5uLuro6BAcHA7DFfAGAgQMHQqfT4fvvv8fhw4fB5/ORmZmJCRMmuByfSkpKMHv2bAwbNgz333+/27IePnwYL7zwAurq6hATE4Obb74ZWVlZTo9tKF9tbS1WrlyJU6dOQSqVYuDAgRg7dqzLANjO+Pbbb3H+/Hl06tQJnTp1cnnNY8eOQa/Xo0OHDrjtttucLrSxdQ7AqWKMrXOdTocLFy44Vb69/fbbyMnJgVgsRkZGBu666y5ERka6fT/uYLVa8eijjyIkJMSj4Mrz5s3D5cuXsXv37mYVaTfccANCQkK4uV7D57lnzx5s3boVnTp1spsPsPXnSqnI1t/x48fdlvny5csA4FKRWFZWhrlz56KkpARKpRL9+vXDHXfc0eT9DR06FK+//jo2btyIe++9121ZKBRKE/jXcIlCuXoYNGgQAUBWrFjR4jIAEAAkLS2NFBYWOuyvrKwk27Zts4t5QQghly9fJsnJyYTH4zmYMbMuIADIZ599xm23Wq3kxRdfJABIz5497c5hTcwBkOeee87OrPi9994jAMjgwYPtzsnNzSVyuZwoFAqybds2u32bN28mQqGQJCQk2Jn/JiYmEoZhyN9//213vNVqddtlxWq1kvT0dAffeEL+jWEAJy5Ob731FgFAhg4damcSbzAYyLRp0wgA8uKLL7olAyHOXRxMJhP56aefHGKhlJeXkz59+hAAZPfu3W6V/9VXXxEA5I477nAw8y4vL7eL7aBWq7l4AR999JHdse+++y4BQDp06GAX98GVaXdz5vzOTPDdcStzVl9//fUX4fF4RKFQkD/++IPbrtfryYQJEwgAMn78eKfyASDvv/++3b5nnnmGACAPPPCASzkaM3r0aAKATJ482a6t7t27l8hkMsLn88nRo0cd7oWt04ZxG8rLy0m3bt0IAPLee+/ZndOcW5mremfPUygUdu9NSUkJiY6OJgzDkOuuu47Mnj2b6yesVisXk6LxO3L58mVy8OBBh+sfOXKEhISEkODgYFJfX2+3z5Vb2e23304AkKeffpro9Xpue2lpKdfeN2/e7PR+G3P27FkCgAwcONDp/vj4eLfjcjTG02fcnNuDq2fVUveUgoICIpVKCZ/Pt4tnZLFYuDbdp08fu3Ma9tkPPvigXcyWDRs2ED6fT2Qymd244o47h7N7YM8DQG6++WaiVqsd5EhLSyOhoaF2bbSoqIhERUURAHbvCSGE7Nixg5SWltpts1gs5LXXXiMAyNSpUx1kc9aHNJTZk7/mxpvWuJVduHCBACAMwxCtVuuwf+3atZwcDfvxiRMnEgBkzpw5nEtOw7/ExESX7mbjxo0jYrGYnD9/ntsGN9zKnP1lZWU5PBtCCOnfvz8BQBYsWEBiY2MdzuvevTspKChwWS9vvfUWmTJlCrn77rtJRkYGAUDi4uKcutw37Ocb/40fP96hj9LpdITP5xMATmNmHT58mDt/w4YNdvtctR+ZTEa+/PJLl/fTEHfdyj744AMCgCxfvpzb1pxb2dGjR4lAILB7J5pyKyPE1sbY2EKDBg0i9957Lxk0aBBhGIbceOON5PLly3bHs66O9957r9PyxowZQwBbDC132Lt3LwFARCIRKS4uttvXsD9x1sb//PNPl+WqVCrC4/FIYmKiW3JQKJTmocohCsVLdO3alQAgW7Zscbr/oYceIlOmTLH7azz4swPi6tWrPb7+559/TgCQDz74wG47+yHn7CPLaDSSDh06OExE2Ilix44dHXy5TSYTCQ0NJUKh0G7f008/TQCQDz/80Kl8Tz31FAFA1q1bx22TSqUkNDTU43ttyI4dOwgAkpKSYhcEkaVfv34OigqTyUQiIiKIXC53OunVarUkJiaGhIaGOihiXOHqQ8UV27ZtIwDIs88+69bxCxcuJADI4sWLmz2WVSQNGDDA6f7MzEwC2CsyA0E59OCDDxIA5KWXXnI4vqysjEilUsLj8ew+OFj5Bg0a5HBOZWWlR88lJyeHU7xUVVU57H/22WcJAPLwww873Atgr3xl2bx5MwFAUlNT7ba3Vjn08ssvO5zzn//8h3sXGiskjx8/3qwioDFsENH169fbbXemHDp69CgBQPr27ev0nTly5AgBbMpNd/jhhx9cKgUIIUQikRAA5Ny5c27fDyEte8ZtrRx69dVXCQAyadIkh316vZ4Lprtv3z5uO9tnKxQKUl1d7XDevffe6/Dx2FrlEI/Hs1M+EGJT6ERERDTbRj2JHRMfH0/Cw8Mdtrt6t5977jmHsba5v+aCbrdGOWS1WjnlydKlSx32jxo1iutDGgZIHjlyJAFABAIB6dChA9m0aRNRqVTk5MmTZPjw4dz9azQau/J+/vlnp7I2pRzasmULmTdvHjl69ChRqVSktLSUrF+/npvX9OnTx2F8ZRUgAoGAZGRkkL1795K6ujry559/kt69e3P9QePFLJZhw4bZKQKSkpJcLpZ8++235J133iGnT58marWaXLlyhaxcuZJTEjuLHcQqr5wt8sycOZO77qpVq+z2Pfnkk2TdunUkPz+faLVacurUKfLss88SPp9PGIYhP//8s1MZndVNU8qhK1eukKCgIDJ06FC77U0ph8xmM+nTpw8JDw8nlZWV3PbmlEOE2OZK7LvJ/gUHB5P58+c7zPO2bNnC9SeNA0gXFhZy/W/nzp2bqgZCiE2B06lTJ5fPori4mMyYMYPs2rWLlJWVkbq6OnLw4EFusSEkJMRpsHYWtg046/coFIrnULcyCqWNWL58OSwWi922oUOHOpjwMwyDMWPGNFnWvn37sGvXLhQVFUGv14MQgpKSEgC2FLzOmDhxosM2oVCIu+++G4sXL8bevXsdZBk6dKiDSa9AIEDHjh1x5MgRVFVVITY2FgC4WB3jxo1zev3Bgwfjgw8+wF9//YW77roLgC3u0r59+zBt2jQ8++yzLUo1vXfvXgDA3Xff7dSdb9KkSfjzzz/tth05cgSVlZUYPny4UxclqVSKzMxMbNy4ERcvXkSXLl08lqshx44dw2+//Yb8/HxotVoQQlBfXw/A9fNqDGs6//bbbyM6OhqjRo1CUFCQ02PZOrnvvvuc7r///vtx+PBh7N271+Ux/qApuaOiojBixAj88ssv2L9/v0N7buziCNhM38PCwrh3ozn27dsHALj11ludpsZ94IEH8O6773JyNsbZO3brrbciNDQUOTk5KCkp4d6X1uLsflNSUgDY3ls2dkfjfc7qwmKx4Pfff8eBAwdQUlLCxeBg26Y7bZR9/8eOHesQowIAF4PIWWwsZ5SXlwNw7dbQUlr7jNuCpt4DsViMCRMm4P3338fevXu52B8sI0aMcFpnkyZNwg8//ODV+0pOTkbnzp3ttvF4PCQlJaGysrLJNuqsHVZVVWH9+vU4deoUamtrufHSZDKhqqoK1dXVbqWsfuedd1pyOz6DYRjMnj0bTz/9NF544QWIxWLceeedqKurw3vvvYeNGzdCIBDAbDbbvTtsTDqz2Yy1a9dy7pXdunXDhg0bkJaWhvz8fKxcuRKPPPIIAJv78RNPPIHOnTu7FfuQZeTIkRg5ciT3Ozg4GGPGjMFNN92EzMxMHDp0CD/++KNd/C9WPj6fj82bNyMhIQGAzY1p8+bNSElJwd9//43t27dj+PDhDtfcvn07AFvcs5MnT2L+/PnIysrCG2+8gf/+9792xzZ2jZPL5Zg8eTJuuukmdO/eHT///DP++OMP9O/fnztm9uzZGDt2LBYtWoSIiAjcf//9sFqt+Prrr/HJJ584rXMA+OCDD+x+Z2RkYNGiRejatSseffRRvPjii7jzzjvdrltXzJw5EwaDAUuXLnX7nPfffx+HDh3CV199ZRcjqDkWLVqEWbNmYezYsZg3bx5SUlJw+fJlvPrqq3j11Vfx559/4tdff+WOHzFiBHr37o0jR47gtttuw5IlS5Ceno6TJ09i+vTpMJvNAOC0r2+IxWLBfffdh4sXL+KGG27A/PnzHY6JjY3Fxx9/bLetf//+2LhxI+677z6sWrUKb775Jj799FOn1wgLC0NRUREqKip8EluLQrnWoMohCsVLsAN1ZWWl0/3sYAoAjz32mMuBLioqymUAQZVKhXHjxnG+/s5glQ6NSUpKcrqdDZDqLEhghw4dnJ7DKiUaBnLMy8sDYAv+2hQN62fJkiUYO3YsvvrqK3z11VeIjo5GVlYWxo0b51LZ0xhW7uburyGsrNu2bXMaA6KxvC1VDhmNRmRnZ+O7775zeYyr59WYYcOG4T//+Q8WL16MSZMmQSAQoHfv3hg+fDgeeugh7qML+LdOXAW/ZbcXFRW5dyNtRGvkbqqtVldX+/z6bCB0ZyQlJaGmpgbFxcVeUw45e8/Y2EVN7WscfLWwsBCjR49uMnaEO22Ufaf++9//OnzYNaRhcO6mUKlUAOCyTsPDw7kPAk/ez/bwbrRGxpb08y3FVV/fknb43Xff4dFHH4VarXZ5vfr6ereUQ4HIk08+iUuXLuHDDz+0i+HFMAzeeOMNvP/++w4ft2xdpaenO8TdEovFmDx5Mt566y3s3r2bUw7NmTMHhYWF2L59u9uBiJtCoVDgqaeewhNPPIGtW7faKYdY+YYNG8YphliioqIwatQo/Pjjj9i9e7dT5RBLSEgIBg8ejE2bNmHAgAF45ZVXMGLECPTt27dZ+WJjYzF16lS888472LJli51y6M4778TChQsxZ84cvPDCC3aBmx999FEcPXoUf//9t9sKhWnTpuHll1/G+fPnkZeX51Fw+casXbsW69evxyuvvOI0dpgz8vPz8eqrr2LIkCF2QeObY9euXXj++efRu3dvrF69mlPodO/eHWvWrEGfPn2wceNGbN68GbfddhsAW7tct24dRo0ahUOHDqFfv35cedHR0Zg3bx5efvnlZutuxowZ+PXXX9GlSxds3LjR40Djc+bMwapVq7B161aXx7AxupwlrKBQKJ5DlUMUipe4/vrrsX//fhw9erRV1hgSicTlvhdffBE7duxAVlYWXnvtNXTr1g0hISHg8/n47bffMHLkSBBCWnztxjS3KtQQdhWxucxBDScZPXr0wJkzZ7BlyxZs2rQJu3btwo8//ogff/wRAwYMwK5du1qdtaQpWdPS0hxW3hvjyepcY959911899136N69O9566y307t0boaGhEAqFuHDhArp06eLR83r33Xcxffp0/PLLL9i+fTv279+Pv/76C2+99Ra+++47jB8/3q1ymlOIeYKnGddaQ1Nye9JWfXH9tqap+/WkLh5++GEcP34c48ePx6xZs9ClSxcEBQWBx+Phs88+w/Tp091qo2w7uPHGG5Gamur29V2hVCoBuFZM9ezZE0VFRThy5IjbAZTdoSXPuC3fASBw2mFz7czddpifn8997C5evBijRo1CfHw8F2x54MCBOHjwoNt95fPPP+9ykcYVs2fPdvsjvSUwDIMPPvgADz30EH755RcUFRUhKioK48ePR3p6OubOnQupVGqn5GcVfc0pCVkrOwDYsGEDJBIJXn/9dbz++usO51gsFi571+LFi91KEsAGh25s7ZWUlISjR496JF9TCIVC3HvvvTh8+DA2bNjglnKoKfkAYNasWbjrrruwZs0a5OXlQalUYtSoUcjKyuIWFNy1WObxeEhNTUV5eTlKSkpapRxiM/pt27YNe/bssdt37NgxADaFolKpRHZ2NrKzs7Fz505oNBqUl5dz2dZYWOX8l19+ie3bt6Nnz55YvHgxAFugbwC46667HN5JPp+PcePG4dixY9izZw+nHAJsz/fYsWP46aefcODAAeh0OmRkZOC+++7DunXrADRdd7Nnz8bnn3+OhIQEbNu2ze1g/A1p6tmysAsJISEhHpdPoVAcocohCsVL3Hbbbfj444+xevVqLFy4sFUZy1zx008/gc/nY/369dxqCQubCcIVbFplV9tbmwmmQ4cOyMnJwaJFizxSqEgkEowdOxZjx44FYEtJP3nyZBw8eBBffPEFHn/88SbPZy0xmru/xrICQNeuXd3OFtYS2PSq3333ncMkqrnn5YouXbpg1qxZmDVrFvR6PT766CO88MILmDFjBqccYp+lqzpx18oL+DelsLMVfYvFgtLS0pbchlPi4uKQm5uL/Px8pKenO+z3RO6WXh9oWb3V1NSgvr7eqaVLQUGBXfmBgkajwbZt2xAdHY0ffvjBoc/ypI2y79TYsWPx3HPPtVq2qKgoAHBp9TVq1Chs3LgR3333HZ566im3y23JM27qHQCAK1euuH19d4iLi8P58+eRn5/v9OOrqXbo637eF2zatAlGoxHPP/88nn76aYf9nvaVa9ascVkPrsjOzvapcoilZ8+eDgqZPXv2cFnpGmb36tWrFwBb3+IM9t1onO1Qr9dj9+7dLmVg97lracFeXy6X223v1asXfv75Z4/lawpWgVBRUeH2Oa7kY+nUqZODi11BQQGKioqQlpbm0XjS3LU85Y8//nC5j1USsco8lnPnzuHcuXNOz8nLy+P6B5bCwkIA/yrcG8Nud/YcBQIBJkyYgAkTJthtP3DggFPZWN566y0sXLgQUVFR2LZtm4Nlmbu4U9/sMd7OJEehXKv4fqmVQrlGuP3223HdddehoKAACxYs8Mk1ampqEBwc7KAYAoAff/yxyXOd7WdjGQDupy92BWs2zipEWkpGRgZmzpwJADh16lSzx7PpV9euXet0Bf/777932Na3b18olUrs3r3bbZejlsBOWpy5PDX3vNxBIpHg+eefR2xsLCoqKrgVWrZOXLmzrVixwu64pmCVbxcuXHDYt3PnTphMJoft7Md0Q1dKd2hK7oqKCmzduhUMwzRr7dVS2Hdgy5YtTj+cmqs3Z8/0t99+Q3V1NVJSUuxcylpaR95EpVLBarUiNjbWQTFkMpk8epe99f6zXH/99QCA8+fPO93/4IMPIjIyEn/88QeWL1/eZFnFxcXcB1NLnnFERAQEAgFyc3MdnpfJZHL5Ie6L98BoNGL16tUOMrL89ttvTu+L7Qcb9vOB0AaBpvvJPXv2oKyszKPy8vLyQGwJV9z+c/WR2xZ8+OGHAGyuTg25/fbbIRAIcPLkSafjFNvuWCUS0PS9AzZLEU/vmZ0j9O7d2277HXfcAcCmKGg8DlitVi6+V0P5moO9J3etDwkhXJ/TWL6mcFXnTXH69GmcP38eMpms1YrEZcuWuXxObKr5vXv3ghCCefPmAbApMF2dM3fuXADA66+/DkIIdu3axV2LTR1/6NAhp7L8/fffAFxbqDWmtLQUa9asQXh4uNMYk59//jlefPFFhISEYOvWra2K2eiq7bHU1dWhuLgYiYmJNN4QheIlqHKIQvESPB4P3377LcRiMV555RXMmjWLM3dtSFVVlcsPnubo3Lkzampq8MMPP9htf++997Bz584mz923bx+++uoru21z585FQUEBevTo4ZaioCmee+45SKVSPP/885zJcUMMBgPWrFnDrWJptVp88MEHDh8yVqsVW7ZsAQC3VpuGDh2Krl27IicnB2+88Ybdvk8//RQHDx50OEcsFmPWrFmor6/HuHHjnK5MFxUVcebYLYUN1vrJJ5/YbV+zZg2++eYbj8piA2425vDhwygrK4NCoeDMqu+55x5ER0dj3759+Oyzz+yO/+CDD3Do0CHEx8e75YY2ZMgQALaP5oYrkrm5uS4tNljrBE/b+cyZM8Hj8TgZWYxGI5588knodDqMGzeuxauQzZGSkoJRo0ahvr4eTz/9tN0Hz8GDB7F06VLw+XxOedmY1157za6OKisruTgXjc9paR15k6ioKCiVSpw6dQr79+/ntlssFrz44otOFYKu6NevH4YPH479+/dj5syZqKurczjm+PHj3LvdHF26dEFUVBSOHTvmVHkhl8uxbNky8Hg8PPzww3jvvfccPlDNZjO++eYbZGZmcs+lJc9YJBJhwIABqK6uxpIlS+zKf+6555Cbm+v0Hlr6jKdNmwapVIrvv/8eGzdu5LZbrVbMmTMHRUVFyMzMdKokVavVePbZZ+3qbPPmzfjxxx8hlUoxdepUbntERASEQiFycnIckiW0JWw/uWLFCmg0Gm57UVERHnvsMX+J1SK6du2Krl27OsSDKi8v5ywIWcxmM+bOnYs1a9bgpptucrDOiIiIwNSpU6FWq/HUU0/BaDRy+5YvX45t27ZBIpF4FH/GFQsWLHBwxTOZTHjttdewevVqh7YD2Kyghg8fjvz8fLz88st2bn9vvPEGzp07h6ioKDsFwv79+7FlyxaHhRyTyYQPP/wQ3377LaRSKe69915uX0VFBZYsWeLgYqpWqzFjxgz8+eefiImJcVBUaDQanD171uFeP/30U7z33nvo0qWLwxi2adMmpzEdT5w4gQkTJoAQgocfftgn7u6+grXKXrlypV3QaQD45ZdfsGrVKvB4PC5RCMupU6ccYsQVFhbizjvvRH19PRYtWsS5frKsWbMGjz32GBQKBTZt2uSW2+Lnn3/u1BJq3bp1mD17NgDH8ZPl77//tlOoUSgUL+CbJGgUyrXL3r17SUxMDAFAxGIxGTJkCJk4cSIZO3Ys6dOnDxEKhQQA6dq1Kzl58qTduWgm7faKFSu4FKSDBw8mkyZNIunp6YTH43EpghunD2fTTs+YMYMwDENuuOEGMmnSJJKRkcGlMj1y5IjdOWxaZFdpe12l4f7555+JTCYjAEhaWhoZM2YMmThxIhk8eDCRy+UEADl69CghhJCamhoCgAiFQtK/f38yceJEMm7cOJKQkEAAkOTkZLtUrU3xxx9/cOV3796dTJo0ifTt25cwDEMef/xxp/VisVjIAw88QAAQkUhE+vXrx8mQkZFBGIYh119/vVvXJ8T5s9u9ezfh8/kEAMnMzCSTJk0iffr0IQDI888/71Fq8aeffpoAIPHx8WT06NFk8uTJZOjQoVz5ixYtsjt++/btRCqV2l27V69eXHraPXv22B3fVFprNsW8UqkkY8aMIcOGDSNyuZxMmDDBZbruHj16cKmMs7OzybRp08gvv/zSZH0RQsj//vc/Lj3yLbfcQiZOnMi1iU6dOpHS0lK7412lEWfxNJ14YWEh6dixIyffxIkTybBhw1zWM3sviYmJZPTo0UQmk5ExY8aQcePGkZCQEAKA3HTTTcRkMtmds3btWu79u/vuu8m0adPItGnTmr0vV+8eIc2/t87qnK1vPp9Phg8fTu69916SnJxMpFIpl+65cXnOUtkTQkhZWRnXxkJCQsjQoUPJ5MmTyahRo7hn+PTTTzuVzRnZ2dkOKdsbs27dOhIUFMRd89ZbbyWTJ08mI0eO5Oo/JCSEnD59mjunJc9427ZthMfjEQBkwIAB5K677iKJiYkkIiKCq4/Gz2rRokUEAImOjiYTJ04k06ZNc5rK2RnffPMN4fF4hGEYcuONN5JJkyZx6bGjo6MdUq+zz/6+++4jSqWSdOzYkUycOJFkZWURhmEIAPL55587XGfMmDEEAMnIyCAPPPAAmTZtGvnqq6+4/U2lsnfVd3naRg0GAzcexcTEkPHjx5NRo0YRmUxGBg4cSAYOHOi0vObGy9YyduxY0q9fP9KvXz+u/cbHx3PbnKVPZ8fnxrLu3LmTMAxDevfuTcaPH0/GjRvHpbfv1asXqaqqcipDbW0t6d69O9fHjBs3jhtD+Hw++eabb9y+H/YcV/vEYjEZNGgQmThxIrn99ttJXFwcAUAkEglZu3at0/MKCgq4VOKdO3cm48ePJ+np6QQAkUqlZNu2bXbHs88/IiKCjBw5kkyePJmMGDGCqwuJREJ++OEHu3PY9qZQKMhNN91EJk+eTIYPH07Cw8O599tZH8Gel5GRQcaOHUsmTJhAUlJSuPnF5cuXHc5h+92kpCRyxx13kIkTJ5IbbriBCAQCAoAMHTqUaLVah/MOHz7MtYt+/fpxqd579uzJbXP2/jmjqVT2rmgqlb3VaiUTJkzg2mafPn3IhAkTuHYEgPzvf/9zOG/KlCkkODiYDB06lEyaNIkMGzaMiMViAoC88sorDseXlZURkUjEzcOmTJni9O+nn35yer89evQgd999Nxk3bhzp2rUrJ9sLL7zg8r5ffvllAoB8//33btcVhUJpGqocolB8gEajIe+//z4ZNmwYiY6OJkKhkCgUCtKlSxdy3333kZ9++snhY5EQ9ya7GzduJP379ydBQUEkJCSE3HLLLWTXrl1k586dTSqHdu7cSTZs2EAGDBhAZDIZUSqV5M4777T7aGJpqXKIEEIuXbpEHn/8cdKpUycikUhIUFAQ6dKlC5k4cSL58ccficFgIIQQYjKZyJIlS8i4ceNIamoqkclkJCQkhPTo0YO89tprLifLrjhx4gQZM2YMUSqVRC6XkwEDBpBff/3VZb2w/PLLL2TUqFEkKiqKCIVCEhUVRTIzM8msWbPI4cOH3b6+q2d38OBBcvPNN5PQ0FASFBREBg4cSNauXdvsB1Zjjh49Sp577jnSt29fEhUVRcRiMUlKSiJjxowh27dvd3rOqVOnyKRJk7g2GBsbS+6//35y7tw5h2ObksdgMJDZs2eThIQEIhKJSGpqKnnjjTeI2Wx2qXy5ePEiGTt2LAkPD+c+qhu2p6ba+q+//kqGDRtGlEolEYlEJC0tjcyaNYtUV1c7HOtt5RAhhFRWVpLnnnuOpKamEpFIREJCQsiIESPI1q1bnR7P3oterydz5swhycnJRCQSkaSkJPLf//7X6ccEIYS89957JD09nZtwN5SzrZRDhBCyfPly0qtXLyKTyUh4eDi58847yfHjx12W50o5RAghOp2OfPDBB2TgwIHc80tISCBZWVnk7bffJleuXHEqmzP2799PAJDHH3+8yeMqKirIvHnzSL9+/UhYWBgRCAQkPDycDBkyhLz99ttO+xJPnzEhtnbZt29fIhaLSVhYGLnnnntIbm6uy2dlMpnIyy+/TFJTU7lFAU+UGfv37ydjxowh4eHhRCgUksTERDJjxgxSWFjocGzDZ3XmzBly5513ktDQUCKVSsmAAQPIhg0bnF6jrKyMPPDAAyQmJoZTjjXsK9tCOUQIIdXV1WTGjBkkOTmZiMVikpKSQl588UWi0Whcludr5RB7767+nF3blXKooKCAZGdnk06dOhGZTEYUCgXJzMwkixYt4sZEV6jVajJnzhySlpZGRCIRCQsLI6NHj25SaeqMppRDr776Khk+fDhJTEwkUqmUSCQSkpaWRqZPn+50vGhIeXk5mTlzJklMTOTG0IkTJzosfhFCyOXLl8mcOXPIoEGDSGxsLBEKhUQul5OMjAzy5JNPkosXLzqcU1dXR1588UWSlZVF4uPjiVgsJjKZjGRkZJDnnnvO6ftACCEqlYo89thjJD09nQQFBXHnzJ07l9TX1zs958CBA+Shhx4i3bt3J+Hh4UQgEJCwsDAydOhQ8vnnnxOz2ez0PHae0dSfq365Md5WDhFiUxB9+eWXZMiQISQkJIQIBAISERFBbr/9drJ582an5/z0009k5MiRJCYmhnuud955p9N+n5B/+wVP62HFihXk7rvvJmlpaSQ4OJgIhUISFxdHxo0b56BcbExqaiqJiIho9h2iUCjuwxDixdRGFAol4MjOzsby5cuxc+dOv8ZVoFCuVhiGQVJSkkMgUErr6dWrFwoLC1FYWOiV1NxXK8uWLcPUqVMxd+5cLkYJhUKhXK0cPHgQAwcOxKxZs7Bw4UJ/i0OhXDXQmEMUCoVCoVACkv/973+orKzE559/7m9RKBQKhRIg/N///R9CQkLw4osv+lsUCuWqgiqHKBQKhUKhBCS33347brrpJvzf//0fDAaDv8WhUCgUip85evQo1q9fj5deeglhYWH+FodCuaoQ+FsACoVCoVAoFFc4yx5EoVAolGuTXr16gUZFoVB8A405RKFQKBQKhUKhUCgUCoVyDUPdyigUCoVCoVAoFAqFQqFQrmGocohCoVAoFAqFQqFQKBQK5RqGKocoFAqFQqFQKBQKhUKhUK5hqHKIQqFQKBQKhUKhUCgUCuUahiqHKBQKhUKhUCgUCoVCoVCuYahyiEKhUCgUCoVCoVAoFArlGoYqhygUCoVCoVAoFAqFQqFQrmGocohCoVAoFAqFQqFQKBQK5RqGKocoFAqFQqFQKBQKhUKhUK5hqHKIQqFQKBQKhUKhUCgUCuUahiqHKBQKhUKhUCgUCoVCoVCuYahyiEKhUCgUCoVCoVAoFArlGoYqhygUCoVCoVAoFAqFQqFQrmGocohCoVAoFAqFQqFQKBQK5RqGKocoFAqFQqFQKBQKhUKhUK5hqHKIQqFQKBQKhUKhUCgUCuUahiqHKBQKhUKhUCgUCoVCoVCuYahyiEKhUCgUCoVCoVAoFArlGoYqhygUCoVCoVAoFAqFQqFQrmGocohCoVAoFAqFQqFQKBQK5RqGKocoFAqFQqFQKBQKhUKhUK5hqHKIQqFQKBQKhUKhUCgUCuUahiqHKBQX7NmzB/Pnz4dKpfK3KNcMH374Ib799lt/i9FmFBQUYN68eThz5oy/RfE7JpMJ//d//4cNGzb4WxQKhUJpd1yrcxaVSoX58+fjwIED/halVdAxsG1YuXIlPv30U3+LQaEELFQ5RKE4IT8/H2PHjkVQUBCUSqW/xbkm+PDDDzF//nz079/f7XN27doFhmGwa9cu3wnmQxITE1FZWYnx48dDo9H4Wxy/Mnv2bHzxxRcePf+G5OXlgWEYLFu2zK3jf/zxR4SFhUGtVjvsMxgMLZKhIVVVVZDL5di0aVOry6JQKJSmuJbnLEqlEjKZDHfddRdKSko8OnfZsmVgGAZ5eXkuj/F0bGkpLRkD3ZE/kGAYBvPmzfNaeUOHDkW3bt3cPv6vv/7Ck08+iXnz5mHjxo0eXWvevHlgGMZTEdsFf/31F0QiEfLz8x32GY3GVpdvMpmQkJCAjz/+uNVlUXwPVQ5RvA7DMG79BeoHvclkwr333ovs7Gz85z//8ck1Pv74Y59PNAKFN998Ez///HOTx/z999949dVXsWHDBnTq1KltBAsQPvjgA3Tu3BmPPfaYR+exExUej4crV6447K+rq4NUKgXDMHjiiSe8Ja5TNm3a1KoJ3y+//IIVK1Zgy5YtiIyM9J5gLrBYLJg7dy6efPJJKBQKbntVVRVGjhwJmUyGjh07uuyjjh07hvvvvx8JCQkQi8UICwvDLbfcgq+//hoWiwUAEB4ejocffhivvPKKz++HQqG0HDpnaZ5An7M8//zzmDBhAiZNmsT1wS1l6NChyM7O9opcWq0W8+bNa7bttPUYeC1iNBoxdepUfPzxx1ixYgVmzJjhYGXn7vMKZNyZczfmv//9LyZNmoSkpCRum16vx+TJkyGXyxEdHY0ff/zR6bk5OTmYPn06UlJSIJFIEBwcjEGDBuH999+HTqcDAAiFQjz77LP43//+B71e3+J7o7QNAn8LQLn6aOwW9M0332Dbtm0O26+77rq2FMttTp8+jYkTJ+Lpp5/22TU+/vhjREREeG0CEsi8+eabuPvuuzF27FiXx5w+fRpr16712GpkyJAh0Ol0EIlErZTSf/B4PHz33Xd47733UFxcjLi4OI/OF4vF+O677zBr1iy77evWrfOmmE2yadMmLFmypMUKory8PGzevBlpaWneFcwFGzZswPnz5/Hoo4/abZ89ezb0ej3Wrl2LQ4cO4Z577kFubi7kcjl3zBdffIHHHnsM0dHReOCBB9CpUyfU19fj999/x7Rp01BSUoI5c+YAAB577DF88MEH2LFjB26++eY2uTcKheIZdM7SPO1hzvLBBx/gvffew/nz55Genu61cpOSkqDT6SAUCj0+V6vV4rXXXgNgUzq5oqVj4AMPPICJEydCLBZ7LNu1xvnz5/HMM89g4sSJAICFCxfizJkzGDBgAHdMU8/r5ZdfxuzZs9tM3pbizpy7IceOHcP27dsd3DIXLVqEkydP4rvvvkN+fj4efvhh9O/fH4mJidwxGzduxIQJEyAWi/Hggw+iW7duMBqN2LdvH1544QWcPn0an332GQBg6tSpmD17NlatWoWHHnrIa/dL8T5UOUTxOvfff7/d7z/++APbtm1z2B6o9OzZEz179nT7eEII9Ho9pFKp74RqR3K0BE8nnHq9HiKRCDweDxKJxDdCNYHVaoXRaPTatWUyGf773/+26Nzbb7/dqXJo1apVGDVqFNauXesNEb2G2WyG1Wq1U+j58qPGGV9//TUGDRqE+Ph4u+0HDx7EypUrcf3112Ps2LHYuHEjzp07h8zMTAC2vuyxxx7DgAEDsGnTJgQFBXHnPvPMMzh06BBOnTrFbbvuuuvQrVs3LFu2jCqHKJQAhc5Z/IO35eDxeHjuuee8UlZDGIbx+TzD0zFQo9FALpeDz+eDz+f7SCrXOBvHA53u3buje/fu3O9JkyZ5dL5AIIBAcPV9Nn/99ddITEx0WJw9ePAg3njjDdx5550AgH379uHvv//mlEO5ubmYOHEikpKSsGPHDsTGxnLnzpw5E5cuXbJz3QsJCcGIESOwbNkyqhwKcKhbGcUvWK1WLF68GBkZGZBIJIiOjsb06dNRU1Njd1xycjJGjx6NXbt2oU+fPpBKpejevTtn8rlu3Tp0794dEokEmZmZOHr0qN352dnZUCgUuHz5MkaOHAm5XI64uDjMnz8fhJBWybR161ZOJja43ddff42bb74ZUVFREIvFSE9Px9KlSx3OP336NHbv3s2Zq7MrFK58mp35lTclR21tLZ555hnO7SUtLQ0LFy6E1Wp16/ls3rwZgwcPhlwuR1BQEEaNGoXTp09z+3fs2AEej4dXX33V7rxVq1aBYRjunhmGgUajwfLly7l7bagIKioqwkMPPYTo6GiIxWJkZGTgq6++siuTjSv0/fff4+WXX0Z8fDxkMhnq6upcxhz6888/ceutt3KxCLKysrB//367Y7Kzs5GcnOxw786eAeuatXLlSmRkZEAsFmPLli1u34Mr3GkvzTF58mQcO3YM586d47aVlpZix44dmDx5stNzysvLMW3aNERHR0MikeD666/H8uXL7Y5h4yy88847+Oyzz5CamgqxWIy+ffvi77//5o7Lzs7GkiVLuHpi/xqXsXjxYq4MNgD3uXPncPfddyMsLAwSiQR9+vTB+vXr7eSorq7G888/j+7du0OhUCA4OBi33XYbjh8/7lE9sej1emzZsgW33HKLw76UlBR88MEHyMnJwerVq3Hp0iU7M+vXXnsNDMNg5cqVdoohlj59+jgoOocPH44NGzY49DcUCqX9QOcsgTtn+eWXXzBq1CjExcVBLBYjNTUVr7/+eqvdy1icxRxin1NRURHGjh0LhUKByMhIPP/889x18/LyOBcxduxoHHPHnTGQrcvdu3fj8ccfR1RUFDp06GC3r3HMoebmcIDNMsaZNVPjuVFz47gzDAYD/vOf/yAyMhJBQUG44447UFhY2Oy1WDyN73P48GEMHDgQUqkUHTt2xCeffGK332g04tVXX0VmZiaUSiXkcjkGDx6MnTt32t1nU8+rqbnh6tWrkZ6eDqlUigEDBuDkyZMAgE8//RRpaWmQSCQYOnSo09hQ7sxX2WtfunQJ2dnZCAkJgVKpxNSpU6HVau3kaWrO7Yyff/4ZN998s8O9paSk4LPPPsP58+exbds27Nmzx86y7a233oJarcaXX35ppxhiSUtLc1B6Dh8+HPv27UN1dXWTMlH8y9WnAqW0C6ZPn45ly5Zh6tSpeOqpp5Cbm4uPPvoIR48exf79++3Mdy9duoTJkydj+vTpuP/++/HOO+9gzJgx+OSTTzBnzhw8/vjjAIAFCxbgnnvuwfnz58Hj/av3tFgsuPXWW9G/f3+89dZb2LJlC+bOnQuz2Yz58+e3SKbz589j0qRJmD59Oh555BF06dIFALB06VJkZGTgjjvugEAgwIYNG/D444/DarVi5syZAIDFixdzsU5Ya5Ho6OgW1aMzObRaLbKyslBUVITp06cjMTERBw4cwEsvvYSSkhIsXry4yTK//fZbTJkyBSNHjsTChQuh1WqxdOlS3HjjjTh69CiSk5Nx88034/HHH8eCBQswduxY9O7dGyUlJXjyySdxyy23cPFzvv32Wzz88MO44YYbOBee1NRUAEBZWRn69+/PDa6RkZHYvHkzpk2bhrq6OjzzzDN2cr3++usQiUR4/vnnYTAYXK5Y7dixA7fddhsyMzMxd+5c8Hg8bgK8d+9e3HDDDS2q6x07duDHH3/EE088gYiICCQnJ3t8D41xp700x5AhQ9ChQwesWrWKa88//PADFAoFRo0a5XC8TqfD0KFDcenSJTzxxBPo2LEjVq9ejezsbNTW1joM5qtWrUJ9fT2mT58OhmHw1ltvYdy4cbh8+TKEQiGmT5+O4uJip24YLF9//TX0ej0effRRLkbP6dOnOeud2bNnQy6X48cff8TYsWOxdu1a3HXXXQCAy5cv4+eff8aECRPQsWNHlJWV4dNPP0VWVhbOnDnjsRve4cOHYTQa0bt3b4d9b775JkaOHImvvvoKAoEAixcvRkREBACbufnvv/+OIUOG2JlVN0dmZibee+89nD592qPAmRQKJXCgc5bAnbMsW7YMCoUCzz77LBQKBXbs2IFXX30VdXV1ePvtt1skpztYLBaMHDkS/fr1wzvvvIPt27dj0aJFSE1NxYwZMxAZGYmlS5dixowZuOuuuzBu3DgAQI8ePQDA7TGQ5fHHH0dkZCReffXVJhNYuDOHawnOxnFXPPzww1ixYgUmT56MgQMHYseOHU7nI96gpqYGt99+O+655x5MmjQJP/74I2bMmAGRSMRZqNTV1eGLL77ApEmT8Mgjj6C+vh5ffvklRo4cib/++gs9e/Zs9nm5Yu/evVi/fj33vixYsACjR4/GrFmz8PHHH+Pxxx9HTU0N3nrrLTz00EPYsWMHd66n89V77rkHHTt2xIIFC3DkyBF88cUXiIqKwsKFCwE0Ped2RlFREQoKCpzOh1566SXcdNNN6Nq1KwCb2/3111/P7d+wYQNSUlIwcODAJuunIZmZmSCE4MCBAxg9erTb51HaGEKh+JiZM2eShk1t7969BABZuXKl3XFbtmxx2J6UlEQAkAMHDnDbtm7dSgAQqVRK8vPzue2ffvopAUB27tzJbZsyZQoBQJ588klum9VqJaNGjSIikYhUVFS0WKYtW7Y43KtWq3XYNnLkSJKSkmK3LSMjg2RlZTkcO3fuXOLstfz6668JAJKbm9usHK+//jqRy+XkwoULdttnz55N+Hw+KSgocCifpb6+noSEhJBHHnnEbntpaSlRKpV22zUaDUlLSyMZGRlEr9eTUaNGkeDgYLtnQgghcrmcTJkyxeFa06ZNI7GxsaSystJu+8SJE4lSqeTqcufOnQQASUlJcahfdh/7zK1WK+nUqRMZOXIksVqt3HFarZZ07NiRDB8+nNs2ZcoUkpSU5CCXs2cAgPB4PHL69OkW3YMr3G0vzmDlrKioIM8//zxJS0vj9vXt25dMnTqVk33mzJncvsWLFxMAZMWKFdw2o9FIBgwYQBQKBamrqyOEEJKbm0sAkPDwcFJdXc0d+8svvxAAZMOGDdy2xu84C1tGcHAwKS8vt9s3bNgw0r17d6LX67ltVquVDBw4kHTq1InbptfricVicShXLBaT+fPnO1zr66+/brLevvjiCwKAnDx50ul+jUZD/vzzT1JSUmK3/fjx4wQAefrpp5ssvzEHDhwgAMgPP/zg0XkUCsU/0DlL+5mzuLqH6dOnE5lMZje+OMOZnI1xNrawz6nhGEQIIb169SKZmZnc74qKCgKAzJ0716Fcd8dAVsYbb7yRmM3mJuX3ZA6XlZXl9Jk2nhs1NY4749ixYwQAefzxx+22T5482aEuPJmHOSMrK4sAIIsWLeK2GQwG0rNnTxIVFUWMRiMhhBCz2UwMBoPduTU1NSQ6Opo89NBD3LamnperuaFYLLZrP+x7HRMTw82nCCHkpZdesntWnsxX2Ws3lJUQQu666y4SHh5ut83VnNsZ27dvd5jPNcRgMJBDhw6RvLw8u+0qlYoAIHfeeadb12EpLi4mAMjChQs9Oo/StlC3Mkqbs3r1aiiVSgwfPhyVlZXcX2ZmJhQKhZ2ZJwCkp6fbBYzr168fAODmm2+2W8Fnt1++fNnhmg2zNbFWHkajEdu3b2+RTB07dsTIkSMdrtPQd16lUqGyshJZWVm4fPmyQ1YEb+BMjtWrV2Pw4MEIDQ21u5dbbrkFFosFe/bscVnetm3bUFtbi0mTJtmdy+fz0a9fP7t6kMlkWLZsGc6ePYshQ4Zg48aNeO+999yyqiCEYO3atRgzZgwIIXbXGjlyJFQqFY4cOWJ3zpQpU5qNTXDs2DFcvHgRkydPRlVVFVemRqPBsGHDsGfPHrdd6xqTlZVlF+SyJffQGG+1l8mTJ+PSpUv4+++/uX9duZRt2rQJMTExdv72QqEQTz31FNRqNXbv3m13/L333ovQ0FDu9+DBgwE4f89cMX78eLsMLNXV1dixYwfuuece1NfXc/XGZgu7ePEiioqKANgCbrOr6haLBVVVVVAoFOjSpUuz9euMqqoqALC7p4bIZDLccMMNiImJsdteV1cHAE7dyZqCvU5lZaWnolIolACAzlm8h7fnLI3vgR1PBg8eDK1Wa+du7QsaZxkdPHiwW2OjJ2MgyyOPPNJsfCFP5nCe0ngcd8WmTZsAAE899ZTd9uYsqVuKQCDA9OnTud8ikQjTp09HeXk5Dh8+DADg8/mctbnVakV1dTXMZjP69OnTonlEQ4YNG2ZnjcW+1+PHj7ebLzR+31syX3XW3qqqqrj5iac0Nx8SiUTIzMy0c68H6Hzoaoe6lVHanIsXL0KlUiEqKsrp/vLycrvfjZUNSqUSAJCQkOB0e2N/ex6Ph5SUFLttnTt3BgDO/9dTmTp27Oj0uP3792Pu3Lk4ePCgnR8wYJt4sTJ6C2dyXLx4ESdOnHA5iDe+l8bnAnAZPDc4ONju96BBgzBjxgwsWbIEI0eOdDvIXEVFBWpra/HZZ59xmQyak9NVnTeElX/KlCkuj1GpVC4HwqZofP2W3ENjvNVeevXqha5du2LVqlUICQlBTEyMy2eYn5+PTp062bkxAP9m4snPz7fb3vj9Y+uu8XvWFI3r7tKlSyCE4JVXXnGZ6r28vBzx8fGwWq14//338fHHHyM3N9cujkR4eLjbMjSGeBgDiG379fX1LbqOJ/ETKBRK4EDnLN7D23MWwOae9fLLL2PHjh0OH8m+UHCxSCQSB5lDQ0PdGhs9GQNZPJkDuTuH8wR3rg/Y5hA8Hs/BnYl1ZfQ2cXFxdhlFAfv3hQ20vHz5cixatAjnzp2DyWTijnX3vlzR0ve9JfPVpuZjrXm2dD5EaQhVDlHaHKvViqioKKxcudLp/saDrauVElfbPe3kWiKTMwuWnJwcDBs2DF27dsW7776LhIQEiEQibNq0Ce+9955bFiuuOkxXgRWdyWG1WjF8+HCH7FUs7KDpDFbGb7/91sFyAoBDpgaDwcAF2szJyYFWq4VMJnNZfuPr3H///S4HxsZ+3u5kNGHLffvtt11mb1EoFABaX9ctuYeGeKO9NGTy5MlYunQpgoKCcO+99zoof1qKN94zV3X3/PPPO13NBsAFPnzzzTfxyiuv4KGHHsLrr7+OsLAw8Hg8PPPMMy2yAmMVSjU1NVxQT3dIS0uDQCDgAk26CzsRZGMXUSiU9gWds7jG33OW2tpaZGVlITg4GPPnz0dqaiokEgmOHDmCF198scWWwu7QmixhnoyBLJ7MgdyZwzEM47TtefLsWoun7aelrFixAtnZ2Rg7dixeeOEFREVFgc/nY8GCBcjJyWlV2S193z2Zr7pbpqc0nA95QnBwMOLi4uyys7oDnQ+1D6hyiNLmpKamYvv27Rg0aFCbpFK1Wq24fPmy3QTjwoULAMCZgnpDpg0bNsBgMGD9+vV22n1nZryuBkR2FaC2thYhISHc9sbWHE2RmpoKtVrtNBuTO+cCQFRUlFvnz507F2fPnsU777yDF198EbNnz8YHH3xgd4yze2UzWFgslhbJ6QpW/uDg4GbLDQ0NRW1trcN2d+u6tffgSXtxh8mTJ+PVV19FSUmJy8DQAJCUlIQTJ07AarXaKZBY8/vG5sPu4OkqELsqLhQKm627NWvW4KabbsKXX35pt722trZFEww2uGJubq5dWtvmkMlkuPnmm7Fjxw5cuXLFYVXQFbm5uQD+tcyiUCjtCzpnCdw5y65du1BVVYV169ZhyJAh3Ha23/U3rurNkzHQEzyZw4WGhjp1gfPk2TkjKSkJVqsVOTk5dtZC58+fdypDa+ZhAFBcXAyNRmNnPdT4fVmzZg1SUlKwbt06u2cyd+5cu7La0qLFk/mqJ3hyDw3nQ54yevRofPbZZzh48KCdG21T0PlQ+4DGHKK0Offccw8sFgtef/11h31ms9npQNFaPvroI+7/hBB89NFHEAqFGDZsmNdkYjX6DTX4KpUKX3/9tcOxcrncaZnsYNHQx55NS+ku99xzDw4ePIitW7c67KutrYXZbHZ57siRIxEcHIw333zTzuyWpaKigvv/n3/+iXfeeQfPPPMMnnvuObzwwgv46KOPHGLWOLtXPp+P8ePHY+3atU5XHhpexxMyMzORmpqKd955B2q1uslyU1NToVKpcOLECW5bSUkJfvrpJ7eu1dp78KS9uENqaioWL16MBQsWNJmR7fbbb0dpaSl++OEHbpvZbMaHH34IhUKBrKwsj6/NTsrcfXejoqIwdOhQfPrppygpKXHY37Du+Hy+w6rY6tWrHeIxuEtmZiZEIhEOHTrk8blz584FIQQPPPCA0/Z1+PBhh3f18OHDUCqVyMjIaJG8FArFv9A5S+DOWZzdg9FoxMcff+z29X0Ja0nduO48GQM9wZM5XGpqKs6dO2e37fjx4w5p1D3ltttuAwCHhUJnWedaOw8DbO39008/5X4bjUZ8+umniIyMRGZmJgDn7eTPP//EwYMH7cpy9bx8gSfzVU9w9a46Iz4+HgkJCS2aD82aNQtyuRwPP/wwysrKHPbn5OTg/ffft9t2+PBhMAzjtjKJ4h+o5RClzcnKysL06dOxYMECHDt2DCNGjIBQKMTFixexevVqvP/++7j77ru9dj2JRIItW7ZgypQp6NevHzZv3oyNGzdizpw5nOm1N2QaMWIERCIRxowZg+nTp0OtVuPzzz9HVFSUw+CfmZmJpUuX4o033kBaWhqioqJw8803Y8SIEUhMTMS0adPwwgsvgM/n46uvvkJkZCQKCgrcut8XXngB69evx+jRo5GdnY3MzExoNBqcPHkSa9asQV5enkuLi+DgYCxduhQPPPAAevfujYkTJ3LX3rhxIwYNGoSPPvoIer0eU6ZMQadOnfC///0PAPDaa69hw4YNmDp1Kk6ePMkpDDIzM7F9+3a8++67iIuLQ8eOHdGvXz/83//9H3bu3Il+/frhkUceQXp6Oqqrq3HkyBFs374d1dXVbt1vQ3g8Hr744gvcdtttyMjIwNSpUxEfH4+ioiLs3LkTwcHB2LBhAwBg4sSJePHFF3HXXXfhqaee4tK9du7c2e0Aha25B0/ai7s0TkPvjEcffRSffvopsrOzcfjwYSQnJ2PNmjXYv38/Fi9e7HGAQQDcBOypp57CyJEjwefzMXHixCbPWbJkCW688UZ0794djzzyCFJSUlBWVoaDBw+isLAQx48fB2BbnZo/fz6mTp2KgQMH4uTJk1i5cqVDTA53kUgkGDFiBLZv326XFtodBg4ciCVLluDxxx9H165d8cADD6BTp06or6/Hrl27sH79erzxxht252zbtg1jxoyhPvYUSjuFzlkCd84ycOBAhIaGYsqUKXjqqafAMAy+/fbbFrvZeBupVIr09HT88MMP6Ny5M8LCwtCtWzd069bN7THQE9ydwwHAQw89hHfffRcjR47EtGnTUF5ejk8++QQZGRktDnAMAD179sSkSZPw8ccfQ6VSYeDAgfj9999x6dIlh2O9MQ+Li4vDwoULkZeXh86dO+OHH37AsWPH8Nlnn0EoFAKwzSPWrVuHu+66C6NGjUJubi4++eQTpKen2ylmmnpe3saT+aonuJpzu+LOO+/ETz/9BEKIR/OU1NRUrFq1Cvfeey+uu+46PPjgg+jWrRuMRiMOHDiA1atXIzs72+6cbdu2YdCgQa2KF0lpA9ooKxrlGsZVmuvPPvuMZGZmEqlUSoKCgkj37t3JrFmzSHFxMXdMUlISGTVqlMO5aJSem5B/022+/fbb3LYpU6YQuVxOcnJyyIgRI4hMJiPR0dFk7ty5DumxWysTIYSsX7+e9OjRg0gkEpKcnEwWLlxIvvrqK4dUqaWlpWTUqFEkKCiIALBLJ3r48GHSr18/IhKJSGJiInn33XddpoV1JUd9fT156aWXSFpaGhGJRCQiIoIMHDiQvPPOO1xqz6bYuXMnGTlyJFEqlUQikZDU1FSSnZ1NDh06RAgh5D//+Q/h8/nkzz//tDvv0KFDRCAQkBkzZnDbzp07R4YMGUKkUikBYJdis6ysjMycOZMkJCQQoVBIYmJiyLBhw8hnn31mJwsAsnr1aqdyolEqYEIIOXr0KBk3bhwJDw8nYrGYJCUlkXvuuYf8/vvvdsf99ttvpFu3bkQkEpEuXbqQFStWuExX2ri9eXIPrnC3vTijYSr7pnAme1lZGZk6dSqJiIggIpGIdO/e3SEFvLP3qWGZDVO9ms1m8uSTT5LIyEjCMAxXf02VQQghOTk55MEHHyQxMTFEKBSS+Ph4Mnr0aLJmzRruGL1eT5577jkSGxtLpFIpGTRoEDl48KBDGl53U9kTQsi6desIwzDNpkh2xeHDh8nkyZNJXFwcEQqFJDQ0lAwbNowsX77crl85e/YsAUC2b9/eoutQKJS2h85Z2tecZf/+/aR///5EKpWSuLg4MmvWLLJ161anc4PGtCaVvVwudzjW2fzhwIEDJDMzk4hEIoex050xkJXx77//dlv+5uZwLCtWrCApKSlEJBKRnj17kq1bt7pMZe9qHHeGTqcjTz31FAkPDydyuZyMGTOGXLlyxWmaeHfnYc7IysoiGRkZ5NChQ2TAgAFEIpGQpKQk8tFHH9kdZ7VayZtvvkmSkpKIWCwmvXr1Ir/++qvDvRLi+nm5Ozd0VV+u5rLuzFddzfecPf+m5tzOOHLkCAFA9u7d2+Rxrrhw4QJ55JFHSHJyMhGJRCQoKIgMGjSIfPjhh0Sv13PH1dbWEpFIRL744osWXYfSdjCEBIh6nULxAdnZ2VizZo1Tk00KhXJtYrFYkJ6ejnvuucepW4a3eOaZZ7Bnzx7OlJpCoVCags5ZKBRKWzNs2DDExcU1Ga+ytSxevBhvvfUWcnJy2iR2G6Xl0JhDFAqFQrmm4PP5mD9/PpYsWeKzj7Cqqip88cUXeOONN6hiiEKhUCgUSkDy5ptv4ocffmh1MHJXmEwmvPvuu3j55ZepYqgdQGMOUSgUCuWa495778W9997rs/LDw8Pp6j+FQqFQKJSApl+/fjAajT4rXygUuh2DjOJ/qOUQhUKhUCgUCoVCoVAoFMo1DI05RKFQKBQKhUKhUCgUCoVyDUMthygUCoVCoVAoFAqFQqFQrmGocohCoVAoFAqFQqFQKBQK5Rrmqg1IbbVaUVxcjKCgIJophkKhUCiUaxhCCOrr6xEXFwcer32vi9H5DYVCoVAoFMD785urVjlUXFyMhIQEf4tBoVAoFAolQLhy5Qo6dOjgbzFaBZ3fUCgUCoVCaYi35jdXrXIoKCgIgK2igoODvVq21WpFRUUFIiMj2/0KpDeh9eIcWi/OofXiHFovzqH14hxaL85pXC91dXVISEjg5ga+YsGCBVi3bh3OnTsHqVSKgQMHYuHChejSpQt3zGeffYZVq1bhyJEjqK+vR01NDUJCQty+hi/nNwBtU66g9eIIrRPn0HpxDq0X59B6cQ6tF+f4en5z1SqHWFPr4OBgnyiH9Ho9goODaWNtAK0X59B6cQ6tF+fQenEOrRfn0Hpxjqt68bUb1u7duzFz5kz07dsXZrMZc+bMwYgRI3DmzBnI5XIAgFarxa233opbb70VL730ksfX8OX8BqBtyhW0XhyhdeIcWi/OofXiHFovzqH14hxfz2+uWuUQhUKhUCgUSluyZcsWu9/Lli1DVFQUDh8+jCFDhgAAnnnmGQDArl272lg6CoVCoVAoFNdQ5RCF0o6pPFcJo9oIABDKhOAJeGD4DEKSQsATUC07hUKh+BOVSgUACAsLa3EZBoMBBoOB+11XVwfAtnpotVpbJ6ATrFYrCCE+Kbs9Q+vFkUCuk5rcGuiqdK0uh+EzUEQrII+Wg8d3b15ltVpRX1QPY57RI4sHZaIS8ih5S0VtksrzlQjuEAyRXGS33Wwwo+p8FSxGi0+u2xCr1Yra2loYQ5zXizhYjPDO4T6VQVulRW1uLRgeA4bHAAzAE/AglAkhDhJDGi5t80D//niPjGojdDU66Gv0AGOre3GwGJIQScAkOvBHvZh0JlSeqwSxEAD/WOOw1cE0sM5h/2nwmz1WGiaFIlpha18+oHG9eLt+qHKIQmmnGOoMyN+T73Rfh/4dEN0juo0lolAoFAqL1WrFM888g0GDBqFbt24tLmfBggV47bXXHLZXVFRAr9e3RkSnWK1WqFQqEEKoKX8DaL04Eqh1oqvSIXdTrlfL5PF5kEZKIYuWQRGngCT8349oq8UKQ40BukoddFU6aCu0UJWpIJV6pmiQhEmQMirFq3IDgLpIjYIdBQhOCkaHIf8GrLVarMjdmAuDytDE2d6DEAKdTocKaYXLekkbmwZRkMjpvtZi0phw+dfLTSrChHIhlB2VCE4OhiRU4hM5GtOW7xEhBIW7C1F/pd7pflGwCOHXhUOZovT7InNb9y8WowX5v+XbFGatRCAWQNFBgcjrIyGUC70g3b80rpf6eufPsqVQ5RCF0k7R1dhWxOJviIcySQmj2giL0YLc33Ohr/X+BwOFQqFQ3GfmzJk4deoU9u3b16pyXnrpJTz77LPcbzb4ZGRkpM9iDjEMQ4OANoLWiyOBWic5x3IQHBSMtNvTIFK0TtFgNpihLlGjvrgemlINDJcNMFy2KVP4Yj74Ij5MGhOIlXDnBAcFQxYpQ9qANAgl7n0Y5u/Oh65ah6ioqFbJ64z6o/UIDgoGU8sgNCgUQqlNppIjJRBbxUgYlICIrhFev25jrFYrKisrERER4dBe6grrUHigEBKzBBFR3peFEIKLf12EXCxH0q1JkIXLQKwExEpgNVth0pqgq9KhOqcaxnwjKvMrIQmVIDQtFOGdwx0srrxJW75HRX8WgallEH9dPEKSQyANk4IQAkOdwXb/F6qhOaOB/rIeiYMTEdox1KfyNEVb9y85W3MgMouQNDQJoamhIIQA/7zWhLD/afDbyf+tFivUJWqo8lXQletQfaAaGRMz3LY6dIfG9SKReFeJSZVDFEo7hVUAKWIUkIZKIQ2VAgAK9hbAUNc2q0AUCoVCceSJJ57Ar7/+ij179rQ6taxYLIZYLHbYzuPxfDZhZhjGp+W3V2i9OBJodWI2mFFfWI/ghGCEJIZ4pczg2GCgN0CsBJpyDVQFKuhVelgMFpj1ZsjCZZBHySGLlEEeKQdPxEN5eTmCooLcrhd5pBzaCi3MOrNXFRFGtRF1hXUQyoQw682ouVSDmOtjYDFaUHGqApIQCRL6J/jMBaYhVqsVErMEsjCZQ70IJUIU/VEEbZkWvOu835bKTpRBU6pBVLcoRHaJdHlch/4doCnToPpSNWou16D0cCnKT5QjaXASwtJa7h7cHG3xHlXnVKP8ZDkUMQp0uq2TvcIi3vZPh34dUHW+CiVHSpD3ex50PXSIvyG+TdqHM9qqf6nNq0XdlTqEdQpDfN/4VpUVkhCCDjd0QMG+AlScqYDVYIVA4V2VS8N68XbdUOUQhdLOIFYCi9HC+dJLQuw1xqIgEQz1VDlEoVAobQ0hBE8++SR++ukn7Nq1Cx07dvS3SBTKNUVtbi2IlfjkQ57hMVDEKKCIUTR5XEtigLBzOYPK4FXlUMXZCoAASUOSkL8nH5XnKhFzfQzKTpbBYrQgYWDbKIaaQygTQigT+sTynRCC0mOlEAWJ0KF/08p6hvn3GScMTEBtfi2u7L+C3B25qCusQ8KgBPCFfK/L6Gu0VVrk786HUCZE6ohUl5YsfCEfUd2iENIxBJe3X7Yp1co16HR7J7+7mfkKq9mKKweugC/iI2FggtfKFUgEXPntCaocolDaEVaLFWfXnuUGT4FEwHU+LOIgMWrza2HWm8ET8K7azpziGlWBCtWXqgHYlIVxfeICJsAghXI1M3PmTKxatQq//PILgoKCUFpaCgBQKpWQSm3WnaWlpSgtLcWlS5cAACdPnkRQUBASExNbFbiaQqEA1ZeqwfAZv7rDtASx0mYdqK/VIyguyCtlEitB5blKiIJEUCYpEd45HGUnylCbV4vyk+UQK8U+tYbxFL6ID4vJ+4GxNWUamPVmxKbHejQnZni2dqSIUSBvVx6qLtgCd6eOSPW6jL6m5HAJrGYrOo/uDKGseVdHkVyELmO64MqBK6g4U4HSY6WI6xPXBpK2PaXHSmFUG5EwMIFzufQGbFujyiEKheJ1Ks5UoOxkGYiFwKg2QpmohEghQlC84wRCHCwGCHD8m+Ng+AzSx6c7WBdRrl4IISjYV8BlsQNsg7w8Sg5xsBh8Uftb8aJQ2gtLly4FAAwdOtRu+9dff43s7GwAwCeffGIXYJpNcd/wGAqF4jlmvRn1xfUISQ5pd2Md+8Fu1pu9VmZNbg3MOjPi+8WDYRhEXBeBshNlyN2RC6vZioRBgWE1xMIT8mDWee/+WWrzawHYssG1BKFUiLRb05D7ey5qLtegNq8WIckh3hPQx5i0JqgKVAjuEOxRNjyGxyBhYALUpWqUHitFWFrYVfc9YagzoPR4KaRhUkSmu3Y3bAlUOUShUHxG1cUqGOuNkIRIoExSIuWWFJcmoZHpkbbMGSoD6grroKvWXXWdOcWGUW3E5e2X7VbaiNWmQIzpGYPIjEic+v4UCvYVAACk4VKkj0/3l7gUylUPF7SyCebNm4d58+b5XhjKNQshBOUny1FxtgIWowVWkxV8ER/yKDkUMQqEpob6NMCuv6grrAMAKJNapgTwJ6yrkjc/JCvOVIDhM4joYgvwLFFKEBQXhPriepvVUGrgWA0BtjrwRcxMVb4KQpkQskhZi8tgGJuipK6wDgX7CxAUH9Ru3MuqLlaBWEmLgo4zPAaJgxNx/pfzKNhXgM6jO/tAQv9RfKgYxEJ8oihtr8oh6m9CobQDjPVGyCJkSL87HWkj05qMei8OFiNxUCJiesYAsK0YUK5OVFdU0JRr7AYehsdAHiVHZEYkRHIR0m5NQ/wN8ZBHyaGr0nl1VZLS/iCEcBlaKBTK1YfZYEbObzko/KMQVpMVEqUEilgFhDIhavNrUfhHIc6uO8tlPL2aYJVDwR28n8XP13j7Q9JQb4C6RI2Q5BC78AORGTbriPi+/gsy7AqekAerybsf0oY6A/S1eigTla12rxfKhIi/IR4mjQnFh4q9JKHvqTxXCYFE0GJrJ0W0AhFdI1BfXM+FLLgaMBvMqMmtgSJWgaBY77hyNqS9Koeo5RCFEuBYLbYUm4rYpgMgNkYgtb3eJh1VDl2t6Gtssac6j+4McZBjNiMACI4PRnB8MPgiPjTlGtQV1iE4IRgCMe3+rzXqi+uR81sOLEYLGB6D+BvioUxSgi/kuxWDgEKhBDaGegMu/HoBxnojwjqFIWlwkl2MFYvJgprLNSjYW4ALGy6g8+jOkIZJ/Sixd6krrIMkVNIuraLY5+StmDs1l2sAwCGmUGjHUHS/r3tA1hFfyLellrdYvZb6m3Mp85I1WcR1Eai6UIXyU+UI7xQOWUTLrZHagvqSehhUBkT3iG6VMjC+Xzxq82px5eCVq2YOWX2xGsRCOMs6b9NelUPUcohCCXDY2DEihWcDORtUzRf+25TAQF+rB0/Ac6ttyKNtfua5O3JxfPlxFP5Z6GvxKAGA1WzFmbVncGz5MVzcdJHL4iOUC1H4RyFO/3AaJ1acgK766rMioFCuNfL35MNYb0TijYnoeFNHh+C7fCEfEV0ikDI8BRajBRd+vQBtldZP0noXXbUOJq2pXVoNAd7/kKzJqQFfxHdaH4GoGAJslkMAvGo9pMpXgeEzCI73TrtgGAZJQ5IA2N63QLfCrTpfBQAtcilriEAsQIf+HWDWmVH8d/uxmmqKyvOV4Iv4CE3xTfB6qhyiUChehRACXY0O9cX1AODSMsQVfDEfDI+hlkNXIeWnylH4RyE05RpIQiRumUrLwmWIvyEekemR4Iv4UJeo20BSir9Rl6qhq9JBKBNCEatAx5s7ouPNHdHlji6IzYzlzMz1Ku+nD6ZQKG1H1cUq1BfVI6JrRLOBVUOSQpA6IpVTEF0NLmbt2aUMsLmEMzzGKx+SepUe2kotQjqGeM0Cpy1gY/h4y3rKYrRAXapGcHywVzP3SsOkiO4RDW2lFmUnyrxWrrexGG2WgooYhVdij4Z3DociVoGKMxVQl7XvOaS2UgtdlQ5haWE+y+pMlUMUCsWrVJyuwJnVZ1Cw1xZMWBzsmXKIYRgIJAJqOXSVYagz4MqBKyg7UQaL0QJFjPvuhjE9Y5B4YyJkETLoa6ky4GrHarFyyuXkocnoPKozpwwSyUWIy4xDxHW21USLwfvpgykUSttg1ptReLAQAqkA8f3i3TpHmahE6shUWE1WXNpyqd0vJNUV1oHhMz6JHdJW8AQ8r3xI1uT841IWYAGnm8PblkOqKyoQK/FJgPK4zDhIQiQoPlQcsJa3Nbk1sJqtCO8S7rUykwYngeExKNhbEPBWU01Rea4SALxaN42hyiEKheJV2JW82N6xSBiUgKA4zyc8QpkQRrURtfm1ATt4UTyDtfCIvyEe3Sd3R4cBHTwuQxIigcVoocHKr2IubLyAo18eRemxUvCEPMjCncdFYAOV0kDlFEr7pfCPQpj1ZiQMTPAoFogyQYnEGxNhrDciZ2tOu/uIYbGaragvqYciRuEzK4C2gCfwTkDmmss1EEgELZo3+hNvZ2yru2KzJgtJCvFKeQ3hCXhIHpoMQgjyduUFpKJEVaAC4N37l4RIENMzBrpqXUBbTTWF1WxF9aVqSMOkkEfKfXYdhs9w12tPtN8elEK5yjFpTWB4DGIzYxGVEdWiQHIihQgmrQk5W3Nwdt1Zr5nqUvwHm+ZVFimDSCFqUfYN1rz4yoErKPyjEEaN0asyUvyPulQNoVyIsLQwJA5KdNl/sB+SZgNVDlEo7RFdtQ5VF6oQnBDcIkuRiK4RiOkZA025pt1+7KlL1SAWAmVC+0th3xCesPWWQ3qVHrpqHUKSQwIuG1lzcEG5jd6Zq6rL1BAHi32WcEEeJUdMzxhoK7Wouljlk2u0FGIlqCusgzxKbpetzhvE9IqBWClGyZESbk7anqjNq4XFaGl1HKbmoJZDFArFq5g0Jghlwlal3kwYlIDkoclQJilBrIS6mF0FsAOxp26GDZFHywHGtrpYdqIM1RevntSkFNtEhFgIguKC0PHmjgjv7NpsmloOUSjtG/ajNLZXbIvLiOsTB7FSjNLjpe3Svay9xxti8YZbmSr/H2uRFqYt9yd8kfcsh8wGMwwqA+RRvrMMAYCY62PAF/FReqwUhHjfesisN7coJpi6VA2ryQplovcVpjw+D0mDk2A1W1Gwr8Dr5fsa1qIqNNU3gahZqHKIQqF4FZPW1OrVDpFchPDO4ZwPPv0AbL/UF9ej9Fgp6ovqwfCYVmUbkUfK0XNKT3S9qysA2i6uNtjn6c5qIU/IAxgac4hCaY8QQlB9sRqiIJFH8ecaw/AYxN8QD6vJipIjJV6UsG2oK6yDUCaENEzqb1FahVeUQwUq8AS8dudSBjSwHPKClbumXAMAPlcO8UV8RHWLgkFlQM3lGq+Xn7szF2dWn/H4vVRdsSlAfKEcAoCguCCEdw5HXWEdqi+1nwVGQmwWVbIIGZfV2VdQ5RCF0sYQK4GmXGPLxnOVxdMhhMCka71yiIVaB7RvCCHI+S0HRX8VQVetgzRM2mpzcb6ID4nS5l7mLRNuSmDgiXKIYRgIxALqVkahtEPqi+ph0poQ3qn1QVVDO4ZCHiVH5dnKdpW90Gq2Qlejs1nEtnNaqxxis3MFxQe1y9hLnOWQF+IutZVyCACiukWBJ+Ch9GipV8s1G8xc3CRNhcajc1UFKpvCNNx3CtMO/TtAIBHgysEr7WYOoa3Qwqw3IzjB91aGVDlEobQxZSfKcO7nczi//jzOrDkDdWn7TqvIYtKabIMagdeVQ+3RXJwCGOuNsBgtCOsUhuvGXYfOozt7pVw2M0h7GdQp7uGJcggA+GI+VRxTKO2Qqgs2l7KmXEc9oUP/DiBWguK/i71SXlugrdQCBD4NLNtW8IX8VlnNcNm5fGQt4mu8bTnE8BifKkdYBBIBItMjoavWoTa/1mvlsi6CgGcKM6PaCH2NHsEJwa0KTdEcAokAHfp3gFlnRvGh9tFnsC6obRGfjGEYMHyGKocolLaivrgeDJ9BbG+bnz3rQ9qe0VRocGLFCZz/5TwAQCinlkOUfya/sMVTkEXIuNW11sIwDPgiPnUpusrwVDkkEAtg0phQfrqcM0WnUCiBjcVkQW1eLeTR8lbFoGuIIkYBZZISNZdrOMuLQKctLUR8DU/AAwhanPmKVSa0W+WQF1PZa8o1kEXIwOO3zadudI9oMDzGq9ZD1ZeqwfAYjy3K2O+htlCAhHcO5ywO20NwatUVFfgifpv1F95wFW1rqHKI0u4w680wqo1Ql6khj5QjNjMWfDEf1ZeqUfhHISrOVPhbxBZj0tgse0KSQxCbGeu1SPpUOdQ+qThTgdM/nuYC/rlKR94a+GL+Ve9WZtKaYFQbUZNbg8I/Ctt9P9EcniqHxMFiWIwWXNl/BZc2X6L9BIXSDqjNrYXVbPWa1RBL/A3xAAMU/VXk1XJ9BetuI4vw/vjY1rTGcoZYCVRXVJBFyFoVk9CfsKnsW2s5pFfpYTFY2lRhKJQJEd45HJpyjVdCXRg1RtQV1kGZqIRIIfKoTlQFKoBpuwDt8f3ibRaHAW49ZDaYoSnXICg+qM0y+bVH5ZB3c9tRKD5GXarG+fXnud/yaDkYhkFIUgiqLlRxaViVScp2OTiyq0VhaWEITfFeFH2qHGqfVF2sgqHOALFSDEWMApJQidevcbXHmyk5UuJywhKSHOKzFLf+xFPlUOLgRERcF4GayzWoOF0Bfa2+VcFtKRSK76m6UAWGx3h1rgAA0lApwjuFo+pCFdSl6oDvCzTlGkhCJF6zqPUndjFKPDQG05RrYDFYoOzWPq2GAO9ZDvnLmiy8czgqz1Wi6mIVOvTr0Kqy2CDPYZ3CUHqs1O1sw1aLFfXF9VDEKNrsnQiKDUJwQjCqL1Ujukd0wCpq64vqAdI2FlUsPH77Uw75xXJowYIF6Nu3L4KCghAVFYWxY8fi/PnzdscMHTrU5qvX4O+xxx7zh7iUAILNBBBxXQRiesYgqlsUACApKwndJ3e3rXgB7TZANWdK7GWFNl/EB8NjoKvSoepCVYvSYlLaHmO9EbIIGTImZCB1RKpPfMf54qvPrcxQZ8DpH0/j5KqTKDlSAnGwGNE9ohHbOxbpd6cjrk8cAEBf236CrrpDydESHP3qKEqP2czaBWI3Yw4J+bbJXbxtlbE9mIZTKNcyZoMZ9SX1UCYq3X7PPSGmZwwAcH1JoGLWm2GsN14VLmVA6wLYsrFuQpJCvChR2+ItyyF/KYcUMQqIgkSovljd6rT21RerwRfzoUxUemR9oinXwGq2tqkCBAD3/RXIFoes23xbWVQB/1gOWdqXcsgvlkO7d+/GzJkz0bdvX5jNZsyZMwcjRozAmTNnIJf/+yI/8sgjmD9/PvdbJgtMTSTFtxBCULCvAMZ6IzTlGogUIiQNTrI7hmEYiBT/pnLVVevavGP0Buxg4gtzR5FCBG2lFnm78iBWitHt3m5evwbFe1gtVpi0Jp+v2vJFNrcyQohPAxe2JVUXq6Cv1UMaLoVQLkSHfh3s6tGktblv6mv17TLdryvqi+pBrARB8UGQKCUeW0WJlbal6vaUqYhCuRapL7atgPsq444kRILQlFDUXK6BtkrrE5dmb8C5lEUGpnye0hrLGVW+77NT+RqG908A31ZaDmkrtBBIBF6LxeUJ4Z3CUXKkBPXF9dyCi6doq7TQVesQcV0EeHyeR4HK1SW25DyK2La1+JOFyxDWKQzVF6uhuqIKyG+wuit1kIRKIFK0nWcJT8Brd9b5flEObdmyxe73smXLEBUVhcOHD2PIkCHcdplMhpiYmLYWjxJgGFQGVJ6t5AaNyPRIl8eybjc1l2tALASKWAWCYtvPxx9rOeSLj/ROozpBX6NHydESaCu0V5Uy4GqEjT/l60GMXXW2GC0+WYFuS6ouVMGoNnIrbtfddZ1TRSunBLnKLIfMBjNEChE63dapReezE+manBqYNCYEdwhGWFqYN0WkUChegM2448sV8JieMai5XIPSo6VIuSXFZ9dpDdoKW7KGqyFTGdByyyFDnQH6Wj0iuka0+3ldazO2EUKgq9b5zR0yrFMYSo6UoPpidYuVQ9UXbS5l4Z1s8cR4Qh6IhYBYSbOLx/UltmQ9/ngn4vvGozavFvl78pExISOgXD111TqYtCaEpnrXDbc5aMyhFqJS2cy8wsLsJ6ErV67EihUrEBMTgzFjxuCVV15xaT1kMBhgMPxrCl9XZxs4rVYrrFbvPhSr1QpCiNfLbe/4ql709XoQK0GHgR04xZCra/CEPIiCRdCUaaAp00AUJEK3Sf61kPGkXqwWK4iVgMD79SiUCyGUC1GTVwN1iRpGjdGv8Vboe+Qcq9VmMaSuU4NYCQRygU/riCfkgVgJzq47C4FEgJQRKRBKAy8OT3PtRV+rR+6OXO53eJdwEBCnWV8EMgHAAGUnylB+qhwhHUPQcVhHn8nuSxrWi1lvBl/Mb3l7YWxx3NQlauhr9VBdUSEkJcSr8rYVjdsL7WcoVxN1V+ogVoohDvKdZYQsQgZloi1zmb5WD0mI92PetZa2TFfeFrRUOcS6lCmTAs9aw1N4Al6rLIf0tXpYzVa/tQmJUgJ5lBw1uTVIvDGRe6buQghB9aVqiIPFnIKrYbtoSuFCrASaMg0U0Yo2C7jcEJFChA79O6BgbwEK/yhE0pCk5k9qI+pL6gGgxQq7lkKVQy3AarXimWeewaBBg9Ct278f8ZMnT0ZSUhLi4uJw4sQJvPjiizh//jzWrVvntJwFCxbgtddec9heUVEBvd67q8NWqxUqlQqEEPB4NOEbi6/qpbagFnX1dajT1YGUN+/DGzYwDCaNCWWHylBVWoXy8nKvydISPKmXmooa1NXXoaq6CnqRb6wa1EY16urrUJxXDGmE/yZUbfUe6attEwWT2oT6QpspPk/IQ3Sf6IBa1WCpOl+F3F25kEqlYBgG9YZ6wIdN2CgzwigwQlulhVlnhjBRCEV84AUgba691Fy0vTsxfWMgi5ZBrBQ3+e5L0iTQlmqhrdRCfVYNeff2ufLcsF5qqmogCZW0qs9T3qBEsCUYhXsKUV1SjbKysna5Et24vdTX1/tbJArFK+hVehjVRkRmuLai9hYxPWOgKlCh9HgpkrOSfX49T9FUaCANl7ZZunJf01LlkKpABYbPtPmHry/gi1pnOaSttFmT+TMoclinMFzZfwW1ebUeW9/WF9XDpDUhtncst42NxdScckhbqYXVbPVrEPnI6yJRk1ODynOVCE0NDZg2qS61udvJo9t2rscT/GP11Y68NfyuHJo5cyZOnTqFffv22W1/9NFHuf93794dsbGxGDZsGHJycpCamupQzksvvYRnn32W+11XV4eEhARERkYiONi7DdNqtYJhGERGRlLlUAN8VS+WIguCg4IRmxTrUWdPygiqNFUICw5zO2uPL/CoXsoBTZAGEZERCIryjTscP4EP/SU9lDIlQqJCfHINd2iL90h1RYXCPYWO14YVQo0QER0ifHLd1qA+qYZMJkNKvxQIJALEXB/j24lvFNCxe0dU51Qj7/c8hCpDERrVtma37uCqvahL1ba4E1VAcFAwUvukumURFxVlC2afuyMXNZdqEBEW4fEKXyDA1ktERASKxcVQRiq5e2sNhjgDeHU8hCvD/dp/tpTG7UUiCTyrBwqlJbSFSxmLIkYBRawC1RerEZcZ5xU3Z2IlKNhfgLDUsFbFfDOqjTDrzAjtGHjjVUtpqARwF4vRAnWJGsEdgtvlGNYYnoDXqsy6uipbwhW/KodSw1B4sBBVF6s8Vg5VXayyldHp3/PY52oxWSCE6/kNqwBp63hDjUnKSsKZ1WeQvzsf6RPSuXbtT9SlakjDpG0ePsHO6isA6sEd/Drje+KJJ/Drr79iz5496NCh6ZR//fr1AwBcunTJqXJILBZDLHY0r+XxeD758GQYxmdlt2d8US8WnQUMj4E4SOxRuWKFGAyPgUVvgUjm37T27tYLwzBgeAz4Ar7P2pYkSAKGx8BYbwQxE79az/j6PaorqAPDYxDXNw4CsQAhySFgeAyOf3Mc6iI1wlPDwRPw/GJ+6wp9jR5CudBmjtyG/YtAJLDVgxUB2685ay+5v+dyKV6l4VKIFZ65WYiD/u0nBMHtTwkC/BOjzGL7VygVeuX5cf2nwf/9Z0tp2F4CtU1TKJ5SV2gb19oqnmJsr1hc3HQRpcdKkXhjYqvL01RoUHm2EpVnK5H5aGbLyym/uoJRAy2zHKorrAOxEigT279LGWCz7G6NG462UguekOeXYNQsAokAwQnBUBWoYNKZ3HbVN2lNqLlcA3m0HBLlvwsa7gYqry+pB8NjoIj2r3JIHCS2uZftK0DRn0Ve6Tdag6HeAJPG5JdMflQ55CaEEDz55JP46aefsGvXLnTs2Hysh2PHjgEAYmNjmz6QctWgr9VDV62DpsLmU+7p6jVrPWDSmiANax/+6L4MSM3CrvwV/VmEoj+LENMrBvF94312vbaGEIK8nXkwqm2uUuJgMWJ72fcb0nApai7XoOZyDYQyIbpN7BYQK27ESmCoNUAc0vaTmpasWPobi8kCs84MZaISMT1jWhQTo2E/4c/JZGuxGG1m+N5S9gqktv7WrDMDV8/CPIXSriFWgvriesij5G22sBPcIRjyKDkqz1UiplcMRPLWKYs1ZRru/0a1scXWSGymsqsljT1gbyHiLldTvCGg9QGptZW27Hr+duEJ7xQOVb4KNTk1iOrmnjVv6bFSEAtxmLO6Mz8jhEBdqoYsQhYQ89mI6yJQc7kGFWcqEJoS6tfMsJxFlR/c7dhnQSzNh0UJFPzSembOnIkVK1Zg1apVCAoKQmlpKUpLS6HT2UwBc3Jy8Prrr+Pw4cPIy8vD+vXr8eCDD2LIkCHo0aOHP0Sm+IGLmy/i8vbL0FbYPvA97egbfvS1G/7pO3xpySIOFiOuTxwiutrcaBpO1AINq9kWnNmTZ2hUG1F9qRraSi34Qr7TQTlhQAIiukZAHiWHSWuCrlrnTbE9Rl+rx/FvjuPoV0dBrMQvyqGWTEr9jbHeCMBmPq6IUbTI/Yn90DFqjF6Vra3xtnKIXelsV/0nhXKVoy5Tw2qytolLWUNiM2NBrASlx0pbXRb7oQagVWOvrkoHhs8EZKDsluKp5RAhBHVX6iANl7ZaaRco8IQ8gLRsocpQb4DFaPGrSxmLMlEJnoCHmss1bh1v0ppQeaYSskiZgxWYO/MzfY0eFoPFr/GGGsIwDJKGJIEn4CFvd16r55YmrQmXtl6Cod7Q/MGNCATlUHtaePWL5dDSpUsBAEOHDrXb/vXXXyM7OxsikQjbt2/H4sWLodFokJCQgPHjx+Pll1/2g7QUf2FUGyGPkiO6R3SLsg6wyqH64noIJALIo+UBn6qbsxzysZsTG+hOU66BUR2YH8UWowUnV53kPnqje0SjQ/+m3U+Bf81uY3rG2AX0a0hQXBCC4oKgKlDh0pZL0FZp/br6qKnQwKw3Qx4lh0AqgDCp7bOFtccBjG27rYmDwfYTBpUBZr25XcbXAf5VDnmrj+OU6zqqHKJQAoW2jDfUEGWCErJIGSrPVSK2V2yrMp2qy/5VDrXmg1FXo4M0VOp3CxFv4uk4rCmzzR3YTL5XA6yVjMVk8dgChg1GHQjZ63gCHpftz6Q1NfvOVJ6sBLESxPWJcyzLDbeyQIk31BBxsBjxN8TjyoErKPqrCImDWu5eVvRXEVT5KvCFfHS82bPssupSNUQKkVdipnlKe5xb+82trCkSEhKwe/fuNpKGEohYjBaAANIwKUJTWubTIAqydQJVF6pQdaEK4Z3DkTw02YtSeh8u7XYbzXWEciHqiwMzi4+uRgeL0QJFrAKacg20VVq3zmM/ktnBtCnYCURtbi34Qj5kETK/rEKyMXM69O8AWZTMLxn23PVpDyS8ohyS2yZsxYeKUXyoGDE9YxB/Q/tzszQbbG3I225lRX8VoeRwCeL6xLltGk+hUHxDfVE9+CK+X+LsxGXG4dKWSyg9XoqEAQktKsNQZ4BZZ4ZYKYZBZWjxeGMxWmDSmPzqquILPB2HVQUqAFePSxnQqA481PEEQqayhoR0DEHN5RrU5tU2qcAzqo2ovVSL6I7RUCY4Pkt33MrYVO2BYjnEEpkRaXMvO12BiK4RkIW37NkY6mwWQ1aLZ32GWW+GvkbvcWBwb9EelUP+d0qkUJzAZipozSq+UCpE59GdkTw0GTwBL2AtZBrCKk7bKkCySC4CsZBWZYbwFQaVbSCI7h4NkVzEKVCag12JdCfwm0guglAuRF1hHXJ35OLy9sstF7gVcO1d6j+rlfY0gNXm1eLSlksoO1kG4F9FcEsQB4kR3y8ekemRYHiM310MPcWoNqLsSBkqz1QC8J5ySBwsRkTXCChiFLCardxHCIVC8Q9WsxXaSi0UMQq/WMsoE5WQRchQcaaixe6mrHUDa/nUUsshtp9uL/Ek3cXTcbg2vxZCmTBglCHeoKHlkKfoqnRgeAykoYHRLpQJSjA8BjW5rl3LiJXgyoErLq2GAPfcytQl/snG1RwMwyBhoE2ZfOXAlRaVQayEe+fZcALuwloq+ktp1p7m1ixUOUQJSLyhHAJs7kPhncMhlAm5lfWAhjUcaqOJH2txEYjxVvQqPQBArBRDIBW4rcBiV9zcsRwCgM6jOyN1RCrEwWLO6qitYV133M1o4QvaU0DqspNlUBWoYFQbIQ2TQhzUuhhNMdfHIPHGRAgkgvbRTzSg8lwlqk5Xoe5KHcDY3hdvwMYL6DyqM0QKEY09RKH4GU25BsRK/Oo2Ets7FsRCUHaizO1zDPUGrl9lP9RY64iWWg7pav5RDgWIEsBbePIhaag3QF+jhzJReXW51rXCillbqYU0TBowGWj5Ij6COwSjvrje6RzWarHi8vbLUOWpEJwU7NJdtLk6MdQZYNKaAsqlrCGyCBkiukZAXaJuUlHmirrCOm5+rqvRNeuB1BB/xhsC2qdyKLDUixTKP3hLOcTCF/PbxcdNW8UcYmFdaq4cuAKRXITYzFi79Jn+wFBngK5ax3Xo4mAxhFKhbWJMSLOTIC4wr5spIyVKCSRKCUqPl3q8IuEtzDozGB4DvogPq9U/AwjDt9VrewhIbdKaIAmVIGNChlfL5Yv4flMQthR2stjlri6Qhcp8ksFIKBNCX6v3erkUCsV9/P2RAwAhySGQhktRcaYC0ddHgy9uur8xaU04s/oMGB6DuD5xUJeoIZQLOfftlo43+hpbf3TVWQ7xeQDj3oekKv8fl7KrJIU9S0sth9jkJYFWH6EpoVAVqFBzucbOtcxqtiLntxzUFdYhNC0UsnTX1l/NLd4FqktZQ+L6xqE6pxqFfxTagnXz3bdPqb5YDQAITghG3ZU6mPVmtxdT1aVq8EV8SEL9823THpVD1HKIEpB4WzkkkAhgMQT+R19bK4fkUXLwhDyoS9SovlTNdcD+5MKvF5DzWw7UJWqIlWLw+DxbOyBw68Odcyvz8COZYRhuNYJNCaoqUKGusM5jH2dPCYRAyAzDgCfgtYsBzKQx+SQzC1/Mbxf9REPY9i4OFvsstTVrucfFRKNQKG2OulQNhs/43YUotncsrGarW9ZDZSfKYDVbwfAYXDlwBfpaPRQxCq6varHlULUOPCHPLwFmfY2747CqQAWGz7R5cHJf01LLoUCLN8SiTFKCL+KjYH8Big8Vg1gJavNrcfrH06grrENE1wgk35Tc5Ly/ObcyVnEcFBu4MbiEUiFie8fCWG/0yPLQYrJAla+CIkbBKYPdnadaLVZoK/znigu0T+UQtRyiBCReVw6JBbCarbBarB5pq9sazlSyjfowaagUvab2gllvxvFvjvvduspqtsKoNkIRo0DEdRGQR9oyiLGxeMw6c7P+1J66lbEwPIb7+FWXqHHh1wvcvg79OyC6R7RH5XmCSWfya7whFp6AF/ABqS1GC6xma6uy5biiXVoO/TPh8DSriyewdW3Wm31S7xQKpWmIlUBdprYt6Ph5DhOSHAJJqAQVpysQ1d11kHqTzoSKMxWQhkvR9c6uKD1WivJT5QhNCeXG59bEHLraXMpY3FEOWYwW1BfXIyg+yKd9vz9oqYs7m7QkEDKVNUQgFqDr2K7I3ZGLkiMlqDxXCZPWBJ6Qh4SBCYjqFtWsxXhzCjN1idpmZR/g43NUtyhUna9CyeEShCSFuGX5p76ihtVsRVhaGPdt6O481aAygFiJXxWG7VE5dHX1KJR2j6HegIqzFagrsqVr9ablEICADLzckLa2HGIRSARgeIzflUNs0HBFjALhncI503PWfNSdtNqeBKRuCMNjuJhPbHyEyPRIMHyGSx/sbYoPFyNvVx5MGpNf4w2x8ISBbznEtlHWJdKbsErk9mQhYzVbbVZfPvxg5NLatwPXXArlakRXrYPVZA0ItxGGYTjrofKTrjNrlp8sh9VsRWyvWPAEPMT1iUPP7J4I7RgKHp8Hhse0aDHCpDPBrDdfdS5lLHwhv1mlWV1RHYiVICQppG2EakM4xaGHCzWBHKRcEiJB17FdEX19NEw6E0JTQ9Ht3m5uZwBtSmFm0ppgqDMEbLyhhvD4PCQPTQYhBLk7ct2yylflqsDwmBYpldk24S+XMqB9Kof8v1RNoTTgyoErnB81w2e8Zk3B+sVbDBZA7pUifUMbB6RuiFAu9PvHn6vU5KxyL+e3HPBFfCRnJbtMYdtSyyEw/yrn2H+D4oKgq7HFPyo9Xgq+kI+IrhFeUd4Z6gwoOVzC/ZZH+b9h8gS8gI85xAZP94lb2T+uDhajxe9ufu5iNVs9b+sewiouS4+XQqKUIDI9MuBXKCmUq4lAiDfUkNCUUJQcLkH5qXJExzha1Zr1ZpSfKockVIKQjiFOy+AJeC2y1GTjDfnzg8+XuGM5dLXGGwJabjmkq9ZBFCTyeGGwrWB4DDr064C4PnEeL+YwPAYMj3E6P2PjDQWyS1lD5FFyxPaORcnhEhQfKkaHfh1cHmvSmaAp0SA+PR4CieDftuGmUjkQFIZUOUShtBJDnQEihQhJWUkQKbzXyQei5ZCqQMVl7giKC0JwfLDfLIcAm3WAoc7Q5tdtiCvlUFBcEIITgmHWmaGt1KKuqM6lcogLSO1pzKEGbmUNn4MyQQl1iRpFfxYBsLm4hXYM9ahsZ7CKuPgb4hHVLSogTMP5Qn5AZq4DbNkqLm26BLnEpkTzlVsZYLMcazfKIZOVCybuK9iJVU3Ov1lGXKXcpVAo3odTDkUHhnKIYRjE9IpB7u+5qD5XjdiEWLv9bKyh2F6xLhe7+KLmLWSccbVmKmPhCXhNZs0khEBVoII0THp1xlxqgeUQsRIYVAYEJwR+/KWWWvm6UhqqSwJLcewOsb1iUXelDmXHyxAc7zpLW01ODQghCOsUBgAtshxieIxfE+20R+WQ/79GKJQGmDQmiIPFCI4P9urLzMapyd+Tj/Prz0NTofFa2S0lb3ceSo+WovRoKQr2FQDwn1sZYLPEMOv8E3RWW6VF8eFiVF+yBcRuPOERyoTodFsndBrVCYAt9pArLCYLGJ7nbjYNA1JzFlw8BtE9onHduOuQdlsaANhShnsBVjkkUogCQjEE/DMp1ZtRsL8A5adcuwv4g7rCOhjrjRDJRQjuEOyTiRBnYdiO4g5ZzVaftx95lBw9HuiBjHsyAAY0cxmF0saoS9WQhkl9FnS+JYSlhkEULEL1uWq7RYWKMxUoPVYKSagEoamuF1J4wpbFuAsEawBf0lzsP025Bma9Gcqkq89qCGiZ5ZC+Vg9iJVdtmwBcvy/qUjWEMiHEwWI/SNUyGB6D5JuSwRfxbQlo/lF+N8SkNaH8ZDl4Qh7nPumx5VCNDpIQiV++qViocohCaQUWkwUWo8UnKyHyaDmkYVJYLVaoS9Wozav1+jU8xaw3Iyg+CLIIGdfRtXVA6oawlhjnfjmHi5svtqmVVcHeApQcLkF9cT14Qp7LQU4gdh0biRDCtaGWuNmwMYcIIXZKOoZnyw6jTFBCrBSj6kIVjn9zHOd+PteqLGZc7JwAcs+RhEpALAQVpytw5cAVzpIrEGCziHUe0xmdbu/kE8sezq2sHWUss5gsbaJcFEpt6afFQWJu5Z5Cofgeo9oIk9YEebT/XY8bwqantxgtOPPjGZSdKEPZiTIU7CuAWClGp9s6Neki705sHWfoa/Tgi/kBNXZ6k+bcyliXsqsx3hDguXUIcPVbkwHO3xezwQxdta5dxBtqjEQpsS26MsDFzRehKf930d6sN+PCxgsw1hsR3Tuam+M0l7WtIRaTBcZ6o98Vhu1ROdQ+7OYp1wTsh6gvAs2Kg8RIvzsdFqMFx5Yd83tsHYvRAhCb1YiRGGGot7lzcUoJP8QcUiYqUZtfC2O9EdoKLeoK6xCWFubTaxIrgVFjhKZcA2WiEvH94iGUCpv82BVIBU4DU5//5Tw3uLREwcitLBDXFlxxmXFcpglNuQbqEjXk0XJc3naZWzkN7xyOsNQwECvhFE08AQ/iIHuFVyAqhxIHJSK2VyyqL1Wj8I9Cmw9/gJitm/VmMDzGpyvnrIVh3u48CCQCJA1OCohYUE3RFpZDDZGESlB3pQ71xfXgi/gBlzaYQrnaYMe1QHEpa0hYWhgShiZAd0GHwj8KAdiC73Ye3bnZsa01lkP+/uDzJTwhzzZ/sBKnFg+qAhUEUgFkkVdn38t9THvQNq52azLAubthe0hh3xSKaAXSbk3Dpc2XcGHjBYQkh0AeJUfV+Sroa/SI7x8PJubfd4Cd/7nTNtjYZP5uE6zbP1UOUSgeYtabuRfZF4FmWfgiPngCnt+VQ2wHLxALYNKaQCz/ujP5y/wxuEMwuk/qDn2tHqd/PA1tldanyqHqS9U4t/4cghRBYHgMQjqGuLXqI5QJHdzKDPUGaMo1kIZJIYuUufRfbhJWN2T913KosQVXWFoYwtLCoKvR4czqMyj6qwh8ER/1xfUQBYlgNVtR9GcRF5+oIakjUm3BIxmb8i8QlUOATR5WIaKr0QVMwEuzwexzlwp5lBzyKDnMejN0VTqoClQBrxwiZgJG1HZ9hjRMClW+Chd+vQAA6HJnl4D8aKVQrhbY2ISB2hcFJQSh4/UdUXGqAtpKLRIHJ7qVfbMllkNGjREWo8XvH3y+pKGlQeMxT1etg65ah/Au4X5ZRGwLGIbxODkGF1sm5OoMUg78o0xV2ysYAi1QfUsIig1C2q1pKNhXgOqL1ai+aAsvEdcnDtE9olFe/m+IA08shwIhUxlga88Mn6HKIQrFE6ouVCFvVx7329eWCkKZECaNny2H/nFb4Yv54PF5nHuSq5WitkQcLAbDZ6Cr8q3riKZcA0IIQlJCIJKLEJriXpBnoVTIyaav1aOusA7aSi0AILZ3rNvlNIat98ZuZc6Qhkohi5Bx15VFyNB1bFdYTBaUnyq3BQnmMZwiqPxUOXJ+y7HJLxMiqnsUNBUa8AS8gIohwdIwALHVZIUiVoHgeP8GejTrzVxMIF8hUojQdWxXmLQmnFhxosmgoIGC1WwFT9p2lkPRPaIhUohgUBlQdqIMmjINVQ5RKD5EU64BX8SHWBm4MUV4Ah5ie8c2f2DDc4Q8gHhm/Xi1ZyoDmlYOFf1lW3iKynAvBXp7xVOrMn2NHmKl2O/zZ1/CF/IdFAzqUjX4In67fx+C4oKQcU8GzHozNOUaMDwGwR2CYbXa3y/rcuhO2wgkazJ3MhAGElQ5RPE77Asc3jkcQrkQQfG+NY8UyoR+D6ja0HKIJ+BxrkzESvwSb6ghDI+BNEyKuqI6HFt+DBKlBF3u6OL1QZe1/km+KRkCoftdkUAqALES1BfXI39PPpdhjeEzLjOYuQOnHPrHHazhNmewyiDAZpHGMAwEYgHiMh2zOCliFag6X8VlGWEtiwLVJYedbGgrtdBWaiEOFqPbxG5+lclisPhcOcQSiNkNncH2Gb5OZd8QgViAyOsiYTaYUXaiDNoqbZtdm0K51rBarNBWahEUG3TVWYqwwWU9iZt2LcSWcRWjRF2qhqpAhdDU0ICdO3gLT6zKrGYrDHWGJoOfXw2wCgZCCBjGZomirdAiuEPwVdM3CCSCJq3VPQlWrqvRgSfgBURoBKocolA8hM0MlDAwoU2sKIQyIdSlar9a6TS0HGJlsFr+6fQDYOUj5voYVJypgFFtiwekV+m9Phkz6Uw2Nz8Ps4qxboesW0v09dEISQqBUC5sVZBibnBtIuaQ3fE8hotR0xzB8cGc5Y1JZ4JBZVNoBbIJdNexXWHSmJC/Jz8gFAAWgwX8oLZRDjE8BjwhL+ADU7OTDV+nsneGQCyASCGCukSNkqMlEAeLEZbq2xhlFMq1hq5KB2IhAReM2hvYxQ9xc3rRHsbO1uLqA7joryIwPAbxfeP9IVab4onl0LWgMATsrWb4Ij40FRoQK2nXLmWewgUrdyOjLBubLBAUZ1Q5RKF4CPuSt9XqNxvw+syaMxBIBEgZnuKWf7w3cbAcAkAs/wQgDICOLDQlFKEpoai6WIW8nXnQ13hfOWTWm8GXeP6xH9UtCnwRH8RKwBfxEdE1wisKNTvLIR8GBhdKhW3e3loCX8gHP4QPoVwIa6nVv8pUk8X2vNvIcgiwvZuBbjnErqy2ZUDqhihiFKi+VI3iv4sB2Cbn0jAptJVaLsNS1YUqWM02N8vEGxMDNm4KhRKIBHIw6tbiSfwQFr1KD56AF3Cx+ryJs3qpzauFulSNiOsi2lXK8pbCF/Ldjg0aSO5DvqSh0pAv4kNd0v7jDXkKG4+qOUWLSWeCWWcOmIx+PEHLgu/7C6ocovgdNvV4WylFQpJCUF9UbwuCXauHulSN0I5ta47qynLInwGpncGuzvnCDc+sM7ttedMQgUSA6B7RXpfHqXIogJ6Fv2joYuWPCblRY+RWi9tUOSQJfOUQO0FqS7eyhiRlJSG6RzT0tXrk7shF/t58iIPEqL5UzR3D8BhbjKI6A2rzaqlyiELxAFY5dDVmpvIk8xCLQWUI6NhL3qCxWxmxEhT+WQiegOfUbf1qxBPLoUDJSuVrGioNhbB5QDB85qrsG5rCnWDlgRabjCfgOSTSCWSocojidyxGS5sG5Q2KC0L63emoL6nHhQ0X2jQ4tUlrQn1xPZd9xKnlUAApJFjlUG1eLQghkEfKvZK9ihBisxxSBlAwZtarjBCATVYWQM/CX7AKPH8oh9Slapxff5773dbKIb3Kv7HJXKFX6XFx40XOAtFT10xvwePzIIuQQRYhQ+nxUmjKNNCUaSAJlSC2ly04rSJWAYFYgKNfHYVRY/SLnBRKe0VdpoYkRNKihZRAh3MR8SC2jFFtRGjU1R9bBvhXOVRxpgIGlQFxfeKuaouphrDBl9n4Ok2hq/4ntkyQ/2PL+BLOrcxss+RWl6khj5T7bfz3F3wRv1nFYaBZk/EE/yYeag9cfaMNpd3R1sohFjZ2jVHddh8sBfsLUJtbC+CfmDVSARcvxGqxBkRA6obwhfaBiQFbQGiGYbhsXDwBD0mDkzwybbUYLABBq2IEeRtqOeQcznLID5m76ovrAfw/e3ce30Sd/gH8k6NJeqb3BT2Acp9SrgIqCivihcKu9wriuYKKuB7orsrqLrq6rMcPQdcVdmXXW/AWFBCEBQSkXHJTKEcvKG3TK2ma5/dHzNA0U+iRNmnzefvqSzIzmXzn6TR58sx3vl8gtnescyDyGGmz19ab9HDU+PZ2uoa4btsKjgmGPlgPY4rvr6T3vq63couwzqjzSOh1Rl2bvtcStXc1VTWwWWyI6RHj66a0CuU2mUb2EHFNPhFIPYdqKmtwcstJGMIMrdJj2l/VLYS4zpOGVBVXwRRp8oshGVpT3b+XquIq50yyAXRLmUtjeg75XXFIxzGHiJqk1lbrk4q/a+yhtryaba+yQ2fQIX1MOgxhBuiCzg7ILLXiNwNS19Xr2l6wldsgtYKCHQXOf//Su8Zhd35IlRwpafBDSkSQ91Oe84uhOItxyixfzRhzqLU0dUDqQOHLmbtcU5qmjEwBNEBhYWGbvbarl1LeT3kICgny2thW3uAqwnQe0RlhSWFtGpeGaLSacxZ7DaGGNu2lSdTeuW4p66i3YjZlcFkASk9Ok9k/bhVpLXUHHj6+6ThqbbVIH5Pus7HlfKFuIeRcxSF7tR01lTWI6BzRVk3zmbq3lbku1oYlBWBxKEh73ny06kwV9Ca934zvqdVrz37HawdFTBaH2hlbuQ1lJ8oAAMZwY4um7vYXvuo5pNVpoQ/Wt+kXltoa53TckemRyrL6PYf87Y1DF6RTBqPucmkXt3XiEPz0z5+UK3pqKosqkbc1T3msDdI6B5QMDUJoov8kvWo9h/ypF5evuIokbTVzl4jg6NqjsFmcM+UFRwc7r7o42vaqi+sLSN5PznNXH6xv87HJGqKMWeaD983mMoQZUHa8rN0kR801d+5cfPLJJ9i7dy+Cg4MxcuRIvPDCC+jZs6eyTXV1NR5++GG89957sFqtGD9+PF5//XUkJAROzwA6P6U41AFnKgPcp7JvDNfYc4HSc6j0WClKckpgTjW75YyBoP74Og1RZirzkx4iralub6ry/F8Go+6AA9Wfjy5I16ieQ6Fx/vO+Wbc34Pl6wvkDFofamcMrD6OioEJ5bE4zQ6vXwpxibpddj8Uhysj7vmAINaDqTBVObjkJY4Sx1WOodhWkbs8hfxuQ+nw0Wg2M4UbV4pA4BLU1tSg5WgIAyJiQgbCEsLODUDocftHjwYW3lalr655DNosNp/edhkangS5Ih+juvpkePa5vHMKTw2Ert+HgNwdhOWnxn+KQrX0Wh8QhOPzdYehNenQe0bldJElNtWbNGkyfPh1Dhw6F3W7HE088gcsuuww///wzQkOdyepDDz2EL7/8Eh9++CHMZjNmzJiBSZMmYf369T5uPfmTioIKaPXaDjtFd90eMo0RMD2HfvkiWZJTAo3ul56zAaaxg5X728DDrUkpMNQ4YMmzIDgmuF3lAN7iGqy8oQtNtnIbHDUOvyoYsjhEXueaDrjWVouKggqYU82I6xOHk1tOovRoKQDn2BztsTjk6y85wTHOaZddvQNCE0JbNfGoran1GFCwfs+h9tZ12BhhVK5i1LVn6R5UnXZe1dEGaRHRKcK/iy11BqQWYXHIxVUcOvHjCZz48QSSBicheUjrzZjiek9IGpykDGrsCxqNBsHRzqnZg0KCUHywGDaLDcYIIzpndfZp7xdXjNrTILVhSWEo2lOkjLkWGh+K2J6xvm1UK/jmm2/cHi9evBjx8fHYunUrLrroIpSWluKf//wn/vvf/+LSSy8FACxatAi9e/fGxo0bMWLECF80m/yMiKCiqAIhcSEd9nOoOT2HdEadX41V2Brq5oBJFyQFxNT19dXtOXQurpl0XZOndGSuv5fK05WwV9kR1dU/Lla1NVccpFag0Xu+N7rGG/KngmH9Qeb9Xcd+h+0gCncVIj87X3mcOCgRYYlhMKeaIQ5BzuocnDl0Bg67o10VFuxWu/LG7qviUNqFaUgcmAhLngW5P+Si7HhZqxaHHDWevyO3MYf8bEDqxjBGGFF2vAy7P9gNnVGHzsM7o9ZWi6rTVQiND0VwTDDCk8P9PsFV7TnUgW9/aSxjuBEJAxJgK7fBkmdB0c9FSBqc1Gq/T18XjNXE9opFwY4C521RDkFsr1ifXpWqGyNB2w3S3RLR3aIR1TUK9io7dizZgdKjpYjoFAG9Sd+uPreaqrTUeQEnOtrZA27r1q2oqanBuHHjlG169eqF1NRUbNiwQbU4ZLVaYbWe7Z1ZVua8tdzhcHj9dktbhQ1FPxfBZrTBEds+Etm24nA4r1a3xS2uVcVVqLXWIiQupM1vqW2KlsREo9dAHAK71d6o51edqYIh3ODX8XBpUVx0zrgYIgyI6x/XLo63sRobl8aeG5XFlc7x7kL07TpOjYqLzpmflhwtgTgEIfH+/d7gDWpxcf191FTXqM7eV3GqAuIQGCON/hMfrfN3Z7fZEeRo+ThI9ePi7eNkcagdqCqugkarQa/rekFn0MEYfvYqguu2HsDZla69VM8rT1Viz9I9ypThvroCrtFqYIo0ISgkCLnrcnHsf8dwfONxRHWJ8hhfp6VE1G+hU3oOuabt9PMiSn1RXaNQXlAOcQgqiyrdph5PHZ2KkNgQH7au8TggdcM6j+gMADi59STytuZhx392QKvXIq53HEyRJugMOq+Nf+aPxaHkIclIHpKMkqMlOLT8EMrzy31eHNLqtdBoNWfHx2oHNBoNgkKCEBIbgpIjJSg5UgK9SY/+N/fvkAUih8OBmTNnYtSoUejXrx8AID8/HwaDAZGRkW7bJiQkID8/X2UvznGM5syZ47G8qKgI1dXVXm2ztdSKg2sOwpBiQHB8MLTajvd7aS6Hw4HS0lKISKvH5cyBMyizlMGsM/vV7df1tSQmDrsDZZYyaIo0MBWeO3ettdWiuLAY5jD/jodLS88VUzcTwjqF4dTpU63QOt9pbFzKSstQZilDYX4hrKaGx7QsPFoInUmHoqKi1mhum2lMXKwlVpRZygDnJK6o0lW1i7+FllCLS2l5KcosZSjIK1CdzCgvJw9lljJYaiyoLKxs6yarKikrUc7n4JqW547142KxWLzQyrN88o2cAzY2jWuaxpAY9S/ZhrCzU7K3l+JQdUk1IM4xk4Kjgn1+S5zO4OzxYjlpQUVhBUpzS73+Gq57pxvsOfRLj5X21lslPDkcfSb3AQCU55fjTM4ZAM4eRe2lMAS49xxyFS1ZHHIX2ysWFQUVqK2phc1iw4kfTyjrelzVwysFIn8sDrm4Bn/Mz87HmZwzMKeYfTK9sN1q98v4NFbq6FQUHypGZVElyvPLYS2z+tX4AN4yffp07Nq1C+vWrWvRfmbPno1Zs2Ypj8vKypCSkoK4uDhERHh5lp544HTsaVirrIiPj2dxqA6HwwGNRoO4uLhWj0vV3ipEhEcgtXeq6tVxf9HSmJyMOImI0AjEx8efc7vKU5WICI9AYlriebf1By2NS/xY/z/G5mhsXIxWI8rCyxAVEYXYePXbj2tranFcdxxRaVHt4pw4l8bExRZiQ1G4swhmiDCgU3qntmyiT6jFpTa+FrZwG6Ijo1W/F592nIY+SY+kzr4blqC+6JHR6JrZFYYwg/KdryXqx8Vk8u53f58UhzhgY+OU55fDbrXDVm5DVLeG7y11VU6tloar6/7G9QUwoX+C38y4ljAgAQkDEpCzOgfFB4qdM4t5ceAw172m5+o51N4GpK4vLDGswSnt/Z3HbWXt99fQagyhBnS/ojsA599w2fEyWMusOPHjCZTnl3f44pDepEdU1yiUHS9DeV45KgoqEN8vvs3/Zn01w6O3hMaHIjQ+FKf3n+6wxaEZM2bgiy++wNq1a9G5c2dleWJiImw2G0pKStx6DxUUFCAxMVF1X0ajEUaj57gjWq22VYoUYYlhKN1TCghYHKpHo9G0WtzrqiyqhDHCCGOY/48305KY6I16iP38vWtsFhs0Wg2Co9pPb7a2Olfam8bEJcgY5OwZW9vwuVFV5ryrIiQ6pEPE+Hxx0Rv0Sq4RkRzRIY65MerHxXVuoNbz80kcAmupFRGd/Ss+hhADDCGevZxaom5cvH2sPikOccDG8ys7UYYDXx5QHjfUawiAclvZ8Q3HcXLzSSQNTkJ8P/+uotutzpmP/PELjiHU+QdcU1EDXaT32uf60uuaocOlfs8hFiV8pO6A1I72d3tfW9MZdIjqGgVHrQMnt5xERVHF+Z/UCP5cHAKAruO6AgBObjmJvJ/yUHm6ss2nTK211SrvU+2Za6BVtdkO2ysRwf3334+lS5fi+++/R5cu7rcnZ2ZmIigoCCtXrsTkyZMBAPv27UNubi6ysrJ80WQPoQmhkN3i7K2R5OWeSXRetbZaVJ+pDogBZ3UGXaMGaXVNY9/RZyojp8bMZBdIg1ED7t8d2utFWG9wxUFtsHJrmRXiEL8ajLo98osxh9rbgI1tMShh1ZkqiEOQMDABpmgTItMjG3y9oPAgRGVEwWaxoTy/HCVHSxDbp+1ngWlKXOzVducXcL3GfwYM+4UuWOesPpdbYYho+RcwV1zstl+OWed+zKIRZaAyV5LkbzFpDW05uGdjCJy/h1p7LWrtzg8dX7TN3+JyXhrAGGlESU4Jtr65FcZII3pP6t3s4lpNdY3qe4O/xSUkPgTiEBxZcwSGMAPi+sQhonPrfpEuO14GW7kNNZU1MJqNyuebP8WlKYLCgpxjlRVXwl7jvGDgjS7XQOsP2NiQ6dOn47///S8+/fRThIeHK+MImc1mBAcHw2w244477sCsWbMQHR2NiIgI3H///cjKyvKbC1+u2ycrCipYHPIBV6E9NL5ti86+oA3SKhcEzsU1jX0gztwViBozk10gTWMPOD8bXeMMBnJxyHVuqBUOXTOVdbSeyG3N58Wh9jhgY1sMSlh0vAhlljLERcWh1lyL02dOn3P7kD4hCEEIij4pgi3fhojCtk/omhKXUwWnUGYpw+mS09BX+/w0dGOptqDMUob83HxU6atavD9XXMqrylFmKUOIJQTawrPxqT5TjTJLGYxFRpSVlcEeYu/wg8wBbTu4Z2OUFjsHuTt96jRKzpSguqLaJ78Hf4tLYxjSDKisqUR1aTVKj5bCfNSMoNDmjZPhem8oLimGrups7yF/i0utphbVqIbliAUigpIzJUi5JKXVXq+msgYHPj7bm1QTq0FhYaHfxaWpyqvKUba5DDmbc2AINyDj2gyv7Le1B2xsyIIFCwAAY8aMcVu+aNEiTJ06FQDw97//HVqtFpMnT3YbU9FfhMSFQKPRoKLAO70BqWkqCn8pDiV0/OKQLkgHW4XtvNtZS63QB+v9tkcpeVejew5pAqtg6JqIIlB6S6lxjduqVjhkccg7fP6tvD0O2NgWgxJWGatgDbciOT25SR+Gp+NPw15t98ngbE2JS3lIOWrDa5HUufWmxG6uUE0oSsNLoS3VAoWAOdXcog8fV1wMBgNKw0sRlxCHmPizA3BXG6txKvwUzGFmWEOtMEeb2/3geo3RloN7NkZQeRAs4RZER0WjNqIWhlqD3/8d+Yv4+HggE8jbloe8zXmICo9q9mDk5aHlcIQ7kNg50W1wdn+MS9LdzgEPdyzZAYOxdc+XisIKRIRHIKZXDKK6RiE0IRS6IJ1fxqUptOO1KM8rBwDog/Vei2FrD9jYEJHzzx5nMpkwf/58zJ8/vw1a1HS6IB2MkUaUF5T7uikBqaKgwjmWyjmGE+gotEHacxYAXKpLqxEcxS98gaJRPYdKqmGMMHqtt2l7EJ0R7dcD1LcF13di1Z5DZ6oATeDcathafFocas8DNrb2QHP2KudsNEGmpr0JGEIMsJXZfPYlobFxEbtAZ9BBp/e/q0DBkcHQ6rUoO1aGsmNlsBy3KIPwNpe9yg5NhQYarQZ6o94tPq5B5op2F0Gj0UCn17XLL3nN4U8DNur0Omi0Gmh+GXzIl78Hf4pLUxhDjdBoNai11ja77WIX6Iw66HSe7w3+GhdDqAEOm6NV21VbXQuNVoOIThGITI10W+evcWmM+D7xiO/TOkW11hywsaMLjguGPc85IYZrRlRqGxWFFQiOCfaY2bQj0gXpzlkAAJzDENRaa2E0B04PkUCn1WsBTcM9h8QhsJZZEZESWLe9po5O9XUTfO58PYdMZlNAFQxbg0+KQx1hwMbWZquwNeu2DH2wHg67Aw67w68Ti1pbLXRG/ysMAc7ZM/pe3xc1lTU4vuk4LHmWFsXz1N5TOPDlAUSER0Cj1Xj0BDOEGtBpWCdYLVZoNBrE9IhpYE/UqjggdYvpTc6PFHu1vcnPPfL9EZQeK0WttRb6YJ93am2SoOAglJe1bi8L160XgX7VkNpGcGwwyvPKUV5QjuiwaF83J2BYy6ywV9sRnREYMdcGaQHBOXMs14D1HIw6sOiCdA2OR+UaeJi9yQJPQ7ccOuwOWMusiEyP9EGrOhafZOAdYcDG1pK3LQ82iw02i61ZgxHW/XLmz1f7/H0qZmOEEcYIIyLTI1FRUIGd/90JbZAW6RenN3m6bteMCrF9YmEMNyI8yfP5iYPUe8RR26k7lT0ELA41g/L+U9X04lDJ0RJAnIOwmtPMXm5Z69Kb9HDUtG5RvqayBgCLQ9Q2guOCUY5yVBRUILpbYBQq/IEy3lAADEYNuN8+1NB7pyuHYs+hwKIzNNyrLNBmKqOzGrrlsLqkGhCON+QNPikOdYQBG1uDrdyGk5tPKo+bkxwEBTu/ONRU1fh9ccgQ7r/tc4nOiIblhAX2ajsqT1Wi9Fhpk4tDrisfnYZ1avJtgtR2lPFtBOw51EyuHj/N6TkktYLw5HBkXO6dAYnbUt3jbq33XVdxqCNMYU/+zxhhhM6k47hDbSzQikNuvQAa+E7HnkOB6VzjUVWdcQ48zOJQ4Gmo5xAHo/Yen91Wdj7+PmBja3B9oUoanISEAQnN6lnjunJfdrwMjhoHwhLD/OpL7onNJ2Cz2GCvtjd7wNq2ZAg1oPsV3eGodWDbP7fBZjn/rBr1uYpDrjc08k91ew6JQ5TbzKjx6t9WVmurVf5tCDe4DTBdn8PugEbXPoPemkX5quIq58/pKmh0nrelErWWsIQwWE607LZqaprygnLoTfqAmYGpsQMPA4E1KxWdeyY79hwKXK7PIoe9XnHol4IhbzVsufY1sEMH5/oSFRQa1OwvAK5xilw9kFJHpyKuT5x3GthCtnIb8rflK4/b05UxrU6LoJAg2MqbVxzSBmnP+cWYfK9+cYjFvKbTGXSABqgoqkB+dj7yfspTPsDj+8UjZaT6VO+OWuc27XUQQVdRrPhAMSqLKt2WR6ZHtqhAv//L/cpteqYoJsLUdkITQlF2rAyVpyoRlhjm6+Z0eI5aB6pOVyGic+AMsnuumYdcrGVWGMIMLFAGmHP1HKouqUZQSPO/K1H7pdFooNVrPcajqip2XkBjEbnlWBzyI3ar8wuA3tj8X0tEpwh0HdcV1jIrTvx4olnFjNbiOr6kwUlIGux/U9ifjyHMAKvF2uTnOWp41bVdcN1V5uCA1M2l0Tg/mKtOV+HE6RPQGXVI6JuAop+LUHmqssHnSa2zN2l7/TtxJSOFuwo91kV1i0JITAiMEUZEdY0CAOT9lKe8N0d3j1YdhwxwTt9sr7IjskskYrrHIDiGV8So7bgu4JQXlLM41AYqT1VCHNKuLpy1lOsizPl6DoUmBE5MyOlcA1JXl1QH1N8JudMZdJ49h4qrEBwVzNzdC1gc8iO1VueboOsqdHNotBpEdY1CTVUNTvx4osE3Vl9wtUVv0rfLP15DuAEVhRWoPF0JvUnf6LE//H3wbXJSeg65ZitjT69m6Xl1z7NdvqNMCAoOguWE5ZyFateHfHu9rSw8ORy9ruvlcZXzxI8ncObQGZw5dAYA0P/m/rBX23Fyy9mx5cqOlyFjQga0Oq3bFa+aqhpYTlgAAFFdojgDB7W50PhQZ0/AggpfNyUgKOMNBVAhxHVbWUM9RGoqa+CwOzjeUABy5c21NbXKeQI470Jw1Dh4S1kA0+q1bgXlWlstaipqmjwmLKljcciPuG4r88YU78qbqh8Vh1wf/u21UGIMd35x2/PxHgBA70m9GzVukuu2MvJvrmKQOAQi7DnUXEEhQR4zahnCDKg8XemMq0rRrb3fVgYAoXGeX+h6XtMTVcVVKDtehhM/noAlz6K8J3cd1xVVZ6qQtzUPP3/4M4CztwEfWXMEp/edPrtvXiElH9DqtQiJCeGg1G3EVYRTey/pqJSeQw31ECnlTGWBqu7Aw3WLQxxviOrfcsjBqL2LxSE/4o3byly0Oi00Wo1fFYdcbWmvxaH4fvHQ6rWwlllxev9pVBRWNKo45KhxeKXgR61LKQZxtjKvM4QZAHFeBVbrcdfebytriEarQUhsCPQmPU78eAKFOwudg50DCO8UDnOqGVqdFg67AwU7ClB8sBgxPWJw5tAZGCOMiEiJgDHCyHvoyWdC40NR+XMlrBarcoGEWkdFYQVMUaZ2myM1x/kGpLaWcqayQFX33AjC2QtOruIQBx4OXLognTKDK8DBqL2NxSE/4uo51JLbyurSGRq+X9cX2vusXUEhQUganARbuQ2n959WPqDORUScPYdC2+cxB5L6A1KzOOQ9rhm8KosqodFqlNm9XNr7bWXnYwgzIDgmWBl3KSwxTLkIkDgoEYAzuSnJKcGO/+yAw+5AXN84JPRP8FmbiQDnLU5FPxehoqCCxaFWVFNZA1u5DTE9Y3zdlDbV0LTULuw5FLgaGqycPYeIPYdaF4tDfqTWWguNTuO1q+c6g+6cg/y1tfbec8glKDQIWr1W+YAqOVLiNlZAZFqksq3rzau9FsQCSp0BqSFgcciLXMWhQysOAQC6XNoF0RnRynrltrIO1nOorl7X9jo7I2W94hgAJAxIQK21FuIQ6Aw6xHQPrC+J5J/CEpwDUZcXlLv9zZJ3uXIIV7wDRaN6DmnAwmQAauiWw6ozVdAZdB63r1Pg0AU5B6R2DVVQVew8J1y5JrUMi0N+4ODyg7CctMBhd6h+aWgunUGn3KrmDzpKcUij0cAUaYIlz4KfP/4ZVaerzq7TaZAxPgM6gw7B0cFKwqM1dNwvvR1F/QGpwdqQ15hTzUganISaqhqc2nMKFUUVbl80ldvK2vGYQ+ej1WnPOYh9WEIYelzVow1bRHR+xggj9MF6DkrdypQLTAE2vlhjeg4Zw428WBOAGiocVpdUs9dQgHMbj8qgQ/WZapiieE54C4tDPlRrq0XVmSqUHi2F0WyEMdwIc6rZa/vXGXTNmnq9tXSU4hAAxPSMQeHOQjhqHAjvFI6UrBRUnalCzsocHPjqAABnUu36ANPp2/8xd3SugZJP7z/N28q8TKvXInlIMsQhOLXnlMfMZa7byjpyzyGi9iosIQwlR0vgsDv4N9pKygvKoQ3SBtwXnHP1HBIRWMusnIEoQKkVDmtttbBX2WFO8d53JWp/lFkO7Q447A7Yq+2I7BLp20Z1ICwO+cjRtUdxau8p5XGXS7p4/YqRv4451BGKQ/F94xHfN95tWXB0MDQaDWwVNtRU1qBwVyGsZc4u0aaYwEr42qOgkCCEJYXBZrHBEGZg8tEKNFoNgkKDUFNR47bcdVtZRx1ziKg9C40Pdd4+XVSB8CR+Ufc2cQgqiyoRGh+qOptjR6bVawGNes+hmooaSK1wMOoApVY45HhDBNS55bCmFjaL82IjxxvyHhaH2pDD7kDZiTI47A6c3n8aRrMR4UnhMEYYW6Ursc6gA8T5x1N3GkhfqbX9MqZSB751JKprlPLvTkM7AQAcDgeKThX5qknUSBqtBj2v7unrZnR4hlBDwz2HOvB7A1F7FZboHAenooDFodZQVVwFh90RcLeUueiC1MfHdBUCOBh1YHJdSK57kZvFIQLq9ByqcXCmslbA4lAbKtxdiBObTiiPOw3t5FZM8DbXG2tJTgkM4QafJXWluaUoLyh3DhjmB0WqtuK6LUnDwWuIFIYwAyoKK+CwO6DRaaDRaDrsVPZEHUFIbAg0Wg3K88t93ZQOyRVXVxEu0NSfecjFWsZp7AOZ2m1lLBgS4N5ziDOVeR+LQ23IdStF6uhU520rXhxfSI1rJP8j3x8B4JwtxxdXpo6uPYqaSuexB2ryQ0ROrtkktr29DdogLfpM7tPhp7Inas+0ei1CYkNQXlCuzA7jC45aB0pyShAUGtShejBZ8iyAJnDzI12Q+hAILAQEtgZvK9M4x/SkwOXWc6i4CkEhQdCbWNLwFkayDbk+/KK7R7dJD5q4vnEwhBtQnl+Oot1FsJXbfFIcslvtCE8OR+qFqZxmkCjAxfaKRU1VDWzlNpTnlaO8oPzsVPa8rYzIL4UmhKKisALWUmub39LhqHXg1N5TyN+Wr1xoCokNQcKABER1i2r34/SU55UjJCakQ4zH2Bw6gw62CpvHcmuZFRqthnljgHL9Pbj1HPpl9jrmCoHN1cu81laL6jPVCE0IzFtyWwv/utpQra0W0KDNbq3SBekQ3S0akWmRAOCTae3FIZBagT5YD5PZxDd0ogBnijShyyVdkDIyBYDzCwBvKyPyb65eLW19a1ltTS32fboPx9Yfg4ig0/BOiOsbh+qSauSsykH+tvw2bY+3VZ2pgr3ajrCkwOw1BDR8W1l1aTWMZmO7L/5R89QtAADO7xO+KE6T/3EVDl3jtfGWMu9iz6E2ZLfaoTe2fch1xl+6ZlrbfuYyV3fQQBpriIjOz9Ut3FpqVa4MszhE5J/CEn4pDhWUI7ZXbJu8pjgEOStzUHmqEgkDEpA8JFl5j0jOTMa+z/YhPzsfMT1i2m3vkvI8Z7GtI90m11RqA1KLwzmNveviJgUejVYDrV6rnBu2chvEISwOkfI5UFFYAYCDUXsbM/E2VGur9Um3YVdByhfT2nek6euJyHt0QTrog/Wwllk5lT2RnwsKCYIh3ICKgoo2e80TP55AaW4pYnrEoPOIzm7FY71Jj5SRKXDYHTjx44lz7MW/WfIsABDwPYcgZ2etBACrxQoIxxsKdHV7lXGmMnJxDUitFIfYc8irWBxqQ74qDrl6Dtmr2/62MtebuusPmYjIxRhhREVhBYp2FwHgmENE/iwsMQzVJdVtkksUHyxGwY4ChCaEIvXCVNVtIjpHwJxqRvHB4nY7k1p5XjmCo4N90qvcX6gNPGwt5Uxl5N6rjMUhclEGpP6loGyK4jnhTczE21Ct1UfFoV9e0yc9h3hbGRE1IKF/AsI7hSMsKQxxfeI42wSRH6t7a1lrqjxViSNrjiAoJAjdftXtnEXjzlmdodFqcOx/zjGJ2pPq0mrUVNYEdK8hoIEpy0s5Uxmx5xCpq9vhwBBu4HdML2Mm3kZEBLU1vikOaTQa6Aw6nwxI7XpT521lRFRfVNcoRHWN8nUziKgR6g5K3VpjwdRU1eDQikOAAN0u64agkKBzbm8ymxDfLx4FOwpQdqwM5lRzq7SrNXC8ISf2HKKG6IJ0qKlwzlBYXVINnVHHi0jkVgziLWXex55DbcRR4wDk7C1ebU1n1PlmQOpfeivxtjIiIqL2yxRlgs6gU4oa3uaodeDQikOwlduQdlEaQuMbNz1xXN84AMDpA6dbpV2theMNOTXUc0ir1563OEgdm87gflsZew0R8MuA1L8MUcnikPfxG3sb8fXAzHqj3ic9h3hbGRERUfun0WgQlhiGylOVboMHe0vuD7moKKhAwoAExPSIafTzjOFGhCWGofRoqcesV/6sPK8cpkgTgoIDuwDSUM8h3lJG2iAtpFZQU1UDe7WdxSFSuN43OFOZ97E41Mps5Tbs+WQP9n22D4DvikM6ow42iw3Z/8rG3mV7IY62uTeft5URERF1DGFJYRCHKLPEeEvBjgKc3n8a5lQzOg3v1OTnR2dEw2F3oCSnxKvtai1WixW2clvA9xoCzuaHrnzRUeuArdzGW8pIKQBUFlUC4G2GdJZr9kr2HPI+FodameWkBZWnKgENEBIXAnOKb+6Hj+sdh/DkcOiCdKgorICtwtYmr8vbyoiIiDoG1/g4rluivKE0txTHNx6HKcqELpd2gUajafI+orpGQaPVoPhgsdfa1Zo43tBZrvzQ1XPIWuYcb4g9h8hVOKwochaj2XOIXLRBWmi0Gp4TrYCjerUyq8X5Idftsm4IiQnxWTtcA7/mb8/HiU0nYK+ywxje+h+8vK2MiIioYwiJDYFWr/XauEMlR0uQsyoHepMeGeMzmt3LWG/SIyIlAqW5paiprPH7sWosJ53FtfBkFoeUaal/6TnEwajJxVU4VHoOsRBAvwiJDYEx3AiNtukXE+jcfNKdY+3atbj66quRnJwMjUaDZcuWua2fOnUqNBqN28/ll1/ui6a2mM3i7KHTFoWYxnAlTDWVNa36OvnZ+di2aBsKdxYCYM8hIiKi9k6j1SA0IRTlBeUtGnfIYXcgd10uDi0/BI1Wg26XdYMxomV5Ukz3GECA4kP+3XtIRFB6rBSmKJPfF7HagtJz6Jee5pzGnlxchcOKogpotJoWv0dQx9F1bFd0v6K7r5vRIfmk51BFRQUGDhyIadOmYdKkSarbXH755Vi0aJHy2Ghsn28ItnIbdAad34y54xr4sLWLQ2UnyiC1gvDkcA64SERE1EGYU82wnLCg7HgZItMjm/TcisIKHP7uMOxWOxw1DoQnhyP9knQYQg1eaZc2SIviA8VI6J/Q4v21lvL8ctir7IjrHefrpviF+gNSs+cQubgKh/Yq52DU7CVC1Pp8UhyaMGECJkyYcM5tjEYjEhMT26hF3ldbU4taay2sFisMYS1PerylrXoOOWoc0Jv0rOoSERF1IJFpkTi+4ThKc0ubVRyyldsQHBOMmO4xiO8f36wxhtRo9VpEdYnC6f2nYbVY/abHdn2uQbMju0T6tB3+ov5U9tWl1dAZddCbOPJFoKs7JAV7khG1Db995/3+++8RHx+PqKgoXHrppXjuuecQE9Pw1KZWqxVWq1V5XFZWBgBwOBxwOLw75arD4YCINLjfWlstdv5np/JBZ04ze70NzaUz6SAOga3C1qpxsdvs0Og0fnPcvnS+8yVQMS7qGBd1jIs6xkVd/bgwPt5jjDDCFGlCaW4pRKRJxR3XrWjpF6cjJNb74zCaU804vf80yo6VIa6Pf/bMKTlSAkO4wafjUPoTtZ5D7DVEgPtMxxxviKht+GVx6PLLL8ekSZPQpUsXHDp0CE888QQmTJiADRs2QKdTvz1r7ty5mDNnjsfyoqIiVFdXe7V9DocDpaXOpEir9RxLp+p0FUqKSxCSEILgmGDoU/UoLCz0ahuaS0RgqbDAus+KsqoyhMSHICzZO1Op1o1LyekSaA1avzluXzrf+RKoGBd1jIs6xkUd46KuflwsFu/NrkXOi14F2wtQeaoSoXGhjX6eqzjkmobY2yI6RwAaoPRYqV8WhyqKnD2nEgb4721vbU2r1wIaZ8+h2ppa1FTWILwTB+om9/FKWRwiaht+WRy68cYblX/3798fAwYMQLdu3fD9999j7Nixqs+ZPXs2Zs2apTwuKytDSkoK4uLiEBER4dX2ORwOaDQaxMXFqSbjJZUliAiPQNqwNMT0aLi3k68Upxaj6nQVbEdssB21AV2cg0zG9opt0cwZdeNSGFIIo9mI+Ph4L7a8fTrf+RKoGBd1jIs6xkUd46KuflxMJn6x8CZzqrM4VHq01K+KQzqDDmGJYbCcsMBR64BW519/E7ylTJ0uSIfamlqON0Ru6t5WxuIQUdvwy+JQfV27dkVsbCwOHjzYYHHIaDSqDlqt1WpbJWHWaDQN7tteZYdGq4EpwuSXyXrv63rDVmGDvcqOnFU5KD1SCgBw2Bwwdza3aN+uuEitQG/U++Xx+8K5zpdAxrioY1zUMS7qGBd1dePC2HhXWEIYdEYdSnNLkTwkudHPc9061FrFIQAwp5hRnleO8rxyZ08iP3Im5wyCQoIQGt/4glog0AZp4ahxnJ2pjLNSEer1HGLBkKhNtIvi0PHjx3H69GkkJSX5uikAgLyf8rB/zX6cCD8BvUmPXtf2cvsgq6lwDvYcFOqfM3Rp9Vrnm6wZ6HdTP0CAvcv2oqq4yiv7FxE47I5WTf6IiIjINzRaDcwpZhQfLIatwtbo2cZau+cQ4OzVdOLHEyg9VupXxaGq4ipYS62I6xPntUG4OwqdQYdaW52eQ+wlQjg75pDepOcA5URtxCff3svLy5GdnY3s7GwAQE5ODrKzs5Gbm4vy8nI88sgj2LhxI44cOYKVK1di4sSJyMjIwPjx433RXA9GsxFhncIQEhcCe7Ud5fnlbutt5TYA8MrUrK1No9FAo9UgODoYNZU1qLXVtnifUisA3LuDEhERUcdhTnP2NC7NLW30c9qiOBQcHYyg0CCUHStrtddojjOHzwDgLWVqXLeVsecQ1eX6HsFiIVHb8UkZdsuWLbjkkkuUx66xgqZMmYIFCxZgx44d+Ne//oWSkhIkJyfjsssuw7PPPqt625gvRHeLhj3cjnB9OPZ+shfWMueVjuMbj8Ny0gJrmRU6o65d9ZxxvfHm/ZQHQ7gB0RnR0Bubd3q0RbdxIiIi8h1zihkarQYlOSWI6924wZ/bqlexOcWMU3tPwVpm9YtCgzgEp/adQlBoUIvGduyodAYdas84ew7pg/Vus1RR4NLqtTCnmWFOadmQF0TUeD4pDo0ZMwYi0uD65cuXt2Frms+VcFSXVsNutaNgRwF0Bh30Jr1yRa29cN3/XrCjAABgs9jQeUTnZu3LUfPLlcEgFoeIiIg6Ip1BB3OqGSVHSmArt8EQdv7e0m1WHEp1FodKj5Uivq/vJ8YoO16GmooaJGUm8ZYyFXXHHAqOCvZ1c8iPZIzP8HUTiAIKb+BsAa1ei6DQIFSfqUbJkRIAQKdhnfxy+tTzCU8OR59f90FtTS1yVuWg+GAxjBFG6Aw6RHWLalIy0xbdxomIiMi3YnrGoORICU7vP42kwecfF9JR0zbFofDkcGi0GpQdK/OL4lDRniIAQGzPWB+3xD+5bh+qtdbCaPZ9Ty8iokDFb+8tZDKbUFVchaNrjgIAwju13+7CwdHBCEsIQ0z3GNRU1iB3XS5yVuXAcsLSpP24bivjmENEREQdlznFjKCQIJzad+qcPcJdHHZHm/QqVqa0P2lRLlj5iq3ChtLcUphTzY3qXRWI6t5GxlmpiIh8h8WhFuo0rBMSBiQgYUACUkendogPtcQLEtHj6h5IGZkCAE2exYw9h4iIiDo+jVaDmB4xsFlsKM8rP+/2bTmTaURKBBx2Byx5TbvA5W2n950GBIjtxV5DDalbMGTPISIi3+G39xYKjQ9F5xGd0XlE53Z5O5karU6L8KRwRGdEAwCqzjSxOMQxh4iIiAJCTM8YAMCpvafOu21bFofMqc6xH305a5mI4NTeUwgKCVLaQ57q9jTvCBdZiYjaK357pwbpTXroTXpUFVfBVmFDTVUN7NV21NpqVbuPi0NQXVytFJN4WxkREQWStWvX4uqrr0ZycjI0Gg2WLVvmtr6goABTp05FcnIyQkJCcPnll+PAgQO+aayXmMwmhCWG4UzOGdit9nNu25bFoeCoYBjCDCjNLW2T11Nzev9p2MptiOkZA42WA1E3pO5tZf4wuxwRUaBicYjOKTg6GJVFldj5n53Y8c4ObP/3dmQvzsaBLz2T2byteTj85WHkbc4DAE5FSkREAaWiogIDBw7E/PnzPdaJCK699locPnwYn376KbZt24a0tDSMGzcOFRUVPmit98T2ioXUCgp3Fp5zu7YsDgHOW8usZVZUl1a32Wu6VJ6qRO66XASFBiGhf0Kbv3574uppbggzcEgCIiIf4mxldE6dhnfCmUNnIA5x9hYSoDy/HJaTFtRU1kAcgtx1uXDYHSjPL4ch3IDkYckIMgUhLDHM180nIiJqMxMmTMCECRNU1x04cAAbN27Erl270LdvXwDAggULkJiYiHfffRd33nlnWzbVq6K6RqFgRwHyfspDSGwIItMjPbZxjUfYlr2KzSlmnNpzCmXHytr0diW71Y5D3x4CBOj2q27Qm5hun4vrYiLHGyIi8i1+WtE5hcaFIjQu1G3Z6QOncWT1ERz73zHUVNagPL8cOqMOWoMWCQMTkDgoEVotr/wQERG5WK1WAIDJdLZIodVqYTQasW7dugaLQ1arVXkuAJSVOcfQcTgccDi8PxOXw+GAiDRt31qgy6+6YO/SvTj83WHE9YvzuI3KXmWHOATQolXarSY0yZm/FO4uhK3CBgDqs6rVW+SxjTjbXFJSgurIamg0KreI1XlKRWEFrKVWpFyYguDY4DY73rbWrHNFhUangTgEhnBDh4iVt+LS0TAu6hgXdYyLuvpx8XZ8WByiJovoHAGtXoszh88AACK7RKLbr7rB4XCgsPDcXcqJiIgCUa9evZCamorZs2fjjTfeQGhoKP7+97/j+PHjyMvLa/B5c+fOxZw5czyWFxUVobra+7dLORwOlJaWQkSafKHHPNiM3JW5KPmhpMFtwrRhbZorOMIdKMwtRGFuy15TRFBVVYXTwafVi0P1RPWIgsRIh86LWnKu1FVjrYGlwoLwoPAOES9vxaWjYVzUMS7qGBd19eNisXh3Rk4Wh6jJgoKD0P/m/rBXOwee5OCBRERE5xYUFIRPPvkEd9xxB6Kjo6HT6TBu3DhMmDBBvTfLL2bPno1Zs2Ypj8vKypCSkoK4uDhERER4vZ0OhwMajQZxcXFNT8jjgc7dO8NepT4wtT5YD72xbVPP2F/HwmZx9hpCvZqOapFHo77e4XDg1KlTiI2LdYuL2j40Wk1A3ErWonOlnsQZiR1mIhNvxqUjYVzUMS7qGBd19eNStzeyN3T8Ty5qFa6ZzIiIiKhxMjMzkZ2djdLSUthsNsTFxWH48OEYMmRIg88xGo0wGj0vwmi12lZLmDUaTbP3bwg2wBBsaIVWNY9Wq4U+uuX5isPhgKHaAFO4iV9U6mjJuVKX1tixYuqtuHQ0jIs6xkUd46Kubly8HRtGmoiIiKgNmc1mxMXF4cCBA9iyZQsmTpzo6yYRERFRgGPXDyIiIiIvKC8vx8GDB5XHOTk5yM7ORnR0NFJTU/Hhhx8iLi4Oqamp2LlzJx588EFce+21uOyyy3zYaiIiIqIOXBxy3b/vmtXDmxwOBywWC0wmdi2ui3FRx7ioY1zUMS7qGBd1jIu6+nFx5QLnGtvHG7Zs2YJLLrlEeewaK2jKlClYvHgx8vLyMGvWLBQUFCApKQm33XYb/vjHPzbpNVozvwF4TjWEcfHEmKhjXNQxLuoYF3WMi7rWzm800tqZko8cP34cKSkpvm4GERER+Yljx46hc+fOvm5GizC/ISIiorq8ld902OKQw+HAyZMnER4e3qgpR5vCNVPIsWPHWmWmkPaKcVHHuKhjXNQxLuoYF3WMi7r6cRERWCwWJCcnt/srkK2Z3wA8pxrCuHhiTNQxLuoYF3WMizrGRV1r5zcd9rYyrVbb6lcHIyIieLKqYFzUMS7qGBd1jIs6xkUd46KublzMZrOPW+MdbZHfADynGsK4eGJM1DEu6hgXdYyLOsZFXWvlN+378hkREREREREREbUIi0NERERERERERAGMxaFmMBqNePrpp2E0Gn3dFL/CuKhjXNQxLuoYF3WMizrGRR3j0nyMnTrGxRNjoo5xUce4qGNc1DEu6lo7Lh12QGoiIiIiIiIiIjo/9hwiIiIiIiIiIgpgLA4REREREREREQUwFoeIiIiIiIiIiAIYi0NERERERERERAGMxaFmmD9/PtLT02EymTB8+HD8+OOPvm5Sq1q7di2uvvpqJCcnQ6PRYNmyZW7rRQRPPfUUkpKSEBwcjHHjxuHAgQNu2xQXF+OWW25BREQEIiMjcccdd6C8vLwNj8K75s6di6FDhyI8PBzx8fG49tprsW/fPrdtqqurMX36dMTExCAsLAyTJ09GQUGB2za5ubm48sorERISgvj4eDzyyCOw2+1teShetWDBAgwYMAARERGIiIhAVlYWvv76a2V9IMZEzfPPPw+NRoOZM2cqywIxNs888ww0Go3bT69evZT1gRgTlxMnTuDWW29FTEwMgoOD0b9/f2zZskVZH4jvu+np6R7ni0ajwfTp0wEE9vniLcxvlrmtD8S/M+Y36pjfNA7zGyfmNw1jfuPJr/IboSZ57733xGAwyNtvvy27d++Wu+66SyIjI6WgoMDXTWs1X331lTz55JPyySefCABZunSp2/rnn39ezGazLFu2TLZv3y7XXHONdOnSRaqqqpRtLr/8chk4cKBs3LhRfvjhB8nIyJCbbrqpjY/Ee8aPHy+LFi2SXbt2SXZ2tlxxxRWSmpoq5eXlyjb33nuvpKSkyMqVK2XLli0yYsQIGTlypLLebrdLv379ZNy4cbJt2zb56quvJDY2VmbPnu2LQ/KKzz77TL788kvZv3+/7Nu3T5544gkJCgqSXbt2iUhgxqS+H3/8UdLT02XAgAHy4IMPKssDMTZPP/209O3bV/Ly8pSfoqIiZX0gxkREpLi4WNLS0mTq1KmyadMmOXz4sCxfvlwOHjyobBOI77uFhYVu58q3334rAGT16tUiErjni7cwv2F+I8L8piHMb86P+c1ZzG/UMb9R50/5DYtDTTRs2DCZPn268ri2tlaSk5Nl7ty5PmxV26mfPDkcDklMTJQXX3xRWVZSUiJGo1HeffddERH5+eefBYBs3rxZ2ebrr78WjUYjJ06caLO2t6bCwkIBIGvWrBERZwyCgoLkww8/VLbZs2ePAJANGzaIiDMp1Wq1kp+fr2yzYMECiYiIEKvV2rYH0IqioqLkrbfeYkxExGKxSPfu3eXbb7+Viy++WEmeAjU2Tz/9tAwcOFB1XaDGRETksccek9GjRze4nu+7Tg8++KB069ZNHA5HQJ8v3sL8hvmNGuY3DWN+cxbzG3fMb9Qxv2kcX+Y3vK2sCWw2G7Zu3Ypx48Ypy7RaLcaNG4cNGzb4sGW+k5OTg/z8fLeYmM1mDB8+XInJhg0bEBkZiSFDhijbjBs3DlqtFps2bWrzNreG0tJSAEB0dDQAYOvWraipqXGLS69evZCamuoWl/79+yMhIUHZZvz48SgrK8Pu3bvbsPWto7a2Fu+99x4qKiqQlZXFmACYPn06rrzySrcYAIF9vhw4cADJycno2rUrbrnlFuTm5gII7Jh89tlnGDJkCH7zm98gPj4eF1xwAf7xj38o6/m+6/w8XrJkCaZNmwaNRhPQ54s3ML/xxL8zJ+Y3npjfeGJ+44n5jSfmN+fn6/yGxaEmOHXqFGpra90CDwAJCQnIz8/3Uat8y3Xc54pJfn4+4uPj3dbr9XpER0d3iLg5HA7MnDkTo0aNQr9+/QA4j9lgMCAyMtJt2/pxUYuba117tXPnToSFhcFoNOLee+/F0qVL0adPn4COCQC89957+OmnnzB37lyPdYEam+HDh2Px4sX45ptvsGDBAuTk5ODCCy+ExWIJ2JgAwOHDh7FgwQJ0794dy5cvx+9+9zs88MAD+Ne//gWA77sAsGzZMpSUlGDq1KkAAvdvyFuY33ji3xnzm/qY36hjfuOJ+Y065jfn5+v8Rt+8ZhORy/Tp07Fr1y6sW7fO103xCz179kR2djZKS0vx0UcfYcqUKVizZo2vm+VTx44dw4MPPohvv/0WJpPJ183xGxMmTFD+PWDAAAwfPhxpaWn44IMPEBwc7MOW+ZbD4cCQIUPwl7/8BQBwwQUXYNeuXVi4cCGmTJni49b5h3/+85+YMGECkpOTfd0Uog6L+Y075jeemN+oY36jjvnN+fk6v2HPoSaIjY2FTqfzGB28oKAAiYmJPmqVb7mO+1wxSUxMRGFhodt6u92O4uLidh+3GTNm4IsvvsDq1avRuXNnZXliYiJsNhtKSkrctq8fF7W4uda1VwaDARkZGcjMzMTcuXMxcOBAvPLKKwEdk61bt6KwsBCDBw+GXq+HXq/HmjVr8Oqrr0Kv1yMhISFgY1NXZGQkevTogYMHDwb0+ZKUlIQ+ffq4Levdu7fSJT3Q33ePHj2K7777DnfeeaeyLJDPF29gfuMp0P/OmN94Yn7jiflN4zC/cWJ+c27+kN+wONQEBoMBmZmZWLlypbLM4XBg5cqVyMrK8mHLfKdLly5ITEx0i0lZWRk2bdqkxCQrKwslJSXYunWrss2qVavgcDgwfPjwNm+zN4gIZsyYgaVLl2LVqlXo0qWL2/rMzEwEBQW5xWXfvn3Izc11i8vOnTvd3uC+/fZbREREeLxxtmcOhwNWqzWgYzJ27Fjs3LkT2dnZys+QIUNwyy23KP8O1NjUVV5ejkOHDiEpKSmgz5dRo0Z5TB29f/9+pKWlAQjc912XRYsWIT4+HldeeaWyLJDPF29gfuMpUP/OmN80HvMb5jeNxfzGifnNuflFfuONEbUDyXvvvSdGo1EWL14sP//8s9x9990SGRnpNjp4R2OxWGTbtm2ybds2ASDz5s2Tbdu2ydGjR0XEOeVgZGSkfPrpp7Jjxw6ZOHGi6pSDF1xwgWzatEnWrVsn3bt3b9dTDv7ud78Ts9ks33//vdvUg5WVlco29957r6SmpsqqVatky5YtkpWVJVlZWcp617SDl112mWRnZ8s333wjcXFx7Xqayscff1zWrFkjOTk5smPHDnn88cdFo9HIihUrRCQwY9KQurN5iARmbB5++GH5/vvvJScnR9avXy/jxo2T2NhYKSwsFJHAjImIczpgvV4vf/7zn+XAgQPyn//8R0JCQmTJkiXKNoH4vivinEErNTVVHnvsMY91gXq+eAvzG+Y3IsxvGsL8pvGY3zC/aQjzm4b5S37D4lAzvPbaa5KamioGg0GGDRsmGzdu9HWTWtXq1asFgMfPlClTRMQ57eAf//hHSUhIEKPRKGPHjpV9+/a57eP06dNy0003SVhYmERERMjtt98uFovFB0fjHWrxACCLFi1StqmqqpL77rtPoqKiJCQkRK677jrJy8tz28+RI0dkwoQJEhwcLLGxsfLwww9LTU1NGx+N90ybNk3S0tLEYDBIXFycjB07VkmcRAIzJg2pnzwFYmxuuOEGSUpKEoPBIJ06dZIbbrhBDh48qKwPxJi4fP7559KvXz8xGo3Sq1cvefPNN93WB+L7rojI8uXLBYDHsYoE9vniLcxvmN8wv1HH/KbxmN8wvzkX5jfq/CW/0YiINK2vERERERERERERdRQcc4iIiIiIiIiIKICxOEREREREREREFMBYHCIiIiIiIiIiCmAsDhERERERERERBTAWh4iIiIiIiIiIAhiLQ0REREREREREAYzFISIiIiIiIiKiAMbiEBG12IgRI/DSSy/57PWXLFmCxMTEBtf37NkT//jHP9qwRd7361//GjNnzlQeDxkyBC+//LLP2kNERBQImOO0PuY4RP6BxSEiahGHw4GdO3di4MCBPmvD9u3bMWjQIADOhGLJkiVu69euXYupU6c2aX9arRalpaVebGXLZGdnK8dot9uxe/du5TERERF5H3OctsEch8g/sDhERC2yf/9+VFZWYsCAAY1+Tk1NjVfbUDdxUpOQkICgoKBG7+/HH39ERkYGzGZzi9rlreO0WCw4fPiwcox79+5FdXW1T5NVIiKijo45TsOY4xB1PCwOEXUAhw4dgkajwRdffIGxY8ciJCQEPXv2xKZNm9y2W7p0KYYOHYqQkBBkZGRg0aJFbuvT09Pxwgsv4JZbbkF4eDjS0tKwYsUKHDt2DJMmTUJ4eDh69eqFbdu2Kc/Jzs5GQkICVq9ejd69eyM8PByTJk3CmTNnlG2mTp2Km2++GU8++SQSExORmZkJAKisrMQTTzyBzp07IzQ0FBdddBF27dp13mO96qqrEBISgh49emDNmjXnTJwWL16M9PR05fEf//hHjBs3DvPnz0f37t0RGhqK6667DlarFQBw22234e6778aBAweg0Wig0Wiwd+9eAMDu3btx1VVXISwsDPHx8ZgxY4byPAAYM2YMZs2ahfvuuw/R0dGYPHkyhg0bhj/84Q9ubTp27BiCg4Oxfv16AMDKlSsxbtw4xMbGIjQ0FBdeeCF27typbL99+3bo9Xr06dNHiXlqaiqioqKUbT7//HMMGTIEJpMJXbt2xRtvvOH2mm+88Qb69++PkJAQxMTE4PLLL4fD4ThnrImIiHyNOQ5zHOY4RG1EiKjd+/jjj0Wj0cgll1wiq1evlv3798u4ceNkzJgxyjZvvvmmmM1mWbx4sRw+fFgWL14sWq1W1q5dKyIiZ86cEQDSvXt3+eCDD+TAgQMyfvx46d69u4wZM0a+/PJL2bt3r4waNUquueYaZb+PPfaYhIaGyqRJk2T37t2yZs0a6dSpk0yfPl3ZZtCgQRIeHi6zZ8+WvXv3yv79+6WqqkqGDh0qkydPls2bN8v+/ftl2rRpkpGRIQ6HQ/U4CwoKpFOnTnL33XfLnj175Ntvv5Xu3bsLANmzZ4+IiGRmZso777yjPGfmzJkyceJE5fHVV18tZrNZHnroIdm9e7esWrVKQkNDZfHixSIiUlxcLCNGjJDZs2dLXl6e5OXlicPhkPXr14vZbJaXX35ZDhw4IGvXrpWMjAx59tlnlX1HRUVJdHS0/O1vf5MDBw7I4cOHZdq0aXLddde5Hcftt9/uFsMlS5bI0qVLZf/+/bJjxw65+uqrZdiwYcr61157TQYMGKA8fvjhh92e/9JLL0laWpp89NFHcvjwYXnvvffEZDIpv9slS5ZI586d5YsvvpAjR47I5s2b5dVXX1WNMRERkT9hjsMchzkOUdtgcYioA3jqqackKipKCgsLlWWvvvqq9O3bV0ScCUdwcLB88MEHbs8bOXKkPProoyIi8v333wsAWbVqlbL+rbfeEo1GI7t27VKWPf/8824f6uPHj5dBgwZJbW2tsuzPf/6z8to2m00MBoNbIuXa5uKLL3ZLkk6dOiUA5OjRo6rHOW3aNLnooovclv3+97+XkJAQt9eva8yYMfLUU08pj1NTU+WWW25x22bw4MHy4osvKo8jIyPl888/Vx7b7Xbp1auXvP32227Pe+mll+SSSy4REZEjR44IALf9iIjMmzdPevbsqTzevXu3GAwG2b17t2p7RUSWL18uZrNZeXzHHXfIbbfdpjweO3asckw5OTkSGhoqe/fuddvHVVddJXPmzBERkd/+9rdy8803N/h6RERE/oo5DnMc5jhEbYO3lRF1ANu3b8fEiRMRFxenLMvJyUFGRgYA4JNPPkFkZCQmT57s9jyDwaB0Gd6+fTu6deuGSy65RFmfm5uLYcOGoW/fvm7LunTpojzOzs7GAw88AK327NtJVFSU0p13z549sNlseOCBB9xe+6233sKGDRsQHh6OsLAwhIWFIS0tDQCg1+s9jrG6uhrvvvuu22wWABAUFIT+/fu7vX792Li6Y5eUlCA3Nxd33XWX2zZHjhxRYpWTk4OSkhK3e93Xr1+PvXv3YsaMGUpbw8LC8MQTTyht3b59OwwGA+655x63fffv3x+HDh2CzWYDADzxxBO49dZble7TNTU1eP311zFy5EgkJSUhLCwM11xzDTp37uwW47rt2b59u/L43//+NyorK5GZmenWtq+//lpp2xVXXIEPPvgAo0aNwiuvvIK8vDzVWBEREfkb5jjMcZjjELUNz3cnImp3tm/fjtmzZ7sty87OxkUXXQTAeR95nz593JILh8OBvXv34tZbb1W2Hz58uMc+RowY4bHsqquuAgDk5+ejoKDA4174jRs34oILLlC2T0pKQo8ePZT1ZWVlyMnJwddff60kLHUlJyd7LNu3bx+qqqowePBgt+U//fRTg/fi5+bm4syZM0qSsX37duh0OgwbNsxtm+LiYmUf2dnZiI6ORkpKitsxDxgwAB9//LHHa4SHhyvbZGZmKo9d+vXrB7vdjgMHDqCsrAwrVqzA/v37lfV333031q1bh6eeegp9+/ZFREQEZs2apeyn/qwdx48fx6lTp9zae+edd+LRRx/1aFt8fDwA4MYbb8SoUaOwbNky/Oc//8Hs2bOxcuVKZGVlqcaNiIjIXzDHGeSxPcAchzkOkfexOETUzpWWluLIkSNKouLiutoFOD/cq6qq3Na/++67sFgsuPbaawE4k4qbbrrJYx+TJk1SHosIduzYgSeffFJZDwC1tbXKNidPnsT777+PL774Qtlv/bbpdDpoNBro9XrVxEmNK+mrexy7du3CihUr8Prrr6s+Z/v27YiIiFCuAm7fvh09e/ZEcHCwss22bdsQGRmpDOioNmVtUFAQiouL0a1bN2g0mgZfq/5xAkBiYiJiY2Px888/47XXXsP999+vXDGz2Wx455138Mknn+Caa64B4IzfmjVrlAEeXbN21E2U6h5TUFAQKisrzxvHlJQU3H///ZgxYwbS09Px008/MXEiIiK/xhyHOQ5zHKK2w9vKiNq5HTt2QK/Xo3///sqyo0eP4syZM8qH7YQJE7Bx40a88847OHLkCP79739j+vTpePXVVxETE+Nx5QYAzpw5g9zcXLerWAcPHkR5ebnHh/jTTz+NQ4cOYePGjfjVr36FSZMmYdy4cco29ROK0NBQXHzxxXjooYfw/fff48iRI1i3bh0ef/xxHDlyRPU4u3fvjri4ODzxxBPYv38/Vq9ejd/85jcQkQavqrmuhrmSHbXkpn53ZofDgaKiIhw6dAj5+fkAgLFjx6KoqAgzZszAnj17sG/fPnz66ad46qmn3PajljgBzitr8+bNw65du9yufgYFBSEiIgKff/45Dh8+jG+++QaTJ09GWVmZ21XJzp07Izo6WvWYrrjiCrz//vtYuHAhDh8+jO3bt+Of//wn/vWvfwFwdm1fsGABdu7ciUOHDuGvf/0rzpw5g/Hjx6u2lYiIyF8wx2GOwxyHqA35dsgj6sgAyNNPP+3rZvi1iy++WC6++OIW7eO1115TBkacMmWKpKWlydKlSyUyMtJtu4ULF0rXrl3FZDJJZmamLF26VFm3c+dOASBFRUXKstWrV4vRaJSamhpl2YcffiixsbHK4xtuuEGmT58ujz32mEREREhcXJw89dRTbs+JiYmRDz/80KPdJ0+elJtvvlkSEhLEZDJJRkaG3HvvvW7PrW/58uXSvXt3MRgMMnjwYPnLX/4iWq1WKioqVLefPHmyzJgxQ3mcmZnpMZjixIkT5cEHH1Qe5+bmyvDhw8VgMLgd69dffy1Dhw6V0NBQiYqKkqysLPnvf/8rIiJlZWWi0Whk8+bNqu24//77BYD89a9/9Vj36aefSlpamgQHB8u4cePkv//9r9vv4uGHH5arrrqqwWMScQ4I2b17dzEajZKQkCBXXnml0paFCxdK//79JSQkRCIjI2Xs2LHyv//9T3nu008/LfwoOL+m/K1aLBaJi4uTJUuWeO31T506JSEhIfLll196bZ9E1DTMa87PG3lNXcOGDZOgoCC3ZcxxnJjjqOc406ZNY17TBl544QXp2bNng4OlN8djjz3mNiA8tT3+5ZCIiCxatEgAKD9Go1G6d+8u06dPl/z8/Gbtk0nU+Xk7iXIVh4gai8WhxmnK3+pzzz0nXbt2FbvdLiLOBAqA/PTTT27bORwOiYyMFABy+PBht3VVVVViMBjkpptuUpY98MADMnjw4JYdCFGAYF7jG8xryNeY17S+0tJSiY6OVma4s9vtEh4eLtdcc43HtvPmzRMAbjPSufzxj38UALJv3z4REcnLyxOj0Siffvpp6x4ANYhjDpGbP/3pT+jSpQuqq6uxbt06LFiwAF999RV27dqFkJCQJu2rqqpKdUYGIqKOqqamBq+88goeeugh6HQ6AMDo0aMBAOvWrXPrlr97926UlJRAr9dj/fr1bjPkbN68GTabTXkuANx777149dVXsWrVKlx66aVtdERE7RvzGiIi73r77bdht9uVcbx0Oh1GjBiB//3vfx7brl+/Xslz1NbFx8crA7onJiZi4sSJeOmll5RxqqhtccwhcjNhwgTceuutuPPOO7F48WLMnDkTOTk5+PTTT5u8L5PJxCSKiLxORDwGH/UXX3zxBYqKinD99dcry4YMGQKTyYR169a5bbt+/XrExMRg7NixHutcj+sWh3r37o1+/fph8eLFrXcARB0M8xoi8raKigpfN8FDW7Zp0aJFuOaaa2AymZRlo0ePxqlTp7Bnzx63bdevX4/rr7/ebZwrwDlT3aZNmzBq1Ci37a+//nqsW7cOhw8fbt2DIFUsDtE5ua5O5+TkAADGjBmDMWPGeGw3depUZSYEF41Gg2eeeUZ5bLFYMHPmTKSnp8NoNCI+Ph6/+tWv8NNPPynbHDhwAJMnT0ZiYiJMJhM6d+6MG2+8EaWlpco2ixYtwqWXXor4+HgYjUb06dMHCxYs8GhTeno6rrrqKqxbtw7Dhg2DyWRC165d8e9//9tj25KSEjz00ENK2zp37ozbbrsNp06dUraxWq14+umnkZGRAaPRiJSUFDz66KOwWq2NiuWbb76Jbt26ITg4GMOGDcMPP/ygul1LX6e+l156CSNHjkRMTAyCg4ORmZmJjz76qFHPHTNmDPr164etW7di5MiRCA4ORpcuXbBw4UKPbQsLC3HHHXcgISEBJpMJAwcOVAYMdDly5Ag0Gg1eeuklzJ8/H127dkVISAguu+wyHDt2DCKCZ599Fp07d0ZwcDAmTpyI4uJit324fq8rVqzAoEGDYDKZ0KdPH3zyyScebSopKcHMmTORkpICo9GIjIwMvPDCC3A4HI06/q+//hoXXnghQkNDER4ejiuvvBK7d+9222bq1KkICwvDiRMncO211yIsLAxxcXH4/e9/7zbDSUNcx/P9999jyJAhCA4ORv/+/fH9998DAD755BP0798fJpMJmZmZ2LZtm8c+Vq1apbQzMjISEydO9PhwBpwFh6FDh8JkMqFbt2544403GmzXkiVLkJmZieDgYERHR+PGG2/EsWPHzns8zzzzDDQaDQ4ePIipU6ciMjISZrMZt99+OyorK922tdvtePbZZ9GtWzcYjUakp6fjiSee8DjXXTFavny5EqM33ngD33//PTQaDT744APMmTMHnTp1Qnh4OH7961+jtLQUVqsVM2fORHx8PMLCwnD77bd77Lux7yeNtWzZMqSnp6Nbt27KMoPBgKFDh3pcNVu/fj2ysrIwatQo1XWRkZHo16+f2/Jf/epX+PzzzyEizW4jUSBjXsO8hnkN85rm5DU///wzbr75ZkRFRblduDnffmfMmIGwsDCPHAgAbrrpJiQmJrrFtSm/o0OHDuGKK65AeHg4brnlFgCNe89pSTxycnKwY8cOZVB2F1dM6uYzhw8fRn5+PmbMmAGTyeS2Ljs7GxUVFW6xBKDstzkFfPIC397VRv7CdW9+/cHmXnnlFQEgCxcuFJGG7yVXuycc9e7Nv/nmm8VgMMisWbPkrbfekhdeeEGuvvpqZdBWq9UqXbp0keTkZHnuuefkrbfekjlz5sjQoUPlyJEjyn6GDh0qU6dOlb///e/y2muvyWWXXSYA5P/+7//cXj8tLU169uwpCQkJ8sQTT8j//d//yeDBg0Wj0ciuXbuU7SwWi/Tr1090Op3cddddsmDBAnn22Wdl6NChsm3bNhERqa2tlcsuu0xCQkJk5syZ8sYbb8iMGTNEr9fLxIkTzxvft956SwDIyJEj5dVXX5WZM2dKZGSkdO3a1S2eLX0dtd9D586d5b777pP/+7//k3nz5smwYcMEgHzxxRfn3d/FF18sycnJEh8fLzNmzJBXX31VRo8eLQDkn//8p7JdZWWl9O7dW4KCguShhx6SV199VS688EIBIC+//LKyXU5OjgCQQYMGSZ8+fWTevHnyhz/8QQwGg4wYMUKeeOIJJUYPPPCAaDQauf32293alJaWJj169JDIyEh5/PHHZd68edK/f3/RarWyYsUKZbuKigoZMGCAxMTEyBNPPCELFy6U2267TTQajdvgjA3597//LRqNRi6//HJ57bXX5IUXXpD09HSJjIyUnJwct5ibTCbp27evTJs2TRYsWCCTJ08WAPL666+f93Vc52lSUpI888wz8ve//106deokYWFhsmTJEklNTZXnn39enn/+eTGbzZKRkeE2+N+3334rer1eevToIX/9619lzpw5EhsbK1FRUW7t3LFjhwQHB0tqaqrMnTtXnn32WUlISJABAwZ43Jv/3HPPiUajkRtuuEFef/11ZZ/p6ely5syZcx6P617/Cy64QCZNmiSvv/663HnnnQJAHn30Ubdtp0yZIgDk17/+tcyfP19uu+02ASDXXnutR4wyMjIkKipKHn/8cVm4cKGsXr1aVq9erZxPWVlZbufNjTfeKDfffLNMmDBB5s+fL7/97W8FgMyZM8dt3419P2nsOBoZGRkyadIkj+WzZ88WAG6/k65du8pf/vIX+e6770Sj0SixdTgcEhUVJRMmTPDYz5IlSwSA7Ny587xtIQpkzGuY16hhXsO8prl5TZ8+fWTixIny+uuvy/z58xu937Vr1woA+eCDD9z2W1FRIaGhoTJ9+vRm/Y6MRqN069ZNpkyZIgsXLpR///vfjX7PaUk8XHnIjh07PI5Hr9fLlClT3I4nNDRUampqZPTo0fLQQw8p615++WUBIJs2bfJ4jYyMDJk8efI520Gtg8UhEpGzSdR3330nRUVFcuzYMXnvvfckJiZGgoOD5fjx4yLSsiTKbDa7vQHWt23bNgGgOutDXZWVlR7Lxo8fL127dnVblpaWJgBk7dq1yrLCwkIxGo3y8MMPK8ueeuopASCffPKJx34dDoeIiLzzzjui1Wrlhx9+cFu/cOFCASDr169vsL02m03i4+Nl0KBBYrValeVvvvmmAHCLZ0teR0T991A/XjabTfr16yeXXnrpOfcl4vx9A5C//e1vyjKr1SqDBg2S+Ph4sdlsInL2Db7u7Ew2m02ysrIkLCxMysrKRORsEhUXFyclJSXKtq4vzgMHDnSbyeOmm24Sg8Eg1dXVyjLX7/Xjjz9WlpWWlkpSUpJccMEFyrJnn31WQkNDZf/+/W7H9Pjjj4tOp5Pc3NwGj9tisUhkZKTcddddbsvz8/PFbDa7LXcVOP70pz+5bXvBBRdIZmZmg69R/3jqziC2fPlyASDBwcFy9OhRZfkbb7whAGT16tXKMtfv4vTp08qy7du3i1ardRv879prrxWTyeS2v59//ll0Op1bEnXkyBHR6XTy5z//2a2dO3fuFL1e77G8PlcSNW3aNLfl1113ncTExCiPs7OzBYDceeedbtv9/ve/FwCyatUqjxh98803btu6ikP9+vVTzkUR53mj0Wg8iitZWVnn/fsQUX8/aUxxqKamRjQajdv7i8uXX34pAOSdd94REeegiwBkzZo1YrFYRKfTKTOR7dq1SwCoxvp///ufAJD333//nG0hCnTMa5jXqGFew7zGpal5Td0JIpqyX4fDIZ06dfIodnzwwQduf8/N+R09/vjjbts25j2npfH4wx/+IADEYrF4rBs6dKh069ZNeXzPPffIJZdcIiIijz76qAwdOlRZ9+tf/1pCQkJUZ/C77LLLpHfv3udsB7UO3lZGbsaNG4e4uDikpKTgxhtvRFhYGJYuXYpOnTq1eN+RkZHYtGkTTp48qbrebDYDAJYvX67a9dIlODhY+XdpaSlOnTqFiy++GIcPH/boMtmnTx9ceOGFyuO4uDj07NnT7T7Wjz/+GAMHDsR1113n8VoajQYA8OGHH6J3797o1asXTp06pfy4uqevXr26wfZu2bIFhYWFuPfee2EwGJTlU6dOVY7ZpSWv05C68Tpz5gxKS0tx4YUXunV7Pxe9Xo977rlHeWwwGHDPPfegsLAQW7duBQB89dVXSExMVAamA4CgoCA88MADKC8vx5o1a9z2+Zvf/Mbt2IcPHw4AuPXWW93Gcxg+fDhsNhtOnDjh9vzk5GS331dERARuu+02bNu2Tbmf+cMPP8SFF16IqKgot1iOGzcOtbW1WLt2bYPH/O2336KkpAQ33XST23N1Oh2GDx+u+nu499573R5feOGFjb5fuk+fPsjKyvKIx6WXXorU1FSP5a795uXlITs7G1OnTkV0dLSy3YABA/CrX/0KX331FQCgtrYWy5cvx7XXXuu2v969e2P8+PFubfnkk0/gcDhw/fXXux17YmIiunfv3uhzUC0ep0+fRllZGQAobZs1a5bbdg8//DAA4Msvv3Rb3qVLF4+2utx2220ICgpSHg8fPhwigmnTprltN3z4cBw7dgx2u11Z1pT3k/MpLi6GiCAqKspj3ciRI6HVapWxhNavX4+goCAMHToUYWFhGDBggNLd2vX/+l2tASj7rntrCBE1jHmNO+Y1zGuY13gnr2nsfjUaDX7zm9/gq6++Qnl5ufL8999/H506dVI+65vzO/rd737n9rgx7zktjcfp06eh1+sRFhbmsW706NFuYwutX78eI0eOBACMGjUK27ZtU9q1fv16DB8+XHUcN9c5Tm2Po+qRm/nz56NHjx7Q6/VISEhAz549odV6p4b417/+FVOmTEFKSgoyMzNxxRVX4LbbbkPXrl0BOL/8zZo1C/PmzcN//vMfXHjhhbjmmmtw6623un3grl+/Hk8//TQ2bNjg8cZXWlrqtm3dDwyXqKgonDlzRnl86NAhTJ48+ZxtP3DgAPbs2YO4uDjV9YWFhQ0+9+jRowCA7t27uy0PCgpSjt0br9OQL774As899xyys7Pd7u93JYjnk5ycjNDQULdlrlkFjhw5ghEjRuDo0aPo3r27x7nSu3dvAGdj4FL/9+L6naWkpKgur/v7AoCMjAyP9tdtU2JiIg4cOIAdO3Y0K5YHDhwAgAZnhIqIiHB7bDKZPF6n/nl2Ls2NhyuuPXv29Nhn7969sXz5clRUVMBisaCqqsrjHHQ915VsAc5jFxHVbQG4FWGackyuosaZM2cQERGBo0ePQqvVIiMjw227xMREREZGepwzdWfyOt9rnSt+DocDpaWliImJAdC095PGEpXxgCIjI9G3b1+3AtAFF1ygfMkZOXKk2zqDwYBhw4Y1uO/G/v0SBTrmNeqY1zCvqYt5zfnVz0Oast8bbrgBL7/8Mj777DPcfPPNKC8vx1dffYV77rlH+b039Xek1+vRuXNnjzae7z3HW/FQM3r0aPz973/H+vXrMXbsWOzevRt//etfATjzHLvdjh9//BFpaWnIy8vDnXfeqbofEWGe4yMsDpGbYcOGYciQIQ2u12g0ql98GjNA3fXXX48LL7wQS5cuxYoVK/Diiy/ihRdewCeffIIJEyYAAP72t79h6tSp+PTTT7FixQo88MADmDt3LjZu3IjOnTvj0KFDGDt2LHr16oV58+YhJSUFBoMBX331Ff7+9797DMjnmkq6PrVjOBeHw4H+/ftj3rx5quvrf9g1l7df54cffsA111yDiy66CK+//jqSkpIQFBSERYsW4b///a83mtwsDf1evPX7Apyx/NWvfoVHH31Udb0r6WrouQDwzjvvIDEx0WN9/ascDbW7sdoiHo3lcDig0Wjw9ddfq76+2pUiNY1te2M//OteKW7sa52vDU19Pzmf6OhoaDSaBpPn0aNHY+HChSgpKXG7mgY4k6a3334bNTU1WLduHTIzM91mAXFx7Ts2NrZJbSMKVMxr1DGv8S7mNe46Yl5TPw9pyn5HjBiB9PR0fPDBB7j55pvx+eefo6qqCjfccIPb/oDG/46MRqNqoft87zktjUdMTAzsdjssFgvCw8Pd1rl6Qa1btw4hISEAoPQgi42NRffu3bFu3Tpl4Gu1HtKAM9dhnuMbLA5Rk0RFRal2Ka1/BaUhSUlJuO+++3DfffehsLAQgwcPxp///GcliQKA/v37o3///vjDH/6A//3vfxg1ahQWLlyI5557Dp9//jmsVis+++wzt6sSzemW7NKtWzfs2rXrvNts374dY8eObXIlOy0tDYCzUl/3akBNTQ1ycnIwcOBAr7yOmo8//hgmkwnLly+H0WhUli9atKjR+zh58iQqKircrrLt378fAJSZXNLS0rBjxw44HA63D6q9e/cq673p4MGDHlcV6repW7duKC8v95hNoTFcM03Fx8c36/ltxRXXffv2eazbu3cvYmNjERoaCpPJhODgYOWqVF31n9utWzeICLp06XLORLOl0tLS4HA4cODAAeVKLAAUFBSgpKTE6+eMGm+/n+j1enTr1k2ZBam+0aNHY8GCBfjuu++wbds2PPLII8q6kSNHoqqqCl9++SUOHz7c4FV/177rxoyImo95DfMagHmNv2hPeU1T93v99dfjlVdeQVlZGd5//32kp6djxIgRbvsDvPM7Otd7Tkvj0atXLwDOfGTAgAFu6+Lj45UCUGhoKPr06YPIyEhlvauX9PHjx6HT6dxuPayr/vsItR2OOURN0q1bN+zduxdFRUXKsu3bt3tMw1xfbW2tx33z8fHxSE5OVroEl5WVuY0FAjjf3LRarbKNq8Jd9wpDaWlpk5KC+iZPnozt27dj6dKlHutcr3P99dfjxIkT+Mc//uGxTVVVFSoqKhrc/5AhQxAXF4eFCxfCZrMpyxcvXoySkhK3bVvyOmp0Oh00Go3bFdAjR45g2bJljd6H3W53mxrUZrPhjTfeQFxcHDIzMwEAV1xxBfLz8/H++++7Pe+1115DWFgYLr744ia1+3xOnjzp9vsqKyvDv//9bwwaNEi52nL99ddjw4YNWL58ucfzS0pKPM61usaPH4+IiAj85S9/QU1Njcf6uue/LyUlJWHQoEH417/+5XYu7dq1CytWrMAVV1wBwHkejB8/HsuWLUNubq6y3Z49ezziM2nSJOh0OsyZM8fjSp6I4PTp015pu6ttL7/8stty19XlK6+80iuvcy6t8X6SlZWFLVu2qK5zXSGbN28eampq3HoOpaenIykpSel+3dDVtK1bt8JsNqNv377NbiMRncW8hnkN8xrmNc3R1P3ecMMNsFqt+Ne//oVvvvkG119/vdt6b/yOGvOe09J4uAo658p1srOzsWLFCrc8B3AWhzZs2IAffvgBAwYM8Oh5BDjf/w4dOuTxXGob7DlETTJt2jTMmzcP48ePxx133IHCwkIsXLgQffv2VQaaVWOxWNC5c2f8+te/xsCBAxEWFobvvvsOmzdvxt/+9jcAwKpVqzBjxgz85je/QY8ePWC32/HOO+9Ap9MpV9Evu+wyGAwGXH311bjnnntQXl6Of/zjH4iPj0deXl6zjumRRx7BRx99hN/85jeYNm0aMjMzUVxcjM8++wwLFy7EwIED8dvf/hYffPAB7r33XqxevRqjRo1CbW0t9u7diw8++ADLly9vsNt6UFAQnnvuOdxzzz249NJLccMNNyAnJweLFi3yuDe/Ja+j5sorr8S8efNw+eWX4+abb0ZhYSHmz5+PjIwM7Nixo1H7SE5OxgsvvIAjR46gR48eeP/995GdnY0333xTuS/57rvvxhtvvIGpU6di69atSE9Px0cffYT169fj5ZdfVn3zb4kePXrgjjvuwObNm5GQkIC3334bBQUFbsn0I488gs8++wxXXXUVpk6diszMTFRUVGDnzp346KOPcOTIkQa7rEZERGDBggX47W9/i8GDB+PGG29EXFwccnNz8eWXX2LUqFH4v//7P68eU3O9+OKLmDBhArKysnDHHXegqqoKr732GsxmM5555hlluzlz5uCbb77BhRdeiPvuu09Jcvv27et2LnTr1g3PPfccZs+ejSNHjuDaa69FeHg4cnJysHTpUtx99934/e9/3+J2Dxw4EFOmTMGbb76JkpISXHzxxfjxxx/xr3/9C9deey0uueSSFr/G+bTG+8nEiRPxzjvvYP/+/R5X5FJTU5GSkoINGzYgPT0dycnJbutHjhyJjz/+GBqNBqNGjVLd/7fffourr76a9+ITeQnzGuY1zGuY1zQnr2nqfgcPHoyMjAw8+eSTsFqtbreUAd75HTXmPael8ejatSv69euH7777zmPiD8BZHFq0aBE2b96M6dOnu60bOXIkSktLUVpaivvvv191/9999x1EBBMnTjznsVIracWZ0KgdcU35unnz5vNuu2TJEunatasYDAYZNGiQLF++/LxTvlqtVnnkkUdk4MCBEh4eLqGhoTJw4EB5/fXXle0PHz4s06ZNk27duonJZJLo6Gi55JJL5LvvvnPb72effSYDBgwQk8kk6enp8sILL8jbb78tACQnJ0fZLi0tTa688kqP9qtNW3v69GmZMWOGdOrUSQwGg3Tu3FmmTJkip06dUrax2WzywgsvSN++fcVoNEpUVJRkZmbKnDlzpLS09Lxxe/3116VLly5iNBplyJAhsnbtWtW2tOR11H4P//znP6V79+5iNBqlV69esmjRImVazvO5+OKLpW/fvrJlyxbJysoSk8kkaWlp8n//938e2xYUFMjtt98usbGxYjAYpH///rJo0SK3bVxTvr744otuy11TktefelPtvHT9XpcvXy4DBgxQjktt2k6LxSKzZ8+WjIwMMRgMEhsbKyNHjpSXXnrJberzhqxevVrGjx8vZrNZTCaTdOvWTaZOnSpbtmxRtpkyZYqEhoZ6PLexMW7oPAXgMUVyQ/H77rvvZNSoURIcHCwRERFy9dVXy88//+yxzzVr1khmZqYYDAbp2rWrLFy4sMF2fvzxxzJ69GgJDQ2V0NBQ6dWrl0yfPl327dt3zuNx7a+oqMhtuet3WfdvtKamRubMmSNdunSRoKAgSUlJkdmzZ7tN8XuuGDXlvGmobY19P2nMVPYizve62NhYefbZZ1XX33TTTQJAbr75Zo918+bNEwANTt+6Z88ewS9TcxPRuTGvYV6jhnkN8xpv5TXN2e+TTz4pACQjI6PB12vJ76ix7zktiYeIM18JCwuTyspKj3X79u0TAAJA9u/f77bO4XBIZGSkAJD3339fdd833HCDjB49+rxtoNahEWnFEcCIqF0bM2YMTp06dd6xC9pSeno6+vXrhy+++MLXTSFS9eyzz2LRokU4cOBAiwf1rGvmzJlYu3Yttm7dyp5DRETNwLyGqOVKS0vRtWtX/PWvf8Udd9zhtf3m5+ejS5cueO+999hzyEc45hAREZEXPfTQQygvL8d7773ntX2ePn0ab731Fp577jkWhoiIiMhnzGYzHn30Ubz44otNntn1XF5++WX079+fhSEf4phDREREXhQWFobCwkKv7jMmJgbl5eVe3ScRERFRczz22GN47LHHvLrP559/3qv7o6ZjzyEiIiIiIiIiogDGMYeIiIiIiIiIiAIYew4REREREREREQUwFoeIiIiIiIiIiAIYi0NERERERERERAGsybOVrV27Fi+++CK2bt2KvLw8LF26FNdee62yXkTw9NNP4x//+AdKSkowatQoLFiwAN27d1e2KS4uxv3334/PP/8cWq0WkydPxiuvvIKwsDBlmx07dmD69OnYvHkz4uLicP/99+PRRx9tdDsdDgdOnjyJ8PBwTvtLREQUwEQEFosFycnJ0GrVr4sxvyEiIqL2pDH5TVN32CRfffWVPPnkk/LJJ58IAFm6dKnb+ueff17MZrMsW7ZMtm/fLtdcc4106dJFqqqqlG0uv/xyGThwoGzcuFF++OEHycjIkJtuuklZX1paKgkJCXLLLbfIrl275N1335Xg4GB54403Gt3OY8eOCQD+8Ic//OEPf/jDHwEgx44dY37DH/7whz/84Q9/OtTPufKbpmjRbGUajcbtypqIIDk5GQ8//DB+//vfAwBKS0uRkJCAxYsX48Ybb8SePXvQp08fbN68GUOGDAEAfPPNN7jiiitw/PhxJCcnY8GCBXjyySeRn58Pg8EAAHj88cexbNky7N27t1FtKy0tRWRkJI4dO4aIiIjmHmKDHA4HioqKEBcX550qXQfBuHhiTNQxLuoYF3WMizrGRV39uJSVlSElJQUlJSUwm83nfT7zG55T9TEu6hgXdYyLOsZFHePiiTFR19L85nyafFvZueTk5CA/Px/jxo1TlpnNZgwfPhwbNmzAjTfeiA0bNiAyMlJJnABg3Lhx0Gq12LRpE6677jps2LABF110kZI4AcD48ePxwgsv4MyZM4iKivJ4bavVCqvVqjy2WCwAgLCwMLfu3N7icDhQVVWFsLAwnrB1MC6eGBN1jIs6xkUd46KOcVFXPy4OhwMAmn0bFvMbYlzUMS7qGBd1jIs6xsUTY6LO2/lNfV4tDuXn5wMAEhIS3JYnJCQo6/Lz8xEfH+/eCL0e0dHRbtt06dLFYx+udWrJ09y5czFnzhyP5UVFRaiurm7mETXM4XCgtLQUIsITtg7GxRNjoo5xUce4qGNc1DEu6urHxVVQaS7mN8S4qGtuXA5+cxAAkHF5htu/OwpvxKUjOl9cXMcPnD03Omos6mrM+RIosXBRi0n986M98Pbvzdv5TX1eLQ750uzZszFr1izlsauLVVxcXKt1u9ZoNOzqVg/j4okxUce4qGNc1DEu6hgXdfXjYjKZfN2kZmN+4x8YF3XNjctx23EAQHx8vNu/OwpvxKUjOl9cXMcPnD03Omos6mrM+RIosXBRi0n986M98PbvrbXzG68WhxITEwEABQUFSEpKUpYXFBRg0KBByjaFhYVuz7Pb7SguLlaen5iYiIKCArdtXI9d29RnNBphNBo9lmu12lb7ENdoNK26//aKcfHEmKhjXNQxLuoYF3WMi7q6cWlpbJjfEMC4NKQ5cdHAeQuEVqt1+3dH0tK4dFTniovr+IGz50ZHjkVd5ztfAikWLvVjUv/8aA9a4/fmzfymPq/urUuXLkhMTMTKlSuVZWVlZdi0aROysrIAAFlZWSgpKcHWrVuVbVatWgWHw4Hhw4cr26xduxY1NTXKNt9++y169uyp2uWaiIiIqLUwvyEiIqKOrsnFofLycmRnZyM7OxuAc5DG7Oxs5ObmQqPRYObMmXjuuefw2WefYefOnbjtttuQnJyszPjRu3dvXH755bjrrrvw448/Yv369ZgxYwZuvPFGJCcnAwBuvvlmGAwG3HHHHdi9ezfef/99vPLKK27dqomIiIi8hfkNERERecvWN7eefyM/0+TbyrZs2YJLLrlEeexKaKZMmYLFixfj0UcfRUVFBe6++26UlJRg9OjR+Oabb9zuh/vPf/6DGTNmYOzYsdBqtZg8eTJeffVVZb3ZbMaKFSswffp0ZGZmIjY2Fk899RTuvvvulhwrERERkSrmN0RERBTImlwcGjNmDESkwfUajQZ/+tOf8Kc//anBbaKjo/Hf//73nK8zYMAA/PDDD01tHhEREVGTMb8hIiKiQNY+RnIiIiIiIiIiIqJWweIQEREREREREVEAY3GIiIiIiIiIiCiAsThERERERERERBTAWBzyQ+1x2jsiIiIiIiIiap9YHCIiIiIiIiIiQsku3wAAJYpJREFUCmAsDhERERERERERBTAWh4iIiIiIiIiIAhiLQ0REREREREREAYzFISIiIiIiIiKiAMbiEBERERERERFRAGNxiIiIiIiIiIgogLE4REREREREREQUwFgcIiIiIiIiIiIKYCwOEREREREREREFMBaHiIiIiIiIiIgCGItDREREREREREQBjMUhIiIiIiIiIqIAxuIQEREREREREVEAY3GIiIiIiIiIiCiAsThERERERERERBTAWBwiIiIiIiIiIgpgLA4REREREREREQUwFoeIiIiIiIiIiAIYi0NERERERERERAGMxSEiIiIiIiIiogDG4hARERERERERUQBjcYiIiIiIiIiIKICxOEREREREREREFMBYHCIiIiIiIiIiCmAsDhERERERERERBTAWh4iIiIiIiIiIAhiLQ0REREREREREAYzFISIiIiIiIiKiAMbiEBERERERERFRAGNxiIiIiIiIiIgogLE4REREREREREQUwFgcIiIiIiIiIiIKYCwOEREREREREREFMBaHiIiIiIiIiIgCGItDREREREREREQBjMUhIiIiIiIiIqIAxuIQEREREREREVEAY3GIiIiIiIiIiCiAsThERERERERERBTAWBwiIiIiIiIiIgpgLA4REREREREREQUwrxeHnnnmGWg0GrefXr16Keurq6sxffp0xMTEICwsDJMnT0ZBQYHbPnJzc3HllVciJCQE8fHxeOSRR2C3273dVCIiIqJGYX5DREREHZm+NXbat29ffPfdd2dfRH/2ZR566CF8+eWX+PDDD2E2mzFjxgxMmjQJ69evBwDU1tbiyiuvRGJiIv73v/8hLy8Pt912G4KCgvCXv/ylNZpLREREdF7Mb4iIiKijapXikF6vR2Jiosfy0tJS/POf/8R///tfXHrppQCARYsWoXfv3ti4cSNGjBiBFStW4Oeff8Z3332HhIQEDBo0CM8++ywee+wxPPPMMzAYDK3RZCIiIqJzYn5DREREHVWrFIcOHDiA5ORkmEwmZGVlYe7cuUhNTcXWrVtRU1ODcePGKdv26tULqamp2LBhA0aMGIENGzagf//+SEhIULYZP348fve732H37t244IILVF/TarXCarUqj8vKygAADocDDofD68focDggIq2yb0Hr7LcttGZc2ivGRB3joo5xUce4qGNc1NWPi7fiw/wmcDEu6pobF4GcfX6df3cU3ohLR3S+uLiOX9m2HX8naorGnC+BEgsXtZjUPz/8XWv8PbdWfuPi9eLQ8OHDsXjxYvTs2RN5eXmYM2cOLrzwQuzatQv5+fkwGAyIjIx0e05CQgLy8/MBAPn5+W6Jk2u9a11D5s6dizlz5ngsLyoqQnV1dQuPypPD4UBpaSlEBFqtd4duqjZUo7Cw0Kv7bCutGZf2ijFRx7ioY1zUMS7qGBd19eNisVhavE/mN4GNcVHX3LhUG5znbmFhodu/OwpvxKUjOl9cXMcPnD03Omos6mrM+RIosXBRi0n988Pftcbfc2vkN3V5vTg0YcIE5d8DBgzA8OHDkZaWhg8++ADBwcHefjnF7NmzMWvWLOVxWVkZUlJSEBcXh4iICK+/nsPhgEajQVxcnNeThOO244iPj/fqPttKa8alvWJM1DEu6hgXdYyLOsZFXf24mEymFu+T+U1gY1zUNTcux23HAQDx8fFu/+4ovBGXjuh8cXEdP3D23OiosairMedLoMTCRS0m9c8Pf9caf8+tkd/U1Sq3ldUVGRmJHj164ODBg/jVr34Fm82GkpISt6trBQUFyj38iYmJ+PHHH9324ZrtQ+0+fxej0Qij0eixXKvVttqHuEajaZX9a6Bp14lHa8WlPWNM1DEu6hgXdYyLOsZFXd24tEZsmN8EHsZFXXPiooEGgPM8rvvvjqSlcemozhUX1/EDZ8+NjhyLus53vgRSLFzqx6T++eHvWuvvuTXzm1aPanl5OQ4dOoSkpCRkZmYiKCgIK1euVNbv27cPubm5yMrKAgBkZWVh586dbt2vvv32W0RERKBPnz6t3VwiIiKi82J+Q0RERB2J13sO/f73v8fVV1+NtLQ0nDx5Ek8//TR0Oh1uuukmmM1m3HHHHZg1axaio6MRERGB+++/H1lZWRgxYgQA4LLLLkOfPn3w29/+Fn/961+Rn5+PP/zhD5g+fbrqlTMiIiKi1sb8hoiIiDoyrxeHjh8/jptuugmnT59GXFwcRo8ejY0bNyIuLg4A8Pe//x1arRaTJ0+G1WrF+PHj8frrryvP1+l0+OKLL/C73/0OWVlZCA0NxZQpU/CnP/3J200lIiIiahTmN0RERNSReb049N57751zvclkwvz58zF//vwGt0lLS8NXX33l7aYRERERNQvzGyIiIurI/H8kJyIiIiIiIiIiajUsDhERERERERERBTAWh4iIiIiIiIiIAhiLQ0REREREREREAYzFISIiIiIiIiKiAMbiEBERERERERFRAGNxiIiIiIiIiIgogLE4REREREREREQUwFgcIiIiIiIiIiIKYCwOEREREREREREFMBaHiIiIiIiIiIgCGItDREREREREREQBjMUhIiIiIiIiIqIAxuIQEREREREREVEAY3GIiIiIiIjIh7a+udXXTfCpQD9+In/A4hARERERERERUQBjcYiIiIiIiIiIKICxOEREREREREREFMBYHCIiIiIiIiIiCmAsDhERERERERERBTAWh4iIiIiIiIiIAhiLQ0REREREREREAYzFISIiIiIiIiKiAMbiEBERERERERFRAGNxiIiIiIiIiIgogLE4REREREREREQUwFgcIiIiIiIiIiIKYCwOEREREREREREFMBaHiIiIiIiIiIgCGItD1Gxb39yKrW9u9XUziIiIiIiIiKgF9L5uAPm/ugWgzLszPQpCrseZd2fip7d+QrWhGsdtxzHk7iFt2k4iIiIiIiIiajr2HCIiIiIiIiIiCmAsDhERERERERERBTDeVkaqOJYQERERERERUWBgzyFScIBpIiIiIiJqba7vHPzuQeQ/WBwiIiIiIiIi8jMsnlFbYnGIiIiIiIiIiCiAccwhIiIiIiIialU/vfUTqg3VOG47Dg00vm4OEdXDnkNERERERERERAGMxSFqNa4BrnmvLBERERG1Jeaf/oO/C6L2gcUhIiIiIiKiNsaiCRH5ExaHiIiIiIiIiIgCGAekJiIiIiKiDsfVMyfz7kwft8Spbk8hf2kTEZELew4RERERERGR13DcUaL2h8UhIiIiIiIiH/F1EcXXr09E/oHFIWoz/OAhIiIiorbmy14srtf19zy4vbSzpTr68RG1BMcc8pGtb27lvcZERERERF7mDwWAg98cRPxt8b5uxnmpxUptWebdmQ0uJ+pIAvl7ul/3HJo/fz7S09NhMpkwfPhw/Pjjj75uklcFSoWeiIiI3HX0HIfIX7l6ETH/9o7632faS2zbSzuJ2pLfFofef/99zJo1C08//TR++uknDBw4EOPHj0dhYaGvm9Zq+CZFRETU8QVijkNERNSenOu7eUctMvttcWjevHm46667cPvtt6NPnz5YuHAhQkJC8Pbbb/u6aURERETNxhyHyD+01he8n976yav7IyLfqfse0dGKQfX55ZhDNpsNW7duxezZs5VlWq0W48aNw4YNG1SfY7VaYbValcdlZWUAAIfDAYfD4fU2OhwOiEiz9y2Qs/uBKP+vu/+2Vr9NahqzzvWf2jpfHJevtfRc6agYF3WMizrGRR3joq5+XPwpPk3NcdpbftNRMS7qmhsXtZzTm7Ftbh7701s/YfCdg5XizuA7Bzf79evm92qve751baX+94+WfAdozHHW/Z7Q2Od5U/3X84e/6XP9HdU/jwKFWkza6rtyU/9mG2pLa5xjrZ3faERE/a/ch06ePIlOnTrhf//7H7KyspTljz76KNasWYNNmzZ5POeZZ57BnDlzPJbv378f4eHhXm+jw+FAaWkpzGYztFq/7YDV5hgXT4yJOsZFHeOijnFRx7ioqx8Xi8WCHj16oLS0FBERET5tW1NzHOY3/oFxUce4qGNc1DEu6hgXT4yJutbOb/yy51BzzJ49G7NmzVIel5WVISUlBXFxca2SCDocDmg0GsTFxfGErYNx8cSYqGNc1DEu6hgXdYyLuvpxMZlMvm5SszG/8Q+MizrGRR3joo5xUce4eGJM1LV2fuOXxaHY2FjodDoUFBS4LS8oKEBiYqLqc4xGI4xGo8dyrVbbaieURqNp1f23V4yLJ8ZEHeOijnFRx7ioY1zU1Y2LP8WmqTkO8xv/wbioY1zUMS7qGBd1jIsnxkRda+Y3flkcMhgMyMzMxMqVK3HttdcCcFbJVq5ciRkzZjRqH6675Vz35nubw+GAxWKByWTiCVsH4+KJMVHHuKhjXNQxLuoYF3X14+LKBfzhTvqW5jjMb3yDcVHHuKhjXNQxLuoYF0+MibrWzm/8sjgEALNmzcKUKVMwZMgQDBs2DC+//DIqKipw++23N+r5FosFAJCSktKazSQiIqJ2wmKxwGw2+7oZLcpxmN8QERFRXd7Kb/y2OHTDDTegqKgITz31FPLz8zFo0CB88803SEhIaNTzk5OTcezYMYSHh0Oj0Xi9fa57/o8dO+bzwS39CePiiTFRx7ioY1zUMS7qGBd19eMiIrBYLEhOTvZ10wC0LMdhfuMbjIs6xkUd46KOcVHHuHhiTNS1dn7jl7OVtQdlZWUwm81+MfOJP2FcPDEm6hgXdYyLOsZFHeOijnFpPsZOHeOijnFRx7ioY1zUMS6eGBN1rR0X3sBHRERERERERBTAWBwiIiIiIiIiIgpgLA41k9FoxNNPP606vWwgY1w8MSbqGBd1jIs6xkUd46KOcWk+xk4d46KOcVHHuKhjXNQxLp4YE3WtHReOOUREREREREREFMDYc4iIiIiIiIiIKICxOEREREREREREFMBYHCIiIiIiIiIiCmAsDhERERERERERBTAWh5ph/vz5SE9Ph8lkwvDhw/Hjjz/6ukmtau3atbj66quRnJwMjUaDZcuWua0XETz11FNISkpCcHAwxo0bhwMHDrhtU1xcjFtuuQURERGIjIzEHXfcgfLy8jY8Cu+aO3cuhg4divDwcMTHx+Paa6/Fvn373Laprq7G9OnTERMTg7CwMEyePBkFBQVu2+Tm5uLKK69ESEgI4uPj8cgjj8But7floXjVggULMGDAAERERCAiIgJZWVn4+uuvlfWBGBM1zz//PDQaDWbOnKksC8TYPPPMM9BoNG4/vXr1UtYHYkxcTpw4gVtvvRUxMTEIDg5G//79sWXLFmV9IL7vpqene5wvGo0G06dPBxDY54u3ML9Z5rY+EP/OAOY4DWGOc37Mb5yY3zSM+Y0nv8pvhJrkvffeE4PBIG+//bbs3r1b7rrrLomMjJSCggJfN63VfPXVV/Lkk0/KJ598IgBk6dKlbuuff/55MZvNsmzZMtm+fbtcc8010qVLF6mqqlK2ufzyy2XgwIGyceNG+eGHHyQjI0NuuummNj4S7xk/frwsWrRIdu3aJdnZ2XLFFVdIamqqlJeXK9vce++9kpKSIitXrpQtW7bIiBEjZOTIkcp6u90u/fr1k3Hjxsm2bdvkq6++ktjYWJk9e7YvDskrPvvsM/nyyy9l//79sm/fPnniiSckKChIdu3aJSKBGZP6fvzxR0lPT5cBAwbIgw8+qCwPxNg8/fTT0rdvX8nLy1N+ioqKlPWBGBMRkeLiYklLS5OpU6fKpk2b5PDhw7J8+XI5ePCgsk0gvu8WFha6nSvffvutAJDVq1eLSOCeL97C/Ib5jQtzHHXMcc6N+c1ZzG/UMb9R50/5DYtDTTRs2DCZPn268ri2tlaSk5Nl7ty5PmxV26mfPDkcDklMTJQXX3xRWVZSUiJGo1HeffddERH5+eefBYBs3rxZ2ebrr78WjUYjJ06caLO2t6bCwkIBIGvWrBERZwyCgoLkww8/VLbZs2ePAJANGzaIiDMp1Wq1kp+fr2yzYMECiYiIEKvV2rYH0IqioqLkrbfeYkxExGKxSPfu3eXbb7+Viy++WEmeAjU2Tz/9tAwcOFB1XaDGRETksccek9GjRze4nu+7Tg8++KB069ZNHA5HQJ8v3sL8hvlNQ5jjNIw5jhPzG3fMb9Qxv2kcX+Y3vK2sCWw2G7Zu3Ypx48Ypy7RaLcaNG4cNGzb4sGW+k5OTg/z8fLeYmM1mDB8+XInJhg0bEBkZiSFDhijbjBs3DlqtFps2bWrzNreG0tJSAEB0dDQAYOvWraipqXGLS69evZCamuoWl/79+yMhIUHZZvz48SgrK8Pu3bvbsPWto7a2Fu+99x4qKiqQlZXFmACYPn06rrzySrcYAIF9vhw4cADJycno2rUrbrnlFuTm5gII7Jh89tlnGDJkCH7zm98gPj4eF1xwAf7xj38o6/m+6/w8XrJkCaZNmwaNRhPQ54s3ML/xxL+zs5jjeGKO4475jSfmN56Y35yfr/MbFoea4NSpU6itrXULPAAkJCQgPz/fR63yLddxnysm+fn5iI+Pd1uv1+sRHR3dIeLmcDgwc+ZMjBo1Cv369QPgPGaDwYDIyEi3bevHRS1urnXt1c6dOxEWFgaj0Yh7770XS5cuRZ8+fQI6JgDw3nvv4aeffsLcuXM91gVqbIYPH47Fixfjm2++wYIFC5CTk4MLL7wQFoslYGMCAIcPH8aCBQvQvXt3LF++HL/73e/wwAMP4F//+hcAvu8CwLJly1BSUoKpU6cCCNy/IW9hfuOJf2dOzHHcMcfxxPzGE/Mbdcxvzs/X+Y2+ec0mIpfp06dj165dWLduna+b4hd69uyJ7OxslJaW4qOPPsKUKVOwZs0aXzfLp44dO4YHH3wQ3377LUwmk6+b4zcmTJig/HvAgAEYPnw40tLS8MEHHyA4ONiHLfMth8OBIUOG4C9/+QsA4IILLsCuXbuwcOFCTJkyxcet8w///Oc/MWHCBCQnJ/u6KUQdGnMcd8xx3DG/Ucf8Rh3zm/PzdX7DnkNNEBsbC51O5zE6eEFBARITE33UKt9yHfe5YpKYmIjCwkK39Xa7HcXFxe0+bjNmzMAXX3yB1atXo3PnzsryxMRE2Gw2lJSUuG1fPy5qcXOta68MBgMyMjKQmZmJuXPnYuDAgXjllVcCOiZbt25FYWEhBg8eDL1eD71ejzVr1uDVV1+FXq9HQkJCwMamrsjISPTo0QMHDx4M6PMlKSkJffr0cVvWu3dvpUt6oL/vHj16FN999x3uvPNOZVkgny/ewPzGU6D/nQHMcdQwx3HH/KZxmN84Mb85N3/Ib1gcagKDwYDMzEysXLlSWeZwOLBy5UpkZWX5sGW+06VLFyQmJrrFpKysDJs2bVJikpWVhZKSEmzdulXZZtWqVXA4HBg+fHibt9kbRAQzZszA0qVLsWrVKnTp0sVtfWZmJoKCgtzism/fPuTm5rrFZefOnW5vcN9++y0iIiI83jjbM4fDAavVGtAxGTt2LHbu3Ins7GzlZ8iQIbjllluUfwdqbOoqLy/HoUOHkJSUFNDny6hRozymjd6/fz/S0tIABO77rsuiRYsQHx+PK6+8UlkWyOeLNzC/8RTIf2fMcRov0HMc5jeNw/zGifnNuflFfuONEbUDyXvvvSdGo1EWL14sP//8s9x9990SGRnpNjp4R2OxWGTbtm2ybds2ASDz5s2Tbdu2ydGjR0XEOeVgZGSkfPrpp7Jjxw6ZOHGi6pSDF1xwgWzatEnWrVsn3bt3b9dTDv7ud78Ts9ks33//vdvUg5WVlco29957r6SmpsqqVatky5YtkpWVJVlZWcp617SDl112mWRnZ8s333wjcXFx7Xqayscff1zWrFkjOTk5smPHDnn88cdFo9HIihUrRCQwY9KQurN5iARmbB5++GH5/vvvJScnR9avXy/jxo2T2NhYKSwsFJHAjImIczpgvV4vf/7zn+XAgQPyn//8R0JCQmTJkiXKNoH4vivinEErNTVVHnvsMY91gXq+eAvzG+Y3Lsxx1DHHaRzmN8xvGsL8pmH+kt+wONQMr732mqSmporBYJBhw4bJxo0bfd2kVrV69WoB4PEzZcoUEXFOO/jHP/5REhISxGg0ytixY2Xfvn1u+zh9+rTcdNNNEhYWJhEREXL77beLxWLxwdF4h1o8AMiiRYuUbaqqquS+++6TqKgoCQkJkeuuu07y8vLc9nPkyBGZMGGCBAcHS2xsrDz88MNSU1PTxkfjPdOmTZO0tDQxGAwSFxcnY8eOVZImkcCMSUPqJ0+BGJsbbrhBkpKSxGAwSKdOneSGG26QgwcPKusDMSYun3/+ufTr10+MRqP06tVL3nzzTbf1gfi+KyKyfPlyAeBxrCKBfb54C/Mb5jcizHEawhyncZjfML85F+Y36vwlv9GIiDStrxEREREREREREXUUHHOIiIiIiIiIiCiAsThERERERERERBTAWBwiIiIiIiIiIgpgLA4REREREREREQUwFoeIiIiIiIiIiAIYi0NERERERERERAGMxSEiIiIiIiIiogDG4hARtdiIESPw0ksv+ez1lyxZgsTExAbX9+zZE//4xz/asEXe9+tf/xozZ85UHg8ZMgQvv/yyz9pDREQUCJjjtD7mOET+gcUhImoRh8OBnTt3YuDAgT5rw/bt2zFo0CAAzoRiyZIlbuvXrl2LqVOnNml/Wq0WpaWlXmxly2RnZyvHaLfbsXv3buUxEREReR9znLbBHIfIP7A4REQtsn//flRWVmLAgAGNfk5NTY1X21A3cVKTkJCAoKCgRu/vxx9/REZGBsxmc4va5a3jtFgsOHz4sHKMe/fuRXV1tU+TVSIioo6OOU7DmOMQdTwsDhF1AIcOHYJGo8EXX3yBsWPHIiQkBD179sSmTZvctlu6dCmGDh2KkJAQZGRkYNGiRW7r09PT8cILL+CWW25BeHg40tLSsGLFChw7dgyTJk1CeHg4evXqhW3btinPyc7ORkJCAlavXo3evXsjPDwckyZNwpkzZ5Rtpk6diptvvhlPPvkkEhMTkZmZCQCorKzEE088gc6dOyM0NBQXXXQRdu3add5jveqqqxASEoIePXpgzZo150ycFi9ejPT0dOXxH//4R4wbNw7z589H9+7dERoaiuuuuw5WqxUAcNttt+Huu+/GgQMHoNFooNFosHfvXgDA7t27cdVVVyEsLAzx8fGYMWOG8jwAGDNmDGbNmoX77rsP0dHRmDx5MoYNG4Y//OEPbm06duwYgoODsX79egDAypUrMW7cOMTGxiI0NBQXXnghdu7cqWy/fft26PV69OnTR4l5amoqoqKilG0+//xzDBkyBCaTCV27dsUbb7zh9ppvvPEG+vfvj5CQEMTExODyyy+Hw+E4Z6yJiIh8jTkOcxzmOERtRIio3fv4449Fo9HIJZdcIqtXr5b9+/fLuHHjZMyYMco2b775ppjNZlm8eLEcPnxYFi9eLFqtVtauXSsiImfOnBEA0r17d/nggw/kwIEDMn78eOnevbuMGTNGvvzyS9m7d6+MGjVKrrnmGmW/jz32mISGhsqkSZNk9+7dsmbNGunUqZNMnz5d2WbQoEESHh4us2fPlr1798r+/fulqqpKhg4dKpMnT5bNmzfL/v37Zdq0aZKRkSEOh0P1OAsKCqRTp05y9913y549e+Tbb7+V7t27CwDZs2ePiIhkZmbKO++8ozxn5syZMnHiROXx1VdfLWazWR566CHZvXu3rFq1SkJDQ2Xx4sUiIlJcXCwjRoyQ2bNnS15enuTl5YnD4ZD169eL2WyWl19+WQ4cOCBr166VjIwMefbZZ5V9R0VFSXR0tPztb3+TAwcOyOHDh2XatGly3XXXuR3H7bff7hbDJUuWyNKlS2X//v2yY8cOufrqq2XYsGHK+tdee00GDBigPH744Yfdnv/SSy9JWlqafPTRR3L48GF57733xGQyKb/bJUuWSOfOneWLL76QI0eOyObNm+XVV19VjTEREZE/YY7DHIc5DlHbYHGIqAN46qmnJCoqSgoLC5Vlr776qvTt21dEnAlHcHCwfPDBB27PGzlypDz66KMiIvL9998LAFm1apWy/q233hKNRiO7du1Slj3//PNuH+rjx4+XQYMGSW1trbLsz3/+s/LaNptNDAaDWyLl2ubiiy92S5JOnTolAOTo0aOqxzlt2jS56KKL3Jb9/ve/l5CQELfXr2vMmDHy1FNPKY9TU1Pllltucdtm8ODB8uKLLyqPIyMj5fPPP1ce2+126dWrl7z99ttuz3vppZfkkksuERGRI0eOCAC3/YiIzJs3T3r27Kk83r17txgMBtm9e7dqe0VEli9fLmazWXl8xx13yG233aY8Hjt2rHJMOTk5EhoaKnv37nXbx1VXXSVz5swREZHf/va3cvPNNzf4ekRERP6KOQ5zHOY4RG2Dt5URdQDbt2/HxIkTERcXpyzLyclBRkYGAOCTTz5BZGQkJk+e7PY8g8GgdBnevn07unXrhksuuURZn5ubi2HDhqFv375uy7p06aI8zs7OxgMPPACt9uzbSVRUlNKdd8+ePbDZbHjggQfcXvutt97Chg0bEB4ejrCwMISFhSEtLQ0AoNfrPY6xuroa7777rttsFgAQFBSE/v37u71+/di4umOXlJQgNzcXd911l9s2R44cUWKVk5ODkpISt3vd169fj71792LGjBlKW8PCwvDEE08obd2+fTsMBgPuuecet333798fhw4dgs1mAwA88cQTuPXWW5Xu0zU1NXj99dcxcuRIJCUlISwsDNdccw06d+7sFuO67dm+fbvy+N///jcqKyuRmZnp1ravv/5aadsVV1yBDz74AKNGjcIrr7yCvLw81VgRERH5G+Y4zHGY4xC1Dc93JyJqd7Zv347Zs2e7LcvOzsZFF10EwHkfeZ8+fdySC4fDgb179+LWW29Vth8+fLjHPkaMGOGx7KqrrgIA5Ofno6CgwONe+I0bN+KCCy5Qtk9KSkKPHj2U9WVlZcjJycHXX3+tJCx1JScneyzbt28fqqqqMHjwYLflP/30U4P34ufm5uLMmTNKkrF9+3bodDoMGzbMbZvi4mJlH9nZ2YiOjkZKSorbMQ8YMAAff/yxx2uEh4cr22RmZiqPXfr16we73Y4DBw6grKwMK1aswP79+5X1d999N9atW4ennnoKffv2RUREBGbNmqXsp/6sHcePH8epU6fc2nvnnXfi0Ucf9WhbfHw8AODGG2/EqFGjsGzZMvznP//B7NmzsXLlSmRlZanGjYiIyF8wxxnksT3AHIc5DpH3sThE1M6VlpbiyJEjSqLi4rraBTg/3KuqqtzWv/vuu7BYLLj22msBOJOKm266yWMfkyZNUh6LCHbs2IEnn3xSWQ8AtbW1yjYnT57E+++/jy+++ELZb/226XQ6aDQa6PX6/2/vDl6a/uM4jr8WbmrCmE3RQ5JUw9MujQhPHlyEFgZJBP0FwjYiPCQd5s2DBw8NcpcOKQgycAwPlhcLIoSgWA6jcGPtEMGggaiHAt+/g/il6Td+hx+kP/Z83L7ffb/b5/PdYS/e7+8+X9fg5OYw9P0+j0KhoNXVVT19+tT1nHw+L7/f73QB8/m8+vr61Nra6hzz4cMHBQIBZ0FHt0fWer1e/fjxQ5cuXZLH4/njZx2dpyR1d3ero6NDm5ubSqVSSiQSTsfs58+fmp+f19LSkkZGRiQdXL/Xr187CzwePrXj96D0+5y8Xq/29vb+9Tr29PQokUgoHo+rt7dX79+/JzgBAE41Mg4Zh4wD/D38rQz4n/v48aOampoUDoedfV+/flWtVnN+bIeGhrS+vq75+XmVy2XNzc0pFovpyZMnCgaDxzo3klSr1VSpVOq6WFtbW9rZ2Tn2Iz45Oalisaj19XVdv35dd+7cUTQadY45Gija2to0MDCghw8f6tWrVyqXy3rz5o0mJiZULpdd5xkKhdTZ2anHjx/ry5cvWltb0927d2Vmf+yqHXbDDsOOW7g5ejvz/v6+qtWqisWivn//LkkaHBxUtVpVPB7Xp0+f9PnzZ+VyOSWTybr3cQtO0kFnbWZmRoVCoa776fV65ff7tby8rFKppBcvXmh0dFTb29t1Xcnz58/r3LlzrnMaHh7W4uKi0um0SqWS8vm8nj17pufPn0s6uLV9dnZWGxsbKhaLmp6eVq1W040bN1zHCgDAaUHGIeOQcYC/6GSXPALwX6VSKWdhxEPZbNYCgUDdvnQ6bRcvXrSWlhaLRCKWzWad1zY2NkySVatVZ9/a2po1Nzfbr1+/nH2ZTMY6Ojqc7Xv37lksFrNHjx6Z3++3zs5OSyaTdecEg0HLZDLHxv3t2ze7f/++dXV1WUtLi12+fNnGxsbqzj3q5cuXFgqFzOfz2ZUrV2xqasrOnDlju7u7rsePjo5aPB53tiORyLHFFG/fvm0PHjxwtiuVil27ds18Pl/dXFdWVuzq1avW1tZm7e3t1t/fbwsLC2Zmtr29bR6Px969e+c6jkQiYZJsenr62Gu5XM4uXLhgra2tFo1GbWFhoe67GB8ft1u3bv1xTmYHC0KGQiFrbm62rq4uu3nzpjOWdDpt4XDYzp49a4FAwAYHB+3t27eu4wQA4DQh45BxyDjA3+MxMzvJ4hQAAAAAAABODn8rAwAAAAAAaGAUhwAAAAAAABoYxSEAAAAAAIAGRnEIAAAAAACggVEcAgAAAAAAaGAUhwAAAAAAABoYxSEAAAAAAIAGRnEIAAAAAACggVEcAgAAAAAAaGAUhwAAAAAAABoYxSEAAAAAAIAGRnEIAAAAAACggf0DJQGELPtgbjMAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 1400x400 with 4 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig1, axs1 = plt.subplots(2, 2, figsize=(14, 4))\n", + "\n", + "fig1.subplots_adjust(wspace=0.1, hspace=0.5)\n", + "\n", + "axs1[0,0].plot(np.arange(n), T_ext, color='purple', linewidth=1.2, alpha=0.4)\n", + "axs1[0,0].set_title(\"Température extérieure à Montréal (°C)\")\n", + "axs1[0,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[0,1].plot(np.arange(n+1), T_i.value, color='purple', linewidth=1.2, alpha=0.4)\n", + "axs1[0,1].set_title(\"Température à l'intérieur du bâtiment (°C)\")\n", + "axs1[0,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,1].grid('on', alpha=0.3)\n", + "\n", + "axs1[1,0].bar(np.arange(n), p_n_i.value, color='purple', alpha=0.4)\n", + "axs1[1,0].set_title(\"Puissance de la pompe en mode normal (W)\")\n", + "axs1[1,0].set_ylim(-30,1030)\n", + "axs1[1,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[1,1].bar(np.arange(n), p_r_i.value, color='purple',linewidth=1.2,alpha=0.4)\n", + "axs1[1,1].set_title(\"Puissance de la pompe en mode reverse (W)\")\n", + "axs1[1,1].set_ylim(-30,1030)\n", + "axs1[1,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,1].grid('on', alpha=0.3)\n", + "\n", + "title1 = fig1.suptitle(\"Graphes de la solution optimale (Coût optimal={})\".format(objectif.value),y=1.05)\n", + "title1.set_fontsize(15)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "a9f2839f", + "metadata": {}, + "source": [ + "### Commentaires" + ] + }, + { + "cell_type": "markdown", + "id": "2c111601", + "metadata": {}, + "source": [ + "L'objectif était de minimiser le coût total de l'électricité consommée par la pompe à chaleur tout en maintenant le bâtiment dans une certaine plage de températures. Le coût minimum observé est de 8.182\\$ pour la semaine commençant au 13050ème intervalle (milieu de la 19ème semaine de l'année) et 1.965\\$ pour celle commençant au 22504ème intervalle (début de la 37ème semaine). Notre code s'exécute en respectivement 0.0419 et 0.0387 secondes pour les deux semaines testées.\n", + "\n", + "Comme attendu le coût est plus important quand les températures sont plus basses et, de plus, nous remarquons dans l'analyse des graphiques que la puissance totale de la pompe réagit directement avec les variations de l'extérieur. On observe sept pics de puissance dûs aux passages au tarif des heures creuses. L'utilisation de la pompe est privilégiée durant ces heures-ci." + ] + }, + { + "cell_type": "markdown", + "id": "dcd4fd17", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 1.3</b> :<br> \n", + " A partir de certaines informations fournies par le solver (et donc sans effectuer de nouveau calcul) et de la théorie vue au cours, prédisez l'effet sur le coût optimal d'une diminution de la tempéature minimale admissible Tmin. Faites de même pour une augmentation de la température maximale admissible Tmax. \n", + " Votre prédiction consiste en un formule pour le coût optimal en fonction des deux variations de température Tmin et Tmax. Commentez cette prédiction (en particulier : est-elle valide pour n'importe quelle variation des températures ?).\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "dd5e6cd6", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 1.4</b> :<br> \n", + " Démontrez que, dans toute solution optimale de ce modèle, l'activation simultanée du chauffage et du mode reverse durant la même période de temps est impossible.\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "c7f40ff2", + "metadata": {}, + "source": [ + "Repartons de la formulation de la différence de température pour un intervalle donné :\n", + "\n", + "$\\Delta T = -(1-\\eta)(T-T_{ext}) + \\frac{0,25p_{n}COP_n(T_{ext})}{C_xV} - \\frac{0,25p_{r}COP_r}{C_xV} = -(1-\\eta)(T-T_{ext}) + \\frac{0,25}{C_xV}(p_{n}COP_n - p_{r}COP_r) \\quad \\quad (*)$\n", + "\n", + "Cette expression avec $p_{n_i} \\ne 0$ et $p_{r_i} \\ne 0$ est celle qui s'applique lorsque la pompe est utilisée simultanément en mode normal et en mode reverse.\n", + "<br/>\n", + "<br/>\n", + "<br/>\n", + "A présent, interrogeons-nous sur ce qu'il se passe lorsque l'on veut atteindre ce même différentiel de température avec uniquement le mode normal, cà d avec uniquement une puissance $p'_{n}$. On doit avoir :\n", + "\n", + "$\\Delta T = -(1-\\eta)(T-T_{ext}) + \\frac{0,25p_{n}COP_n(T_{ext})}{C_xV} - \\frac{0,25p_{r}COP_r}{C_xV} = -(1-\\eta)(T-T_{ext}) + \\frac{0,25p'_{n}COP_n(T_{ext})}{C_xV}$, avec $p'_{n} = p_{n} - p_{r}\\frac{COP_r}{COP_n}$\n", + "\n", + "Remarquons d'ailleurs que $p'_{n} \\gt 0 \\implies p_{n}COP_n \\gt p_{r}COP_r$, ce qui implique bien par la formule (*) ci-dessus que l'on veut faire monter la température.\n", + "<br/>\n", + "<br/>\n", + "<br/>\n", + "De même, on peut regarder ce qu'il se passe lorsque l'on veut atteindre ce même différentiel de température avec uniquement le mode reverse, cà d avec uniquement une puissance $p'_{r}$. On doit avoir :\n", + "\n", + "$\\Delta T = -(1-\\eta)(T-T_{ext}) + \\frac{0,25p_{n}COP_n(T_{ext})}{C_xV} - \\frac{0,25p_{r}COP_r}{C_xV} = -(1-\\eta)(T-T_{ext}) - \\frac{0,25p'_{r}COP_n(T_{ext})}{C_xV}$, avec $p'_{r} = p_{r} - p_{n}\\frac{COP_n}{COP_r}$\n", + "\n", + "Il s'agit bien d'une baisse de la température car on a cette fois $p'_{r} \\gt 0 \\implies p_{r}COP_r \\gt p_{n}COP_n$. $\\quad p'_{r}$ et $p'_{n}$ ne peuvent ainsi pas être strictement positifs en même temps.\n", + "<br/>\n", + "<br/>\n", + "<br/>\n", + "Qu'en est-il du coût, durant un intervalle, avec respectivement : les 2 modes activés, seulement le mode normal, seulement le mode reverse ?\n", + "- 2 modes : $C_{tot} = c(p_n+p_r) = cp_n + cp_r$\n", + "- 1 mode (normal) : $C_{tot} = cp'_n = c(p_{n} - p_{r}\\frac{COP_r}{COP_n}) = cp_n - cp_r\\frac{COP_r}{COP_n}$\n", + "- 1 mode (reverse) : $C_{tot} = cp'_r = c(p_{r} - p_{n}\\frac{COP_n}{COP_r}) = cp_r - cp_n\\frac{COP_n}{COP_r}$\n", + "\n", + "\n", + "On voit donc, comme toutes les variables sont positives, que le coût avec un seul mode est systématiquement plus bas que celui pour deux modes. Comme le solveur tente de minimiser le coût sur chaque intervalle, le chauffage ne sera jamais allumé simultanément avec ses deux modes.\n" + ] + }, + { + "cell_type": "markdown", + "id": "af08cae2", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 1.5</b> :<br> \n", + " Modifiez votre modèle de façon à tenir compte des deux nouvelles contraintes suivantes :<br>\n", + " - si la pompe à chaleur est utilisée (dans un mode ou dans l'autre), elle l'est au moins à 25% de sa puissance maximale. Il n'est donc plus possible d'utiliser la pompe à chaleur à très faible puissance.\n", + "<br>\n", + " - si on décide d'allumer (ou d'éteindre) la pompe à chaleur, elle reste allumée (ou éteinte) sur une période de x heures consécutives. Ces périodes sont fixes : par exemple, si x=4h, il s'agit de [0h-4h], [4h-8h], [8h-12h], [12h-16h], etc. pour chaque journée.<br>\n", + " Le nouveau modèle sera toujours obligatoirement linéaire, mais pourra faire appel à des variables discrètes. \n", + " Donnez votre formulation, et commentez brièvement.\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "7aa5fe9a", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 1.6</b> :<br> \n", + " Résolvez ce nouveau modèle, affichez les résultats et commentez (en particulier le temps de calcul). Choissisez d'abord une valeur x=4h, puis x=2h.\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "9fbb0da2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.3461926094565912" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Duree = 16\n", + "x_i = cp.Variable(n//Duree, boolean=True) #Allumage\n", + "\n", + "# Formulation et résolution du problème\n", + "objectif = cp.Minimize(c.T@(p_n_i+p_r_i))\n", + "contraintes = [T_i[0] == T_initial, T_i[n] == T_final, T_min <= T_i, T_i <= T_max, T_i[1:n+1] == T_i[0:n]+deltaT_i, p_n_i>=0, p_r_i>=0, \n", + " deltaT_i == -(1-eta)*(T_i[0:n]-T_ext)+(cp.multiply(p_n_i,COP_normal(T_ext)))*0.25/(V*Cx)-p_r_i*COP_reverse*0.25/(V*Cx)]\n", + "\n", + "for i in range(n):\n", + " contraintes.append((p_n_i[i]+p_r_i[i])<=p_max*x_i[i//Duree])\n", + " contraintes.append((p_n_i[i]+p_r_i[i])>=0.25*p_max*x_i[i//Duree])\n", + "#contraintes.append((p_n_i+p_r_i)<=p_max)\n", + "\n", + "probleme = cp.Problem(objectif, contraintes)\n", + "probleme.solve(solver=cp.GLPK_MI, warm_start=True, verbose=False)" + ] + }, + { + "cell_type": "markdown", + "id": "8fcc662f", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 1.7</b> :<br> \n", + " Décrivez comment on pourrait apporter les modifications suivantes au nouveau modèle de la Question 1.5, sans les implémenter : <br>\n", + " (a) tenir compte d'un coût fixe supplémentaire à payer pour chaque intervalle de temps où la pompe à chaleur est utilisée<br>\n", + " (b) empêcher le nombre total d'allumages de la pompe à chaleur à ne pas dépasser une certaine valeur maximale (un allumage = passage de l'état 'éteint' lors d'un invervalle de temps à l'état 'allumé' lors de l'intervalle de temps suivant)<br>\n", + " (c) dans ce nouveau modèle il n'est plus nécessairement impossible d'observer dans une solution optimale l'activation simultanée du chauffage et du mode reverse au cours du même intervalle de temps : expliquez pourquoi, et proposez une contrainte permettant d'éliminer cette possibilité d'activation simultanée.\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "86e20172", + "metadata": {}, + "source": [ + "### (a) Coût fixe supplémentaire" + ] + }, + { + "cell_type": "markdown", + "id": "bf51cba6", + "metadata": {}, + "source": [ + "Il est nécessaire d'ajouter la contrainte suivante: \n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad p_{n_i}+p_{r_i} \\le My_i\\\\ $\n", + "et de modifier la fonction objectif de la sorte: \n", + "$$ \\min_{p_{n_i}, p_{r_i}, T_i, \\Delta T_i, y_i} \\sum_{i=0}^{n-1}c_i(p_{n_i}+p_{r_i}) + y_if $$ \n", + "où $y_i$ est une variable binaire valant 0 ou 1, $M$ est une constante relativement élevée devant $p_{n_i}$ et $p_{r_i}$ et où $f$ représente le coût fixe supplémentaire.$\\\\$\n", + "Ainsi, lorsque $p_{n_i}$ et $p_{r_i}$ sont nuls, $y_i$ l'est également pour minimiser la fonction objectif et cela n'engendre ainsi aucun coût supplémentaire. A l'inverse, si $p_{n_i}$ ou $p_{r_i}$ prennent des valeurs différentes de 0, c'est-à -dire lorsque la pompe est utilisée, $y_i$ devient forcé de prendre la valeur 1 pour ne pas violer cette nouvelle contrainte, entraînant de la sorte un coût fixe supplémentaire $f$. " + ] + }, + { + "cell_type": "markdown", + "id": "0048810c", + "metadata": {}, + "source": [ + "### (b) Nombre d'allumages limité" + ] + }, + { + "cell_type": "markdown", + "id": "99ecd372", + "metadata": {}, + "source": [ + "(b) Reprenons à présent les variables d'activations $x_i$ de la question 1.5. Un passage d'un état \"éteint\" à l'état \"allumé\" s'exprime lorsque $x_i$ - $x_{i-1}$ = 1. A l'inverse, un passage d'un état \"allumé\" à l'état \"éteint\" s'exprime lorsque $x_i$ - $x_{i-1}$ = -1. Nous pouvons exprimer cette condition sous cette forme : $$\\sum_{i=1}^{n/N} \\left| x_i - x_{i-1} \\right| \\le 2A $$ où $n$ est le nombre total d'intervalles, $N$ est la taille des sous-intervalles que l'on définit à la question 1.5, et $A$ représente le nombre total d'allumages autorisé. Nous avons ici une somme de valeurs absolues afin d'éviter l'annulation de proche en proche d'un allumage suivi d'un éteignage. Nous avons donc que cette somme doit être inférieure ou égale à $2A$ car un allumage est toujours suivi d'un éteignage (sauf éventuellement pour le dernier). Cette condition sous forme linéaire peut s'exprimer en introduisant une nouvelle variable $a_i$ ainsi que deux nouvelles contraintes: $$\\sum_{i=1}^{n/N} a_i \\le 2A $$\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad -a_i \\le x_i - x_{i-1} \\le a_i$\n" + ] + }, + { + "cell_type": "markdown", + "id": "2bb743d7", + "metadata": {}, + "source": [ + "### (c) Activation simultanée des modes normal et reverse" + ] + }, + { + "cell_type": "markdown", + "id": "11c4dbac", + "metadata": {}, + "source": [ + "$\\color{red}COMPLETER$" + ] + }, + { + "cell_type": "markdown", + "id": "7a3e7b09", + "metadata": {}, + "source": [ + "**Tâche 2** : on souhaite réduire le coût d'utilisation de la pompe à chaleur, et on va fixer le budget maximal à une certaine proportion du coût minimal identifié lors de la première tâche. Pour diminuer les coût, on va permettre aux températures de sortir de la plage admissible définie plus haut (on abandonne aussi la contrainte sur la température finale, qui devient libre). On va cependant alors comptabiliser la quantité d'_inconfort_ éventuellement subi durant chaque intervalle de temps, qui sera proportionnel au dépassement de la température maximale admissible, ou au dépassement par le bas de la température minimale admissible. On cherche alors à **minimiser l'inconfort total** (somme des inconforts sur toute la période considérée) **tout en respectant la contrainte de budget**. Formulez ce problème comme un problème d'optimisation linéaire, puis résolvez le.\n", + "\n", + "\n", + "<div class=\"alert alert-block alert-warning\"><b>A mentionner</b> :<br> \n", + "- inconfort minimal + même graphiques que pour tâche 1 + temps de calcul + bref commentaire (maximum 4 lignes)<br>\n", + "- à nouveau pour les deux périodes mentionnées lors de la tâche 1\n", + "</div>\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "ad42aa0d", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 2.1</b> :<br> \n", + " Donnez votre formulation linéaire, en commentant brièvement (en particulier si vous utilisez une technique de modélisation/reformulation).\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "8f10fc9d", + "metadata": {}, + "source": [ + "### Nouvelles variables" + ] + }, + { + "cell_type": "markdown", + "id": "99dd3eee", + "metadata": {}, + "source": [ + "On cherche à minimiser l'inconfort total tout en respectant la contrainte de budget. Par rapport à la tâche 1, il y a donc un nouveau paramètre relatif au budget maximal alloué." + ] + }, + { + "cell_type": "markdown", + "id": "6fa7c356", + "metadata": {}, + "source": [ + "##### Budget [$]" + ] + }, + { + "cell_type": "code", + "execution_count": 379, + "id": "ac4d6894", + "metadata": {}, + "outputs": [], + "source": [ + "budget = 3 # [$]" + ] + }, + { + "cell_type": "markdown", + "id": "1a3e181b", + "metadata": {}, + "source": [ + "##### Inconfort [/]" + ] + }, + { + "cell_type": "markdown", + "id": "7768e2fc", + "metadata": {}, + "source": [ + "A chaque intervalle, on attribue une pénalité d'inconfort. Celle-ci sera représentative de l'écart entre la température à cet intervalle et la plage de températures \"confortables\". La pénalité par °C en-dessous de $T_{min}$ sera de 3 et la pénalité par °C au-dessus de $T_{max}$ sera de 1." + ] + }, + { + "cell_type": "code", + "execution_count": 380, + "id": "096c6386", + "metadata": {}, + "outputs": [], + "source": [ + "I_i = cp.Variable(n)" + ] + }, + { + "cell_type": "markdown", + "id": "0d664883", + "metadata": {}, + "source": [ + "### Technique de l'épigraphe" + ] + }, + { + "cell_type": "markdown", + "id": "509aabc1", + "metadata": {}, + "source": [ + "En représentant le graphe de l'inconfort en fonction de la température à un intervalle donné, on se rend compte que la fonction, formée de trois droites, est convexe. Au lieu de s'embarquer dans des modélisations utilisant plusieurs variables binaires, il est opportun d'utiliser une méthode vue au cours : la technique de l'épigraphe. Une des droites est l'axe des abscisses, représentant un inconfort nul lorsqu'on se trouve dans la plage de températures confortables. Les deux autres droites (obliques) sont les suivantes :$\\\\$\n", + "$ f_{froid}(T)=-3T+3T_{min} $ $\\\\$\n", + "$ f_{chaud}(T)=T-T_{max} $" + ] + }, + { + "cell_type": "code", + "execution_count": 381, + "id": "3b228554", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAHTCAYAAADs9zTWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkpklEQVR4nO3deZyN5f/H8feZ3TAztmGsQ2RfipCQZBtkS3ZlKyWStKh+EhIqKSnftFGWFsoWWSMVIvsUSpF9kGUwjDFz//64mxnDjDkzc+bcZ3k9H495mHPNfc75nOu+53jPfa77umyGYRgCAAAAkGM+VhcAAAAAeArCNQAAAOAghGsAAADAQQjXAAAAgIMQrgEAAAAHIVwDAAAADkK4BgAAAByEcA0AAAA4COEaAAAAcBDCNQAAAOAghGsAAADAQQjXAJxqypQpmjlzptVlwEmio6M1atQoHT582OpSAMApvCZcb968WXfddZfy5s0rm82m7du3W11SrnOH1zxjxgzZbDYdOHDA6lIkSaNGjZLNZnPY47na67PalClTNGbMGN15551Wl+IyPOWYy+h5q1Spol27dqlr1666evWqU2tKz+uvv65KlSopKSnJ6lLgBIZh6MqVK1aXASdy1D5///33Vbp0acXHx2f5vlkO18lvoL/++muWn8wqCQkJ6ty5s06fPq233npLM2fOVGRkpEMee/369Ro1apTOnj3rkMdzlNx8zVnlqn3kjty5Lzdv3qyRI0dq8eLFuvXWWx3++O7cN57Mx8dHs2fPliQNHz7c0lpiY2P12muvafjw4fLxcb9zS4cOHZLNZrPr6++//7a6XLtduHBBL7/8sqKiolSwYEHZbDbNmDEj3W23bNmiqKgohYaGKiQkRC1atMjwxNGsWbNUuHBhhYSEqG/fvhkGrt27d2vgwIEqX768goODFRISogYNGuh///ufQ/4gzMp7k6fu4+tt3rxZgwcPVtWqVZU3b16VLl1aXbp00R9//JFmu6wcG5Jj93mfPn105coVTZs2Lesv0Mii6dOnG5KMzZs3Z/Wultm9e7chyfjwww8d/thvvPGGIcnYv3+/wx87J3LzNWfVzfro6tWrxqVLl4ykpCTnF5aOl19+2cjGr0WGkn9fHHV8uOrxZo/p06cbq1evzrXHd9e+cfVjzl6Z/S6fOnXKGD16tHHmzBmn1nWtt956ywgNDTUuXbpkWQ05ERMTY8ycOTPl64MPPjAkGU2aNEnTPmvWLKtLzZL9+/cbkozSpUsb99xzjyHJmD59+g3bbdmyxQgKCjJuvfVWY+LEicbrr79ulClTxggNDTX27Nlzw2Pmy5fPmDhxojF37lyjWrVqxmuvvXbDY77//vtGQECAUbRoUeOZZ54xPvjgA+ONN94w7r77bkOS8cYbb+T49WXlvclT9/H1OnXqZERERBhPPPGE8eGHHxqvvPKKUbRoUSNv3rzGrl27Uraz99hI3tbR+/y5554zIiMjs5xR/LIex93PiRMnJEn58+d32GNevHhRefPmddjjOVpuvObc4OvrK19fX6vLgBP06dMnS9u7yu+Yq9Th6jL7XS5UqJBGjhzpxIpuNH36dLVr105BQUGW1pGZjI65IkWKqFevXim3kz9BbtOmTZp2d1OsWDEdO3ZMERER+vXXX1WnTp10t3vppZeUJ08ebdiwQYUKFZIk9erVSxUqVNCLL76or7/+OmXbX3/9Vc2aNdPTTz8tSfL399dHH32k5557LmWbOXPmaODAgWrTpo2++OKLNH3+zDPPaM6cOSpcuHBuvOQMeeo+vt6wYcM0Z84cBQQEpLR17dpV1atX14QJEzRr1ixJ9h8bUu7s8y5duuj111/XmjVrdO+999r/ArMUxY0bz1wnn3X5888/jd69exthYWFGaGio0adPH+PixYs33P/w4cNGv379jGLFihkBAQFGmTJljMcee8yIj49P2Wbr1q1GVFSUERISYuTNm9e49957jQ0bNqR5HHuft3fv3oakNF+NGzfO1nP99ttvRvfu3Y38+fMbt912W0r79V83++v08OHDRt++fY0iRYoYAQEBRpUqVYyPP/74hu2y2q/Xutlrtuf1ZvX5b7ZPM+uj9M6y5UaN6fnxxx+NO+64wwgMDDRuueUW4/3338/wLKK9++166b2+AwcOGAMHDjQqVKhgBAUFGQULFjQeeOCBTM9q2HO82VNn8uPs3bvX6NmzpxEaGmoULlzYGDFihJGUlGQcPHjQaNeunRESEmIULVrUmDhxYrr33717t9G5c2cjJCTEKFiwoDFkyJB0zwhmpabrf8fs7a/M+qZ3795GZGRkhn1qTx32vpabsfeYy8nzXH/MZfd4S2bv/s7ojHl6ryW9T9Ts+b8hJ/3y999/G5KMGTNmZOv1JbPn/cne4+3atoyOuZv5+OOPDUnG8uXL7dreHWzevDnDs5MhISFG586db2hv06aNERAQYJw/fz6lbcuWLUbBggWNFStWGHv27DFat25tPPXUUyk/P3bsmJE/f36jatWqxuXLl7Ndb2bHZHZywrU8cR/fTK1atYxatWql+7ObHRuGkXv7PPn9ICscdua6S5cuKlu2rMaPH6+tW7fqo48+UpEiRfTaa6+lbHP06FHVrVtXZ8+e1YABA1SpUiUdOXJE8+bNU1xcnAICAvTbb7+pUaNGCg0N1XPPPSd/f39NmzZN99xzj3744QfVq1cvS8/76KOPqkSJEho3bpyGDBmiOnXqqGjRopKU5efq3Lmzbr31Vo0bN06GYahhw4b6448/9Pnnn+utt95K+WsnPDw83T6KiYnRnXfeKZvNpsGDBys8PFzfffed+vfvr9jYWA0dOjRb/Xq9jF5zVl+vPc+f2T69//77s9RHuVFjenbt2qUWLVooPDxco0aN0tWrV/Xyyy+nHBvXys5+u5nNmzdr/fr16tatm0qWLKkDBw7of//7n+655x79/vvvCg4OTvd+mfVlVuvs2rWrKleurAkTJmjJkiUaO3asChYsqGnTpunee+/Va6+9ptmzZ+uZZ55RnTp1dPfdd6e5f5cuXVSmTBmNHz9eGzdu1DvvvKMzZ87os88+y3bfXf87Zm9/ZfU4y0x6deT0OLD3mHOV4+169uzv6yW/FsMwNGjQIIWHh2vZsmV65JFHdO7cuZQzTPb835DTflm/fr0kqVatWtl+fdl5f7JXesdcZnbu3ClJqlGjRrafN6cSEhJ07tw5u7YtWLBgjsa6x8fHK0+ePDe0BwcH68qVK4qOjk65WLpWrVrq2bOnWrRoIcnso2vH6k6ePFlnz57V559/rsDAwGzVY88xmdP3JlfYx9fKzf1tGIZiYmJUtWrVbNWWW/u8Vq1a+vnnn7NWTJaiuJHxmet+/fql2a5jx45GoUKF0rQ99NBDho+PT7rjtZPHs3To0MEICAgw/vrrr5SfHT161AgJCTHuvvvulLasPO+aNWsMScbcuXPTtGf1ubp3735D3VkZS9W/f3+jWLFixqlTp9K0d+vWzQgLCzPi4uKy9frSk95rtvf1ZuX57dmnN+uj68925UaN6enQoYMRFBRk/PPPPyltv//+u+Hr63vDmaWs7LfMXp9hGOluv2HDBkOS8dlnn9207pv1pb11JvfbgAEDUra5evWqUbJkScNmsxkTJkxIaT9z5oyRJ08eo3fv3iltyfdv165dmud5/PHHDUnGjh07sl1Ter9j9vbXzfomq2eu06sjJ8eBYdh/zOX0ea4/5nJyvBmG/fs7vWO9f//+RtGiRY0TJ06kuW+XLl2M0NDQlE+Y7HkfyWm/jBgxwpCU5uxmVl6fYdj//pSdM9fpHXOZadKkiREeHp7l+zlS8v819nzZ8//kzc5OVq9e3ahQoYJx9erVlLb4+HijdOnShiRj3rx5N9znr7/+MrZs2WIkJCSkaS9evLhRqlQpIzExMcuvOZm9x2ROrgdxhX18LUfv72vNnDnTkJThp1GZnblO5uh9PmDAACNPnjxZuo/DLpd+7LHH0txu1KiR/v33X8XGxkqSkpKStGDBArVt21Z33HHHDfe32WxKTEzUihUr1KFDB91yyy0pPytWrJh69Oihn376KeXx7H3ejDjiubLCMAx9/fXXatu2rQzD0KlTp1K+WrZsqXPnzmnr1q033C+7r+962Xm9mT2/PfvU6hozep7ly5erQ4cOKl26dEp75cqV1bJlyzTbZne/3cy1Z14SEhL077//qnz58sqfP3+WHysndT788MMp3/v6+uqOO+6QYRjq379/Snv+/PlVsWLFdK9KHzRoUJrbTzzxhCRp6dKl2a4pvd+x3OivzFxfR06PA3uPOVc+3jLb39dLfi2dOnVSSEiILl++nPLVsWNHxcbGauvWrXa9jziiX/7991/5+fkpX7582Xp92X1/sld2/n/ZtWuXQ85oxsfHq2jRotmqv2bNmlq5cqVdXxERETmq8/HHH9cff/yh/v376/fff1d0dLQeeughHTt2TJJ06dKlG+5zyy23qFatWvLzS/2g/q+//tLRo0fVpk2bbJ9Jz43f1fQ4ah87Sm7t7z179mjQoEGqX7++evfunaMaHb3PCxQooEuXLikuLs7u+zhsWMi1/2EkFyNJZ86cUWhoqE6ePKnY2FhVq1Ytw8c4efKk4uLiVLFixRt+VrlyZSUlJenQoUNpPjLI7Hkd+Vxly5bN8PEyc/LkSZ09e1YffPCBPvjgg3S3Sb4I8VrZfX3pPX9WX29mz3/p0qVM92lW5EaN6fXRyZMndenSpXSng6tYsWKasJDd/XYzly5d0vjx4zV9+nQdOXIkzUfA9n7cdr3s1Hl9v4WFhSkoKOiGC3jCwsL077//3vB41/dfuXLl5OPjkzLPcXZqSu93LDf6KzPX15HT48DeY86Vj7fM9vf1kl/L1KlTNXXq1Ay3sff/Bkf3y/XsOZ6z8/5kr6z+/3Ls2DGdOnVK1atXz9bzXSswMFAxMTHZum+BAgXUrFmzHNdgj8cee0yHDh3SG2+8oU8//VSSdMcdd+i5557Tq6++muEfTtc7dOiQJKX5IymrnHFMOnIfO0pu7O/jx4+rTZs2CgsL07x583JlkoOc7PPk98ysnDB0WLjOqDOufSPPDc583vTGetkrecGCXr16ZfhXWXp/nVrVr67y/PbIzRqzu99u5oknntD06dM1dOhQ1a9fX2FhYbLZbOrWrVu2F7bITp3p9VtO+vL6N57s1JTe75gj+iujN8XExMR026+vIzeOg/S4y/EmZf4fTfJj9+vXT4888ki621SoUEEJCQmZPpcj+qVQoUK6evWqzp8/r5CQkEyfMycL+2T1eJOy/v+Lq4zFvXLlik6fPm3XtuHh4TkOTq+++qqeeeYZ/fbbbwoLC1P16tX14osvSjKPJ3skz2Nsz7GXEWe8J7jKPr6Wo/f3uXPn1KpVK509e1Y//vijihcv7ogyb5CTfX7mzBkFBwdn6XfUaVPxhYeHKzQ0VNHR0TfdJjg4WHv37r3hZ3v27JGPj49KlSrlsHoc8Vz2vgGHh4crJCREiYmJTvsr//rnd3Tf2rNPpaz1kTP2f3h4uPLkyaM///zzhp9d/9y5sd/mzZun3r17680330xpu3z5sl0LDGTUl1YcX3/++Weas2379u1TUlKSypQp49Ca7O2vmx1nBQoUSLd///nnH7tqyOlrsfeYc7Xj7VqZ7e/rJb+Wixcv3nRFzqSkJLv+b8hpv1SqVEmStH///nTDij3Hs73vTzk93uyxa9cuSRkHr8mTJ2vdunUKCAjQt99+q+rVq+ubb77RK6+8ojlz5qhUqVJatmyZihcvrsmTJ2vnzp36+OOP9eabb2rz5s3y9/fXokWLVKJECS1evFjlypVL93nWr1+vJk2a2FXz/v37MzxesqJAgQJq2LBhyu1Vq1apZMmSKfs4M+XLl5ekTP/vupmsHJPZ/UPNkftYkg4ePKgBAwZoy5YtSkhIUPfu3TV16tSUCzITEhI0bdo0JSUlqWPHjrrlllv01ltvpXlOR+7vy5cvq23btvrjjz+0atUqValSxa7HzY6c7PP9+/ercuXKWbqP05ao8vHxUYcOHbR48eJ0V3c0DEO+vr5q0aKFFi5cmOajxpiYGM2ZM0cNGzbM0lCIm3HUcyXPkZjZf1S+vr7q1KmTvv7663R37smTJ7NUf1blRt/as0+lrPWRM/a/r6+vWrZsqQULFujgwYMp7bt379by5ctv2NbR+83X1/eGM8FTpky56VmtZBn1pRXH13vvvZfm9pQpUyRJrVq1cmhN9vbXzY6zcuXK6dy5cylngiTzI9f58+fbXUNOXou9x5yrHW/Xymx/p/e8nTp10jfffKMdO3bc8PPjx49Lsv//hpz2S/369SUpw9WF7Tme7X1/yunxZo+dO3fK19c3w0Cyc+dObdq0SU8//bROnDihuLg4NW3aVPfff79OnjypYsWKaebMmSnbJge4Xbt2af369Ro8eLBOnz6tatWq6ZNPPsmwDmeOuU7Pl19+qc2bN2vo0KF2j6UtU6aM6tSpo7lz56Y7Lvr8+fNp/hhNT1aOSXv/D7yeI/dx8uv6v//7Px09elS7du3S4sWLtXbtWknSCy+8oC+++EJHjhzRs88+K8Mw0u0DR+3vxMREde3aVRs2bNDcuXNTfj9zS072+datW3XXXXdl6fmcuojMuHHjtGLFCjVu3FgDBgxQ5cqVdezYMc2dO1c//fST8ufPr7Fjx2rlypVq2LChHn/8cfn5+WnatGmKj4/X66+/7tB6HPFctWvXliT93//9n7p16yZ/f3+1bds23QUAJkyYoDVr1qhevXp65JFHVKVKFZ0+fVpbt27VqlWr7P6oJbtyo2/t2adZ6SNn7f/Ro0dr2bJlatSokR5//HFdvXpVU6ZMUdWqVdP8hyg5fr/dd999mjlzpsLCwlSlShVt2LBBq1atSlkU4WZu1pfOPr7279+vdu3aKSoqShs2bNCsWbPUo0cP1axZM2UbR9Rkb3/drG+6deum4cOHq2PHjhoyZIji4uL0v//9TxUqVLD7oqOcvhZ7jzlXOt6uZc/+vl7ya6lfv74eeeQRVa1aVadOndKvv/6qNWvW6MyZM5Lsex/Jab/ccsstqlatmlatWqV+/fpl6/XZ+/7kiOMtMzt37lT58uUz/Kh6586dGjNmTMpFomXLllWtWrXUtGlTSeZY/+Q/sHbu3JmyQMmuXbs0atSolGkFb7311psOC3PUGNx3331XZ8+e1dGjRyVJixcv1uHDhyWZQ5vCwsK0bt06jRkzRi1atFChQoW0ceNGTZ8+XVFRUXryySez9HwffvihGjdurAYNGqhfv36qXr26rl69qq1bt+qbb75Rw4YNU6aKzIi9x2RW/g+8liP3saQ01wOUKlVKdevWTfkdLFGihB588EHdd999kqSffvop3T9WHLW/n376aS1atEht27bV6dOnUxaNSXbtgjn2HBv2yM4+37Jli06fPq327dtn7QVmaW4RI+Op+E6ePJnudtdPxfLPP/8YDz30kBEeHp6ykMKgQYNuWESmZcuWRr58+Yzg4GCjSZMmxvr169M8TlaeN6Op+HL6XMleeeUVo0SJEoaPj0+m08/ExMQYgwYNMkqVKmX4+/sbERERRtOmTY0PPvgg268vPRm9Znteb1af3559mlEfZbSIjKNrTM8PP/xg1K5d2wgICMh0ERl799v10qvlzJkzRt++fY3ChQsb+fLlM1q2bGns2bPHiIyMTDPlXUZudrzZU2dG/da7d28jb968Nzxf48aNjapVq95w/99//9144IEHjJCQEKNAgQLG4MGD0110Iyc1ZbW/btY3K1asMKpVq2YEBAQYFStWNGbNmpXhVHwZ/a5n9zhIZu8xl5Pnuf6Yy+nxZu/+zuj3zt7XYs/7SE77f9KkSUa+fPnSnfbU3uPZ3vcne463a58/o2MuPQkJCUZAQEC6C6oYhmEkJiYawcHBxrFjx1LaKlasmGaqw5YtWxrz5s1L2fbUqVPG1atXjaCgIOPo0aMp27Vv39749NNP7a4tuyIjIzOd0m3fvn1GixYtjMKFCxuBgYFGpUqVjPHjx6c5RrJi3759Rt++fY0SJUoY/v7+RtGiRY0777zTGDVqlLFv3z67HsPeYzIrOcEwHLuPk3322WdGnTp1jIIFCxphYWGGj49PmqXGk5daT+94drTGjRvfdBq/a9lzbNgrq/t8+PDhRunSpbO8/HmWwzUA75adMAD35Un7++zZs0bBggWNjz76KKXNk15fsr179xpFihRJuR0XF2cEBASk+WOhWLFixh9//GHs3bvXKFasmGEYhrFnz5409zMMwyhbtqyxbds2p9QN+2VlHxuGYSxbtsyoVKmSsWPHDuPq1avGsWPHjLx586bMBb1x40ajZMmSRqdOnYxHH33UuS/GRV2+fNmIiIgw3n777Szf12ljrgEAsFJYWJiee+45vfHGGzmaKcXV7dy5M81wlt9++03lypVTUFCQJOnUqVM6d+6cypUrd8N462vvd/78eR05ciRXLzRD9mRlHydvX6ZMGVWpUkVHjhxRr169VKFCBfn5+engwYPq3LmzZs2apcmTJ2vOnDlprg3xVtOnT5e/v3+25qAnXAMAvMbw4cNTZvfwVNeH5PRuV61aVT4+PmkWKbl+u+joaFWoUEEBAQHOKx52yco+lqSePXvq33//VYECBdS3b19VrVpVNWvW1Pnz53Xffffp5ZdfVuPGjVWiRAn17NlT48aNc/prcjWPPfaYDh48mKWl0pPZDMOFJiwG4PJGjRql0aNH6+TJkzcsOAPP4+n729NfHwDnI1wDAAAADuK5n4sBAAAATka4BgAAABzEqYvIIHclJSXp6NGjCgkJyfZyqwAAwLkMw9D58+dVvHhxj77Y1lsQrj3I0aNHVapUKavLAAAA2XDo0CGVLFnS6jKQQ4RrDxISEiLJ/OUMDQ21uBprJSQkaMWKFWrRooX8/f2tLsdj0c/OQ187B/3sHPRzWrGxsSpVqlTK/+Nwb4RrD5I8FCQ0NJRwnZCg4OBghYaG8sadi+hn56GvnYN+dg76OX0M6fQMDOwBAAAAHIRwDQAAADgI4RoAAABwEMI1AAAA4CCEawAAAMBBCNcAAACAgxCuAQAAAAchXAMAAAAOQrgGAAAAHIRwDQAAADgI4RoAAABwEMI17HPlitUVAAAAuDzCNW7OMKSXXpKaNZPi4qyuBgAAwKURrnFzhw9LU6ZIP/4oPfAAZ7ABAABugnCNmytVSlqyRAoOlr77TurVS0pMtLoqAAAAl0S4RuYaNJDmz5f8/aW5c6VHHzWHiwAAACANwjXs06KF9Pnnko+P9PHH0jPPELABAACuQ7iG/Tp1MoO1JE2aJI0da209AAAALoZwjazp00eaPNn8fuTI1O8BAABAuEY2DBkijRljfj90qDRjhpXVAAAAuAzCNbJnxAhp2DDz+/79pa+/trYeAAAAF0C4RvbYbNLEiWawTkqSuneXli+3uioAAABLEa6RfTabNG2a1KWLlJAgdewo/fyz1VUBAABYhnCNnPH1lWbOlFq1ki5dklq3lrZts7oqAAAASxCukXMBAdK8eVKjRlJsrNSypbRnj9VVAQAAOB3hGo4RHCwtXizVqiWdPCk1by7984/VVQEAADgV4RqOExZmXtRYubJ0+LDUrJl0/LjVVQEAADgN4RqOVbiwtHKlVKaMtG+fuWz6mTNWVwUAAOAUhGs4XokS0qpVUkSEtGuXeZHjhQtWVwUAAJDrCNfIHeXKmWewCxaUNm6UOnSQLl+2uioAAIBcRbhG7qlWTfruOylfPmn1aqlbN3M+bAAAAA9FuEbuqlvXnEUkMFBauFDq189c0REAAMADEa6R++65x5wH289PmjVLeuIJyTCsrgoAAMDhCNdwjvvukz77zFwyfepUacQIqysCAABwOMI1nKd7d+l//zO/HzdOev11a+sBAABwMMI1nOvRR6XXXjO/Hz5cmjbN2noAAAAciHAN53vuOenFF83vBw6UPv/c2noAAAAchHANa4wdKw0aZF7Y+OCD5owiAAAAbo5wDWvYbNI770i9ekmJiVLnztKaNVZXBQAAkCOEa1jHx0eaPl1q316Kj5fatZM2bbK6KgAAgGwjXMNafn7SF19ITZtKFy5IUVFSdLTVVQEAAGQL4RrWCwqSFiyQ7rxTOnNGat5c+usvq6sCAADIMsK1k6xbt05t27ZV8eLFZbPZtGDBgjQ/NwxDI0eOVLFixZQnTx41a9ZMf/75pzXFWiFfPmnpUql6den4calZM+nwYaurAgAAyBLCtZNcvHhRNWvW1HvvvZfuz19//XW98847ev/99/XLL78ob968atmypS5fvuzkSi1UoIC0YoVUvrx04IB5BvvkSaurAgAAsJuf1QV4i1atWqlVq1bp/swwDL399tsaMWKE2rdvL0n67LPPVLRoUS1YsEDdunVL937x8fGKj49PuR0bGytJSkhIUEJCgoNfgZMUKiR99538mjSRbc8eGS1b6uqKFVJYWJYeJvn1u20/uAn62Xnoa+egn52Dfk6LfvAsNsMwDKuL8DY2m03z589Xhw4dJEl///23ypUrp23btum2225L2a5x48a67bbbNHny5HQfZ9SoURo9evQN7XPmzFFwcHBulO40+Q4fVsP/+z8FnjunU1WqaOPLLysxMNDqsgAAcLi4uDj16NFD586dU2hoqNXlIIc4c+0Cjh8/LkkqWrRomvaiRYum/Cw9L7zwgoYNG5ZyOzY2VqVKlVKLFi0845ezTh0ZLVqo8O+/q/Unnyjx66+lgAC77pqQkKCVK1eqefPm8vf3z+VCvRf97Dz0tXPQz85BP6eV/MkzPAPh2o0FBgYqMJ2zuf7+/p7xZlW3rrRkidS8uXyWL5dP377mUum+vnY/hMf0hYujn52HvnYO+tk56GcTfeBZuKDRBUREREiSYmJi0rTHxMSk/MxrNWggzZ8v+ftLc+dKjz5qLpkOAADgggjXLqBs2bKKiIjQ6tWrU9piY2P1yy+/qH79+hZW5iJatjTPWPv4SB9/LD39NAEbAAC4JMK1k1y4cEHbt2/X9u3bJUn79+/X9u3bdfDgQdlsNg0dOlRjx47VokWLtGvXLj300EMqXrx4ykWPXq9TJzNYS9Jbb0ljx1pbDwAAQDoYc+0kv/76q5o0aZJyO/lCxN69e2vGjBl67rnndPHiRQ0YMEBnz55Vw4YNtWzZMgUFBVlVsuvp00c6d04aOlQaOVIKDZWefNLqqgAAAFIQrp3knnvu0c1mPbTZbBozZozGjBnjxKrc0JNPmgH75ZfNkB0WZoZuAAAAF8CwELifl16Skqcg7N9f+vpra+sBAAD4D+Ea7sdmkyZONIN1UpLUvbu0fLnVVQEAABCu4aZsNmnaNKlzZykhQerYUfr5Z6urAgAAXo5wDffl6yvNmiW1aiVduiS1bi1t22Z1VQAAwIsRruHeAgKkefOkRo2k2FhzTuw9e6yuCgAAeCnCNdxfcLC0eLFUq5Z08qTUvLn0zz9WVwUAALwQ4RqeISzMvKixcmXp8GH5tWqlwDNnrK4KAAB4GcI1PEfhwtLKlVKZMrLt26f6o0ZJp09bXRUAAPAihGt4lhIlpFWrZEREKOyff+Tbvr104YLVVQEAAC9BuIbnKVdOV5cu1ZWQEPn88ovUoYN0+bLVVQEAAC9AuIZnqlZNG156SUa+fNLq1VK3buZ82AAAALmIcA2PdbZCBSXOny8FBkoLF0r9+pkrOgIAAOQSwjU8mtG4sTkPtp+fueDME09IhmF1WQAAwEMRruH57rtP+uwzc8n0qVOlESOsrggAAHgowjW8Q/fu0v/+Z34/bpz0+uvW1gMAADwS4Rre49FHpddeM78fPlyaNs3aegAAgMchXMO7PPec9OKL5vcDB0qff25tPQAAwKMQruF9xo6VBg0yL2x88EFp8WKrKwIAAB6CcA3vY7NJ77wj9eolJSZKnTtLa9ZYXRUAAPAAhGt4Jx8fafp0qX17KT5eatdO2rTJ6qoAAICbI1zDe/n5SV98ITVtKl24IEVFSdHRVlcFAADcGOEa3i0oSFqwQLrzTunMGal5c+mvv6yuCgAAuCnCNZAvn7R0qVS9unT8uNSsmXT4sNVVAQAAN0S4BiSpQAFpxQqpfHnpwAHzDPbJk1ZXBQAA3AzhGkgWESGtWiWVLCnt2WOOwT53zuqqAACAGyFcA9eKjDQDdni4tHWr1LatFBdndVUAAMBNEK6B61WsKC1fLoWFST/+KHXqJF25YnVVAADADRCugfTcfru0ZIkUHCwtW5a64AwAAMBNEK6BjDRoIM2fL/n7S3PnSo8+ai6ZDgAAkAHCNXAzLVpIn39uruj48cfSM88QsAEAQIYI10BmOnUyg7UkTZokjR1rbT0AAMBlEa4Be/TpI02ebH4/cmTq9wAAANcgXAP2GjJEGjPG/H7oUGnGDCurAQAALohwDWTFiBHSsGHm9/37S19/bW09AADApRCugayw2aSJE81gnZQkde9uzokNAAAgwjWQdTabNG2a1KWLlJAgdewo/fyz1VUBAAAXQLgGssPXV5o5U2rVSrp0SWrdWtq2zeqqAACAxQjXQHYFBEjz5kmNGkmxsVLLltKePVZXBQAALES4BnIiOFj69lupdm3p5EmpeXPpn3+srgoAAFiEcA3kVGiotGyZVLmydPiw1KyZdPy41VUBAAALEK4BRyhcWFq5UipTRtq3z1w2/cwZq6sCAABORrgGHKVECWnVKqlYMWnXLvMixwsXrK4KAAA4EeEacKRy5aQVK6SCBaWNG6UOHaTLl62uCgAAOAnhGnC0atXMMdj58kmrV0vdupnzYQMAAI9HuAZyQ5060uLFUmCgtHCh1K+fuaIjAADwaIRrILfcc485D7afnzRrlvTEE5JhWF0VAADIRYRrIDfdd5/02WfmkulTp0ojRlhdEQAAyEWEayC3de8uvf+++f24cdLrr1tbDwAAyDWEa8AZBgxIDdXDh0vTpllbDwAAyBWEa8BZnn1WevFF8/uBA6XPP7e2HgAA4HCEa8CZxo6VBg0yL2x88EFzRhEAAOAxCNeAM9ls0jvvmME6MVHq3Flas8bqqgAAgIMQrgFn8/GRPvnEXL0xPl5q107atMnqqgAAgAMQrgEr+PmZY66bNpUuXJBatZKio62uCgAA5BDhGrBKUJC0YIF0553S6dNS8+bSX39ZXRUAAMgBwjVgpXz5pKVLpRo1pOPHpWbNpCNHrK4KAABkE+EasFqBAtKKFVL58tKBA+YZ7JMnra4KAABkA+EacAVFi0qrVkmlSkm7d0tRUdK5c1ZXBQAAsohwDbiKyEhp5UopPFzaulVq21aKi7O6KgAAkAWEa8CVVKwoLV8uhYVJP/4oPfCAdOWK1VUBAAA7Ea4BV3P77dKSJVJwsPTdd1KvXuaCMwAAwOURrgFX1KCBNH++5O8vzZ0rPfqouWQ6AABwaYRrwFW1aGEuNOPjI338sfTMMwRsAABcHOEacGWdOpnBWpImTZLGjrW2HgAAcFOEa8DV9ekjTZ5sfj9yZOr3AADA5RCuAXcwZIg0Zoz5/dCh0owZVlYDAAAyQLgG3MWIEdKwYeb3/ftLX39tbT0AAOAGhGvAXdhs0sSJZrBOSpK6dzfnxAYAAC6DcA24E5tNmjZN6tJFSkiQOnaUfv7Z6qoAAMB/CNcuYtSoUbLZbGm+KlWqZHVZcEW+vtLMmVKrVtKlS1Lr1tK2bVZXBQAARLh2KVWrVtWxY8dSvn766SerS4KrCgiQ5s2TGjWSYmOlli2lPXusrgoAAK/nZ3UBSOXn56eIiAi7t4+Pj1d8fHzK7djYWElSQkKCEhISHF6fO0l+/R7dD/7+0vz58m3RQj5bt8po3lxX16yRIiOdVoJX9LOLoK+dg352Dvo5LfrBs9gMgyXfXMGoUaP0xhtvKCwsTEFBQapfv77Gjx+v0qVL3/Q+o0ePvqF9zpw5Cg4Ozs1y4UICYmPV8MUXFXL4sC4UK6afxo1TfIECVpcFALBTXFycevTooXPnzik0NNTqcpBDhGsX8d133+nChQuqWLGijh07ptGjR+vIkSOKjo5WSEhIuvdJ78x1qVKldOrUKa//5UxISNDKlSvVvHlz+fv7W11O7jtyRH5Nmsh24ICMatV0dfVqyQkB2+v62UL0tXPQz85BP6cVGxurwoULE649BMNCXESrVq1Svq9Ro4bq1aunyMhIffXVV+rfv3+69wkMDFRgYOAN7f7+/rxZ/cdr+qJMGWnVKqlRI9mio+Xfvr20cqWUL59Tnt5r+tkF0NfOQT87B/1sog88Cxc0uqj8+fOrQoUK2rdvn9WlwF2UKyetWCEVLCht3Ch16CBdvmx1VQAAeBXCtYu6cOGC/vrrLxUrVszqUuBOqlWTli0zz1ivXi1162bOhw0AAJyCcO0innnmGf3www86cOCA1q9fr44dO8rX11fdu3e3ujS4mzp1pMWLpcBAaeFCqV8/c0VHAACQ6wjXLuLw4cPq3r27KlasqC5duqhQoULauHGjwsPDrS4N7uiee8x5sP38pFmzpCeekLh2GQCAXMcFjS7iiy++sLoEeJr77pM++0zq2VOaOlXKn1969VWrqwIAwKNx5hrwZN27S++/b34/bpz0+uvW1gMAgIcjXAOebsCA1FA9fLg0bZq19QAA4MEI14A3ePZZ6cUXze8HDpQ+/9zaegAA8FCEa8BbjB0rDRpkXtj44IPmjCIAAMChCNeAt7DZpHfekXr1khITpc6dpTVrrK4KAACPQrgGvImPjzR9utS+vRQfL7VrJ23aZHVVAAB4DMI14G38/KQvvpCaNpUuXJCioqToaKurAgDXx3oBsAPhGvBGQUHSggXSnXdKZ85IzZtLf/1ldVUA4HqSkqQff5Qee0yqX5+AjUyxiAzgrfLlk5YulRo3lnbtkpo1M/8DKVnS6soAwHq7dkmzZ5uzKx08mNq+aZNUr551dcHlEa4Bb1aggLRihdSokbRvn3kGe906KTzc6soAwPkOHjTD9OzZZrhOFhIidepkrnh7xx3W1Qe3QLgGvF1EhLRqldSwobRnjzkG+/vvpbAwqysDgNx3+rQ0b54ZqNetS23395datzYD9X33SXnyWFcj3ArhGoAUGWkG7EaNpK1bpbZtpWXLpOBgqysDAMe7dMmc63/2bOm776SEhNSfNW5sBupOnaSCBa2rEW6LcA3AVLGitHy51KSJOfa6Uydp4UIpIMDqygAg565eNef2nz1b+uYb6fz51J/VqGEG6u7dpVKlrKsRHoFwDSDV7bdLS5ZILVqYZ6579TLHH/r6Wl0ZAGSdYUi//moG6i++kGJiUn9WurTUo4cZqqtVs65GeBzCNYC0GjSQ5s83xxjOnSuFhkoffmiu8AgA7uDPP6U5c8yvP/5IbS9YUOrSxQzUd91lLqwFOBjhGsCNWrQwz1h36SJ9/LEZsN98k4ANwHXFxJhnp2fPljZvTm3Pk8dcjbZnT6llS4a6IdcRrgGkr1MnM1j37Su99ZaUP780cqTVVQFAqvPnzU/aZs82L8pOSjLbfXzMqUV79pQ6dDCn0gOchHANIGN9+kixsdKTT0ovv2xOz/fkk1ZXBcCbXbliXhMye7a0aJF0+XLqz+rWNQN1165S0aLW1QivRrgGcHNDhkjnzplnrYcONYeI9O1rdVUAvElSkvTzz2agnjvXnJs6WYUKZqDu0UMqX966GoH/EK4BZG7ECOnsWWnSJOnhh82A3amT1VUB8HQZLUEeESF162aG6tq1uR4ELoVwDSBzNps0caJ5Bvvjj825YBcvlu691+rKAHgae5Ygb9KEKULhsgjXAOxjs0nTppkXEH31ldSxo2xLl1pdFQBPwBLk8CCEawD28/WVZs40A/Z338m3fXuFjRpldVUA3JBPfLxsc+dKX37JEuTwKIRrAFkTEGCeYYqKku3HH1V/1CipWTOpenWrKwPg6v5bgtx35kxFzZsnv0uXUn/GEuTwEIRrAFkXHCx9+62SmjRR4NatMlq3ln76SYqMtLoyAK4mnSXIfST5SDIiI2Xr0cOc6YMlyOEhCNcAsic0VInffquLdesq5PBh8+z1jz+aV/EDwE2WIE984AGtL1NGdw4bJv/AQOtqBHKBj9UFAHBjhQtr/ejRMsqUkfbtM5dNv3b+WQDeJSZGmjzZXMylQgVp1CgzWOfJY06dt3ixdOyYkt59V6erVDFXUgQ8DGeuAeTI5UKFdPW77+TfpIk5bVbr1uYyxPnyWV0aAGfIzhLk1168CHgYwjWAnCtXTlq50rzC/5dfpPbtpSVLpKAgqysDkBtYghzIEOEagGNUq2ZOp9W0qfT99+ZHwHPnmvPUAnB/LEEO2MXtw/W9DlohzmazafXq1Q55LMBr1a1rjqmMipIWLpT69ZM+/ZRxlYA7i442A/WcOSxBDtjB7cP12rVrHfI4Nt4UAMe45x5zHuyOHaVZs6TQUOndd/mPF3AnLEEOZJvbh2tJioqK0vDhw7N9/wkTJmjFihUOrAjwcvfdJ332mfkf8NSpUliYNG6c1VUBuBmWIAccwiPCdUREhBo3bpzt+8+YMcNxxQAwde8uxcZKjz0mjR9vBuwc/BEMIBdcumQO5Zo9myXIAQdx+3BdoUIFFStWLEePERERoQoVKjioIgApHn1UOnfODNXPP28G7Mces7oqwLv9twS5Zs+WvvnGnEovGUuQAznm9uF6z549OX6M8ePHa/z48Q6oBsANnnvODNjjxkmPP26Owe7Rw+qqAO+SzhLkKUqXNn8ne/ZkCXLAAdw+XM+bN0+tW7dWcHCw1aUAyMjYsWbAfu896aGHzIui2ra1uirA8+3blzrTx3VLkKtLFzNQ33UXM/oADuT24bpLly7KkyePoqKidP/996tt27YKDQ21uiwA17LZpHfeMQP2rFlS587m+M4mTayuDPA8MTHSl1+aoXrTptT2PHmkdu3MQN2ypRQQYF2NgAdz+3D90ksv6ZtvvtH8+fO1YMEC+fv7q2nTpurUqZPatWunwoULW10iAMk8MzZ9ujm+c+FC8z/5VaukevWsrgxwf9lZghxArnD7z4FGjx6tXbt2ac+ePXrllVdUrVo1fffdd3rkkUdUrFgxNW3aVFOnTtWxY8esLhWAn5853rNpU+nCBalVK3OBCgBZd+WKOdNHt27mMuO9e0srVpjBum5dafJk6ehRc5nyBx8kWANO4vbhOlmFChX04osv6tdff9X+/fv1xhtvqG7dulq7dq0GDx6sUqVKqUGDBpo0aZIOHDhgdbmA9woKkhYskO68Uzpzxjyrtm+f1VUB7iEpSfrxR3PWnWLFzE+AvvzSnFKvQgVp9Gjpzz+lX36RhgwxQzcAp/KYcH2tyMhIDRs2TD///LOOHDmid999V40bN9amTZv0zDPPqFy5crrjjjs0btw4h8w2AiCL8uWTli6VqleXjh+XmjWTDh+2uirAdUVHSy+8IJUtK919tzRtmrnoS0SENHSotHmztGePNHKkVL681dUCXs0jw/W1IiIi9Pjjj2v16tWKiYnRRx99pKioKEVHR2vEiBGqWrWqJk6caHWZgPcpUMD8CLt8eemff8wz2CdPWl0V4DoOHpRee82ce7p6dWnCBLMtJETq00daudL8o/Stt6Q77jAvHAZgObe/oDErChYsqH79+qlfv36KjY3V4sWLNX/+fNl4QwKsERFhXnzVsKF51i0qSvr+e3OxGcAbsQQ54Pa8KlxfKzQ0VD179lTPnj2tLgXwbpGRZsBu1EjautWc/3rZMom56+EtWIIc8CheG64BuJCKFaXly815r3/80QwSCxcyDy88F0uQAx7L7cdcjxs3TkuWLMnRY3z77bcaN26cgyoCkC233y4tWWKesV62TOrVS0pMtLoqwHEMw7zwcOhQqWRJqUUL6dNPzWBdurT0/PPSrl3Sjh3Sc88RrAE35fbhesSIEfr6669z9Bhff/21XnrpJQdVBCDbGjQwF8Lw95fmzpUefdQMJIA7+/NPc4q8SpVS55+OiTGHeTz2mPlpzf790vjxUrVqVlcLIIcYFgLAtbRoIX3+udSli/Txx1JoqPTmm8yEAPcSE2MumDR7tnm2OhlLkAMezyPC9bx587R27dps3//UqVOOKwZAznXqZAbrvn3Nacby5zfn7wVcGUuQA5CHhOsLFy7owoULOXoMpuMDXEyfPlJsrPTkk9LLL5vT8z35pNVVAWlduWJeIzB7trRokXT5curP6tY1A3XXrqyUCHgRtw/X+/fvt7oEALllyBDp3DnzrPXQoeYQkb59ra4K3i4pSfr5ZzNQz51rzk2drEIFM1D36MFKiYCXcvtwHRkZaXUJAHLTiBHS2bPSpEnSww+bAbtTJ6urgjfatcsM1J9/bq6UmCwiQurWzQzVtWtzfQDg5dw+XAPwcDabNHGieQb744/NuX8XLzYvBgNy28GDZpiePdsM18lCQsw/8nr2NOdn9/W1rkYALoVwDcD12WzStGnmGOy5c6WOHaUVK8xl0wEH8z9/XraPPjJn+2AJcgBZRLgG4B58faVZs6QLF8wlotu0kdauNRefAXLqvyXIfWfOVNSyZfK5ejX1ZyxBDiALCNcA3EdAgDRvnhQVZS680aKF+W+lSlZXBneUzhLkySurGdWry9arF0uQA8gywjUA9xIcbI65vvdeaetWc/7gn36SuLgZ9jAM6ddfzUD9xRfmYi/JSpdWYteu+qFkSTUaOFD+/v7W1QnAbRGuAbifsDBp+XLp7rul3bulZs3MM9gREVZXBlf155/SnDlmqP7zz9T2ggXN1UB79pTuuktJiYk6v3SpdXUCcHuEawDuqXBhaeVK86LGffvMISJr1zImFqmyswR5YqLz6wTgUTw6XJ84cUJFihSxugwAuaVECXOZ6YYNzWnSWrc2b+fLZ3VlsApLkAOwmE/mm7iv4sWLa9u2bZKkMWPGaPHixfrnn38srgqAQ5UrZ57BLlhQ+uUXqX37tEtQw/NduWIuPd61q1SkiNS7tzlVY1KSuQT55MnS0aPmMuUPPkiwBpCrPPrM9cKFC1WsWDFJ0ocffqgjR47IZrMpNDRUNWrUUM2aNVO+qlWrpqCgIIsrBpAt1aqZ0/M1bSp9/725Wt7cuea8xPBMLEEOwEV5dLhu06ZNyveHDh3S6dOntWPHjpSvn376SR988IGuXLkiX19fJSQkWFgtgBypW9ecRSQqSlq4UOrXT/r0U3M4ADxHdLQZqOfMYQlyAC7Jo8P19QoWLKgmTZqoSZMmKW1Xr17V7t27tXPnTgsrA+AQ99xjzoPdsaO54ExoqPTuuwQtd8cS5ADciNuH6/Lly+uOO+5QrVq1VKtWLdWuXVsFChSw+/5+fn6qXr26qlevnotVAnCa++6TPvvMDFxTp0r580uvvmp1Vciq06fNP5Rmz2YJcgBuxe3D9d9//639+/dr7ty5KW2RkZGqXbt2StiuXbu2ChUqZGGVAJyqe3cpNlZ67DFp3DhzXuznnrO6KmTmvyXINXu2OYb+2qF6LEEOwE24fbj+6quvtGXLFm3ZskVbt27V6dOndeDAAR04cEDffPNNynalSpVKE7Zr166t8PBwCysHkKsefVQ6d04aPtz8Cgsz2+BaEhPNi1CvWYI8RY0aZqBmCXIAbsTtw/UDDzygBx54IOX2P//8kxK2kwP3qVOndPDgQR08eFALFy5M2bZEiRI6eO0FMQA8y3PPmQF73Dhp4EBzDHb37lZXheQlyOfMMRd5OX489WeRkeYsHz16mLPAAICbcftwfb3IyEhFRkbq/vvvT2k7dOhQmrC9ZcsWnThxQkeOHLGw0vS99957euONN3T8+HHVrFlTU6ZMUd26da0uC3BfY8eaAfu998w5jvPlk9q2tboq77RvX+pMH3/8kdp+3RLkzPACwJ15XLhOT6lSpVSqVCl16NAhpe3IkSPasmWLdUWl48svv9SwYcP0/vvvq169enr77bfVsmVL7d27l5Umgeyy2aR33jED9qxZUufO5njea2YNQi6KiZG+/NIM1Zs2pbbnyWMu+NOzp7l0/bVLkAOAG/OKcJ2eEiVKqESJElaXkcakSZP0yCOPqG/fvpKk999/X0uWLNEnn3yi559//obt4+PjFR8fn3I7NjZWkpSQkOD1c3Ynv35v74fc5lb9/MEH8j13Tj6LF8u47z4Zt98u5c1rdVV280lK0p3//iufd99Vkruc2b1wQbaNG2X7bwlyw8dHRrNmSurWTUb79mlXSnSRY8itjmk3Rj+nRT94FpthGIbVRUC6cuWKgoODNW/evDRn2Hv37q2zZ8+mGSuebNSoURo9evQN7XPmzFFwcHBulgu4JZ8rV3TnmDEKj462uhSvcrpCBR2++24dbdhQ8fnzW10O4HLi4uLUo0cPnTt3TqGhoVaXgxzy2jPXrubUqVNKTExU0aJF07QXLVpUe/bsSfc+L7zwgoYNG5ZyOzY2VqVKlVKLFi28/pczISFBK1euVPPmzeXPEti5xi37uVEjGY0bS3//raSBA80z2G4gMTFR0dHRqlatmnxdcLEUn3fekc/27Up84AEZrVv/1+gjo25dhZQvr8qSKltaoX3c8ph2Q/RzWsmfPMMzEK7dWGBgoAIDA29o9/f3583qP/SFc7hVP0dESBs2SNHR8r37bqursZuRkKDDS5eqRuvW8rO6r6OjzXHUI0ZIye9BV69KI0fK9667pP+Gtrkztzqm3Rj9bKIPPIubDNzzfIULF5avr69iYmLStMfExCgiIsKiqgD3snz5ctlstpt+rVixwpyd4tpgfe6cdOqUdYW7k6QkLb/nHtnGjpUtKCi1bwcMkO34cdmGDUvtZwDwQoRrFxEQEKDatWtr9erVKW1JSUlavXq16tevb2FlgPu4++67dezYsZSvQoUK6aWXXkrT1rRp07R3OnHCnDmkZUszZCPVxYvSBx9IDz+c2ubjo7v799exli11bNEi+/sZALwEw0JcyLBhw9S7d2/dcccdqlu3rt5++21dvHgxZfYQADeXJ08e5cmTR5I53ea///6rRo0a3fzTn7NnpcOH9d+dzJUcYYqPlwYPNmfyGDo0ZVGXPK+9pjz/bWJ3PwOAlyBcu5CuXbvq5MmTGjlypI4fP67bbrtNy5Ytu+EiRwCZ27ZtmySpVq1aN9+wQgVpxQopONj83lvt2SNNmCD5+UkffWS2FSwoDRkiFSkiZfA+ZHc/A4CXIFy7mMGDB2vw4MFWlwG4va1bt6pUqVIqVKhQ5hvfdluam99/+aW2HTyop599NneKcwWGIV25knpB4qVL0qefSkFB0ptvpp7Bnzjxpg+TpX4GAC/AmGsAHmnr1q3ZO5u6a5fuffJJPb13rxlAPdGXX0oVK0qvvJLadttt0ksvSStXpl3cJRPZ7mcA8FCEawAeKaPQ165dOz355JO68847VbFiRW3atEnt27dXZGSkpk6dKv31l9rFxGjXunVSbKxat26tkSNHqkGDBrrlllsU7Y4L0MTESHFxadv+/FOaPz/1ts0mjRkjNWwoZWEFyGz3s6RZs2apbt26ql69utq0aZOy4myDBg30yy+/SJL69++vt956K4svGACsQ7gG4HFOnTqlQ4cOpRv6du3apRo1amjjxo1q2rSpnn32Wc2aNUtr1qzR9OnTpQ4dtKd4cVX66ScpLEzR0dEqXbq0fv75Zw0ZMiTd1VJd2uOPS8WLS/Pmpba1bSt99pm0cWOOHjpH/SypVatW2rRpk3bt2qXixYtr7dq1kqSXXnpJEyZM0KRJk+Tj46OnnnoqR3UCgDMRrgF4nK1bt0q68SK78+fPyzAM9e/fP6VtyJAhCgkJkWEYCg0N1fnz5xVUqJD8ixRRbGysbDabHm7VSpK5qlx+V16++8oVadmytMNZihWTkpKk//pEknnx5oMPZmn4R3py0s+GYejDDz9UnTp1VLNmTX399dcKCgqSJEVFRengwYNasmRJylluAHAXhGsAHmfbtm0qWrSoihcvnqb9t99+U506dVJu79q1S/Xq1ZMkRUdHq3r16vrtt99UtWrVlLY6JUpI5ctL06dr165dKT9zOYmJ5mwnrVpJ/w2pkCQNGGAOAXn7bYc/ZU76ecaMGdqzZ4/WrVunHTt2qECBAqpSpYokafPmzTp9+rTCwsJYuQ6A2yFcA/A4w4cP1/Hjx29oTx6qkOzw4cMqWbJkys+qV6+e8q9kBsGaPj7S5cvS0qVpfma56Gjpk09Sb/v6So0amcu7Hz2a2l60qPnHQS7IST//9ttvatCggfLkyaP33ntPcXFxCg8P15EjR/Twww/r+++/14EDB9xzjDsAr0a4BuA1rg19hw4dUqlSpdL8LDlcV/tvsZTo6GjVeOYZafp0XZ05U2fPnrV2yjnDML8OHJCqVzfPSp84kfrzyZPNBXHuv9+yEiX7+vnBBx/U66+/rjvvvFP79+9X9erVdenSJXXu3FlTpkxR2bJl9cILL+iVa2c0AQA3YDMMT51ryvvExsYqLCxM586dU2hoqNXlWCohIUFLly5V69at+Vg5F3ltP8fEZLioisOdOSPNnavEy5f1benSat2mjdnXjRpJhQpJb7wh3Xqrc2rxAl57TDsZ/ZwW/397Fs5cA0BWjB9vzhF97QWCuWnDBunRR+Xz6quyJSWltq9dKy1YQLAGABdDuAYAeyUkmLNxnDtnLrbiaL/8IvXpk3YsdfPmUpMmSho6VD5Xr6a2+/o6/vkBADnG8ucAYC9/f2nxYvOM8UMP5fzxkkfl2Wzmvxs2mEuQ//GH1K9f6nN+/72SEhKUuHRpzp8TAJCrOHMNAFkRGpo2WCcmSqdPZ/1xJk+WKlVKewa8a1fpscek11/PeZ0AAEsQrgEguxISzMVY7rkn84B95kza23v3mmeov/gita1YMel//zOXIAcAuCXCNQBkV0yMeWHh7t3Spk3pb3P1qtS6tVSkiLR/f2r7Y4+ZS5BPnuyUUgEAzkG4BoDsKlnSHNaxaJEUFWW2Xbkibd+euo2fn9l29aq0enVqe40aDlmCHADgWrigEQByompV80uS/v5buuMOM0jHxEh58pjtb7xhhuhcWikRAOA6OHMNANkVHW0OC0kWEiJdvGiOxd6zJ7X99tsJ1gDgJQjXAJAdX31lLkE+eHDqlHo7dpizhwQHS/nzW1oeAMAahGsAyMzp09IHH0g//JDa1qKFeab61luluDizrVkz6csvpR9/lMqWtaZWAIClGHMNAJl57TVz7umOHaXGjc22/PnTjqtO1qlT2tvnz3PRIgB4Ec5cA8C1vv/eXII8Ojq1rUcPqWbN1GCd7Ppgfb3du6XKlaX333d4mQAA10S4BoBrTZliLkE+e3ZqW82a5vR6Tz6Ztcf65hvpyBFp6lRzOj4AgMdjWAgA75SQII0bZwbgH35IvQDx4YeliAjp/vtz/hwvvigFBZlnwgMCcv54AACXx5lrAN4jPj71ez8/c8aPnTvNgJ2sTRtzCfI6dXL+fDab9PTTUqFCqW0XL+b8cQEALotwDcDz/fOP1LKludhLUpLZZrNJL79sLkHeubNz6li61JxF5JdfnPN8AACnY1gIAM9z5Yp04oS5PLkkFSkibdhgztyxY4e5qIskdenivJoMQ3r3XenkSfPfevWc99wAAKfhzDUAz7J0qVSsmNS3b2pbnjzSzJnSn3+mBmtns9nMYSijR0uffGJNDQCAXMeZawDuLTraXBHxllvM25UqmYu+7N4tXbqUOl1e+/bW1ZgsXz5p5Mi0bZcvmxc9AgA8AmeuAbivF180lyB/883UtltuMYeA/PNP5vNQW23SJKlWLXOoCADAIxCuAbiH5CXIY2JS2xo3lvz9084CIkl33in5+jq3vqw6d0566y3zDPuXX1pdDQDAQRgWAsA9tG8v/fSTOdQjeTGXpk2l48elggWtrS07wsKkVavMMeKDBlldDQDAQQjXAFxLYqK5BPn8+dLkyeaZacmc2eP8eSk8PHVbPz/3DNbJKlY0v5IlJZmvP/k1AwDcDuEagGsxDKlnT3Mcctu2UqtWZvvjj0tPPGFtbbnp6lVzdci4OOnzz11/WAsAIF2EawDWOXVKeu89ae9eac4cs83PT3rsMTNcR0ambuvpYXPHDrMPkpKkjRulBg2srggAkA2EawDOlZQk+fx3LfXVq9KYMWbbK69I5cqZ7WPGWFefVWrXlr74wuwbgjUAuC3CNQDn+OUXc47nEiVSF1GJiDCn06tQwfze291/f9rbCQmMvwYAN8NUfAByx5Ur0oULqbcTE6UVK6S5c82FU5K98or04INS3rzOr9GVnT1rTjU4ebLVlQAAsoBwDcDx3n3XXIL87bdT2+rXNxd72baNFQnt8eWX5mI4o0dL//5rdTUAADsRrgHk3K5d5vzTyfLlMxd9Wb06tc1mk4YNk8qXd3597mjAAHPs+dq1UqFCVlcDALAT4RpAjtQbO1b+tWtLixenNt5/v7RypblICrLHZpNeekmqUSO1LTHRunoAAHYhXAOw3+nT5nRxhpHSFBsZKcPfX/r779TtQkOlZs08f/o8Z/rjD9375JOy/fyz1ZUAAG6CcA3APpcvS2XLmgu87NyZ0vxX+/a6eviw9PzzFhbn+XwnTFDI4cPyGT48zR83AADXQrgGcKPERHNYx5QpqW1BQVLz5uYwhTNnUpqvhIZKBQpYUKR3SXz3Xe2PilLiN9+YQ0YAAC6Jea4B3Gj3bqlFCykgQOrVKzU8z5wp5cljbW3eKjhYOx97TCWLFEltu3ZBHgCAS+BdGfB2Bw+a071dO59ytWpSkyZSv35pZwEhWLuOlSulWrWk48etrgQAcA3OXAPebvNmadQoqVQp6YknUs+Efv+9pWXhJq5eNffV3r3SuHHSO+9YXREA4D+cuQa8yZIlUsuW0owZqW1t2kgdO0qvvspUb+7Cz8/cl489Jr3xhtXVAACuwZlrwJNduWIGseSz0bt2mUuQJyRIffqYbUFB0jffWFYisqlcOel//0vbZhhc7AgAFuPMNeCphg83lyC/dl7kHj3M8dXTpllXF3LHu++ai/ckJFhdCQB4NcI14CkOHEh7+8QJc9GX+fNT20qXlkaOlG691amlIZcdPCg9+6y0YIH01VdWVwMAXo1hIYC7i4uT7rrLXNjl8GGpeHGzfdgwc8GXJk2srQ+5r3Rpae5caetW89MJAIBlOHMNuJvTp6Wffkq9HRws5c1rjq3etCm1vXp1liD3JvfdZ34qkTzmmlUcAcASnLkG3Mn27VLdulJoqHTsmOTvb7Z/+KE5vpqVEiGZs74MHGhe9Dh8uNXVAIBXIVwDriox0Zxr2jDM1RIlc3GXggWliAjp0CHpllvM9ipVrKsTrmfJEvMPLh8fqUMHqWJFqysCAK9BuAZc1UcfmfMY33FHarj28zOn0wsPt7Y2uLZ27cwhItWqEawBwMkYcw24gn37zCny1q1LbevYUSpaVKpTJ+30agRr2GP0aKlz59TbjMEGAKcgXAOuYMoUcwnya+efLlJEOnJEmjo1dWw1kB2xsVLr1tKaNVZXAgAej3ANONucOVJUlPTnn6ltPXuay5K3b592W2b6gCOMHy8tWyY9+KB0+bLV1QCARyNcA7ktKSnt7ZkzpeXLzZCdrG5dM/x06eLc2uAdXn5Z6tZNWrTIXO4eAJBruKARyC0XL0rPPCMtXSr9/rs5F7UkDRok1a8v9eplbX3wHkFB0uefW10FAHgFzlwDjnTmTOr3wcHSihXm0tRLlqS2Jy/2kTyNHuBsf/8tNW1qrugJAHAowjXgCL/9JtWsaZ6RTp6VwWaTJk6UVq6UOnWytj7gWv36mXOoDxxodSUA4HEYFgJkx+nT5lnqcuXM26VLS3/8YS788vffqe0dO1pXI5CRTz81g/UHH1hdCQB4HM5cA1k1a5a5QuLQoaltISHS4sXS8eOpwRpwVZGR5rUAxYpZXQkAeBzCNXAziYnmsI59+1LbatUyF3U5fly6ejW1vVkzc2lywN2sXSt17SpduWJ1JQDg9gjXwM08+qi59Pj776e2Vaki7d0rbd5sLkcOuLPz581rAr76yrxGAACQI4RrINmff0pjxkj//pvadt995tno5Gn0klWo4NzagNwSEmJO0/fAA9KwYVZXAwBuj9NuQLLOnaUdO6SiRc0z1pIZro8dkwICrK0NyE0tWphfAIAc48w1vE98vPTZZ1KPHuaY6mQPPWQuQV62bGqbnx/BGt7ngw+kV16xugoAcEuEaxdRpkwZ2Wy2NF8TJkywuizPZBjSkCHmR+E//pjaPmyYuQQ5Z/DgzbZuNT+5GTnSnAsbAJAlDAtxIWPGjNEjjzyScjskJMTCajzEP/+YF2mdPCl9/bXZFhSUOra0fHnragNcUa1a0ujR0qVLUpMmVlcDAG6HcO1CQkJCFBERYff28fHxio+PT7kdGxsrSUpISFBCQoLD63Mb8fFK8DE/lLmamCj/adMkSQl//y2VKmVu88ILqdt7c1/lUPJx5tXHm5M4ta+ff95cYfTaqSa9BMe0c9DPadEPnsVmGMlrNcNKZcqU0eXLl5WQkKDSpUurR48eeuqpp+R3k6neRo0apdGjR9/QPmfOHAUHB+dmuS6pyJYtqjJzps7ceqt2DBqU0n7rvHk6e+utOlmtmuTra2GFgBtKSlK16dMVU6uWTt5+u9XVAB4pLi5OPXr00Llz5xQaGmp1OcghwrWLmDRpkmrVqqWCBQtq/fr1euGFF9S3b19NmjQpw/ukd+a6VKlSOnXqlHf8cp4+bYblsDBJku377+UXFSWjaFFd+vNPrfz+ezVv3lz+/v4WF+q5EhIStHLlSvrZCazqa58PPpDv4MEy8ubV1b17pSJFnPbcVuCYdg76Oa3Y2FgVLlyYcO0hGBaSi55//nm99tprN91m9+7dqlSpkoZdM79sjRo1FBAQoEcffVTjx49XYGBguvcNDAxM92f+/v6e/2Y1YoT0+uvSuHHSM8+Ybc2aSZ98IluHDvIPCpLkJX3hAuhn53F6Xz/yiLRihWxdusi/RAnnPa/FOKadg3420QeehXCdi55++mn16dPnptvccsst6bbXq1dPV69e1YEDB1SxYsVcqM6NJCZKa9ZId9+dOi1eiRLmWOmtW1O38/WV+vY1v2f8GuAYAQHSggXmGGwAQKYI17koPDxc4eHh2brv9u3b5ePjoyIe/hGsXerWNUP0okVS27ZmW/fuZtiuWtXa2gBvcG2wvnBBevxxcx7syEjragIAF0W4dgEbNmzQL7/8oiZNmigkJEQbNmzQU089pV69eqlAgQJWl+dc+/ZJK1dKAwemtjVuLB04YE6nlyx/fvMLgHMNGiTNnClFR0u//ir5sFwCAFyLcO0CAgMD9cUXX2jUqFGKj49X2bJl9dRTT6UZh+0Vzp6VKlc2p/9q0kSqVMlsHzlSmjCBlRIBVzBunPTbb9J77xGsASAdhGsXUKtWLW3cuNHqMpzrwgXpm2+kY8ek4cPNtvz5pTZtpMuXza9knKEGXEeJEtLmzYzBBoAMcNoB1ti9W+rd21wJ7sKF1PavvzaXIL/tNstKA5CJa4P1P/9IDz+c9g9iAPBinLlG7tu5U5o6VapQIXXZ8TvukFq3lurVS7sKHIu8AO4jMdH8Pf79d3PY1tSpVlcEAJYjXCN3GEbq2a1du6Rp06Ty5aWnnjLbbTZpyRJrawSQM76+5tjrYcOkF1+0uhoAcAkMC4FjTZ8u1awpzZmT2ta+vdS/P2e1AE90zz3mrCElS1pdCQC4BMI1cubMGfMsdbIDB8xhIF98kdqWL5/00UdS8+ZcBAV4omtnDfn5Z3MObADwUgwLQfYYhtSzpzRvnrR+vTmGWjIvUixRQnrgAWvrA+B8R49KLVpIcXFS2bJSr15WVwQATseZa9gnMVHati31ts1mBuyEBGnVqtT2W26RBgyQChZ0fo0ArFW8uDRqlNSqlXT//VZXAwCWIFwjc//+a46nrFtXOnUqtf2ll8xV2p5/3rraALiWZ5+VFi+WgoOtrgQALEG4RuYKFTLPSIWFmVNuJatSRapa1bq6ALima6fUnDHDDNsA4CUYcw37zJtnjqVmCXIA9lq+XOrbVwoMlLZuNf8gBwAPR7iGfcqWtboCAO6maVNzKs5y5aTKla2uBgCcgnANAMgdfn7mp16+vkzDCcBrMOYaAJB7/PxSg7VhSGPGSH/9ZW1NAJCLCNcAAOd49VXp5ZfNBaUuXbK6GgDIFYRrAIBzPPywVKmSGbDz5LG6GgDIFYy5BgA4R0SEtGMHsw4B8GicuQYAOM+1wTouTnrxRfNfAPAQnLkGAFijWzdzgZk//jBnFQEAD8CZawCANYYPN1d/feopqysBAIfhzDUAwBoNGpjT8gUFWV0JADgMZ64BANa5NlgfPixNnGjOhw0Abooz1wAA68XFSXffLe3fb67oyFARAG6KM9cAAOsFB0tDh0q33ip16mR1NQCQbYRrAIBrGDJE2rZNKl3a6koAINsI1wAA15E3b+r3v/wizZ9vXS0AkA2MuQYAuJ7ffpOaNpWuXJG+/15q2NDqigDALoRrAIDrqVRJat1aOn1auu02q6sBALsRrgEArsfXV5o1S0pKYh5sAG6FMdcAANcUEJA2WH/1lbRnj3X1AIAdCNcAANc3d67UrZvUvLkUE2N1NQCQIYaFAABcX5Mm5jjse++VwsOtrgYAMkS4BgC4vsKFpfXrpbAwyWazuhoAyBDDQgAA7iF//tRgbRjS1KnShQuWlgQA1yNcAwDcz4svSoMGSR06mDOKAICLIFwDANzP/febQ0S6dJF8+K8MgOtgzDUAwP3UqSP99ZdUqJDVlQBAGvy5DwBwT9cG68uXpQ8/NMdiA4CFOHMNAHBvSUlS27bSqlXS4cPS6NFWVwTAi3HmGgDg3nx8pAcekEJCzHmwAcBChGsAgPt79FFp3z6pcWOrKwHg5QjXAADPUKRI6vfHjkmLFllXCwCvRbgGAHiWEyekRo3M6fqWLrW6GgBehgsaAQCepXBhqX5980LHSpWsrgaAlyFcAwA8i4+PNH26dPp02qEiAOAEDAsBAHgeP7+0wXrrVik62rp6AHgNwjUAwLP9+qvUpInUvLn0999WVwPAwzEsBADg2cqVk8qUkQoUMMdjA0AuIlwDADxbgQLm6o358kl58lhdDQAPx7AQAIDnCw9PG6y/+046d866egB4LMI1AMC7zJwp3Xef+XXpktXVAPAwhGsAgHepVk0KCZGqVJECAqyuBoCHYcw1AMC73H67OTVf2bKSzWZ1NQA8DGeuAQDe55ZbUoO1YUgLF5r/AkAOEa4BAN7t2WelDh2kp5+2uhIAHoBwDQDwbtWqmUumlytndSUAPABjrgEA3q1PH6l+faliRSkhwepqALg5zlwDAFCxotUVAPAQhGsAAADAQQjXAAAAgIMQrgEAAAAHIVwDAAAADkK4BgAAAByEcA0AAAA4COEaAAAAcBDCNQAAAOAghGsAAADAQQjXAAAAgIMQrgEAAAAHIVwDAAAADkK4doJXX31Vd911l4KDg5U/f/50tzl48KDatGmj4OBgFSlSRM8++6yuXr3q3EIBAACQI35WF+ANrly5os6dO6t+/fr6+OOPb/h5YmKi2rRpo4iICK1fv17Hjh3TQw89JH9/f40bN86CigEAAJAdhGsnGD16tCRpxowZ6f58xYoV+v3337Vq1SoVLVpUt912m1555RUNHz5co0aNUkBAQLr3i4+PV3x8fMrt2NhYSVJCQoISEhIc+yLcTPLr9/Z+yG30s/PQ185BPzsH/ZwW/eBZCNcuYMOGDapevbqKFi2a0tayZUsNHDhQv/32m26//fZ07zd+/PiU4H6tBQsWKDg4ONfqdScLFy60ugSvQD87D33tHPSzc9DPpri4OEmSYRgWVwJHIFy7gOPHj6cJ1pJSbh8/fjzD+73wwgsaNmxYyu0jR46oSpUqevjhh3OnUAAAkGvOnz+vsLAwq8tADhGus+n555/Xa6+9dtNtdu/erUqVKuVaDYGBgQoMDEy5nS9fPh06dEghISGy2Wy59rzuIDY2VqVKldKhQ4cUGhpqdTkei352HvraOehn56Cf0zIMQ+fPn1fx4sWtLgUOQLjOpqefflp9+vS56Ta33HKLXY8VERGhTZs2pWmLiYlJ+Zm9fHx8VLJkSbu39wahoaG8cTsB/ew89LVz0M/OQT+n4oy15yBcZ1N4eLjCw8Md8lj169fXq6++qhMnTqhIkSKSpJUrVyo0NFRVqlRxyHMAAAAg9xGuneDgwYM6ffq0Dh48qMTERG3fvl2SVL58eeXLl08tWrRQlSpV9OCDD+r111/X8ePHNWLECA0aNCjNsA8AAAC4NsK1E4wcOVKffvppyu3k2T/WrFmje+65R76+vvr22281cOBA1a9fX3nz5lXv3r01ZswYq0p2e4GBgXr55Zf54ySX0c/OQ187B/3sHPQzPJnNYN4XAAAAwCFY/hwAAABwEMI1AAAA4CCEawAAAMBBCNcAAACAgxCuAQAAAAchXMOtrVu3Tm3btlXx4sVls9m0YMGCG7bZvXu32rVrp7CwMOXNm1d16tTRwYMHnV+sG8usny9cuKDBgwerZMmSypMnj6pUqaL333/fmmLd2Pjx41WnTh2FhISoSJEi6tChg/bu3Ztmm8uXL2vQoEEqVKiQ8uXLp06dOqWs6Ar7ZNbPp0+f1hNPPKGKFSsqT548Kl26tIYMGaJz585ZWLX7sed4TmYYhlq1apXh+zjgTgjXcGsXL15UzZo19d5776X787/++ksNGzZUpUqVtHbtWu3cuVMvvfSSgoKCnFype8usn4cNG6Zly5Zp1qxZ2r17t4YOHarBgwdr0aJFTq7Uvf3www8aNGiQNm7cqJUrVyohIUEtWrTQxYsXU7Z56qmntHjxYs2dO1c//PCDjh49qvvvv9/Cqt1PZv189OhRHT16VBMnTlR0dLRmzJihZcuWqX///hZX7l7sOZ6Tvf3227LZbBZUCeQCA/AQkoz58+enaevatavRq1cvawryUOn1c9WqVY0xY8akaatVq5bxf//3f06szPOcOHHCkGT88MMPhmEYxtmzZw1/f39j7ty5Kdvs3r3bkGRs2LDBqjLd3vX9nJ6vvvrKCAgIMBISEpxYmWfJqJ+3bdtmlChRwjh27Fi67y+Au+HMNTxWUlKSlixZogoVKqhly5YqUqSI6tWrx0eOueCuu+7SokWLdOTIERmGoTVr1uiPP/5QixYtrC7NrSUPQyhYsKAkacuWLUpISFCzZs1StqlUqZJKly6tDRs2WFKjJ7i+nzPaJjQ0VH5+LGycXen1c1xcnHr06KH33ntPERERVpUGOBThGh7rxIkTunDhgiZMmKCoqCitWLFCHTt21P33368ffvjB6vI8ypQpU1SlShWVLFlSAQEBioqK0nvvvae7777b6tLcVlJSkoYOHaoGDRqoWrVqkqTjx48rICBA+fPnT7Nt0aJFdfz4cQuqdH/p9fP1Tp06pVdeeUUDBgxwcnWeI6N+fuqpp3TXXXepffv2FlYHOBZ/gsNjJSUlSZLat2+vp556SpJ02223af369Xr//ffVuHFjK8vzKFOmTNHGjRu1aNEiRUZGat26dRo0aJCKFy+e5iwr7Ddo0CBFR0frp59+sroUj5ZZP8fGxqpNmzaqUqWKRo0a5dziPEh6/bxo0SJ9//332rZtm4WVAY5HuIbHKly4sPz8/FSlSpU07ZUrVyawONClS5f04osvav78+WrTpo0kqUaNGtq+fbsmTpxIuM6GwYMH69tvv9W6detUsmTJlPaIiAhduXJFZ8+eTXP2OiYmho/UsyGjfk52/vx5RUVFKSQkRPPnz5e/v78FVbq/jPr5+++/119//XXDJzGdOnVSo0aNtHbtWucWCjgIw0LgsQICAlSnTp0bpn76448/FBkZaVFVnichIUEJCQny8Un7duLr65vy6QHsYxiGBg8erPnz5+v7779X2bJl0/y8du3a8vf31+rVq1Pa9u7dq4MHD6p+/frOLtdtZdbPknnGukWLFgoICNCiRYuYYSgbMuvn559/Xjt37tT27dtTviTprbfe0vTp0y2oGHAMzlzDrV24cEH79u1Lub1//35t375dBQsWVOnSpfXss8+qa9euuvvuu9WkSRMtW7ZMixcv5oxIFmXWz40bN9azzz6rPHnyKDIyUj/88IM+++wzTZo0ycKq3c+gQYM0Z84cLVy4UCEhISnjqMPCwpQnTx6FhYWpf//+GjZsmAoWLKjQ0FA98cQTql+/vu68806Lq3cfmfVzcrCOi4vTrFmzFBsbq9jYWElSeHi4fH19rSzfbWTWzxEREel+4lK6dOl0/+AB3Ia1k5UAObNmzRpD0g1fvXv3Ttnm448/NsqXL28EBQUZNWvWNBYsWGBdwW4qs34+duyY0adPH6N48eJGUFCQUbFiRePNN980kpKSrC3czaTXx5KM6dOnp2xz6dIl4/HHHzcKFChgBAcHGx07djSOHTtmXdFuKLN+zuh4l2Ts37/f0trdiT3Hc3r3YSo+uDubYRhGLud3AAAAwCsw5hoAAABwEMI1AAAA4CCEawAAAMBBCNcAAACAgxCuAQAAAAchXAMAAAAOQrgGAAAAHIRwDQAAADgI4RoAAABwEMI1ANjhjjvukM1my9JXeHh4lp7jwIEDNzzG2LFj0902Li5OU6dO1aBBgzRhwgSdPXs208dfuXKl+vbtqwoVKig0NFSBgYEqVqyYmjdvrrfeeksnT55Ms32lSpXS1HLPPfdk6fUAgDfys7oAAHB1hmHo9ttvV7Vq1dK079+/X+vWrVO+fPnUqVOnG+5XqVKlbD1f3rx59cADD0iSatasecPPT506pfr162vfvn0pbe+8845WrFhxQ43J23fv3l2rVq2SJJUpU0ZNmjRR3rx5dfz4ca1fv16rVq3SyJEjtWrVKtWrV0+S1LFjRx07dkzHjx/X8uXLs/VaAMDbEK4BIBM2m00ffvjhDe1jx47VunXrVK9ePc2YMcNhz1e4cOGbPt6IESN08uRJLV26VI0bN9a2bdvUrVs3PfHEE1qzZk2abc+dO6eGDRtq7969qlSpkj744AM1atQozTbx8fH69NNP9fLLL+vYsWMp7ePHj5ckrV27lnANAHZiWAgAZNO2bdskSbVq1XLq827YsEF9+vRRq1atFBwcrAYNGmjYsGHauHHjDds+8cQT2rt3r8qUKaOff/75hmAtSYGBgRowYIC2b9+uypUrO+MlAIDH4sw1AGTT1q1bJUm33367U583IiJCGzZs0JUrVxQQECDDMPTjjz+qTJkyabb7+++/NWfOHEnSpEmTVLBgwZs+btGiRVW0aNHcKhsAvALhGgCy4cyZMzpw4IAk55+5fvLJJ9WmTRtVrFhRdevW1a5du7R792598sknabb79ttvlZiYqPz586tdu3ZOrREAvBXDQgAgG5KHhOTLl0+33nqrU5+7devW+uabb5Q/f34tWbJEPj4++vTTT9W3b9802/3666+SzPDv6+vr1BoBwFtx5hoAsiE5XNesWVM+Phmfp/j222/Vrl07HT16VBEREQ57/o4dO6pjx4433SZ5ar0iRYo47HkBADfHmWsAyAZ7x1vXqlVLmzdvdmiwBgC4Ls5cA0A22DtTSPHixVW8eHFnlHSD5EVsTpw4YcnzA4A34sw1AGRRXFyc9u7dKynzM9clS5bUqFGjnFDVjWrXri3JPMuemJhoSQ0A4G0I1wCQRTt27FBSUpICAgJUtWrVDLf7999/deTIEd12223OK+4a9913n3x8fHT27FktWrTIkhoAwNsQrgEgi5LHW1erVk3+/v4Zbrdjxw5J6S9h7gzlypVT9+7dJUlPP/20Tp8+fdPtT5w4kXJGHgCQPYRrAMgie8db79ixQ6GhoTcs7uJMU6ZMUfny5bV//341bNhQP/300w3bXLlyRZ988oluv/127d6924IqAcBzcEEjAGSRvTOF7NixQzVq1JDNZnNGWekqUKCAfv75Z3Xt2lVr165Vo0aNVLZsWdWoUUPBwcGKiYnRpk2bdOHCBYWGhlp28SUAeArCNQBkQUJCgn777TdJ9p25btCggTPKuqkiRYpozZo1WrZsmT7//HOtX79eq1evVnx8vAoVKqT69eurTZs2evDBBzNdIh0AcHOEawDIAn9/f8XHx2e6XUJCgn7//Xc9/vjjTqjKPlFRUYqKirK6DADwaIRrAMgFe/bs0ZUrV7J1MeOpU6fUp08fSVKnTp3Utm1bB1dnnxdeeEHHjh3T8ePHLXl+AHBHhGsAyAU7duyQj4+PqlWrluX7Xrx4UZ9++qkkqXz58paF6/nz5zN7CABkkc0wDMPqIgAAAABPwFR8AAAAgIMQrgEAAAAHIVwDAAAADkK4BgAAAByEcA0AAAA4COEaAAAAcBDCNQAAAOAghGsAAADAQQjXAAAAgIMQrgEAAAAHIVwDAAAADvL/prwhykpCYikAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.title(\"Inconfort en fonction de la température de la pièce (pour $T_{min}=19°C$ et $T_{max}=21°C$)\")\n", + "plt.plot([15,16,17,18,19,20,21,22,23,24,25],[12,9,6,3,0,0,0,1,2,3,4],\"-r\")\n", + "plt.plot([19,20,21,22],[0,-3,-6,-9],\":r\")\n", + "plt.plot([15,16,17,18,19,20,21],[-6,-5,-4,-3,-2,-1,0],\":r\")\n", + "plt.grid()\n", + "plt.text(T_min-0.25,-0.75,\"$T_{min}$\")\n", + "plt.text(T_max-0.25,-0.75,\"$T_{max}$\")\n", + "plt.xlabel(\"$T_i$ [°C]\",size=16)\n", + "plt.ylabel(\"$I_i$ [/]\",size=16)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 382, + "id": "b331c627", + "metadata": {}, + "outputs": [], + "source": [ + "f_froid = lambda T: -3*T+3*T_min\n", + "f_chaud = lambda T: T-T_max" + ] + }, + { + "cell_type": "markdown", + "id": "151041f9", + "metadata": {}, + "source": [ + "### Formulation et résolution du problème" + ] + }, + { + "cell_type": "markdown", + "id": "82c78b09", + "metadata": {}, + "source": [ + "On peut modéliser le problème de minimisation de l'inconfort comme suit : \n", + "$$ \\min_{I_i, p_{n_i}, p_{r_i}, T_i, \\Delta T_i} \\sum_{i=0}^{n-1}I_i \\quad \\text{tel que}\\\\ $$\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\sum\\limits_{i=0}^{n-1}c_i(p_{n_i}+p_{r_i})\\le Budget\\\\$\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad T_0=T_{initial}\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad T_n=T_{final}\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad T_{i+1}=T_i+\\Delta T_i \\qquad ,\\forall i \\in [0,n-1]\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad p_{n_i}+p_{r_i} \\le p_{max} \\qquad ,\\forall i \\in [0,n-1]\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\Delta T_i = -(1-\\eta)(T_i-T_{ext_i}) + \\frac{0,25p_{n_i}COP_n(T_{ext_i})}{C_xV} + \\frac{0,25p_{r_i}COP_r}{C_xV} \\qquad ,\\forall i \\in [0,n-1]\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad I_i \\ge f_{froid}(T_i) \\qquad ,\\forall i \\in [0,n-1]\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad I_i \\ge f_{chaud}(T_i) \\qquad ,\\forall i \\in [0,n-1]\\\\ $\n", + "$ \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad \\qquad I_i \\ge 0 \\qquad ,\\forall i \\in [0,n-1]\\\\ $\n", + "\n", + "\n", + "Par rapport à la tâche 1, on a donc supprimé la contrainte sur la plage de température, mais avons ajouté une contrainte portant sur le budget alloué et trois autres contraintes pour appliquer la technique de l'épigraphe susmentionnée." + ] + }, + { + "cell_type": "markdown", + "id": "185b221d", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 2.2</b> :<br> \n", + " Résolvez votre modèle sur les deux intervalles de temps, affichez vos résultats sous forme graphique et commentez.modélisation/reformulation) \n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "01eb34c3", + "metadata": {}, + "source": [ + "### Intervalle 13050" + ] + }, + { + "cell_type": "markdown", + "id": "e0cc21fb", + "metadata": {}, + "source": [ + "##### Résolution du problème" + ] + }, + { + "cell_type": "code", + "execution_count": 383, + "id": "f2d615c4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6681.201308241339" + ] + }, + "execution_count": 383, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# On revient à l'intervalle 13050...\n", + "intervalle_initial = 13050\n", + "heure_initiale = 22.5\n", + "T_ext = data[intervalle_initial:intervalle_initial+n]\n", + "objectif = cp.Minimize(cp.sum(I_i))\n", + "contraintes = [c.T@(p_n_i+p_r_i) <= budget, T_i[0] == T_initial, T_i[1:n+1] == T_i[0:n]+deltaT_i, (p_n_i+p_r_i) <= p_max, 0 <= p_n_i, 0 <= p_r_i,\n", + "\t\t\tdeltaT_i == -(1-eta)*(T_i[0:n]-T_ext)+(cp.multiply(p_n_i,COP_normal(T_ext)))*0.25/(V*Cx)-p_r_i*COP_reverse*0.25/(V*Cx),\n", + "\t\t\tI_i >= f_froid(T_i[0:n]), I_i >= f_chaud(T_i[0:n]), I_i >= 0]\n", + "probleme = cp.Problem(objectif, contraintes)\n", + "probleme.solve(solver=cp.SCIPY, scipy_options={\"method\":\"highs\"}, verbose=False)" + ] + }, + { + "cell_type": "markdown", + "id": "2d28c4ed", + "metadata": {}, + "source": [ + "##### Affichage de la solution" + ] + }, + { + "cell_type": "code", + "execution_count": 384, + "id": "e6d9554a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLoAAAG3CAYAAACzPjwZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9g0lEQVR4nOzdd3hU1fY38O/MZFomPZk0SA8BQicg0nvvPXBVUFQUFBUU61WxcUHFdm2IBfXqT1GRooAgvQmEIp0QSEJ67z2z3j/ynmMmcyaZJJNMEtbnPnmunLrPPm2fNbvIiIjAGGOMMcYYY4wxxlgrJ7d1AhhjjDHGGGOMMcYYswYOdDHGGGOMMcYYY4yxNoEDXYwxxhhjjDHGGGOsTeBAF2OMMcYYY4wxxhhrEzjQxRhjjDHGGGOMMcbaBA50McYYY4wxxhhjjLE2gQNdjDHGGGOMMcYYY6xN4EAXY4wxxhhjjDHGGGsTONDFGGOMMcYYY4wxxtoEO1sngDHGGGOMMcYYa4xz585h8+bN6NatG2bOnGnr5DDGbEhGRGTrRDDGGGOMMcYYYw2Rn5+PXr16obCwECdOnICfn5+tk8QYs6EGN10sKirC+++/jzFjxsDHxwdqtRqOjo4IDw/HwoULsXXrVlRWVlozrVb11VdfQSaT4eWXX7Z1Uhpt//79kMlkWLhwYZPuRyaTITAwsEn30ZRiY2Mhk8kwbNiwZtlfa8+vpvbyyy9DJpPhq6++snVSTCxcuBAymQz79+9vlv2NGDEC7du3R2lpqThNuF7b+jUUFRWFMWPGwMXFBTKZDDKZDLGxsbZOVrMIDAyETCZrcduytua6jn/99VeMGzcOer0eGo0Gfn5+mD59Og4fPmx2ndjYWDz00EMICgqCWq2Gh4cH+vfvjzfffFNy+aSkJDzyyCMIDQ2FWq2Gvb09unfvjpdeegn5+fkmy2dkZODzzz/Hgw8+iJ49e8LOzq7Bzz2DwYBDhw5h5cqViIiIgKOjI9RqNUJCQvDQQw/h5s2bta5/5MgRTJgwAW5ubnBwcMAdd9yBr7/+2uzyv/32G55//nmMGjVKvD/ren+uW7cOM2bMQIcOHeDs7Ay1Wo2AgADcc889OH/+fK3rfvXVV7jjjjvg4OAANzc3TJgwAUePHjW7fGlpKdasWYPevXvDwcEBarUaQUFBeOCBB3Djxg2T5ePi4vDBBx9g3Lhx8Pb2hlKphIeHB8aNG4etW7fWmrbqoqOjodVqIZPJMGrUKMllrl69infeeQfz5s1DSEiIRc+2gwcP4oEHHkDv3r3h5eUFlUoFNzc3DB8+HN988w2kfpeOi4vDihUrMGTIELRv3x4ajQYODg7o1asXXn/9dRQWFprd3/HjxzF16lR4eHhAo9EgLCwMzz//fK3rtATN/X5u6eloKYYNGyZ5jZt7NzXFe2HJkiVITEzEli1bmjTItXXrVixYsADdunWDh4cHlEolPD09MWHCBGzfvr1B26ysrMQ777yDbt26QavVQq/XY86cObh8+XKt623btg1Dhw6Fk5MTnJycMGzYMPz222+1rnPx4kXMnj0ber0eWq0W3bp1w7vvvguDwWB2nezsbDz22GMICAgQn+uPP/44cnJy+Jj4mOo8poa8q86cOQOZTIa1a9fWmo5aUQMcPnyYfHx8CABpNBoaPHgwzZ07l6ZNm0bdunUjAASAwsPDG7L5ZvHll18SAHrppZdsnZRG27dvHwGgBQsWNOl+AFBAQECT7qMp3bx5kwDQ0KFDG70tS/K8tedXYw0dOpQA0M2bNyXnv/TSSwSAvvzyy2ZNlyUWLFhAAGjfvn1Nvq/t27cTAPrwww+NpgvXa1u+hvLy8sjX15dkMhkNHz6c7rnnHlqwYAGlp6c32T5bUp4GBARQA1/DTbota2vqPK+srKT77ruPAJBOp6OxY8fS3LlzqX///qRSqejVV1+VXO/3338ne3t7kslkFBERQZGRkTR69Gjy9vamkJAQk+WvXbtGer2eAFBgYCDNmDGDJkyYQC4uLmKZJycnx2idzZs3i2Wi6n8Nee5FR0eL63t7e9OUKVNo+vTp1K5dOwJAjo6OdOjQIcl1f/rpJ1IoFCSTyWjo0KE0c+ZMMd0rVqyQXMfZ2dkk3XW9P93d3Umj0dAdd9xB06dPp+nTp1NYWBgBIKVSSdu2bZNc77HHHiMApNVqaerUqTR27Fiys7MjhUJBmzdvNlm+uLiY7rzzTgJALi4uNGHCBJoxYwYFBgaKeXHq1CmjdQYOHEgASK1W09ChQ2nu3LnUt29f8dieeOKJWo9NMGzYMJLJZASARo4cWevx1Pwz9z4kIlqxYgUBoLCwMBo7dixFRkbS4MGDSaFQEACaN2+eyTrbtm0Tr4dhw4ZRZGQkjR07Vjx3Xbp0oaysLJP1vv32W3G7vXv3punTp5O/vz8BoO7du1Nubq5FedFQjSmDN+f7uSWno7mf+XU9x82V+cyl09rvhY0bN5JMJqP/+7//s9o2zZk5cybJZDLq2rUrTZgwgebOnUv9+vUT7/Nnn322XturrKyk6dOni8+zmTNn0tChQ0kmk5G9vT399ddfkuu98847BIDs7Oxo3LhxNHXqVNJqtQSAPvjgA8l1jh49Ki5zxx130Jw5c8jb25sA0OzZs8lgMJisk56eTqGhoQSAgoODac6cOdSlSxfxeZWZmcnHxMdU6zE19F01ZcoUcnFxkUy7Jer9hIyKiiK1Wk0A6KmnnpJ8GcbHx9Pjjz9OGo2mQYlqDhzoqr+W9IHYEM0d6Lp8+TJdv3690ftqreoKdKWnp9Ply5dNPgxbguYswHbv3p30ej2VlpYaTb8dAl1//vknAaC777672fbZkvL0+vXrdPny5Ra3LWtr6jwXguaTJ082KQxlZWXRtWvXTNa5fPkyaTQa0uv1dOTIEaN5lZWVdPLkSZN1hMLgkiVLqKKiQpyek5MjBl1efPFFo3WOHj1KS5YsoS+++ILOnz9PDzzwQIMDXdevX6fRo0fTn3/+aVTILSkpoYULFxIA8vf3p7KyMqP1MjMzycnJiQDQzz//LE5PSUkRC8VSz7r77ruP3nzzTdq3bx/98ccfFr0/Dx8+TMXFxSbTP/zwQwJAXl5eVF5ebjRv9+7dBIDc3d2NztXRo0dJpVKRi4sLZWdnG63z3nvvEQDq27ev0TukoqKCHnnkEQJAQ4YMMVpn7ty59MEHH1BeXp7R9O3bt5OdnR0BoF27dtV6fBs2bCAA9OCDD9Ya6NqwYQM9/fTT9NNPP1FsbCx17NixzkDXxYsXKTEx0WR6dHS0+ONyzUBhUlISXbhwwWSd3NxcGjlypGQg89atW6TRaAgAff755+L00tJSmjdvnnh8TYkDXY3X0gJdcXFxdPnyZZPnj7l0WrOMbDAY6K233qL//e9/VtleXU6fPk0ZGRkm048fP04ODg4kk8no77//tnh7n332GQGgDh06UEpKijj9p59+IgAUGhpq8ty8cuUKKRQKUqvVdPToUXH61atXyd3dnezs7Cg6OtponbKyMgoKCiIAtG7dOnF6fn4+9e/f3+y76V//+hcBoBkzZhil49FHHzX7LcTHxMdUXUPeVUREx44dIwC0cuVKk3mWqNcTsrKykjp37kwAzP5CWl3NX9NaEg501V9L+kBsiOYOdN3u6gp0tWTNVYA9fPgwAaBHHnnEZN7tEOjauHFjsz+H23qetkRNmee3bt0ilUpF/v7+VFRUZPF648ePJwD022+/WbyOu7s7AaDk5GSTeb/88gsBoPHjx9e6jcWLFzc40FWboqIi8ZfR/fv3G81bs2YNAaCpU6earCeke9KkSbVuXyhsNub9GRISQgDo3LlzRtOFc/HOO++YrLNs2TICQG+99ZbR9JkzZxIA+v77703WycrKIqCqdpilhMDVwoULzS6TkpJCrq6uNHr0aLEMYC7QVZMlga7avPrqqwRYXuuMiOjQoUMEgHr16iW5rdGjR5usk5mZSY6OjmRnZyf5IW8tHOhqvJYW6DKnJdc2bgqLFi0iAPTee+9ZvI7wbS1Ve3XKlCkEgH766Sej6Q8//DABoMcee8xknXXr1kmWLX/44QcCQD169DBZJyoqigBQ165djaYnJSWRXC4nlUplFAghqvqRRa/Xk0KhoNTUVD4mPiazx1Qbc+8qQWhoKHl4eJhUCLBEvfro+v3333H58mX4+/vj2WefrXP5iIgIk2lCm+yysjK88sor6NSpE9RqNaZNmwYAKCkpweeff46pU6ciODgYWq0WLi4uGDJkCP7v//5Pcj/V28nv2LEDgwYNgoODA1xdXTFjxgxcuXKl1nTGx8dj/vz5YhvYPn36YNu2bWaXv3z5MhYuXAg/Pz+o1Wp4eXkhMjISFy9elFz+999/x+jRo9GuXTuo1Wr4+vpi0KBBWLVqVa3pqunixYuYNm0aXF1d4ejoiMGDB2Pnzp21rkNE+P777zFixAi4urpCo9Ggc+fOePnll1FUVFSv/de2/cjISISFhUGn08HR0RF33HEHPvroo1rbEUtJT0/HM888g/DwcDg4OMDZ2RlhYWG45557cOLECZPlL126hH/961/w8fGBSqVCu3btcM899+Dq1asW77OuvqJq9i+wcOFCDB8+HACwceNGse+Nmn2+1db/gHBNCOekY8eOeOaZZyTbUFdP3/nz5zFlyhS4urpCp9Nh6NChtfZhYk5mZiaeeuopdOjQARqNBm5ubhg3bhz++OMPyeWr37cvvfQSQkJCoNFoEBwcjBdffBElJSXiskLfUgcOHAAABAUFGeWR1HFVV72fhx9++AF9+/aFvb092rVrh5UrV6KsrAwAEBMTg3nz5sHT0xP29vYYPnw4/v77b5O05+Tk4IMPPsDYsWPFNuvu7u4YN24cdu/eXe+8KyoqwurVq9GrVy84ODjAwcEBd955JzZu3FjvbW3YsAEAMG/ePIvXqd4nX1ZWFh5++GGxn8SuXbviiy++MLvurVu3sGzZMoSFhUGr1cLNzQ19+vTBqlWrkJeXZ3Kcr776Krp27QqtVgtnZ+dan8PV75MNGzage/fu0Gq18Pb2xuLFi42ubeEaWbBgAQBg1apV4vVRs6/Bb775BoMGDYKTk5PYH9Lq1auNrjlB9XfBrl27MHz4cLFvoXfffVdMX1xcnNE1aUm/fdXzPS0tDYsWLYK3tzd0Oh0GDRpkdB9+8skn4vH7+fnh5ZdflnwWSvVdUr0vweLiYjzzzDPidRsaGoo1a9ZI9tVT17YKCwuxfPly+Pn5QavVonfv3kbvuU2bNqFfv37Q6XTw8vLCsmXLUFxcbLKfs2fPin1E6fV6qNVqBAcHY8mSJUhKSqozH61t48aNKCsrw/333w+tVmvROrdu3cKuXbsQHByMCRMmWLwvtVpd5zLu7u4Wb8+atFotwsLCAMDkPAh9ZsyaNctkvYkTJ0Kj0WDPnj2S95Q1KZVKAIBKpRKnFRcXY+/evWbTJ0yrWSaz9rno0aMHANO8q+6xxx5DcXExPvroI4u3ay1SedfQdaKiogBA8rnn5uaG7t27o6Kios7+Y2qytGw8bNgw3HvvvQCMn/0N6bvO0jJ/fct51X3xxRfo2bOn+D5buHAhUlJSak3XgQMHMGLECDg6OsLV1RUTJkzAqVOnau0fuKKiAh9//DH69+8PJycnaLVa9OzZE++++y4qKirE5YR3UVxcHAAY5Z8lfV7V1a9vzb7HhDQDtb87zfXRZY659B49ehTTpk0T33ve3t6444478Mwzz6CgoMBk+b/++guzZ88WvwPat2+P+++/H/Hx8Ralw9rqe6/evHkTly9fhlarxcSJE03mm3sG1vZcb8g6vXv3RnBwMC5cuGB0Dnfu3AmDwYDBgwfDy8vLaB21Wo3JkyejsrISv//+Ox8TH5PZdWpT1z0zb948ZGRkYPPmzRZvU1SfqNiSJUvMVi2zFADy8/Oj8ePHk06nowkTJtDs2bPpoYceIqKqqqwAyNfXl4YPH05z586loUOHklKpNPvrj/CrypIlS0gmk1Hfvn0pMjKSwsPDCQA5OzvT2bNnjdYRfk1asGABeXp6UkhIiNinBwCSy+WSVdg3b94sNt3s2bMnzZo1i/r16ye2ZT1w4IDR8v/9738JACkUChoyZAjNmzePRo8eTe3bt6/XLxwnT54kBwcHMYobGRlJERERJJPJxPNSs3ZRZWWlWA3dwcGBhg0bRtOnTyc/Pz8Cqtr81ucXcEj8mlNcXCw2ORD6ahs1ahTZ29vXu8ZTXl6eWFXTz8+Ppk2bRrNmzaI77riDlEqlybnfs2eP2B64V69eFBkZST179hSP9+DBg0bLm6vRVVdfUTV/jfrss89o7NixBIBCQkJowYIF4l/1iLhUfhERvfHGGwRUtWseOXIkzZ07V7wewsLCTCLxQvqWLl1K9vb21K1bN5o7dy716NGDgKp+8s6fP19n/goSEhIoODiYgKpmLnPnzqURI0aI/XVUryZb/Vj8/f1p0qRJpNVqadKkSTRjxgyxBsHIkSPFpjzp6em0YMEC8vLyIgA0c+ZMozyqK9+FmmCPP/442dnZ0ahRo2j69Onk4eFBAOiee+6ha9eukYeHB3Xq1Inmzp0r9g3o5uZmkn87duwgoKpPndGjR4v3uUwmI5lMZtR0Q2Dul9rU1FTq3r07AVXtzCdMmEDjx48X86E+v2AQEen1etJqtSbVgonM1+gSahJMnTqVwsLCyNfXl2bPnk3Dhw8Xz+Fnn31msr2DBw+KffIEBgbS7NmzadKkSWLTpTNnzojL5uXlUUREBAEgvV5Ps2bNovHjx4vPvmXLlplsX7hPnnrqKVKpVDRmzBiaPn06eXp6EgAaPHiw2NxKuEaEPnN69OghXh/V0y7UstBoNDRhwgSaNWuWeB3079+fCgsLjdIgnLcHHnjA6F3Qt29f2r9/vzhfp9MZXZOrV6+u81wJ+T5lyhQKDg6mgIAAo3457O3t6cKFC7Rs2TLSarU0YcIEmjRpEjk6OhIAeu6558zmmdR579+/Pw0aNIjc3NxoxowZNHbsWLG50fPPP1/vbfXr1488PT1p1qxZNGzYMJLL5aRQKGj37t20bt068Xk0ffp0sebS/PnzTfYzd+5csrOzo969e9O0adNo2rRpYr9IPj4+kk2vzD0LrWHEiBEEgPbs2UNJSUn05ptv0uLFi2nlypW0Y8cOyX4svv76awJAd911F5WXl9MPP/xAy5Yto6VLl9LHH38s2U8EEYnNA2trurh3795a09tUNboqKyvFe61mGoTn08WLFyXX7dOnj2RNq+oaW6Pr66+/JplMRh06dDDKuzNnzojPGSkFBQUEgFxdXY2mf/XVVwTU3nSxPrWFhP6x7rnnHsn5v/32GwGgV155hYioWWt0xcfHi/dYzTKmOYWFhTR58mSjNAtGjx5NAOijjz6SXFf4FX/58uUWp7E+ZePVq1dLPvsXLFhgto+56hpS5q9vOU/w9NNPE1DVv9yYMWNo9uzZ5OnpSf7+/mL+1iwn/Pzzz+K7+M4776TIyEjq0qULqdVqeuihhySvzaKiIho+fLhYjhk9ejRNnjxZvKenTJlClZWVRFT1nbRgwQLS6XRiOVv4s+T7rK4WCTXLP4cOHbLo3WmNPrq2bt1KcrmcZDIZ9evXjyIjI2ncuHFibdCa2/7www9JLpeTXC6nfv360ezZs8Uyml6vp0uXLtWZH9b0999/k6urKymVSoubZQr9OPbt21dy/oULF0xqu2RnZxNQ1R9YQUGB5HpCWal6F0PCd4O5msyzZs0iALRlyxZxmtDf4FNPPSW5jvCdW722KR8TH1PNYzKntneVoDHdnNQr0CW8mL799tt670jc4f/PnNDQUEpISDCZn5GRQbt37zYpnN64cYMCAwNJLpebPOiEBzAAWr9+vTjdYDCIL6mePXsarSMEuoCqwJ3wAiH6p4O1wYMHG61z8+ZN0ul05ODgQLt37zaat2PHDlIqleTn52dUtc7f359kMplJfx8Gg8Hi6s4Gg0F8gdfs/0Po90LqpbV27VoCQMOGDTNqalFaWipWrX366actSgOR9EupvLycNm/ebNImPy0tTSw8W1ow++KLL0xe6NW3Vz2YU1BQIAZS/vvf/xotK1SbbN++vVFfIdYKdBE1vDP6EydOkFwuJwcHBzp+/Lg4vaSkhGbPnk1AVWBIKn2AaVXoxx9/vN43/6RJk8SP2OrX6qFDh8je3p4UCoVR0EM4FiFPY2JixOlpaWnUtWtXAkybnTS0M3phPQcHB6P7Jjk5mby8vEgmk1Hnzp3pmWeeEZ8TBoOB7r77bsl75MaNG3Ts2DGT/Z8+fZpcXFzIycmJ8vPzjeaZC3RNmDCBgKrquiUlJeL0lJQU8XrfsWOH5PHWJAT1BwwYIDm/rkAXAIqMjDRKh/DS8vf3N1onMzNT7ET7zTffNLm/jh49alSdWfhQHD58uFF/NpcvXxYL3jX7ihHuE29vb7py5Yo4vXrnmH/++afROrU1XxH6B/D19TXqtycnJ4cGDRokPrurq/4uMNchrVSeWqJ6vt91111GzzzhWg4PDydfX1+jAu7FixdJpVKRvb29yXVWW3BKeFZVLyicPHmSFApFg7Y1YsQIo0KJkPehoaHk6upqdK8lJiaK57n6/U5EtHfvXpNgcmVlJa1atYoA0L333muSd+byXEhzff5q3pNC56zvv/++ZOfpw4YNM+nf6ZlnniEA9NBDD4kBqup/bm5ukgGr5ORkMageGBhIM2fOpIkTJ5KLiwt5e3tbVDZqqkDXt99+K37cVX8m5ObmisdlrtA5bdo0AkBbt241u/36BrrWrl1LCxYsoFmzZomd4fr6+pp0abFlyxaTgnRNQoC++rOooqKCIiMjCajqQHfixIk0c+ZMCgwMJK1WS0899ZRRQK022dnZ4vOxeh9mgoKCAgoICKCOHTuK78ymDHQdPXqUFixYQHfddReNGDGCVCoVyeVyeu2118yuk5WVJQYfJkyYIAarp02bZvKD5vz582st/wnXeM2yiDkNKRtbo+lifcr8DSnnHTt2jGQyGTk7O9Pp06fF6fn5+WKAveYzKTc3l9zc3AiASX9R//73v8V1ah638IP13LlzjQK3eXl5Yrnj448/rjPNlqhvoEtQ17vTGoGuIUOGEGDaVIqoqvxc/Rlw7NgxUigU1K5dO5PnitCXXr9+/YymV38n1ufPnK1bt9KCBQto/vz5NGjQIJLL5aRWq+mrr74yu05NQn+D06dPl5yfk5MjvpcE586dI8D0B4DqhB/+q/cV5urqSoD5HzWEb4r3339fnCb0TWmuKeavv/5KQFW/UHxMfEzmjklQn3eVIDc3l+Ryucm3jSXq9YTs1KkTAaCdO3dKzr/vvvuMIv1Sv84ID41NmzbVO7FCh2nVTyzRPw9lqQ/GsrIysbZM9bQIL9mgoCCTNp/l5eViRL76PCFaam6EBKEviV9++UWcptVqa70YLLF3714CqkZQkCq4CTUKqr+0ysvLycPDg3Q6nclHCVHVr0fe3t7k6upq8tFrTn0/EIUOZi39VVDoR+Tdd9+tc1khKNa/f3/J+UJtlOofHi0h0HXPPfcQID0iS2pqKmm1WpLL5RQfH2+SvoEDB5qsk5GRUa/zEhMTQ0BVEElqBIvly5cTALr//vtNjqVmoVIg1JiqOUpZYwNdL7zwgsk6TzzxhHgv1AyuCg/f+tQ4eP755yU/8KQKekLNg759+0reM6dPnyagKlBrCaENvlRggKjuQJeTk5NkHypC4LF6vgv31rhx4+pMV0FBgXgdSnVu/v777xMAGjVqlNF04T6Rqk321ltvSRbua/vYEQq8n376qcm8c+fOkUwmIwcHB6NgtnDeJk6caPb46vscE1TP95o1fnJycsRR2DZs2GCyrlAAqfnhUFtwSi6XGwUMBUKgur7bunr1qtG8yspK8Ve32u61+gRk2rVrR+7u7ibTzeX5ihUrTMoMdf3VvCaFWiR2dnY0ePBgOn36NOXl5dGePXvEGsKzZs0yWkcINtnZ2ZGLiwt99913lJWVRVevXqW77rqLgKpaIVI/xmVmZtKYMWNMPoRmzJhh0WAATRHoio+PF89lzY/hxMREMY1SNUeJ/unAtraOnOsb6BI6lxX+AgICJH/0+t///mf2/SYQRpWsWVuwoqKCVq5caXIuevfubbacKmXu3LkEVNW+kaoBKHxUVL/nmjLQ9c033xgdj0KhoNdee80ogFnTrVu3TPJhzpw5lJaWZrLsJ598QkDVDyI1y78nT54U1x8zZoxFx9aQsrE1Al31KfM3pJwnlNdq/nhGVPUDhvDMr35dCN8pUtdFeXm5uJ/qx52amioGA6U+9JKTk0mlUlH37t3rTLMlWnKgS+gvyJJBiqZOnUqA6Y9uAqFmYvUgpVCbvL5/5gj93Ql/Wq2W1q9fb/F3FRHR66+/TgDoX//6l+T88vJyAqpqFQqOHDlCAKhdu3ZmtytUTqk+2IrQOqpmR+ECoUz8+uuvi9OEGqBSZTuif771qvf5x8fEx1TzmAT1eVdVJ5QDzNW4N8cOVrRx40ZUVlYaTRs2bBgGDRpkNE0mk2Hy5Mm1buvw4cPYv38/EhMTUVJSAiJCcnIyACA6OlpyncjISJNpSqUSs2bNwrvvvotDhw6ZpGXYsGEmbULt7OwQFBSE06dPIzMzEz4+PgAg9l80Y8YMyf0PHjwY77//Pk6cOIHp06cDqOqn7PDhw1i0aBGWL1+OLl261HrcUg4dOgSgqt2rQqEwmT9v3jz89ddfRtNOnz6NjIwMjB492qStLlDVn0dERAR+++03REdHo2PHjvVOV3Vnz57FH3/8gbi4OBQVFYGIkJ+fD8D8+apJ6NPtzTffhJeXFyZOnAhHR0fJZYU8+de//iU5/6677kJUVBQOHTpkdhlbqC3dnp6eGDNmDLZs2YIjR46YXM9jxowxWcfd3R1ubm7ivVGXw4cPAwDGjRsHNzc3k/l333031q1bJ6azJql7bNy4cXB1dUVMTAySk5PF+6WxpI43ODgYQNV9K7TprjlPKi8qKyvx559/4ujRo0hOTkZpaSmAf65NS65R4f6fNm0a5HLT7g2FPruk+pKTkpaWBgBwdXW1aPmaIiIiJPugCQsLw4ULF5CcnCz2f7Fnzx4AwOLFi+vcblRUFIqLi9GnTx906tTJZP7dd9+NZcuW4ciRIzAYDCZ5IXXehL6DLL1Oy8vLcfz4cQDS90r37t3RvXt3nDt3DmfPnsWdd95pNH/KlCkW7ach+vTpY3LOnJ2d4ebmhszMzFqvW0uPHwACAgIkn8v1zUugqv8ZYT2BXC5HQEAAMjIy6p3mzMxMbN26FRcuXEBOTo743i8vL0dmZiaysrIkny81vfXWWxYfgzlC32eurq7YsWMHdDodAGDkyJHYunUrunfvjp9++gnXrl0T80BYp6KiAp9++inmzJkjbuObb77B1atXcfLkSXz00Ud4/fXXxX39/fffmDhxIhQKBbZs2YIhQ4agsLAQP/30E5599lns378fR48ebfT7tD4KCwsxY8YMZGRkYNq0aXjooYeabd+1EZ45OTk5OH/+PF555RUMHToUr732Gp5//vlGbz87OxvTp0/HyZMn8d5772HmzJmwt7fHwYMH8eijj2LChAn47rvvMHfu3Fq3s2bNGvzwww9wc3PD//73P5N+mk6dOoX3338f99xzj0V9+VnDXXfdhbvuugtlZWWIjY3F119/jVdeeQXbtm3Djh07JN8Z7du3B1X9eI2EhATs3r0bzz//PLp164bff/8dvXv3Fpf917/+hddeew3x8fGYMmUK3nrrLQQEBODYsWN44IEHYGdnh4qKCsn3nJSGlI2toSFl/voQykFS+wkPD0ePHj1w9uxZo+lHjhwBAMyePdtkHTs7O8ycORPr1q0zmr5//36Ul5dj3Lhxkv0Ment7o0OHDjh//jyKi4st7ouwNYqIiMDly5dx991349///jciIiIkr0ODwYA///wT9vb2GDt2rOS2Bg8ejK1bt+LEiRPo1asXAMDDw6Pe/cDV5oUXXsALL7yAkpISXL9+HR9//DEefPBBbN26FT///HO9+tRj7HZQn3dVdW5ubkhMTER6enq9vpvqFegSPqoyMjIk51fvLPGhhx7Cp59+Krmcp6en2Y5Ec3NzMWPGDLFzUilCAKWmgIAAyenCx55UJ6Pt27eXXEcIsAgfxADETt/atWtnNm2Acf58+OGHmDZtGr744gt88cUX8PLywtChQzFjxgyzgauahHTXdXzVCWndvXu32Q42q6e3oQXzsrIyLFy4EN9//73ZZcydr5pGjhyJJ554Au+++y7mzZsHOzs79O7dG6NHj8Z9990nfngB/+SJuY43hemJiYmWHUgzaUy6a7tWs7Kymnz/wiAIUgICApCdnY2kpCSrBbqk7jMHB4c651W/ZwEgISEBkyZNwrlz58zuy5JrVLinnn/++Vo/1Czt0Dk3NxcAzOZpXerz7Lp16xYAICQkpM7t1nWNuLi4wNnZGbm5ucjOzjYJtkmlSypNtcnMzERZWRk8PDzEwEVNgYGBOHfunOS16u/vb9F+GsLc89/BwQGZmZn1ujZrU5/zW5fa0mxuvrk0f//993jwwQclOwUW5OfnWxTosgYHBwdkZ2dj9uzZJtdK165d0bdvX5w4cQIHDx4UA13CsTk4OEh+kN577704efKkOKAGUBXEmzVrFpKSknDy5EmxMObi4oLHHnsMlZWVWLFiBV588UX88MMPTXW4RsrLyzF79mycOnUKgwYNwnfffWeyjHCsQNUAE05OTibLFBYWAmj4s6g2Li4uGDx4MH7//Xf0798f//73vzFmzBj07dvXKH21DY4jlb4nnngCBw4cwDvvvINly5aJ06dOnYp27drhjjvuwIoVKzBjxgyTH0UE3377LZ599lnodDr89ttvRmUMoKpM+8ADD8DFxcUqQdn6UqlUCAsLw2uvvQY3Nzfx+vrggw/MriOTyeDn54f77rsP3bp1Q//+/XHvvffi7NmzYlnQwcEB27dvx6RJk7Br1y7s2rVLXD80NBQrVqzAmjVrLP6YaEjZ2BoaUuavD0vK3jUDXcIPA35+fpLrSL2bhPz77LPP8Nlnn9WapqysrDrzuTV74403cP78eWzbtg3btm2Dq6srBg0ahClTpuCuu+6CRqMBUHUtCe+guoJJ1r7upGg0GnTt2hUffvghFAoFPvjgA3zwwQdYsWJFnevW9QyUev419LkpvC+tua/mWqe29fiYWv4x1WTJu6o6oewiNWhbbeoV6OrRoweOHDmCM2fONKqWjPCgkvL0009j7969GDp0KFatWoWuXbvCxcUFCoUCf/zxB8aOHSs54lRDWfqLFfDPr8AL/v9IYeb069dP/O/u3bvj0qVL2LlzJ37//Xfs378fP/74I3788Uf0798f+/fvb5KIv5DW0NBQDBw4sNZlGzNK1Lp16/D999+jW7duWLt2LXr37g1XV1colUpcu3YNHTt2rNf5WrduHRYvXowtW7Zgz549OHLkCE6cOIG1a9fi+++/x8yZMy3aTl3Bvfqo78iRjVFbuutzrTbF/ptbbcdbn7y4//77ce7cOcycORMrV65Ex44d4ejoCLlcjvXr12Px4sUWXaPCdTBo0CCLAkZ1cXZ2BmB5ILim5rgezLH1dVpXGmp7xzRWXcdnreO3Zj5aK81xcXHiSF3vvvsuJk6ciHbt2ok1DAYMGIBjx45Z/Mx/8skn6/0R8swzzxjVNBSC7LUF70+cOCHWoBTWAao+OqWuI2Fb1dc5fvw4oqOjERISIvmL4+zZs7FixQocPHiwXsfTUAaDAQsWLMCOHTvQs2dPbNu2TbKmh5OTkxiYTkhIQHh4uMkyCQkJAMx/0FuDUqnE3LlzERUVhW3btomBLuHDX0hDTYWFhcjJyTH6oaWyslL8cU1q1Kc+ffogKCgIN27cwI0bNyR/yNu+fTvuvfdeKJVK/PLLLya1QoU0nT17Ft7e3iYBUaGwHRUVJdb0Ekapawp33303VqxYgS1bttQa6Kqub9++6NixI/7++2/cvHnTKJDXo0cPXL16FT/++CNOnz6NyspK9O7dG5GRkVi9ejUAWNwCoSFl45amOct55vbds2dPcfRPcywZbdRa6bEFPz8/nDp1Cnv37sX27dtx4MABMei1du1aHDt2DO7u7mIaHRwc6vwuqH4dZ2Rk4Mknn6x3uupTC+zuu+/GBx98gC1btlgU6KrrGSj1fBbWyc7ORmFhoeQPgubWy87ORkJCArp3716vfTUkfXxMfEyWqO1dJRAqB7i4uFi0TUG9Al3jx4/HRx99hE2bNmHNmjUW1Uaqr82bN0OhUGDr1q0mvzzeuHGj1nWFoXbNTff19W1U2tq3b4+YmBi8/fbb9QoOaTQaTJs2DdOmTQMAXLx4EfPnz8exY8ewYcMGLFmypNb1hRoydR1fzbQCQKdOnaxaTbcmYajP77//3qRQVNf5Mqdjx45YuXIlVq5ciZKSEvz3v//FU089hYcfflh8oQnn0lyeWPoLI/DPr0FSNRQqKyvrHEa6Pnx9fXHz5k3ExcVJfnDUJ90N3T/QsHzLzs5Gfn6+ZIReGMa5sfeYtRUWFmL37t3w8vLCDz/8YPLMqs81KtxT06ZNs6jwUhdPT08AsLg2XmP4+fnhypUriImJQbdu3Wpdtq5rJDc3Fzk5OdBqtQ1udlkXd3d3qFQqZGRkmH2RNvW9wkz9/vvvKCsrw5NPPonHHnvMZH59n/k//fST2evMnIULFxoFunr16oWzZ88iOztbcnnh/qpes0loxlKfdYSCmxCgrkmYbm6b1vboo4/i+++/R1hYGHbt2lVr4a9Hjx44ePAgTp8+bfLeKS8vx4ULF6DRaEyat1qbh4cHACA9PV2c1rFjR6jVaqSnpyMxMdHkfj59+jQAGBX209LSUFZWBqBh5+PAgQOYPXs2iAjfffedZNPd6lJSUsyWA3Jycoxq/jUVNzc3yOVyo7yzRPU8r/nxYG9vj4ULF4rBa8HRo0cBwOKmmg0tGzdWfcr8DSnn+fj4IDY2FnFxcejcubNF+xfK60It6pqkpgtli0GDBlkcxGyM2vICMJ/25mJnZ4cxY8aI92VcXBzuu+8+7N27F2vWrMHatWvh4eEBjUYDuVyOL7/80uIfaQsKCrBx48Z6p6k+31FSz7naCMHNCxcuoLy83KQGqtQz0MXFBf7+/oiPj8eZM2dMmujeunULGRkZCAgIMPqW7tGjB86dO4fTp09jwoQJJmmR2peQPmFefdbhY+JjslRt7yrgn3e5Xq+3eJsAUK+fjCdMmIDOnTsjPj5e/MXH2rKzs+Hk5CSZOT/++GOt60rNr6iowM8//wwAjWqrDwCjR48G8E9wp6G6dOmCpUuXAqi6uOoyePBgAMDPP/8s+UvL//3f/5lM69u3L5ydnXHgwIEm/ZAWLjypZjZ1nS9LaDQaPPnkk/Dx8UF6err4C7uQJ+aaTH777bdGy9VGKJhcu3bNZN6+fftQXl5uMl0oKFRvrmuJ2tKdnp6OXbt2QSaT1VkLr6GEe2Dnzp2S1T/ryjepc/rHH38gKysLwcHBRs0WG5pH1pSbmwuDwQAfHx+TIFd5eXm97mVr3f8C4QVz9epVq2yvNqNGjQIArF+/vs5lIyIioNVqERUVJdl3mXCNDBw4sMlqbymVSrGGhdTz7cKFCzh37hwcHBzQs2fPem/bltdka1bb8/7gwYNITU2t1/ZiY2PFvhos/av58S30xyYVbCgoKBALakJwC6iqeebu7o6UlBTJ+0/YVvV1vL29AVTdr1K1ME+ePAnAfJNfa3rhhRfw0Ucfwd/fH7t37xaD5uZMnDgRQFVgsabt27ejpKQEo0aNatKakMA/+Vq9RqxWq8WIESMAAJs2bTJZR0hz9X5d3dzcxPfLqVOnTNbJy8sTz2vNX5RPnz6NKVOmoLS0FBs2bKi1NkhgYKDZ63Dfvn0AqrpcEKY1pUOHDsFgMNSrNnFeXh7OnDkDmUyGoKAgi9b5+++/ceDAAXTp0sXickhD3o3WKB/Up8zfkHKeUA6S2s+VK1dMmi0CEPNMSEN1lZWV+OWXX0ymDx8+HAqFAtu3b5dMhzkNzcPa8iIrK8vsh7Kt3p0BAQF4+umnAfzzzWRnZ4dhw4YhLy8Pf/75p8Xbqu2eru2vPqSec7UJCgpC586dUVxcjN9++81kvtQzEKj9ud6Qdc6cOYMbN26ga9euRu+xcePGQS6X49ChQ0a1nIGqrg22bdsGhUJhFJDhY+Jjqqsv9urqelfl5eUhKSkJ/v7+9f+BvV5d1xPRqVOnxFGOnnrqKcmRMTIyMmjYsGGSI5ygjlE7hGGoaw4Nv27dOrF3/pojYFQfavjzzz83mvfcc88RAJPRSuoa8UVq9JDo6GjSarXk7OwsOQR1SUkJbdq0iW7dukVERIWFhfTee++ZDG1eWVkpjsL1xhtvmM2L6ssLI16uWrXKaJ4weo5UvgijKQwdOtRkiHgiooSEBPr666/r3L9A6txNnDiRANB//vMfo+mbNm0ihUIh7t8SmzdvpmPHjplMP3XqFMnlcnJwcBBHCCooKCAvLy8CTEdlE4ZLbdeundGIbOZGXbx+/ToBVUOlVj/fN27cEEeAqXmrCNvq06eP2eORyq+//vqL5HI5OTk50cmTJ8XppaWl4shPNYf0bshoQbURztk999xjNHLh0aNHSafTkUKhoDNnzpgcCwDy8/MzyqP09HTq3r07AaC3337baB3hvty+fbtkOuoadVFqdKq67tuaeV5eXk7Ozs5kZ2dHhw8fFqdXVFSIo8pJbc/cqEPCqCZLliyh3Nxck/2fPXuWduzYIZk2KZ6enqTVaiVHQ6tr1MX6jJiUmZkpjsr2zjvvmIwsduzYMUpNTRX/vXTpUnF0loKCAnH61atXydvbmwDTkSpruw7Npbm287lp0yYCQO3btzd6fuXl5YnXyIoVK+o89poCAgLIzs7O5Llcl7ryvbbjN3et1zZSornnpjW3Vd97TTgnffr0MbouEhISjJ6VNbdX13u/MSoqKsR9f/jhh0bTH3jgAQJAXbt2NbnmhffjyJEjje7l3bt3k1KpJJlMRn/99Zc4vbi4mDw9PcVnZ/UR8BITE6lbt24EgJ5//vla02vJqIsJCQnUsWNH6tixo8k8oSzk7e1N165dq3VfgszMTHJyciIARmWX1NRUCg0NrfOeIbJs1MXDhw/Tjh07TEYcKysro/fff5/kcjlptVqjUYWJ/hkNyt3d3eiYjh49Smq1mlxcXEzuV2FEtZ49e1JSUpI4vbi4WBxFsuZIjleuXCG9Xk+A6ejd9dUUoy6uXbtWckSpEydOiOfprbfeMpr32WefmS3fCe/6SZMmmcw/c+aMyXvn0qVLFBoaSjKZjPbu3WvRcRHVv2xM9E/+1RwR1RINKfM3pJwnjC7m4uJCZ8+eFacXFBTQqFGjxHWq3zs5OTnk5uZGAOj777832t7LL79stswhPKtmzpwpOVJ6dHQ0/fTTT0bThOf3hQsXzOaVOf7+/gSAfv31V6PjmjlzpuRxEdX97rTGqIvr1q2j5ORkk2WFkT0ffPBBcdqhQ4dILpdT+/btJZ9f+fn59Pnnn0uOZNkYaWlptH79eiosLDSZ98cff4jPmJrn66+//qKOHTvSiBEjTNYTRuvs0KGDUVns559/JgAUGhpqcr9euXKFFAoFqdVqo2+na9eukbu7O9nZ2ZmM2ldWViaORrxu3TpxekFBAfXv39/su0l4ps6cOdMoHcKIqlLlIj4mPqaa+2nIu4qIaM+ePQSA7r77bsn5tan/uLRU9XARPnbUajUNGTKEIiMjadq0adSnTx9xWMxOnTrR+fPnjXdYR4H322+/FR+ygwcPpnnz5lF4eDjJ5XLxw9RcoOvhhx8mmUxGd9xxB82bN08Mmjk5ORkNL0vUsEAXEdGvv/5K9vb24smfPHkyRUZG0uDBg0mn0xEAMUiQnZ1NQNWwnHfeeSdFRkbSjBkzyM/PjwBQYGAgZWRkWJLldPz4cXH73bp1o3nz5lHfvn1JJpPRkiVLJPOlsrKS7r77bgJAKpWK+vXrJ6ahS5cuJJPJqEePHhbtn0j63B04cEAMaEVERNC8efOoT58+BICefPLJOgvG1Qkvsnbt2tGkSZNo/vz5NGzYMHH7NQMpe/bsIa1Wa7TvXr16EQBycHCggwcPGi1f20efMIy0s7MzTZ48mUaOHEk6nY5mz55t9iUtBHj69u1LCxcupEWLFtGWLVtqzS+ifz6w7OzsaNSoURQZGSleEx06dDAp5Fg70JWQkCA+QAMCAigyMpJGjhxpNp+FY/H396dJkyaRvb09TZ48mWbMmEEuLi4EgIYPH27yIBQekk5OTjRr1ixatGgRLVq0qM7jsmagi+if/FYoFDR69GiaO3cuBQYGklarFQM6lga6UlNTxWvMxcWFhg0bRvPnz6eJEyeK5/Cxxx6TTJuUhQsXEgCjIJzAmoEuYT1HR0cCQEFBQTRnzhyaPHmy+AFVPbiZl5dHERERBIA8PT1p9uzZNGHCBNJoNASAli1bZrJfawe6iIgefPBBAqqG7J44cSLNnj1bLETeeeedJgVNSwJdjz76qJgH//rXv2jRokW0du1as8vXdQyC2yHQVVpaKr5Xvb29aebMmTRx4kSyt7enAQMG0IABAyS3V9d7v7HOnDkjBnJ69OhBM2fOpODgYAKqgid///23yTplZWXix6qXlxdNnTqVBg4cKD4Hqw/bLdi8eTPZ2dmJ76mpU6fSmDFjxPuqd+/elJ+fb7Jev379xD8hWBYcHCxOe/jhh42WF85bzfN55swZkslkBID69+9PCxYskPw7dOiQSRp++uknksvlJJPJaPjw4TRr1izx+b18+XLJfH3llVfENArn3dHR0eh4qgeZhGvGw8ODxo4dS/Pnz6cxY8aQj48PASCNRkM//PCD5L6E97+9vT1NnTqVxo8fT3Z2dqRQKGjz5s0my1+/fl38scvR0ZHGjBlDU6dOJV9fXwJAbm5uJuXPnj17EgDS6/Vm82716tWS6auprkBXVFSUUT4Jz86ePXuK02oOA1+9rDZ37lyaPn069ejRQ7wW5syZY/KeFe7h8PBwmjFjBs2dO5cGDBgg/iDdpUsXo3NUfT29Xk+jRo2iefPm0aBBg0ihUJCdnR2tX7/eojyorj5lYyLjwPHQoUPp3nvvpUWLFkkOR19TQ8r8RA0r5wnlWKVSSWPHjqU5c+aQl5cX+fv70+TJkyXfNz///LP4HOnfvz/NmzePunbtSiqVSnyn1Xy+FBUViT+k6XQ6GjhwIM2bN4+mTJkivqOnTp1qtM7bb78tPr8iIyNp0aJF9PTTT9eZf0REn3/+uVguGj58OE2ePJm8vLyoQ4cONHXqVMnjquvdaY1Al7OzM8nlcurVqxfNmTOHZs+eTWFhYeI9XTO4//HHH4t53bVrV/Ee6Nevn3gP1PdHrboIz2d7e3vxO3XKlClihQQA9MQTT5isJzwzpN6F1StAuLq60qxZs2jYsGEkk8lIq9XS8ePHJdMi/PBhZ2dH48ePp6lTp4rfReaC+UeOHBGX6devH82ZM0d8Rs+aNcvkRyGiqh+1Q0JCCACFhITQ3LlzqWvXruJ3S2ZmJh8TH1Otx9TQdxUR0QsvvECAaSUoSzQo0EX0T22lkSNHkpeXFymVSnJwcKCOHTvSv/71L9q8ebNkLQVLCry//fYb3XnnneTo6EguLi40atQo2r9/v9kPjeofN9u2baP+/fuTvb09OTs709SpU+nixYsm+2hooIuoqoC1ZMkS6tChA2k0GnJ0dKSOHTtSZGQk/fjjj2Kto/Lycvrwww9pxowZFBISQvb29uTi4kLdu3enVatWSV5wtfn7779p8uTJ5OzsTDqdjvr370/bt2+v8wNsy5YtNHHiRPL09CSlUkmenp4UERFBK1eupKioKIv3b+7cHTt2jEaMGEGurq7k6OhIAwYMoJ9//rnOj6yazpw5QytWrKC+ffuSp6cnqdVqCggIoMmTJ9OePXsk17lw4QLNmzdPvAZ9fHzorrvuoitXrpgsW1t6SktL6ZlnniE/Pz9SqVQUEhJCr732GlVUVJh9SUdHR9O0adPI3d2d5HK5yfVU27W+fft2GjlyJDk7O5NKpaLQ0FBauXKl5K+51g50EVXVulyxYgWFhISQSqUiFxcXGjNmDO3atUtyeeFYSkpK6LnnnqPAwEBSqVQUEBBAzz//vNlfzN555x0KDw8XH2TV09lcgS4ioo0bN1KvXr3I3t6e3N3daerUqXTu3Dmz26stYFJcXEzvv/8+DRgwQDx/fn5+NHToUHrzzTeNfrWui/CL8ZIlS0zmWTvQRVT16/VDDz0knj83NzeKiIigV155hfLy8oyWLSgooFWrVonnz9HRkQYNGkTfffed5H6bItBFRPT111/TgAEDyMHBgTQaDXXp0oVef/11yWvOkkBXQUEBPfLII+Tn5ycGLSx5RnGgq0pWVhY9/PDDFBgYSGq1moKDg+npp5+mwsJCs9tr6kAXUdW1fc8995C3tzcplUpq37493X///RQbG2t2nbKyMlqzZg116dKFNBoNOTk50YgRI2jbtm1m1zl9+jTNnz+f2rdvT0qlknQ6HfXs2ZPeeOMNs89B4dln7q/m+TEX6BKuwbr+zL0rDh8+TOPGjSMXFxeyt7enPn360FdffWX2WKvXnDH3V7N2zHPPPUcDBw4kHx8fMX+6dOlCjz76qMkvvDV9+eWXFBERIZaVxo0bV2vgIyUlhZ544gnq1KkTaTQaUqvVFBoaSkuXLpV8Dgv3SH3OhTl1BbosOVc1760PPviAZsyYQcHBwaTT6UilUokBValgH1FVWeK+++6j8PBwcnV1JTs7O3J3d6ehQ4fS+++/b1TzsLrPPvtMDHYplUry9fWl+fPnm9Tmrg9Ly8aCkydP0ujRo8nZ2VkM4NZW01HQkDI/UcPKeURVedW9e3dSq9Xk6elJd911FyUmJtb6vtm3bx8NGzaMdDodOTk50ZgxY+ivv/6i1157jQDQJ598YrJORUUFbdy4kUaMGEFubm7ieenfvz+tWrWKrl69arR8eXk5vfDCCxQSEiJWMKjPc/bLL78UA3BeXl50//33U0ZGhtnjquvdaY1A19dff03z58+njh07kqOjIzk6OlJ4eDgtX76cEhISJI/jzJkztGDBAgoICBDLs126dKH77ruPtm/fLhkQaIzCwkJau3YtTZgwgQICAkir1ZJarabAwECKjIw0W/6oLdBFVHX+3377bfF95O7uTrNmzTJ7PQu2bt1KgwcPJgcHB3JwcKDBgwfX+g4jqvp2mjlzJrm7u4vlqnXr1pnUxq0uMzOTHn30UfH+8fPzo2XLltUaSORj4mMSNPRdRUQUEhJCHh4eJu8QS8iIiNDKLVy4EBs3bsS+ffss7jyTMWY5mUyGgIAAsQNwZj29evVCQkICEhISmmVEJcYYY4w1v3HjxmHXrl04fvx4ix6FkjHGWoJjx45hwIABWLlyJdasWVPv9W03Pj1jjDG8/vrryMjIwGeffWbrpDDGGGOsERITE00G5jAYDHjnnXewa9cuhIWF4Y477rBR6hhjrPX4z3/+AxcXF3FAivqys3J6GGOM1cOECRMwfPhw/Oc//8EDDzzAtboYY4yxVurQoUO466670KtXLwQEBKC0tBQXLlxAbGws7O3tsWHDBshkMlsnkzHGWrQzZ85g69atWLNmDdzc3Bq0DQ50McaYje3du9fWSWCMMcZYI0VEROCee+7BoUOHcPXqVZSUlMDb2xt33303nnnmGYSHh9s6iYwx1uL16tULje1hq0300cUYY4wxxhhjjDHGGPfRxRhjjDHGGGOMMcbaBA50McYYY4wxxhhjjLE2gQNdjDHGGGOMMcYYY6xN4EAXY4wxxhhjjDHGGGsTONDFGGOMMcYYY4wxxtoEDnQxxhhjjDHGGGOMsTaBA12MMcYYY4wxxhhjrE3gQBdjjDHGGGOMMcYYaxM40MUYY4wxxhhjjDHG2gQOdDHGGGOMMcYYY4yxNoEDXYwxxhhjjDHGGGOsTeBAF2OMMcYYY4wxxhhrEzjQxRhjjDHGGGOMMcbaBA50McYYY4wxxhhjjLE2gQNdjDHGGGOMMcYYY6xN4EAXY4wxxhhjjDHGGGsTONDFGGOMMcYYY4wxxtoEDnQxxhhjjDHGGGOMsTaBA12MMcYYY4wxxhhjrE3gQBdjjDHGGGOMMcYYaxM40MUYY4wxxhhjjDHG2gQOdDHGGGOMMcYYY4yxNoEDXYxZ2cGDB/HKK68gNzfX1klpVrm5uXjllVdw9OhRWyelUcrLy/Gf//wH27Zts3VS2rT//e9/+PTTT22dDMYYY4wxxlgbw4EuxqwoLi4O06ZNg6OjI5ydnW2dnGbl7OwMe3t7TJ8+HcnJyfVa96uvvoJMJkNsbKzZZWJjYyGTyfDVV181LqF1eOaZZ7BhwwbceeedFq9jSfpbEplMhpdfftlq2xs2bBi6du1q8fInTpzAo48+ipdffhm//fZbvfb18ssvQyaT1TeJrcKJEyegUqkQFxdnMq+srKzR2y8vL4efnx8++uijRm+LMcYYE0RHR2PMmDFwdnaGTCbDr7/+auskMcZucxzoYi2GTCaz6G///v22Tqqk8vJyzJ07FwsXLsQTTzzRJPv46KOPmjzQ0xhPPvkkZs+ejXnz5qGysrJR2xo2bBgWLlxolXQVFRXh5ZdfrvPa2bJlC7799lvs3LkTer3eKvtmxsrKynDvvffio48+wrfffouHH37YpPajpeerJXvjjTfqXdB//vnnMW/ePAQEBIjTSkpKMH/+fOh0Onh5eeHHH3+UXDcmJgaLFy9GcHAwNBoNnJycMHDgQLz33nsoLi4GACiVSixfvhyvv/46SkpKGnxsjDHGmo7w49mpU6dsnRSLLViwAOfPn8frr7+Ob775Bn369LHKdo8ePYqXX34ZOTk5VtkeY+z2YWfrBDAm+Oabb4z+/fXXX2P37t0m0zt37tycybLYxYsXERkZiccee6zJ9vHRRx/Bw8PDagGgpvD+++/jnXfewdWrVxEeHm617QYEBKC4uBhKpbLe6xYVFWHVqlUAqgJo5sTGxmLHjh0IDQ2t1/bvvvtuREZGQq1W1zttt5urV6/i8ccfR2RkJABgzZo1uHTpEvr37y8uU9v5euGFF/DMM880W3ob6o033sCsWbMwbdo0i5Y/e/Ys9uzZY9L09+2338b58+fx/fffIy4uDvfffz/uvPNO+Pv7i8v89ttvmD17NtRqNe655x507doVZWVlOHz4MJ566ilcvHgR69evBwDce++9eOaZZ/Ddd9/hvvvus9rxMsYYuz0VFxfj2LFjeP755/HII49YddtHjx7FqlWrsHDhQri4uFh124yxto0DXazFuOuuu4z+ffz4cezevdtkekvVs2dP9OzZ0+LliQglJSXQarVNlygbpEMul2PFihVW2VZ1MpkMGo3G6tutrr5BysLCQuh0OigUCigUiiZKlXkVFRUwGAxQqVTNvu+G6tatG7p16yb+e968efVa387ODnZ2be/V9eWXX8Lf39+kyeyxY8fw2muvYerUqQCAw4cP4+TJk2Kg6+bNm4iMjERAQAD27t0LHx8fcd2lS5fi+vXrRs1DXVxcMGbMGHz11Vcc6GKMMdZo6enpAGDVQJRQvmKMsYbipousVTEYDHj33XfRpUsXaDQaeHl5YfHixcjOzjZaLjAwEJMmTcL+/fvRp08faLVadOvWTWwK9csvv6Bbt27QaDSIiIjAmTNnjNZfuHAhHBwccOPGDYwdOxY6nQ6+vr545ZVXQESNStOuXbvENAmdcX/55ZcYMWIEPD09oVarER4ejo8//thk/YsXL+LAgQNiM06htou5fouk+o6qLR05OTl4/PHH4efnB7VajdDQUKxZswYGg6HOc7NlyxZMnDgRvr6+UKvVCAkJwauvvtroJowCqT66hPOUmJiIadOmwcHBAXq9Hk8++aS439jYWLEZ4qpVq8S8q95H1ZUrVzBr1iy4ublBo9GgT58+2Lp1q9H+hbw8cOAAlixZAk9PT7Rv395oXs0+unbs2IHBgwdDp9PB0dEREydOxMWLF42WGTZsmGQts4ULFyIwMNDk+N966y28++67CAkJgVqtxqVLl8zmWWlpKZ544gno9Xo4OjpiypQpSEhIqHNfgvr2hxUVFYUBAwZAq9UiKCgIn3zyidH8srIyvPjii4iIiICzszN0Oh0GDx6Mffv2GR1nbedLKk0ymQyPPPIINm3ahPDwcGi1WvTv3x/nz58HAHz66acIDQ2FRqPBsGHDJPtS++uvvzBu3Dixr7mhQ4fiyJEjkvlx/fp18ddlZ2dn3HvvvSgqKjJKT2FhITZu3Cimv65amL/++itGjBhhcmzBwcFYv349rl69it27d+PgwYNGNQ7Xrl2LgoICfP7550ZBLkFoaKhJAHf06NE4fPgwsrKyak0TY4wx27OkrCMwGAx47733xDKuXq/HuHHjjJpBVlRU4NVXXxXLEYGBgXjuuedQWlpqtC2hvHj48GHccccd0Gg0CA4Oxtdffy0u8/LLL4vN7Z966inIZDKj8sSZM2cwfvx4ODk5wcHBASNHjsTx48eN9mOufPXyyy/jqaeeAgAEBQWJ79PW0h8qY8y22t7P4qxNW7x4Mb766ivce++9WLZsGW7evIn//ve/OHPmDI4cOWLUrO369euYP38+Fi9ejLvuugtvvfUWJk+ejE8++QTPPfcclixZAgBYvXo15syZg6tXr0Iu/yf2W1lZiXHjxuHOO+/E2rVrsXPnTrz00kuoqKjAK6+80qA0Xb16FfPmzcPixYvxwAMPoGPHjgCAjz/+GF26dMGUKVNgZ2eHbdu2YcmSJTAYDFi6dCkA4N1338Wjjz4KBwcHPP/88wAALy+vBuWjVDqKioowdOhQJCYmYvHixfD398fRo0fx7LPPIjk5Ge+++26t2/zqq6/g4OCA5cuXw8HBAXv37sWLL76IvLw8vPnmmw1KpyUqKysxduxY9OvXD2+99Rb27NmDt99+GyEhIXj44Yeh1+vx8ccf4+GHH8b06dMxY8YMAED37t0BVDU5HThwINq1a4dnnnkGOp0OP/74I6ZNm4aff/4Z06dPN9rfkiVLoNfr8eKLL6KwsNBsur755hssWLAAY8eOxZo1a1BUVISPP/4YgwYNwpkzZyQDS5b48ssvUVJSggcffBBqtRpubm5ml73//vvx7bffYv78+RgwYAD27t2LiRMnNmi/dcnOzsaECRMwZ84czJs3Dz/++CMefvhhqFQqseZQXl4eNmzYgHnz5uGBBx5Afn4+Pv/8c4wdOxYnTpxAz5496zxf5hw6dAhbt24V75fVq1dj0qRJWLlyJT766CMsWbIE2dnZWLt2Le677z7s3btXXHfv3r0YP348IiIi8NJLL0Eul4vB50OHDuGOO+4w2tecOXMQFBSE1atX4/Tp09iwYQM8PT2xZs0aAFXn/v7778cdd9yBBx98EAAQEhJiNu2JiYmIj49H7969TeY9++yzGD58ODp16gSgarCEHj16iPO3bduG4OBgDBgwoNb8qS4iIgJEhKNHj2LSpEkWr8cYY8w26irrCBYtWoSvvvoK48ePx/3334+KigocOnQIx48fF/vNuv/++7Fx40bMmjULK1aswF9//YXVq1fj8uXL2Lx5s9F+r1+/jlmzZmHRokVYsGABvvjiCyxcuBARERHo0qULZsyYARcXFzzxxBOYN28eJkyYAAcHBwBV5avBgwfDyckJK1euhFKpxKeffophw4bhwIED6Nevn9G+apavxo8fj2vXruH777/HO++8Aw8PDwDgPlQZY5YhxlqopUuXUvVL9NChQwSA/ve//xktt3PnTpPpAQEBBICOHj0qTtu1axcBIK1WS3FxceL0Tz/9lADQvn37xGkLFiwgAPToo4+K0wwGA02cOJFUKhWlp6c3OE07d+40OdaioiKTaWPHjqXg4GCjaV26dKGhQ4eaLPvSSy+R1O385ZdfEgC6efNmnel49dVXSafT0bVr14ymP/PMM6RQKCg+Pt5k+3Udw+LFi8ne3p5KSkpqXVcqnTXdvHmTANCXX34pThPO0yuvvGK0bK9evSgiIkL8d3p6OgGgl156yWS7I0eOpG7duhml0WAw0IABA6hDhw4maRw0aBBVVFTUmv78/HxycXGhBx54wGi5lJQUcnZ2Npo+dOhQyXO6YMECCggIMDl+JycnSktLM1m+prNnzxIAWrJkidH0+fPnm+RFzX0JzF1XNQ0dOpQA0Ntvvy1OKy0tpZ49e5KnpyeVlZUREVFFRQWVlpYarZudnU1eXl503333idNqO19SaQJAarXa6PoR7mtvb2/Ky8sTpz/77LNG58pgMFCHDh1o7NixZDAYxOWKioooKCiIRo8ebbLv6mklIpo+fTq5u7sbTdPpdLRgwQKJ3DK1Z88eAkDbtm2TnF9aWkqnTp2i2NhYo+m5ubkEgKZOnWrRfgRJSUkEgNasWVOv9RhjjDU9oUxx8uRJIrK8rLN3714CQMuWLTPZpvB+E8oG999/v9H8J598kgDQ3r17xWlCefHgwYPitLS0NFKr1bRixQpxmlA+efPNN422OW3aNFKpVBQTEyNOS0pKIkdHRxoyZIjJ8UqVr9588806y4eMMSaFmy6yVmPTpk1wdnbG6NGjkZGRIf5FRETAwcHBqPkTAISHhxt1cC38cjRixAijjpyF6Tdu3DDZZ/VONYXmUWVlZdizZ0+D0hQUFISxY8ea7Kd6/1i5ubnIyMjA0KFDcePGDZMR6axBKh2bNm3C4MGD4erqanQso0aNQmVlJQ4ePFjrNqsfQ35+PjIyMjB48GAUFRXhypUrVj+G6h566CGjfw8ePFjyfNaUlZWFvXv3Ys6cOWKaMzIykJmZibFjxyI6OhqJiYlG6zzwwAN19se1e/du5OTkYN68eUZ5qVAo0K9fP5Proj5mzpxp0a+Zv//+OwBg2bJlRtMff/zxBu+7NnZ2dli8eLH4b5VKhcWLFyMtLQ1RUVEAAIVCIfYnZjAYkJWVhYqKCvTp0wenT59u1P5HjhxpVEtOuK9nzpwJR0dHk+nC9XH27FlER0dj/vz5yMzMFM9VYWEhRo4ciYMHD5o03ZW63jIzM5GXl9egtGdmZgIAXF1dJeerVCpEREQYjcYIQNxf9eOzhLCfjIyM+iaVMcaYjdRV1vn5558hk8nw0ksvmawrNIsXygbLly83mi/0rVq9T0egqiw9ePBg8d96vR4dO3ass4xVWVmJP/74A9OmTUNwcLA43cfHB/Pnz8fhw4dN3pmWlK8YY8xS3HSRtRrR0dHIzc2Fp6en5Py0tDSjf1cPZgGAs7MzAMDPz09yes0+teRyudHLGQDCwsIAQOwfoL5pCgoKklzuyJEjeOmll3Ds2DGjvn6AqsCXkEZrkUpHdHQ0/v77b7NBlJrHUtPFixfxwgsvYO/evSaFl6YI1gmEPiiqc3V1NTmfUq5fvw4iwr///W/8+9//llwmLS0N7dq1E/9t7hxWFx0dDaAqqCrFycmpzm2YY8n+ASAuLg5yudykyZzQXNbafH19TTqOrX6/CJ2sb9y4EW+//TauXLmC8vJycVlLj8ucht7vwrlasGCB2W3n5uYaBaFq7kuYl52d3ahzSzX6/6uLsK/8/PwG7ac+/a8xxhizHUvKOjExMfD19a21SwOhbFBzdGlvb2+4uLggLi7OaHrN953UfqWkp6ejqKhIsszRuXNnGAwG3Lp1C126dBGnN7YcwBhj1XGgi7UaBoMBnp6e+N///ic5v2YBwNyvQuam1/cjsyFpkhrZMCYmBiNHjkSnTp2wbt06+Pn5QaVS4ffff8c777xjUUfw5j5YzXUEL5UOg8GA0aNHY+XKlZLrCEELKTk5ORg6dCicnJzwyiuvICQkBBqNBqdPn8bTTz9t0TE0VGN+/RPS9eSTT0rWtANgUhi0ZHRKYbvffPMNvL29TeZXHzVQJpNJXnv1OXeNVd/rp6G+/fZbLFy4ENOmTcNTTz0FT09PKBQKrF69GjExMY3adkPvd+Fcvfnmm2ZHTRX6G7F0m/Xl7u4OwDTYXhcnJyf4+vriwoUL9VpP2I/Q3wljjLGWzdo1nSz9ocPa77va2HoUcsZY28KBLtZqhISEYM+ePRg4cGCzvAwNBgNu3LhhFOC5du0aAIhNpKyRpm3btqG0tBRbt241+uVMqnmbuYKJUKMkJyfHaHjnmr/M1SYkJAQFBQUYNWqUxesI9u/fj8zMTPzyyy8YMmSIOP3mzZv13lZTMJdvQo09pVLZoOM2R6hF5enpWed2XV1dJZsA1OfcSQkICIDBYEBMTIzRL6pXr16VTENOTk6j0pCUlGQyHHjN++Wnn35CcHAwfvnlF6NzUrOZRXPWNBLOlZOTk1Wvgfocg9DRfEPul0mTJmH9+vU4duyYUVPt2gj76dy5c733xxhjrGUKCQnBrl27kJWVZbZWl1A2iI6ONnoHpKamIicnx6SJfEPp9XrY29tLljmuXLkCuVxuUuNaCtc8Zow1FPfRxVqNOXPmoLKyEq+++qrJvIqKCskP9cb673//K/43EeG///0vlEolRo4cabU0Cb+WVf91LDc3F19++aXJsjqdTnKbwsd69X60CgsLsXHjxjr3L5gzZw6OHTuGXbt2mczLyclBRUVFvY6hrKwMH330kcX7b0r29vYAYJJ3np6eGDZsGD799FMkJyebrJeent6g/Y0dOxZOTk544403jJrnSW03JCQEV65cMZp27tw5HDlypEH7FowfPx4A8P777xtNlxo9MyQkBLm5ufj777/FacnJySajL9WmoqICn376qfjvsrIyfPrpp9Dr9YiIiAAgfZ389ddfOHbsmNG2zJ2vphAREYGQkBC89dZbKCgoMJnf0GvA3L0qpV27dvDz8zMa/t1SK1euhE6nw/3334/U1FST+TExMXjvvfeMpkVFRUEmk1kcGGOMMdbyzZw5E0SEVatWmcwT3rsTJkwAYFoWWLduHQBYbWRmhUKBMWPGYMuWLWJ3H0BVQO27777DoEGDLGrqL/x41hzlAcZY28I1ulirMXToUCxevBirV6/G2bNnMWbMGCiVSkRHR2PTpk147733MGvWLKvtT6PRYOfOnViwYAH69euHHTt24LfffsNzzz0nNkm0RprGjBkDlUqFyZMnY/HixSgoKMBnn30GT09Pk+BLREQEPv74Y7z22msIDQ2Fp6cnRowYgTFjxsDf3x+LFi3CU089BYVCgS+++AJ6vR7x8fEWHe9TTz2FrVu3YtKkSeLQ0YWFhTh//jx++uknxMbGmm3qNGDAALi6umLBggVYtmwZZDIZvvnmmyap2t4QWq0W4eHh+OGHHxAWFgY3Nzd07doVXbt2xYcffohBgwahW7dueOCBBxAcHIzU1FQcO3YMCQkJOHfuXL335+TkhI8//hh33303evfujcjISPFc/Pbbbxg4cKAYRL3vvvuwbt06jB07FosWLUJaWho++eQTdOnSpcGdmwNAz549MW/ePHz00UfIzc3FgAED8Oeff+L69esmy0ZGRuLpp5/G9OnTsWzZMhQVFeHjjz9GWFiYxZ3E+/r6Ys2aNYiNjUVYWBh++OEHnD17FuvXr4dSqQRQVfvol19+wfTp0zFx4kTcvHkTn3zyCcLDw42CTLWdL2uTy+XYsGEDxo8fjy5duuDee+9Fu3btkJiYiH379sHJyQnbtm2r93YjIiKwZ88erFu3Dr6+vggKCjIZSr26qVOnYvPmzSCiev2CHRISgu+++w5z585F586dcc8996Br164oKyvD0aNHsWnTJixcuNBond27d2PgwIFik0nGGGOt3/Dhw3H33Xfj/fffR3R0NMaNGweDwYBDhw5h+PDheOSRR9CjRw8sWLAA69evF7udOHHiBDZu3Ihp06Zh+PDhVkvPa6+9ht27d2PQoEFYsmQJ7Ozs8Omnn6K0tBRr1661aBvCD2XPP/88IiMjoVQqMXnyZJM+QRljzETzD/TImGWWLl1KUpfo+vXrKSIigrRaLTk6OlK3bt1o5cqVlJSUJC4TEBBAEydONFkXAC1dutRomtSwyAsWLCCdTkcxMTE0ZswYsre3Jy8vL3rppZeosrLSqmkiItq6dSt1796dNBoNBQYG0po1a+iLL74wGVI5JSWFJk6cSI6OjgSAhg4dKs6Lioqifv36kUqlIn9/f1q3bp04ZHP1bdSWjvz8fHr22WcpNDSUVCoVeXh40IABA+itt96isrIyyXUER44coTvvvJO0Wi35+vrSypUradeuXQSA9u3bV+u6UumsSThPX375pThNOE81vfTSSybXztGjRykiIoJUKhUBoJdeekmcFxMTQ/fccw95e3uTUqmkdu3a0aRJk+inn34ySaMw3Lcl6d+3bx+NHTuWnJ2dSaPRUEhICC1cuJBOnTpltNy3335LwcHBpFKpqGfPnrRr1y5asGABBQQEmBx/zeG7a1NcXEzLli0jd3d30ul0NHnyZLp165bJ8RMR/fHHH9S1a1dSqVTUsWNH+vbbbyXzUcrQoUOpS5cudOrUKerfvz9pNBoKCAig//73v0bLGQwGeuONNyggIIDUajX16tWLtm/fbnKsRObPl1SaLL2viarOCQDatGmT0fQzZ87QjBkzyN3dndRqNQUEBNCcOXPozz//FJcR9p2enm60rtT5v3LlCg0ZMoS0Wi0BoAULFtSah6dPnyYAdOjQoVqXM+fatWv0wAMPUGBgIKlUKnJ0dKSBAwfSBx98QCUlJeJyOTk5pFKpaMOGDQ3aD2OMsaZVs7xRn7JORUUFvfnmm9SpUydSqVSk1+tp/PjxFBUVJS5TXl5Oq1atoqCgIFIqleTn50fPPvus0buCyHx5cejQoUblz9rKJ6dPn6axY8eSg4MD2dvb0/Dhw+no0aO1Hm9Nr776KrVr147kcnmdZUXGGBPIiFpIlQvGWpCFCxfip59+kmzKxBhjTWHkyJHw9fXFN99802T7ePfdd7F27VrExMRwx7+MMcYYY6xN4j66GGOMsRbgjTfewA8//NDogQjMKS8vx7p16/DCCy9wkIsxxhhjjLVZ3EcXY4wx1gL069cPZWVlTbZ9pVJpcZ99jDHGGGOMtVZco4sxxhhjjDHGGGOMtQncRxdjjDHGGGOMMcYYaxO4RhdjjDHGGGOMMcYYaxM40MUYY4wxxhhjjDHG2gTujL4RDAYDkpKS4OjoCJlMZuvkMMYYY8xGiAj5+fnw9fWFXN66f0fk8g1jjDHGgNZbvuFAVyMkJSXBz8/P1slgjDHGWAtx69YttG/f3tbJaBQu3zDGGGOsutZWvmmzga7Vq1fjl19+wZUrV6DVajFgwACsWbMGHTt2FJcpKSnBihUr8H//938oLS3F2LFj8dFHH8HLy8uifTg6OgKoOulOTk5WTb/BYEB6ejr0en2ripw2Nc4XaZwv0jhfpHG+SON8kcb5Iq1mvuTl5cHPz08sG7RmTVm+AfiaMofzRRrnizTOF2mcL9I4X6Rxvkirni8FBQWtsnzTZgNdBw4cwNKlS9G3b19UVFTgueeew5gxY3Dp0iXodDoAwBNPPIHffvsNmzZtgrOzMx555BHMmDEDR44csWgfQnV+JyenJgl0lZSUwMnJiW+6ajhfpHG+SON8kcb5Io3zRRrnizRz+dIWmvo1ZfkG4GvKHM4XaZwv0jhfpHG+SON8kcb5Ik0qX1pb+abNBrp27txp9O+vvvoKnp6eiIqKwpAhQ5Cbm4vPP/8c3333HUaMGAEA+PLLL9G5c2ccP34cd955py2SzRhjjDHGGGOMMcYaqM0GumrKzc0FALi5uQEAoqKiUF5ejlGjRonLdOrUCf7+/jh27JhkoKu0tBSlpaXiv/Py8gBURTwNBoNV01uUXYTk48lwGeUClb3KqttuzQwGA4jI6vnd2nG+SON8kcb5Io3zRRrni7Sa+cL5wxhjjDHWMtwWgS6DwYDHH38cAwcORNeuXQEAKSkpUKlUcHFxMVrWy8sLKSkpkttZvXo1Vq1aZTI9PT0dJSUlVk1zdkw2Es8lQqFVwLOHp1W33ZoZDAbk5uaCiLh6aTWcL9I4X6RxvkjjfJHG+SKtZr7k5+fbOkmMMcYYYwy3SaBr6dKluHDhAg4fPtyo7Tz77LNYvny5+G+h41m9Xm/1Pizc3dyRcTYDFUkV8BjuAbkdf1wAVR8WMpmMOwysgfNFGueLNM4XaZwv0jhfpNXMF41GY+sksVYkan0UIh6MsHUyGGOMsTapzQe6HnnkEWzfvh0HDx40Gg7T29sbZWVlyMnJMarVlZqaCm9vb8ltqdVqqNVqk+lyudz6hX87wL2LO4quFCE7Jhv6znrrbr8Vk8lkTZPnrRznizTOF2mcL9I4X6Rxvkirni+cN8wSUeujbJ0ExhhjrM1rs6UyIsIjjzyCzZs3Y+/evQgKCjKaHxERAaVSiT///FOcdvXqVcTHx6N///7NnVxJziHOUKgVSD2XCiKydXIYY4wxxlgDRK2P4iAXY4wx1kzabI2upUuX4rvvvsOWLVvg6Ogo9rvl7OwMrVYLZ2dnLFq0CMuXL4ebmxucnJzw6KOPon///i1mxEWFUgF9Fz1Sz6YiJzYHrkGutk4SY4wxxhirBw5wMcYYY82rzdbo+vjjj5Gbm4thw4bBx8dH/Pvhhx/EZd555x1MmjQJM2fOxJAhQ+Dt7Y1ffvnFhqk2pe+ih0wuQ/rFdFsnhTHGGGOMWREHwRhjjDHra7M1uixp6qfRaPDhhx/iww8/bIYUNYxSq4RrsCuyrmehOKsYWjetrZPEGGOMMcZqIQSwuMN5xhhjrPm12RpdbYlnV08AQPolrtXFGGOMMcYYY4wxZk6brdHVlug8dbD3sEfmtUy0u6MdFCqFrZPEGGOMMcZq4KaIjDHGmO1xja5WwrOrJwwVBmRey7R1UhhjjLFWpyC1ACnnUmydDMYYY4wx1sQ40NVKuAa7QqFWIO1imkX9jzHGGGOsSllBGWJ2xSA5Khml+aW2Tg5ro7g2F2OMMdYycNPFVkJuJ4dHJw+knktFfmI+nNo72TpJjLUqMX/EID8p32iavYc9QseFQm7HMX/G2ipDpQExu2NQUVKBkDEhUDuqbZ0k1gZxkIsxxhhrOfjrrhXRh+sBAGkX0mycEsZal9z4XOTE5kBpr4TOUwedpw4aFw3yk/KR8FeCrZPHGGtCCccSUJReBO9e3nAJdLF1chhjjDHGWBPjGl2tiNpRDecAZ+TG5aI0rxRqJ/5VmjFLZF3PAgB0mNgBKp0KAEBEuLb9GtIvpsMl0AVO7biWJGNtTdb1LKRfSoejryN8+/jaOjmsDYpaH4WIByNsnQzGGGOMVcM1uloZzy6eAID0S+k2TgljrUdBSgE0rhoxyAUAMpkMgUMDIbeTI+5AHCrLKm2YQsZsiwzU5vp/LM4uRtzBOCjtlQgaGQSZTGbrJLE2hpsrMsYYYy0T1+hqZZzaO0HtrEbmtUz49vWFXMGxSsZqU15UjvKCcrj4u5jMUzup0f7O9og/HI+E4wkIGBLQ/AlkzEbKCsqQfSMbubdyUZBSAJlMBnu9PXR6Hdw6uMHe3d7WSWywyvJK3Nh9A4ZKAzqM6gClVmnrJDHGGGOMsWbCUZJWSN9Zj4qSCuTczLF1Uhhr8YrTiwEADt4OkvP14Xo4tnNExpUM5N7Kbc6kMWYTRIS0i2m4+ONFJBxPQEFKARy8HaDz1KEoowipf6fi8s+XcX3XdRSmFdo6uQ0SdzAOJTklaN+vvdl7n7HGsHZtLq4dxhhjjFkP1+hqhdzD3JF4MhHpl9LhFupm6+Qw1qIVpRUBAHReOrPLBA4NxKWfLiHuQBzCZ4fDTs2PRtY2lRWU4ea+myhILoDKUQW//n5wau8kjjxKRChKL0LKuRTk3MxBblwuHHwdoApUAZ42TryF0i+lIzsmGy6BLvDq7mXr5LA2iINSjDHGWMvGNbpaITuNHVyDXVGQUoDirGJbJ4exFq04vRgKjQIaZ43ZZVQOKrTv3x7lReW4dfRWM6aOseZTnF2MK79eQUFyAfTheoTPCodLoIsY5AKq+q7TeeoQMjoE4bPC4RbqhvzEfNzccROx+2NRXlRuwyOoW2FaIW4dvQW1kxqBwwJtnRzGGGOMMWYDHOhqpfSd9QCA9MvcKT1j5hgqDCjJKrGo6ZJHRw84+zsjKzoLObE5TZ84xppRYXohrm69ioqSCgSNDIL/IH8olIpa19G6aRE0IgidZ3WGg68Dsq5l4eKmi8i+kd1Mqa6fipIK3NhzA5ABwaODoVDVfnyMNQTX5mKMMcZaPg50tVIO3g7QummRFZ0FQ4XB1slhrEUqTCsEEdXabLG6gCEBUKgViDsUh4qSiiZOHWPNoyClANe2XwNVEkLGhsAtpH5N3rWuWviP9EfQ6KqRC2/suYGb+262qJFKiQg3991EWUEZ/Af6t+qO9FnL1dRBrtMbTjfp9hljjLHbBQe6WjGPzh6oLKtE1vUsWyeFsRapILUAAODgZVln1Ep7JfwH+qOiuAKxB2KbMGWMNY/C9EJE74gGAHSY0AHOfs4N3pZrkCvCZ4eLNR8v/XQJ+Un51kpqo6ScTUHerTy4h7nDo5OHrZPDGGOMMcZsiANdrZh7B3fI7eTcfJExMwpTCiGTy2Cvt7x2h1uoG9xC3ZAbl8v3FmvVirOKEf17NMhACB0XapXRB5VaJULHhcJ/sD8qSipwbfs1JBxPgKHSdjWL8xLykHQqCVo3LfwH+dssHYwxxhhjrGXgQFcrplAp4BbqhqL0IhRlFNk6OYy1KESEwtRCaN21kCvq96jzH+QPlYMKCccSUJJT0kQpZKzplOSW4Npv12AoNyBkTAgcfRytun1956rO7HWeOqT+nYorm6/YZHCUoowixOyOgUKpQPDoYKOO9RmzFu6XizHGGGtduETYyunD/3+n9Je45kl9VJRU2LQGAmt6JTklqCyrhFavrfe6CpUCQSOCYKg04ObemyADNUEKGWsapfmluLb9GipKKhA8KrhRzRVro3ZSo+OUjvDt44vi7GJc/uUyUv9OBVHz3C+leaWI3vFPjbXaRlZtS1avXo2+ffvC0dERnp6emDZtGq5evWq0TElJCZYuXQp3d3c4ODhg5syZSE1NtVGKWzcOcjHGGGOtDwe6Wjl7D3vY6+2RdT2rRXUM3JIVZRTh/HfnEbMrxtZJYU2oMLUQABoU6AKqBnzw6eWDoowiJJ5MtGbSGGsy5UXliP4tGuWF5QgaHgSXQJcm3Z9MLoNPbx90mtYJKkcVEo4nIPq3aJQVlDXpfitKKhC9IxoVxRUIGhFklWaZrcWBAwewdOlSHD9+HLt370Z5eTnGjBmDwsJCcZknnngC27Ztw6ZNm3DgwAEkJSVhxowZNkw1Y4wxxljz4UBXG6DvrIehwoDM6ExbJ6VVSDieAEOFAXkJechLyLN1cppMc9WqaKkK0/9/oMujYYEuAPDp7VPVNOtcKvIS2+61wtoGQ4UB13ddR2leKfwH+8MttH6jKzaGTq9D+Mxw6MP1yE/Kx6WfLiEnNqdJ9mWoMOD6zusozS2F30A/uAa5Nsl+WqqdO3di4cKF6NKlC3r06IGvvvoK8fHxiIqqqnmUm5uLzz//HOvWrcOIESMQERGBL7/8EkePHsXx48dtnHrGGGOMsaZnZ+sEsMZzC3VDwvEEpF9Kh2cXT1snp0WrLKtEQUoBtO5alOSUIOGvBHRu1xkymczWSbOq/KR8RO+IRsjoEDj7N02zpZauKL0IdvZ2UNorG7wNmVyGoBFBuPTzJcTuj0X4zHDYafixyVoeIsLNvTdRlF4En94+0HfWN3sa5HZy+A/yh3OAM2L3xSLmjxh49/SGb19fqz1jyUC4secGCtMK4d3Tm995qApsAYCbW1VgMyoqCuXl5Rg1apS4TKdOneDv749jx47hzjvvNNlGaWkpSktLxX/n5VUF9g0GAwwG6zfzNxgMIKIm2bY1nd5wWvxvg8EAgvQPSI2dJ/w/gRC9Mxoed/HIodW1luuluXG+SON8kcb5Io3zRVr1fGmtecNfbG2A3E4O9zB3pF1IQ0FKwW3VhKO+8hLyQAaCPlyP0txSpP6diuwb2XALab6aD80h+0Y2qJIQdzAO4bNuv+CModKA4qxiOLZrfAfcaic1/Af6I3Z/LOIOxSFkdIgVUsiYdSUcT0BObA7cQt3g28fXpmlx9nNG5xmdcWPPDaScTUFheiGCRwY3+jlERIg7FIfc+Fy4h7mj3R3trJTi1stgMODxxx/HwIED0bVrVwBASkoKVCoVXFxcjJb18vJCSkqK5HZWr16NVatWmUxPT09HSYn1B+QwGAzIzc0FEUEub5mNC67vvA6o/vl3WloaSlTSedHYecL/EwjlynKkpaW12HyxhdZwvdgC54s0zhdpnC/SOF+kVc+X6l0jtCa319dvG+bR2QNpF9KQfimdA121yInLAQA4+ztDrpAj40oGkk4mwTXIFTJ526nVlZeQB5lchvKicsQfiUfwyGBbJ6lZFWcWgwwEe729VbbnHuaO3PhcZN/IRsbVDHh05F/bWcuReS0TaefT4ODtgIChAbZODgBA5aBC2OQw3Dp6CxmXM3D5l8sIHh0MnV7XoO1VllXi5t6byI3PhZOfEwKGtIzjtLWlS5fiwoULOHz4cKO28+yzz2L58uXiv/Py8uDn5we9Xg8nJ6fGJtOEwWCATCaDXq9vsR8WCWUJRv/29PQ0mWatecL/CzW/PD09W2y+2EJruF5sgfNFGueLNM4XaZwv0qrnS0FBga2T0yAc6GojtK5aOPg4IPtGNvwG+N12NXgsQUTIu5UHrbsWKl3Vz7Se3TyRHJWMrOtZcA9zt3EKraOsoAyleaXw6OSBipIKZMdkIyswq83VWqtNYVrVLw86Tx1KYJ3aCP6D/VGQWoBbR27BwdvhthnhjbVsRZlFiDsUB6VOiZAxIZArWk4hTa6QI2BwAHSeOsQfjsfVLVfhN8APHp096tWUsTSvFNd3XkdJTgncw9zhP9i/Tf0w0VCPPPIItm/fjoMHD6J9+/bidG9vb5SVlSEnJ8eoVldqaiq8vb0lt6VWq6FWq02my+XyJiv4y2SyJt1+Y8lgfI3J5XKTadaaV30Z4d8tNV9spaVfL7bC+SKN80Ua54s0zhdprT1fWmeqmSR9uB5kIGRcybB1UlqkwrRCVJRUwCXARZzm1c0LCpUCSVFJIEPb6Lxd6DTdsZ0j/Af7w05jh/jD8SgvKrdxypqP0BG9vYd1anQBgJ3aDkHDg2CoMODm3ptt5nphrVdFaQVu7L4BEBAyOqTF/sDh0dEDnaZ2gtJeifjD8bi27RqKs4vrXM9QaUDymWRc+ukSSnJK0P7O9ggcFtiignm2QER45JFHsHnzZuzduxdBQUFG8yMiIqBUKvHnn3+K065evYr4+Hj079+/uZPbKkWtj7Lp/qv3DcYYY4yx+muZpWLWIK5BrrilvYX0y+nw6uHV5jpYb6zcuKoOe6t3zq5QKeDVwwtJJ5OQeS0THp1af5O0/MR8AIBTOyfYaewQMCQAMX/EIO5gHELHhdo4dc2jKL0Iaid11Ye/FQdLdPR1hHdPb6ScTUFSVBLa9eU+glojQ6UBOTdzkHktE6X5pagsrURleSUUagWKDcUo9i+Gewd3OPo6ttjnKBEhdl9s1QiLg/yh82xYk8DmYu9hj/BZ4Ug8mYj0i+m4/PNluIW6wTXEFU7tnIxqaJUVliE3Lhepf6eiNK8Uamc1/Af5w6md9ZvQtUZLly7Fd999hy1btsDR0VHsd8vZ2RlarRbOzs5YtGgRli9fDjc3Nzg5OeHRRx9F//79JTuiZ8ZsHeRijDHGWONxoKsNkcll8OjogZSzKchLyIOz3+052p45ufG5sNPYmfTb5NnFE6l/pyL5dDLcw9xbfZOY/KR8aN20Yu0Ol0AXuHVwQ1Z01m3Rv1RlWSVKckrgGuLaJNv37eOLvIQ8pJxJgVN7Jzj6NL7De9Y8yEBIPpOMtAtpqCythEwug8ZFA6WLEnKlHGWFZShNKkVmUSayrmVB5aCCe5g7PDp7iM2dW4qUMylip+z68OYfYbEhFCoF/Af6wz3MHbeO3kLmtUxkXsuEQqWAUqeEQqmAoaJqIAkAkCvlaNevHby6ebX657I1ffzxxwCAYcOGGU3/8ssvsXDhQgDAO++8A7lcjpkzZ6K0tBRjx47FRx991MwpZYwxxhizDQ50tTEenasCXemX0jnQVU15UTmKs4rh1sHNpIaGQqWAdw9vJJ5IRMaVjFbz0SilJKcE5UXlcA02DvL4DfBDflI+bh29BUdfR6gdTftiaSuKMooAoMGdXtdFJpchaEQQLv9yGbH7YhE+KxwKlaJJ9sWsp6KkAjf23EB+Uj7Uzmr49PaBewd3o+Z+BoMBaWlpcFI7ITs6G5nXMpF8Ohkp51Lg2cUT3j29W0TzwLyEPCSdSoLWXQv/Qf62Tk696fQ6dJraCaV5pci+kY3c+FxUlFSgrLAMIMAt1A0ugS5wau/E95YEorqbTWs0Gnz44Yf48MMPmyFFjDHGGGMti+1L7Myq1I5qOPs7Izc+F2UFZVA5tKxaCLaSe+v/N1s0E/zTd9Ej9e9UpJxNgUcnj1ZbeyA/qarZoqOvcS0jO7UdAocGIvr3aNzcexMdJ3dstcdYF7F/LiuNuChF46KB3wA/xB2MQ9yhuNtuVMvWpiizCDG7YlBWUAZ9uB5+A/xqvf41zhq0u6MdfPv6Ijc+F0mnkpD6dyoyrmTAu6c3PLt52qyfqNL8Utz48wYUKgVCRodAbtd6+6tSO6nh3dMb3j2lO0hnjDHGGGOsIVpvCZmZpQ/XAwTulL6avISqjpqc2kv38aJQKuDV3QtlBWXIuNp6860guWr4VwcfB5N5Tu2d4NXdC4WphUg+ndzcSWs2Qo0ue/emC3QBgEcnD7gEuiA7pqrmD2uZSnJLEP1bNMqLyhEwNAD+gywfsU8mk8ElwAWdZ3RG0Igg2GnskHgiEZc2XUJufG4Tp9yUodKAG7tvoLK0EkEjgqB2ars1Mxlrbtw3F2OMMdZ2cKCrDXLyc4LKQYWMKxk8MhyqmnnkJeTBXm9fa7MjfRc9FGoFUs6ktNp8y0/Kh9ZdCzu19HH69vWFvYc9ks8koyCloJlT1zyKMoqgdlY3S5OngCEBUOqUiDsUJ/YrxFqO8qJyRP8ejYrSCoSMCWlw/3QymQxuoW7oMqcL2t/ZHuXF5bi+8zqu77yO0rxSK6favFtHbqEoowg+vX2MBtVgjDHGGGOM/YMDXW2QTCaDR2cPlBeVIyc2x9bJsbmi9CJUllaarc0lqF6rqzXW0CnNLUVFcYVJs8Xq5Ao5gkYEQa6Q4+bem6gorWjGFDa9yvJKlOaWNnltLoGdxg4ho0MAAmL+iEFlWWWz7JfVzVBhwPWd11GWX4aAIQFWCQzJ5DJ4dfdC17ld4Rbqhtz4XFzcdBHpl9KtkOLaZVzJQMaVDDi1d4JPhE+T74+x2wnX5mKMMcbaFg50tVFCP1PN8QHW0tXVP1d1nl08oVArkHwmudXV6ipKqWqyV9cogEL/UmUFZYg/FN8cSWs2xZlVtarsPZon0AUAOk8d2vdvj9K8UsTuj222/TLziAg3992sqv0U4WP1kUaV9koEjQhC2KQwqHQqxB+OR+z+WBgqDFbdj6AwrRDxR+KhclAhaESQyYAajDHGGGOMsX9woKuNUmqVcAlyQX5SPkpySmydHJvKu5UHhUoBnWfdo/ApVAp4dfNCWX4ZMqNbV62uwtSqTtil+ueqyaOTB1yDXZF9I7tV90lWU1Hm/++fqxkDXUBVgNQ1xBU5sTlIikpq1n0zU8lRyci5mQPXYFf4Rvg22X4cfR3RaXonOPs7I/NaJq5uvYrSfOs2ZSzJKcH1ndcBAMGjg1vEqI+MMcYYY4y1ZBzoasP0nfUAgPTLt2+troqSChSmF8KxnaPFHVB7dvWEQtX6+uoqSimC1sN8/1w1+Q/2h8pBhVtHbrWZYKjYEX0zB7oAIHBoYFX/Z1HJrbLpa1uRG5+L5NPJsPewR+CwwCbfn53aDiFjQ+AT4YOijCJc/uWyOPhFY5UVlv3Tx9joEOj0dQfrGWP1w80WGWOMsbaHA11tmKOvIzQuGmRezWyyJjUtXV5iHkCWNVsUKFRVfXWV5pUi63pWE6bOeoqzi1FRWlFns8Xq7NR2CBoRVDWS254bbeIaKcooglKntEmtF7mdHKHjQqFyUCHuYJxNRuVjQPaNbABVtZ/kds3zipPJZPCN8EXouFCAgOgd0Y1uNl5RUoHo36NRVlCGwKGB3Pk8Y02gpQe5Wnr6mLSo9VEmfzWnM8YYa1oc6Grj9OF6VJZVIiumdQRsrE2oWVFXR/Q1CbW6kk+3jr668pPyAQAOvnU3W6zOwdsBvn18UZxVjFvHbjVF0pqNodKAkuwSm9TmEijtlQgdFwqFSoHru663uuavbUFpXikUagXUjupm37ezvzM6TesEtaMa8YfjcevoLRDV//lRVliG6B3RKMkuQfs728M9zL0JUssYYy1DWwr+WHocbemYGQelGWuJuLOPNs49zB2JJxKRfind6h0ytwZ5t/KgcdVA5aCq13oKlQKe3TyRHJWMrJgsuHdo2R+aBckFAOruiF6Kd09v5CflI+NyBhx9HeEW4mbt5DWLkuwSkIGabcRFc7RuWnSc0hHRv0cjdl8sKkoq4NXNy6Zpup2U5pVC46yx2f41Lhp0mtYJMbtjkHYhDaV5pQgaEQSFSmHR+vlJ+bix5wYqSirgE+EDr+587TDGWifh4z/iwQizgYCIByOaM0lNJmp9VIOOpaHrsZah5nVd/ZpnjNkW1+hq4xQqBdxC3VCUXoTC9EJbJ6dZFWcVo7yovN61uQRGtboaUCujOeUn5UPjprH4Y7o6mUyGoOFBsNPaIe5gHErzrNuZdnOxZf9cNWlcNOg4pSM0LhokHEtA9O/RbaYftJbMUGFAeVE51E7NX5urOjuNHcImhsG9ozty43OrOqmv476qLKtE/OF4XNt+DYZKA4JHBzdpR/qMMdYUbrfmedY6ztst39qC2s4Vn0vGbI8DXbcBfZeqTunTzqfZOCXNq6HNFgV2ajt4dvVEaW4psmOyrZk0qyrOLkZlSSV03g3vqFppr6zqr6v8//fXVdn6+uuy1YiL5qgcVOg4tSPcO7ojLyEPl366hFtHb6EgpaDFB05bKyGYaOtAFwDI5DIEDg1Eu37tUJxVjEs/XzLblDUnNgcXN11E+qV0OHg7oPOMznANcm3mFDN2e+GPUOu73fK0qY73dsvHtozPJWO2w00XbwP27vZw9HVE9o1stOvXDipd/ZrxtVb5SfmQyWUNas4n8OzmidTzqUg+nQzXEFfIZJaN3NichGaL9p6NC/A4tXOCT28fJJ9ORuJfifAb4GeN5DWboowiKNSKejdTbUp2ajsEDg2ERycPxB+OR9qFNKRdSIOdxg5Ofk7QeeqgddVC41JVG0+mqLq+KssqUVlaifKicpTml0Iml8GpnZNNOtlvLYgICccTAFQNxNFSePfwhr2HPWL3xSJ2XyySTyfDwdsBWlctirOKUZBSUNWvmEoB/8H+8Ojk0SKfM4y1JfzxaV3Wan7Xmprx8TV0+6rvuW9N1zVjbQl/Nd0mvLp7IT8pH+kX09Hujna2Tk6TIwMhPzkfOk9do0ZeE2p1pZxJQXZMNtxCW17/VQWpVYEurV7b6G359PZBfnI+0i6kwdHXES6BLo3eZnMgIhRnFkPn1fBabU3Jwauqlk5RehFy43ORE5eDrOgsZEXXY5AIGaDT6+Ds7wzXEFeb9kPVEqWeS0V+Uj704foWFegCqoLI4bPCkXgiEXmJeci8+k/NLrWzGvpwPXx6+0Bpr7RhKhljrP5ux4DP7XjMjDHW2nCg6zbh5OcEtbMa6ZfT4dPbp1HBn9agML0QhnIDHNs1/oPXq5sX0i6ktdhaXYWphVA7q61S20cmlyFoRBAu/3wZsftjET4rvEXVkDKnNLcUhgpDi2m2KEUmk0HnqYPOUwffPr4oLy5HcWYxirOKUZpXlX5DRVWTUYVKAYVaAaVWCbWTGhUlFci9lYu8hDwUphUi6VQSHLwdoPPUQalTQu2ohqOvY4P6aGsLCtMKkXgyERpXDdrf2d7WyZFkp7FDwJAAAEB5UTmKs4uhddVycIsx1mpxwIcxy3HNLsaaFwe6bhMymQxe3bwQfzgemdcyoQ/X2zpJTSo/MR+AdZow2Wns4NnFEylnU5BzMweuwS2n75zyonKU5pXCNdR6aVLpVAgcFojrO6/jxp4b6DilI2TylhXcq0nsn8vGIy7Wh1KrhLK90uI+5Dw6eVTVVEzKR+a1TGTfzEZBSoE4X6aQwdnfGW6hbnD2c27zwWyBocKAm/tuQiaTIXhkcKs4bqW9kgNcjLFWjYNc7HbDgSrGWpeW/0XArMY9zB0KtQKp51PbfGfY+Un5kNvJ4eDlYJXteXX3gtxOjqSopBaVd0KzRQdv6xynwNnfGV49vMSaMi1dcWYxAEDr1vjmmy2ZTC6DU3snBI0IQq97e6HrvK4ImxwG/0H+0HnqkHMzBzd238DZjWcR/Xs0Ek8mIvV8KjKvZYqjUrY1iScSUZpbinZ3tGvz558xxlqCpgxyteQAWnOmrSXnw+2IzwdjrQ/X6LqNyO3k0HfWI+VsCnLjc+ES4GLrJDUJQ4UBBakFcPRxtFpNJDuNHfRd9Eg9l9qianUVphYCqAp05ZXlWXXb7fq2Q0FyAVLPpcLR1xHOfs5W3b41FWcVQyaXQeNy+/RbJZPLoHZUVzVb9HGEPlyPssIyZMdkI/dWLvKT88WRRwVKnRLO/s5w8nMCqVpOwLah8hLzkHYhDQ7eDvDs5mnr5DDGWrjWWiOjJaWbP/gZa5yWdD8z1pZxoOs2o++iR+rfqUg7n9ZmA10FqQWgSrJK/1zVeffwRvrFdCSfToZLkEuL6KurIKUACrUCamc1kG7dbcvkMgSN/P/9de2r6q+rpTa3Ks4qhsZV0+KbWDY1lU4Fr+5e8OruBUOFAaX5pagsrURFSQUKUgqQG5+LjMsZSL+YjhIqAQYAnuGeUChbX99elWWViN0fC7lSjsBhgS3ifmSMMcZY29FUgV0OdjHW9Nps08WDBw9i8uTJ8PX1hUwmw6+//mo0f+HChZDJZEZ/48aNs01im5FKp4JrsCvyk/LFfo3amvwk6/XPVZ2dxg76cD2Ks4qRE5tj1W03hKHCgKKMIjh4OTTZR77aUY2AoQGoKKlA3MG4JtlHY1WUVqCsoIybrdUgt5ND66qFg7cDXAJd0P7O9ugypwu6zO0C797eMJQbkHgsEee/O4/0S+ktqkmuJW4dvYXywnL49feD2klt6+Qwxlo4ronEGoqvHcYYa33abKCrsLAQPXr0wIcffmh2mXHjxiE5OVn8+/7775sxhbbj1d0LAJB6LtXGKWka+Yn5UKgUTTICn1ePqr66kk8n2zwwUJRRBDKQ1fvnqsk1yBXuYe5VtYGuZDTpvhqiOKuqf67W1BG9LWmcNfDt44vQGaHwH+IPuUKO+MPxuPzLZbHPt5YuJzYHmdcy4ezvDI9OHrZODmOMtXm3a7DHlsd9u+Z5SxC1Porzn7FWrs0GusaPH4/XXnsN06dPN7uMWq2Gt7e3+Ofq2jL6XWpq9h72cGzniKyYLJTmldo6OVZVWVaJwvRCOPo6NkktJ6VWWVWrK7MYuXG5Vt9+fQgj7um8dE2+L78BflDqlLh17BbKCsqafH/1IQS6uEZX/cjt5PDo5FFVw6unN0qyS3B169UWEcStTXlxOeIOxkGhViBgSICtk8MYY82CAy6MtS18XzHWtG7rPrr2798PT09PuLq6YsSIEXjttdfg7u5udvnS0lKUlv4TGMrLq+ro2WAwwGAwWDVtBoMBRGT17Qo8u3si71Yeks8mw3+Qf5PsoynUlS+5ibmgSoLOW9dkeafvqkfq+VQknkqEk79Tk+zDEvnJVU00te7aJr9eZHYy+A30Q8zOGMQejEXouNAm2U9DFKYXggwEtava5PibOl9aq+r5IlfI4dPHB66hrrix5wYSTyQiNyEXQSOCWmSfbLEHYlFeVI6gUUFQaBRWPbd8vUjjfJFWM184f1ou/qBkjFmiufvO4r66GGs6t22ga9y4cZgxYwaCgoIQExOD5557DuPHj8exY8egUEh3zLx69WqsWrXKZHp6ejpKSkqsmj6DwYDc3FwQEeTyJqh4pwTKVeWIPRULOz872Glbx6VQV76kXExBXn4eSlWlSEtLa7J0KHwUSL2cClWUCo5+1u0LzFLJ0clQOiiRkZXR9NcLAGgAuaccCRcTYHA2wCXEpWn2U08pN1NQXl6O7PxsIN94XrPkSytkLl/cBrghNSoVSVeTkBafhvZD2sPes+U0Cc2JyUHS+SQ4BTqh3KHc6vc4Xy/SOF+k1cyX/Pz8uldijLUaHCC9vfD5ZqxtaR3RjSYQGRkp/ne3bt3QvXt3hISEYP/+/Rg5cqTkOs8++yyWL18u/jsvLw9+fn7Q6/VwcrJuzR6DwQCZTAa9Xt9kHxbKoUrc3H0TSAM8+3o2yT6sra58ySzOhJunG/zC/Jo0Ha7DXHEx5SJKrpcguFdws4/2V5JbAnuVPfRhenh6ejbL9QIAbuPdcGnTJRRfLUZQD9vX+CEiJFUmwS3QDZ6eptdwc+VLa1Nbvnj7eiP7Rjbi9sch+3g27Pvbw7OL7Z8PZQVlSL6aDDcvN4RPCoed2vqvL75epHG+SKuZLxqNxtZJYhL447VxbJF/LaGWC183txc+34y1PbdtoKum4OBgeHh44Pr162YDXWq1Gmq16ehecrm8SQr/MpmsybYNAG7Bbkh2TUbG5Qz49PKBQiVdk62lMZcvFaUVKMkugWuwa5N/jKkd1PCJ8EHSySRkXMoQO/hvLiWZJZDJZXD0dhSPtamvFwBQaVUIHBKImD9ikHA0ASFjQppsX5YozSsFGQg6vc7scTdHvrRGteWLe6g77N3sEfNHDBKPJaIkswT+g/wht7NNHhIR4g/Gw1BhQOjoUKi0qibbF18v0jhfpFXPF84b1tbwxz+7HbSE67wlBHcZa2u4VPb/JSQkIDMzEz4+PrZOSrORyWTw7uGNyrLKFjmaXn0JnbM7+DTtKIQCr25eUDmqkBSVhLLC5u2gvTCtEABgr2/+ZmUugS5wDXFFTmwOsmKymn3/1RVlFgHgjuibgtZNi84zOsPZ3xmZ1zJxdetVlObbZvCKtPNpyE/Kh0dnDzj7OdskDYwxxhhrW1pCkIsx1jTabKCroKAAZ8+exdmzZwEAN2/exNmzZxEfH4+CggI89dRTOH78OGJjY/Hnn39i6tSpCA0NxdixY22b8Gbm1sENSnslUv9OhaGydXekW5BcFehy9GmePrPkdnL4D/SHodyAW0dvNcs+BYXphVCoFNA426apjP9Af9hp7HDryC1UlFTYJA0Aj7jY1BQqBULGhsAnwgdFGUW4svkK8hLzmjUNRZlFSDyRCLWzGn79m7ZJMmOsbWlrH7Ft7XgYsyW+nxhr29psoOvUqVPo1asXevXqBQBYvnw5evXqhRdffBEKhQJ///03pkyZgrCwMCxatAgRERE4dOiQZNPEtkyukMOruxfKi8qRFW3b2jmNVZBSAIVaAY1r8wV/nP2d4RrsipybOciJy2mWfZKBUJxZDJ2nrln2J8VOYwe/gX6oKKlA/JF4m6WjOLMYkKFZz/ntRiaTwTfCF6HjQkEGQvTv0Ug5l9Is+zZUGHDzz5sAgKARQTZrOskYY7cbWwcBbLV/Wx83Y4wx62izfXQNGzYMRGR2/q5du5oxNS2bRycPJJ9JRvKZZLiHuTd7x+rWUFleicL0Qjj7O0Mma970+w3wQ15CHuIPxUPnqYNS27QdtBdnF8NQYbBJs8Xq3ELckB2TjeyYbOSE5MAl0KXZ01CcVQyNiwZyBQdAmpqzvzM6Te9U1W/XX4koSi9CwNAAKJRN17dfwl8JKMkpQbs72kGnt11glzHW+nDAouE471hbJVzbLbU/LO6rizHr4a9DBoVKAa9uXijLL0NmdKatk9MghamFADVfs8XqlPZK+A30Q3lROW7svgEymA+wWkNRelW/VC3hw99/kD8UagXiDsWhorR5mzBWlleiNK+Umy02I42zBp2mdYJrsCuyb2Tjyq9XUJJb0iT7yo3PRfrFdDj4OMCrR/MO9sAYY4yxtqW1BHBbSzoZa+k40MUAAJ5dPaFQK5B8OrnJAzVNobk7oq/JvYM7PLt6oiClALeONW1/XbbsiL4mpb0Sfv39UFFcgYRjCc26b6F/Lnt32+fD7UShVCB4VDDa9WuHkpwSXNl8xerNdkvzSnFz700oVAoEDQ9q9lqajDHWUvFHcNPgfG3b+PwydvvhQBcD0PprdeUn50OulNs06NH+zvZw9HVE+sV0pF9Ob7L9FKYXQmmvhEqnarJ91Id7mDuc/JyQeS0TWdebr5837ojetrx7eKPDhA6QyWWI2RWDpFNJtTYXt1RleSWu77qOyrJKBI8KhsqhZVznjDHGGGtdotZHtcogV2tMM2MtDQe6mKi11uoyVBpQmFYIBy8Hm/YvJpPLqj7MHVWIPxSPjCsZVt+HocKA4izbdkQvJXBoIJQ6JWL3xyI/Ob9Z9lmcyYEuW3Nq54TOMzrD3sMeyaeTcWNP45vuxh2IQ0l2Vb9cTu2drJRSxhhjTBoHFRhjrO3hQBcTtdZaXYVphaBKslmzxersNHYImxQGtZMacQfjkHYhzarbL8osAqhlNFusTmmvROi4UMgUMsT8EYOSnKbpt6m64qxiKFQKrvFjYyoHFTpO6SiOPppwvOFNWBOOJyD7RjZcg13h3dPbiqlkrG05ePAgJk+eDF9fX8hkMvz6669G84kIL774Inx8fKDVajFq1ChER0fbJrHNjIMWDcd51zLxeamf0xtO4/rO67ZORqPxeWescTjQxYy0xlpdBclV/XPZoiN6KWpHNcImh0HjosGto7eQ8FeC1fKyJXVEX5O9uz2CRwWjsqwS0TuiUZpX2qT7K84qhtada3O1BHI7OYJGBMHBxwFpF9IaFOBNPJmI1L9T4eDtgMBhgdZPJGNtSGFhIXr06IEPP/xQcv7atWvx/vvv45NPPsFff/0FnU6HsWPHoqSk6X+EYKw14WBC6yc0T2ytzRQZY03DztYJYC2LUKsr6VQSMqMz4dHRw9ZJqlNBSgFkClmLquWk0qkQNjkMMbtikHouFQUpBQge2fj+hlpSR/RSnP2cETAkAHEH4nDl1ysIHRfaJM0sywrKUFlWyc0WWxCZXIaQMSG48usV3Dp2CypHFVwCXCxaN/l0MlLOpEDnqUPouFDI7fg3GMZqM378eIwfP15yHhHh3XffxQsvvICpU6cCAL7++mt4eXnh119/RWRkZHMmtVnxR27D3Y55dzsec2tX85xFPBhho5Qwxlo6DnQxE55dPZF6PhXJUclwC3WDXNFyPzrJQChIKYDOU9fi0qnUKtFxSkck/JWAtPNpuPTzJXh194JHJw8otcoGbbMwvRBqJzXs1C331vXo6AE7tR1u/HkD17ZfQ9DIIIsDHpYSRtnkERdbFju1HTqM74Arv17Bjd03EDImBM7+zmaXJyIkn05GclQy7D3sETo+FAqVohlTzFjbc/PmTaSkpGDUqFHiNGdnZ/Tr1w/Hjh2TDHSVlpaitPSfWrh5eXkAAIPBAIPBYPU0GgwGEJHVt02gf7YP6ZrULXGe8P/V/1dzXs31rK2l5p24TBNeLzXTYi7PGzKv5jINnSd17E2VLy3R6Q2nJadL5V3Ne8jS9ZpjXkOurdMbTqP3/b0lt1sft9P1Uh+cL9Kq50trzZuW+7XMbEahUsC7hzcSTyQi43IGPLt62jpJZhVlFMFQYWgxzRZrksll8OvvB0dfR8QfjkfSySQkRyXDNdgVTu2d4ODjALWj2qJtVZRWoDS3FG6hbk2c6sZzCXRBx8kdcX3ndcT8EYP2/drDq7tXo7ZZWVaJ7BvZyLiagcLUQkAG6LxaXhPO253aSY0OEzsg+rdoxPwRg+DRwZKBzuLsYsQdiENhWiG0blp0mNChRQdwGWstUlJSAABeXsbPXC8vL3FeTatXr8aqVatMpqenpzdJc0eDwYDc3FwQEeRy6/1IVaKqSmtaWpr43zW1xHnC/xMI5cpyyXk117O2lpp3QNNfLzXTYi7PGzKv5jINnXf066MIHRdqNK+p8sXWavavFToutF55J9xHLe1abuy11Vht9XppLM4XadXzpbCw0NbJaRD+qmCSPLt6Iu1CGpJPJ8O9ozsUypZZy6Igtapmj4O37Tuir41LgAuc/ZyRE5uDtAtpyLqehazrWQCqOvPWuGqg0qmg1CmhUCmgUCqgUCkgt5OLHa4XZ1eNMthSmy3WpPPUodO0Tri+8zoSjicgPykfAUMD6lWbjQyEvMQ8ZEVnISc2B4YKA+R2crh1cIO+sx5aV2662BLZu9sjbFIYrm2/hhu7b8Cjkwdcg11hr7dHQXIBcmJzkHktE0QEr+5e8O3jy80VGbOhZ599FsuXLxf/nZeXBz8/P+j1ejg5WX/0U4PBAJlMBr1eb9UPi4SyqsEwPD09xf+uqSXOE/5fqM2hKdOYzKu5njWd3nAaGmgsTm9zzju94TR63tfTqteLUENGKl9ry/OGzKu5TGPm1TzvTXUf2YpQa0u4FgX1zTvhPvL09ERSWZLF6zXHvMZcW43V1q4Xa+F8kVY9XwoKCmydnAbhQBeTJLeTwyfCB/GH4pF2Pg0+vX1snSRJhalVEeam6AfK2mRyGVyDXeEa7IryonLkJ+UjPzkfBSkFyE/KB1Va1mF9S+yI3hy1kxqdpndC/OF4ZEVn4fz/zsM12BUenTyg85JublpeXI7C1ELkJ+UjKyYLFcUVAKqCme5h7nANduXmba2A1k2LsMlhuLH7BtIvpSP9UrrRfHsPe/gP8m8V9y5jrYm3d9WIpampqfDx+efdnZqaip49e0quo1aroVab1i6Wy+VNVvCXyWRW3X7U+ijIIANQlW7hv2tqifOqLyP7//+Tmld9vaj1UVbrn6j69lts/ljxeqktX609r+YyjZkndezWvo+spXpfWhEPRojXq1QfW8I8a+Zdc5yPhsxrzLVlDc1xvQjnuDX1n9ZS7yNba+35woEuZpZHRw+k/p2KlHMp0IfrYadpeZdLQWoBNK6aVhf4UNor4RbqZtQMsaKkAv+vvTuPi6L+/wD+Wo7lhgW5ROVQ8L5REY+0pMw808rUUrMyCyqz0rTSLMuur1/Tn0plaWWlVmpp3kea5q2gmAcKqJWAppwih/v+/cFj58uwg6Jy7r6ePfZhM5/PznzmvbPDe987O1N4tRDXC67jeuF1GAuNuF54Hdfzr6MgpwAFOQXQ2epqXWHA1t4WIXeHwBBs0DybTe+mh06ng4ig8Goh8jP/d50YB3cH+LbwhVeoFxzcy/cTT6o5nDyd0OKRFsi7nIeMlAxcvXQVrv6u8AjygKOH480XQES3LCQkBP7+/tiyZYtS2MrKysLevXvx7LPPVu/gqMbhBdmpopRVzKKKUZHF7cpQenyli51EVa3mVS6oxtDZ6FCvYz0kbU5Calwq6neuX91DUinILUBhbiE8GpR9sevaxM7RrkYWEyuKZ4gnPEM8cS3jGi6fvoxrGddwLfMarl353/UIbPW2qNO4Dlz8XODq78qfJloIJy8n3iGTqALl5OTg9On/XccmOTkZcXFx8PLyQmBgIMaPH48ZM2YgLCwMISEhePPNNxEQEIBBgwZV36ArET9YW7ZDCw+h/oCalYMSVYeaWuy62TG4po6bLJvlfqqmCmEIMcDZ2xnpCenwbekLvau+uoekUH62yAuS1yqOBkcEdAio7mEQEdVaBw4cwN13361Mm66vNWrUKCxevBgTJ05Ebm4uxo4di4yMDHTr1g3r16+HoyPPpCTrxQ/bFa82/kyNKg6/ZKCajIUuuiGdTod6neohcW0i/t73N0LuCanuISmUC9H71ewL0RMREVWknj17QqTs6zrqdDq8/fbbePvtt6twVFTbWNOHVGva1qrCmNKtYmGUqlLtvLIYVSn3+u7wCPTA5dOXkZtec24vmpuWC1sHWzh48NpNRERE1ogftomqHt931u3gZwfvaB/g/kNVgYUuKpd6EfUAHfDXHu3b5lY143Vj8YWt/Vyh02nf4YSIiIiIzFnTB01r2lai2oLvS6psLHRRuTh5OsGnmQ9yUnNwJelKdQ8HVy9ehRil1t2BkIiIiCoGPyjRzVjSPmJJ20JEVNlY6KJyqxteF7Z6W/y19y8YrxurdSymn1C6+vP6XERERERElY3FNut1pz9XLGuZRJWFhS4qN3sne/i380dBdgHSE9KrdSy5abmADnD2ca7WcRARERFVF2v5oHh6/enqHgJRjWBp73lL2x6qOVjoolvi29IXejc9Lhy6gILcgmobR05aDpy8nGBrb1ttYyAiIiKimocfnisW41mzVOXrURlnchFVBRa66JbY2NogsGsgjIVG/LW7ei5MX5BTgKKrRXD1488WiYiIiMqLH1hrN75+VJW4v1FtxkIX3TKPQA8Ygg24knQFmeczq3z9eRfzAAAufrwQPREREVk3a/kwemjhoeoeglWylv2L1Kr6ded+RhWNhS66LQ26NICNnQ3O7zoPY1HVXpg+71JxoYtndBEREVkffiAiIqqcY2F1Hl95bKeKxEIX3Ra9qx4BHQKQn5WPC4cuVOm6r6Zfha2jLRzcHap0vURERERUc/GDcsViPK0LX2+yJCx00W3zbekLZ29npManIictp0rWaSwyIj8jn2dzEREREZGCH9IrFuNZe9zpa1WTLjhfU8ZBtR8LXXTbdDY6hNwTAp2NDinbUnC98HqlrzP3Yi7EKLw+FxEREVE58cMjkWW7nfd4TSpwlVQTx0S1DwtddEccDY6o16ke8rPy8ffevyt9fblpuQB4IXoiIiIiKsYPxkTlL1zx/VI1TK9HydeFsa86LHTRHfNt6Qu3ADdc/PMiMs5mVOq6rl68Cp1OBxcfFrqIiIiIgBt/eLKkD1Za22JJ21cTMJ6WoWRh5eBnB3Fo4SGcXn+61ty9tDbvhzcrONbUM+ksDQtddMd0Oh2CewbD1sEWKdtSkJ+VX2nryk3PhYPBATZ23HWJiIisCT8YEPF9QNbD0vd1S9++6sZqAVUIvaseDXs1xPWC6ziz8QyMRcYKX0fh1UIU5hbCsY5jhS+biIiIiIiI6Fbd7llaLHZVHha6qMK413dHQMcA5F3Ow9kdZyt8+bnpxdfncvJ2qvBlExERUc3FDwM3Zy0/6yu5TZa4fURUu1TEXS+p4rHQRRXKv60/DMEGXD59GekJ6RW6bBa6iIiIiMrH0j88Wfr2VTXGk+jW8X1Tc7HQRRXKdL0uBw8HnN99HpnnMyts2bnpubCxs4GDh0OFLZOIiIiIqDap6A/X/LBONVlNvXh7ZbwPa+J21lYsdFGFs9XbIvT+UNjqbZG0OQlX/716x8sUEeRezIWTtxN0NroKGCURERERERHRrWFBquZjoYsqhaOHI0J7h0KuC06vP42C3II7Wl5+Zj6MhUa4+LpU0AiJiIioNuAHCqLKw/cX1RbWsq9ay3ZWNha6qNK4+rsiuGcwCnMLcXrdaRRdK7rtZZmuz8VCFxERERHRneMHaqptqnufrar1V/d2WgIWuqhSeYV6oX7n+si7nIfEdYm4XnD9tpbDQhcREZH1YbJ/6xgzIiKydix0UaXza+2Huu3r4urFq7dd7MpNz4Wdkx30rvpKGCERERERERHVdFVdzK+ui8TzS4s7w0IXVYmADgHwa+OH3LRcnFx9EoVXC8v9XON1I/Iu5/FsLiIiIiKiCsAP0VSbWctPCKt7/bUZC11UZepH1Ee9TvWQ928eTv5yEvlZ+eV63tVLVyFGgYsPC11ERERERHeCH56Jbo7vk9qNhS6qUv5t/RHYPRD5Wfk4vuI4MlIybvqcqxevAuD1uYiIiIiIiKgYi1FUFha6qMr5NPNB2ANh0NnocGbjGfy15y8YrxvL7G+6EL2zj3NVDZGIiIiIiIisTE0sntXEMdV0LHRRtXCv745mg5vBxc8FaUfS8OePfyLr7yzNvrnpuXDwcICdg10Vj5KIiIiqA5N6oorH9xVR2Wr6+6Omj6+mYaGLqo3eVY8m/ZugXqd6KMwtROKviUjanIS8K3lKn6JrRcjPyufPFomIiIiISji9/nS5+/JDMlmyO92/Dy08VEEjoZqChS6qVjobHfzb+qP5w81hCDbgStIV/PnDnzi94TRyUnOQe7H4Z4ssdBEREREREZGW2yl2HVp46JYKxtWNBevy42/BqEZwcHNAo/saITc9F6lxqchIyUDm2UzY2BfXYnnHRSIiIiIiIiqLqRAUPja8mkdSeQ5+dtCit6+iWOwZXTt27ED//v0REBAAnU6HVatWqdpFBFOnTkXdunXh5OSEqKgoJCYmVs9gSeHi64JG9zVCi0dawLeVL3Q2Otg52cGpjlN1D42IiIiIqNbhWSBEanxPWD6LLXTl5uaiTZs2mDdvnmb7hx9+iDlz5iA2NhZ79+6Fi4sLevfujWvXrlXxSEmLo8ERDSIboM3jbdDy0ZawsbXYXZWIiIiI6Lbc7NpC/EBP1sq07x/87KDqQdbBYqsHffr0wYwZM/Dggw+atYkIZs+ejTfeeAMDBw5E69at8fXXX+Off/4xO/OLqpfORgdbe9vqHgYREVGtM2/ePAQHB8PR0RERERHYt29fdQ/ppvghhIiI6Mb4t/LmrPIaXcnJyUhNTUVUVJQyz8PDAxEREdi9ezceffRRzefl5+cjPz9fmc7KygIAGI1GGI3GCh2j0WiEiFT4cms7xkUb46KNcdHGuGhjXLQxLtpKx6WmxWfZsmWYMGECYmNjERERgdmzZ6N37944efIkfH19q3t4RFQF+GGYyHLxWl03ZpWFrtTUVACAn5+far6fn5/SpmXmzJmYPn262fyLFy9W+E8ejUYjMjMzISKwsbHYE+9uGeOijXHRxrhoY1y0MS7aGBdtpeOSnZ1d3UNSmTVrFp5++mk88cQTAIDY2Fj8+uuv+PLLL/Haa69V8+i08UM5ERERVQSrLHTdrsmTJ2PChAnKdGZmJgIDA+Hg4ABHR8cKXZfRaEROTg4cHR35waIExkUb46KNcdHGuGhjXLQxLtpKx6WgoABA8eURqltBQQEOHjyIyZMnK/NsbGwQFRWF3bt3m/UvfcZ6ZmYmACAjI6NSzlQzGo3IysqCXq9X7VPZednKerPzspV/S7pRW+k+taXN9K9AkH89H4UFhbcdA0uMXcm46KAr9/OqKnbVGdecvBxlfykt7qu4215fbY6daX+piftydca19PuoJsbndtvuND5acalp7/UbtVWGkn+nc3JyANSM/OaWiBUAICtXrlSmz5w5IwDk8OHDqn533XWXvPDCC+Ve7vnz5wUAH3zwwQcffPDBhwCQ8+fPV1D2cvv+/vtvASB//PGHav6rr74qnTp1Mus/bdq0ao8bH3zwwQcffPBRcx81Ib+5FVZ5RldISAj8/f2xZcsWtG3bFkDx9bb27t2LZ599ttzLCQgIwPnz5+Hm5gadTlehY8zKykKDBg1w/vx5uLu7V+iyazPGRRvjoo1x0ca4aGNctDEu2krHRUSQnZ2NgICA6h7aLSt9xrrRaMTly5dRp06dCs9vAO5TZWFctDEu2hgXbYyLNsZFG+OirWRc3NzcamV+Y7GFrpycHJw+fVqZTk5ORlxcHLy8vBAYGIjx48djxowZCAsLQ0hICN58800EBARg0KBB5V6HjY0N6tevXwmj/x93d3e+6TQwLtoYF22MizbGRRvjoo1x0VYyLh4eHtU8mmLe3t6wtbVFWlqaan5aWhr8/f3N+js4OMDBwUE1z2AwVOYQAXCfKgvjoo1x0ca4aGNctDEu2hgXbaa41JT85lZY7MU2Dhw4gHbt2qFdu3YAgAkTJqBdu3aYOnUqAGDixIl4/vnnMXbsWHTs2BE5OTlYv359hV9ri4iIiKgq6fV6hIeHY8uWLco8o9GILVu2IDIyshpHRkRERFT5LPaMrp49e97wgmk6nQ5vv/023n777SocFREREVHlmzBhAkaNGoUOHTqgU6dOmD17NnJzc5W7MBIRERFZKostdNV2Dg4OmDZtmtlPCawd46KNcdHGuGhjXLQxLtoYF201PS5Dhw7FxYsXMXXqVKSmpqJt27ZYv349/Pz8qntoNT521YVx0ca4aGNctDEu2hgXbYyLNkuIi05udNoTERERERERERFRLWGx1+giIiIiIiIiIiLrwkIXERERERERERFZBBa6iIiIiIiIiIjIIrDQRUREREREREREFoGFrhpq3rx5CA4OhqOjIyIiIrBv377qHlKl2rFjB/r374+AgADodDqsWrVK1S4imDp1KurWrQsnJydERUUhMTFR1efy5csYMWIE3N3dYTAY8OSTTyInJ6cKt6JizZw5Ex07doSbmxt8fX0xaNAgnDx5UtXn2rVriI6ORp06deDq6oohQ4YgLS1N1efcuXPo27cvnJ2d4evri1dffRVFRUVVuSkVasGCBWjdujXc3d3h7u6OyMhIrFu3Tmm3xphoef/996HT6TB+/HhlnjXG5q233oJOp1M9mjZtqrRbY0xM/v77bzz22GOoU6cOnJyc0KpVKxw4cEBpt8bjbnBwsNn+otPpEB0dDcC695eKZE05DvMbbcxxtDHHuTnmN//DHEcb8xttVpfjCNU4S5cuFb1eL19++aUcO3ZMnn76aTEYDJKWllbdQ6s0a9eulddff11WrFghAGTlypWq9vfff188PDxk1apVEh8fLwMGDJCQkBDJy8tT+tx///3Spk0b2bNnj/z+++8SGhoqw4YNq+ItqTi9e/eWRYsWSUJCgsTFxckDDzwggYGBkpOTo/QZN26cNGjQQLZs2SIHDhyQzp07S5cuXZT2oqIiadmypURFRcnhw4dl7dq14u3tLZMnT66OTaoQv/zyi/z6669y6tQpOXnypEyZMkXs7e0lISFBRKwzJqXt27dPgoODpXXr1vLiiy8q860xNtOmTZMWLVrIhQsXlMfFixeVdmuMiYjI5cuXJSgoSEaPHi179+6VpKQk2bBhg5w+fVrpY43H3fT0dNW+smnTJgEg27ZtExHr3V8qkrXlOMxvtDHH0cYc58aY36gxxzHH/KZs1pbjsNBVA3Xq1Emio6OV6evXr0tAQIDMnDmzGkdVdUongkajUfz9/eWjjz5S5mVkZIiDg4N8//33IiLy559/CgDZv3+/0mfdunWi0+nk77//rrKxV6b09HQBINu3bxeR4hjY29vLDz/8oPQ5fvy4AJDdu3eLSHGCbWNjI6mpqUqfBQsWiLu7u+Tn51ftBlQiT09PWbhwIWMiItnZ2RIWFiabNm2SHj16KImgtcZm2rRp0qZNG802a42JiMikSZOkW7duZbbzuFvsxRdflEaNGonRaLTq/aUiWXOOw/ymbMxxysYcpxjzG3PMccwxvyk/S89x+NPFGqagoAAHDx5EVFSUMs/GxgZRUVHYvXt3NY6s+iQnJyM1NVUVEw8PD0RERCgx2b17NwwGAzp06KD0iYqKgo2NDfbu3VvlY64MmZmZAAAvLy8AwMGDB1FYWKiKS9OmTREYGKiKS6tWreDn56f06d27N7KysnDs2LEqHH3luH79OpYuXYrc3FxERkYyJgCio6PRt29fVQwA695fEhMTERAQgIYNG2LEiBE4d+4cAOuOyS+//IIOHTrg4Ycfhq+vL9q1a4fPP/9caedxt/jv8ZIlSzBmzBjodDqr3l8qCnMcNb7P/oc5jjnmOGrMb7Qxx1FjflM+1pDjsNBVw1y6dAnXr19X7UAA4Ofnh9TU1GoaVfUybfeNYpKamgpfX19Vu52dHby8vCwibkajEePHj0fXrl3RsmVLAMXbrNfrYTAYVH1Lx0Urbqa22uro0aNwdXWFg4MDxo0bh5UrV6J58+ZWHRMAWLp0KQ4dOoSZM2eatVlrbCIiIrB48WKsX78eCxYsQHJyMrp3747s7GyrjQkAJCUlYcGCBQgLC8OGDRvw7LPP4oUXXsBXX30FgMddAFi1ahUyMjIwevRoANb7HqpIzHHU+D4rxhxHjTmOOeY32pjjmGN+Uz7WkOPYVfcAiOjmoqOjkZCQgJ07d1b3UGqEJk2aIC4uDpmZmfjxxx8xatQobN++vbqHVa3Onz+PF198EZs2bYKjo2N1D6fG6NOnj/L/rVu3RkREBIKCgrB8+XI4OTlV48iql9FoRIcOHfDee+8BANq1a4eEhATExsZi1KhR1Ty6muGLL75Anz59EBAQUN1DIbJozHHUmOOoMb8pG3Mcc8xvyscachye0VXDeHt7w9bW1uwOB2lpafD396+mUVUv03bfKCb+/v5IT09XtRcVFeHy5cu1Pm4xMTFYs2YNtm3bhvr16yvz/f39UVBQgIyMDFX/0nHRipuprbbS6/UIDQ1FeHg4Zs6ciTZt2uCTTz6x6pgcPHgQ6enpaN++Pezs7GBnZ4ft27djzpw5sLOzg5+fn9XGpiSDwYDGjRvj9OnTVr2/1K1bF82bN1fNa9asmfKTB2s/7p49exabN2/GU089pcyz5v2lojDHUbP29xnAHEcLcxw15jflxxyH+U15WEuOw0JXDaPX6xEeHo4tW7Yo84xGI7Zs2YLIyMhqHFn1CQkJgb+/vyomWVlZ2Lt3rxKTyMhIZGRk4ODBg0qfrVu3wmg0IiIiosrHXBFEBDExMVi5ciW2bt2KkJAQVXt4eDjs7e1VcTl58iTOnTunisvRo0dVB+tNmzbB3d3d7I9AbWY0GpGfn2/VMenVqxeOHj2KuLg45dGhQweMGDFC+X9rjU1JOTk5OHPmDOrWrWvV+0vXrl1x8uRJ1bxTp04hKCgIgPUed00WLVoEX19f9O3bV5lnzftLRWGOo2bN7zPmOOVn7TkO85vyY47D/KY8rCbHqe6r4ZO5pUuXioODgyxevFj+/PNPGTt2rBgMBtUdDixNdna2HD58WA4fPiwAZNasWXL48GE5e/asiBTfBtZgMMjPP/8sR44ckYEDB2reBrZdu3ayd+9e2blzp4SFhdXq28A+++yz4uHhIb/99pvqVrBXr15V+owbN04CAwNl69atcuDAAYmMjJTIyEil3XQb2Pvuu0/i4uJk/fr14uPjU2NvA1ser732mmzfvl2Sk5PlyJEj8tprr4lOp5ONGzeKiHXGpCwl70okYp2xefnll+W3336T5ORk2bVrl0RFRYm3t7ekp6eLiHXGRKT4Fu12dnby7rvvSmJionz77bfi7OwsS5YsUfpY43FXpPgugIGBgTJp0iSzNmvdXyqSteU4zG+0McfRxhynfJjfFGOOY475zY1ZU47DQlcNNXfuXAkMDBS9Xi+dOnWSPXv2VPeQKtW2bdsEgNlj1KhRIlJ8K9g333xT/Pz8xMHBQXr16iUnT55ULePff/+VYcOGiaurq7i7u8sTTzwh2dnZ1bA1FUMrHgBk0aJFSp+8vDx57rnnxNPTU5ydneXBBx+UCxcuqJaTkpIiffr0EScnJ/H29paXX35ZCgsLq3hrKs6YMWMkKChI9Hq9+Pj4SK9evZQEUMQ6Y1KW0omgNcZm6NChUrduXdHr9VKvXj0ZOnSonD59Wmm3xpiYrF69Wlq2bCkODg7StGlT+eyzz1Tt1njcFRHZsGGDADDbVhHr3l8qkjXlOMxvtDHH0cYcp3yY3xRjjqON+U3ZrCnH0YmIVNXZY0RERERERERERJWF1+giIiIiIiIiIiKLwEIXERERERERERFZBBa6iIiIiIiIiIjIIrDQRUREREREREREFoGFLiIiIiIiIiIisggsdBERERERERERkUVgoYuIiIiIiIiIiCwCC11EVGt07twZH3/8cbWtf8mSJfD39y+zvUmTJvj888+rcEQV76GHHsL48eOV6Q4dOmD27NnVNh4iIiJLx/ym8jG/IbIuLHQRUa1gNBpx9OhRtGnTptrGEB8fj7Zt2wIoTpCWLFmiat+xYwdGjx59S8uzsbFBZmZmBY7yzsTFxSnbWFRUhGPHjinTREREVLGY31QN5jdE1oWFLiKqFU6dOoWrV6+idevW5X5OYWFhhY6hZCKoxc/PD/b29uVe3r59+xAaGgoPD487GldFbWd2djaSkpKUbTxx4gSuXbtWrck3ERGRJWN+UzbmN0R0u1joIqJyO3PmDHQ6HdasWYNevXrB2dkZTZo0wd69e1X9Vq5ciY4dO8LZ2RmhoaFYtGiRqj04OBgffPABRowYATc3NwQFBWHjxo04f/48Bg8eDDc3NzRt2hSHDx9WnhMXFwc/Pz9s27YNzZo1g5ubGwYPHowrV64ofUaPHo3hw4fj9ddfh7+/P8LDwwEAV69exZQpU1C/fn24uLjgrrvuQkJCwk23tV+/fnB2dkbjxo2xffv2GyaCixcvRnBwsDL95ptvIioqCvPmzUNYWBhcXFzw4IMPIj8/HwAwcuRIjB07FomJidDpdNDpdDhx4gQA4NixY+jXrx9cXV3h6+uLmJgY5XkA0LNnT0yYMAHPPfccvLy8MGTIEHTq1AlvvPGGakznz5+Hk5MTdu3aBQDYsmULoqKi4O3tDRcXF3Tv3h1Hjx5V+sfHx8POzg7NmzdXYh4YGAhPT0+lz+rVq9GhQwc4OjqiYcOG+PTTT1Xr/PTTT9GqVSs4OzujTp06uP/++2E0Gm8YayIiourE/Ib5DfMbIgsjRETl9NNPP4lOp5O7775btm3bJqdOnZKoqCjp2bOn0uezzz4TDw8PWbx4sSQlJcnixYvFxsZGduzYISIiV65cEQASFhYmy5cvl8TEROndu7eEhYVJz5495ddff5UTJ05I165dZcCAAcpyJ02aJC4uLjJ48GA5duyYbN++XerVqyfR0dFKn7Zt24qbm5tMnjxZTpw4IadOnZK8vDzp2LGjDBkyRPbv3y+nTp2SMWPGSGhoqBiNRs3tTEtLk3r16snYsWPl+PHjsmnTJgkLCxMAcvz4cRERCQ8Pl2+++UZ5zvjx42XgwIHKdP/+/cXDw0NeeuklOXbsmGzdulVcXFxk8eLFIiJy+fJl6dy5s0yePFkuXLggFy5cEKPRKLt27RIPDw+ZPXu2JCYmyo4dOyQ0NFTeeecdZdmenp7i5eUl//nPfyQxMVGSkpJkzJgx8uCDD6q244knnlDFcMmSJbJy5Uo5deqUHDlyRPr37y+dOnVS2ufOnSutW7dWpl9++WXV8z/++GMJCgqSH3/8UZKSkmTp0qXi6OiovLZLliyR+vXry5o1ayQlJUX2798vc+bM0YwxERFRTcH8hvkN8xsiy8JCFxGV29SpU8XT01PS09OVeXPmzJEWLVqISHEC5eTkJMuXL1c9r0uXLjJx4kQREfntt98EgGzdulVpX7hwoeh0OklISFDmvf/++6okpXfv3tK2bVu5fv26Mu/dd99V1l1QUCB6vV6VGJr69OjRQ5X0Xbp0SQDI2bNnNbdzzJgxctddd6nmvfLKK+Ls7Kxaf0k9e/aUqVOnKtOBgYEyYsQIVZ/27dvLRx99pEwbDAZZvXq1Ml1UVCRNmzaVL7/8UvW8jz/+WO6++24REUlJSREAquWIiMyaNUuaNGmiTB87dkz0er0cO3ZMc7wiIhs2bBAPDw9l+sknn5SRI0cq07169VK2KTk5WVxcXOTEiROqZfTr10+mT58uIiKPP/64DB8+vMz1ERER1UTMb5jfML8hsiz86SIRlVt8fDwGDhwIHx8fZV5ycjJCQ0MBACtWrIDBYMCQIUNUz9Pr9cqp6fHx8WjUqBHuvvtupf3cuXPo1KkTWrRooZoXEhKiTMfFxeGFF16Ajc3/Dluenp7KaePHjx9HQUEBXnjhBdW6Fy5ciN27d8PNzQ2urq5wdXVFUFAQAMDOzs5sG69du4bvv/9edWceALC3t0erVq1U6y8dG9Np/xkZGTh37hyefvppVZ+UlBQlVsnJycjIyFBdH2LXrl04ceIEYmJilLG6urpiypQpyljj4+Oh1+vxzDPPqJbdqlUrnDlzBgUFBQCAKVOm4LHHHlNO0y8sLMT8+fPRpUsX1K1bF66urhgwYADq16+vinHJ8cTHxyvTX3/9Na5evYrw8HDV2NatW6eM7YEHHsDy5cvRtWtXfPLJJ7hw4YJmrIiIiGoS5jfMb5jfEFkW86MgEVEZ4uPjMXnyZNW8uLg43HXXXQCKr73QvHlzVbJkNBpx4sQJPPbYY0r/iIgIs2V07tzZbF6/fv0AAKmpqUhLSzO7fsSePXvQrl07pX/dunXRuHFjpT0rKwvJyclYt26dkoCVFBAQYDbv5MmTyMvLQ/v27VXzDx06VOb1K86dO4crV64oSVN8fDxsbW3RqVMnVZ/Lly8ry4iLi4OXlxcaNGig2ubWrVvjp59+MluHm5ub0ic8PFyZNmnZsiWKioqQmJiIrKwsbNy4EadOnVLax44di507d2Lq1Klo0aIF3N3dMWHCBGU5pe9A9Ndff+HSpUuq8T711FOYOHGi2dh8fX0BAI8++ii6du2KVatW4dtvv8XkyZOxZcsWREZGasaNiIioJmB+09asP8D8hvkNUe3FQhcRlUtmZiZSUlKUxMvE9E0kUJys5OXlqdq///57ZGdnY9CgQQCKk6Rhw4aZLWPw4MHKtIjgyJEjeP3115V2ALh+/brS559//sGyZcuwZs0aZbmlx2ZrawudTgc7OzvNRFCLKYktuR0JCQnYuHEj5s+fr/mc+Ph4uLu7K9/QxsfHo0mTJnByclL6HD58GAaDQbmgq9atxO3t7XH58mU0atQIOp2uzHWV3k4A8Pf3h7e3N/7880/MnTsXzz//vPJtZkFBAb755husWLECAwYMAFAcv+3btysXeDXdgahk4ldym+zt7XH16tWbxrFBgwZ4/vnnERMTg+DgYBw6dIiJIBER1VjMb5jfML8hsjz86SIRlcuRI0dgZ2eHVq1aKfPOnj2LK1euKMlDnz59sGfPHnzzzTdISUnB119/jejoaMyZMwd16tQx+1YNAK5cuYJz586pvmE8ffo0cnJyzJKSadOm4cyZM9izZw/uvfdeDB48GFFRUUqf0gmSi4sLevTogZdeegm//fYbUlJSsHPnTrz22mtISUnR3M6wsDD4+PhgypQpOHXqFLZt24aHH34YIlLmN56mbypNyZtWslb6tHmj0YiLFy/izJkzSE1NBQD06tULFy9eRExMDI4fP46TJ0/i559/xtSpU1XL0UoEgeJvPWfNmoWEhATVN9P29vZwd3fH6tWrkZSUhPXr12PIkCHIyspSfWNcv359eHl5aW7TAw88gGXLliE2NhZJSUmIj4/HF198ga+++gpA8U8oFixYgKNHj+LMmTP48MMPceXKFfTu3VtzrERERDUB8xvmN8xviCxQ9V4ijOjOAJBp06ZV9zBqtB49ekiPHj3ueDlz586VFi1ayKhRoyQoKEhERFauXCkGg0HVLzY2Vho2bCiOjo4SHh4uK1euVNqOHj0qAOTixYvKvG3btomDg4MUFhYq83744Qfx9vZWpocOHSrR0dEyadIkcXd3Fx8fH5k6darqOXXq1JEffvjBbNz//POPDB8+XPz8/MTR0VFCQ0Nl3LhxqueWtmHDBgkLCxO9Xi/t27eX9957T2xsbCQ3N1ez/5AhQyQmJkaZDg8PN7uY6sCBA+XFF19Ups+dOycRERGi1+tV27pu3Trp2LGjuLi4iKenp0RGRsp3330nIiJZWVmi0+lk//79muN4/vnnBYB8+OGHZm0///yzBAUFiZOTk0RFRcl3332nei1efvll6devX5nbJFJ8QdiwsDBxcHAQPz8/6du3rzKW2NhYadWqlTg7O4vBYJBevXrJH3/8ISIi06ZNE/65ublbea9mZ2eLj4+PLFmypMLWf+nSJXF2dpZff/21wpZJRLeGec3NVVReY9KpUyext7dXzWN+U4z5jXZ+M2bMGOY1VeCDDz6QJk2alHmjhNsxadIk1c0gyHLxHUpVZtGiRQJAeTg4OEhYWJhER0dLamrqbS2TCeHNVXRCWLLQRVQeLHSVz628V2fMmCENGzaUoqIiESlOBgHIoUOHVP2MRqMYDAYBIElJSaq2vLw80ev1MmzYMGXeCy+8IO3bt7+zDSGyEsxrqgfzGqpuzGsqX2Zmpnh5eSl36iwqKhI3NzcZMGCAWd9Zs2YJANWdNU3efPNNASAnT54UEZELFy6Ig4OD/Pzzz5W7AVTteI0uqnJvv/02QkJCcO3aNezcuRMLFizA2rVrkZCQAGdn51taVl5enuadZYiILFVhYSE++eQTvPTSS7C1tQUAdOvWDQCwc+dO1U8/jh07hoyMDNjZ2WHXrl2qO33t378fBQUFynMBYNy4cZgzZw62bt2Ke+65p4q2iKh2Y15DRFSxvvzySxQVFSnXvbO1tUXnzp3xxx9/mPXdtWuXkudotfn6+io3c/D398fAgQPx8ccfK9d1I8vEa3RRlevTpw8ee+wxPPXUU1i8eDHGjx+P5ORk/Pzzz7e8LEdHRyaERFThRMTswsM1xZo1a3Dx4kU88sgjyrwOHTrA0dERO3fuVPXdtWsX6tSpg169epm1maZLFrqaNWuGli1bYvHixZW3AUQWhnkNEVW03Nzc6h6Cmaoc06JFizBgwAA4Ojoq87p164ZLly7h+PHjqr67du3CI488orouHFB8x829e/eia9euqv6PPPIIdu7ciaSkpMrdCKpWLHRRtTOdNZCcnAwA6NmzJ3r27GnWb/To0codXUx0Oh3eeustZTo7Oxvjx49HcHAwHBwc4Ovri3vvvReHDh1S+iQmJmLIkCHw9/eHo6Mj6tevj0cffRSZmZlKn0WLFuGee+6Br68vHBwc0Lx5cyxYsMBsTMHBwejXrx927tyJTp06wdHREQ0bNsTXX39t1jcjIwMvvfSSMrb69etj5MiRuHTpktInPz8f06ZNQ2hoKBwcHNCgQQNMnDgR+fn55YrlZ599hkaNGsHJyQmdOnXC77//rtnvTtdT2scff4wuXbqgTp06cHJyQnh4OH788cdyPbdnz55o2bIlDh48iC5dusDJyQkhISGIjY0165ueno4nn3wSfn5+cHR0RJs2bZSLhZqkpKRAp9Ph448/xrx589CwYUM4Ozvjvvvuw/nz5yEieOedd1C/fn04OTlh4MCBuHz5smoZptd148aNaNu2LRwdHdG8eXOsWLHCbEwZGRkYP348GjRoAAcHB4SGhuKDDz6A0Wgs1/avW7cO3bt3h4uLC9zc3NC3b18cO3ZM1Wf06NFwdXXF33//jUGDBsHV1RU+Pj545ZVXVHdqKotpe3777Td06NABTk5OaNWqFX777TcAwIoVK9CqVSs4OjoiPDwchw8fNlvG1q1blXEaDAYMHDjQLNEAiosnHTt2hKOjIxo1aoRPP/20zHEtWbIE4eHhcHJygpeXFx599FGcP3/+ptvz1ltvQafT4fTp0xg9ejQMBgM8PDzwxBNP4OrVq6q+RUVFeOedd9CoUSM4ODggODgYU6ZMMdvXTTHasGGDEqNPP/0Uv/32G3Q6HZYvX47p06ejXr16cHNzw0MPPYTMzEzk5+dj/Pjx8PX1haurK5544gmzZZf3eFJeq1atQnBwMBo1aqTM0+v16Nixo9m3mbt27UJkZCS6du2q2WYwGNCyZUvV/HvvvRerV6+GiNz2GImsGfMa5jXMa5jX3E5e8+eff2L48OHw9PRUfQl1s+XGxMTA1dXVLAcCgGHDhsHf318V11t5jc6cOYMHHngAbm5uGDFiBIDyHXPuJB7Jyck4cuSIckMGE1NMSuYzSUlJSE1NRUxMDBwdHVVtcXFxyM3NVcUSgLLc2/kygmqR6v3lJFkT07UsSl9o8pNPPhEAEhsbKyJlX3tB6xoKKHUti+HDh4ter5cJEybIwoUL5YMPPpD+/fsrF2zOz8+XkJAQCQgIkBkzZsjChQtl+vTp0rFjR0lJSVGW07FjRxk9erT897//lblz58p9990nAOT//u//VOsPCgqSJk2aiJ+fn0yZMkX+7//+T9q3by86nU4SEhKUftnZ2dKyZUuxtbWVp59+WhYsWCDvvPOOdOzYUQ4fPiwiItevX5f77rtPnJ2dZfz48fLpp59KTEyM2NnZycCBA28a34ULFwoA6dKli8yZM0fGjx8vBoNBGjZsqIrnna5H63WoX7++PPfcc/J///d/MmvWLOnUqZMAkDVr1tx0eT169JCAgADx9fWVmJgYmTNnjnTr1k0AyBdffKH0u3r1qjRr1kzs7e3lpZdekjlz5kj37t0FgMyePVvpl5ycLACkbdu20rx5c5k1a5a88cYbotfrpXPnzjJlyhQlRi+88ILodDp54oknVGMKCgqSxo0bi8FgkNdee01mzZolrVq1EhsbG9m4caPSLzc3V1q3bi116tSRKVOmSGxsrIwcOVJ0Op3qwqxl+frrr0Wn08n9998vc+fOlQ8++ECCg4PFYDBIcnKyKuaOjo7SokULGTNmjCxYsECGDBkiAGT+/Pk3XY9pP61bt6689dZb8t///lfq1asnrq6usmTJEgkMDJT3339f3n//ffHw8JDQ0FDVhT83bdokdnZ20rhxY/nwww9l+vTp4u3tLZ6enqpxHjlyRJycnCQwMFBmzpwp77zzjvj5+Unr1q3NrmUxY8YM0el0MnToUJk/f76yzODgYLly5coNt8d0bYx27drJ4MGDZf78+fLUU08JAJk4caKq76hRowSAPPTQQzJv3jwZOXKkAJBBgwaZxSg0NFQ8PT3ltddek9jYWNm2bZts27ZN2Z8iIyNV+82jjz4qw4cPlz59+si8efPk8ccfFwAyffp01bLLezwp73VnQkNDZfDgwWbzJ0+eLABUr0nDhg3lvffek82bN4tOp1NiazQaxdPTU/r06WO2nCVLlggAOXr06E3HQmTNmNcwr9HCvIZ5ze3mNc2bN5eBAwfK/PnzZd68eeVe7o4dOwSALF++XLXc3NxccXFxkejo6Nt6jRwcHKRRo0YyatQoiY2Nla+//rrcx5w7iYcpDzly5IjZ9tjZ2cmoUaNU2+Pi4iKFhYXSrVs3eemll5S22bNnCwDZu3ev2TpCQ0NlyJAhNxwH1W4sdFGVMSWEmzdvlosXL8r58+dl6dKlUqdOHXFycpK//vpLRO4sIfTw8FAdzEs7fPiwANC8e01JV69eNZvXu3dvadiwoWpeUFCQAJAdO3Yo89LT08XBwUFefvllZd7UqVMFgKxYscJsuUajUUREvvnmG7GxsZHff/9d1R4bGysAZNeuXWWOt6CgQHx9faVt27aSn5+vzP/ss88EgCqed7IeEe3XoXS8CgoKpGXLlnLPPffccFkixa83APnPf/6jzMvPz5e2bduKr6+vFBQUiMj//liVvMtcQUGBREZGiqurq2RlZYnI/xJCHx8fycjIUPqaigBt2rRR3ZFo2LBhotfr5dq1a8o80+v6008/KfMyMzOlbt260q5dO2XeO++8Iy4uLnLq1CnVNr322mtia2sr586dK3O7s7OzxWAwyNNPP62an5qaKh4eHqr5pmLN22+/rerbrl07CQ8PL3MdpbfHdBdEkeI7LwEQJycnOXv2rDL/008/FQCybds2ZZ7ptfj333+VefHx8WJjY6O68OegQYPE0dFRtbw///xTbG1tVQlhSkqK2Nrayrvvvqsa59GjR8XOzs5sfmmmhHDMmDGq+Q8++KDUqVNHmY6LixMA8tRTT6n6vfLKKwJAtm7dahaj9evXq/qaCl0tW7ZU9kWR4v1Gp9OZFYoiIyNv+v4Q0T6elKfQVVhYKDqdTnV8Mfn1118FgHzzzTciUnzBVQCyfft2yc7OFltbW+WOigkJCQJAM9Z//PGHAJBly5bdcCxE1o55DfMaLcxrmNeY3GpeU/LmMLeyXKPRKPXq1TMr3Cxfvlz1fr6d1+i1115T9S3PMedO4/HGG28IAMnOzjZr69ixozRq1EiZfuaZZ+Tuu+8WEZGJEydKx44dlbaHHnpInJ2dNe9Eet9990mzZs1uOA6q3fjTRapyUVFR8PHxQYMGDfDoo4/C1dUVK1euRL169e542QaDAXv37sU///yj2e7h4QEA2LBhg+bpvSZOTk7K/2dmZuLSpUvo0aMHkpKSzE7Lbd68Obp3765M+/j4oEmTJqrfff/0009o06YNHnzwQbN16XQ6AMAPP/yAZs2aoWnTprh06ZLyMP0EYtu2bWWO98CBA0hPT8e4ceOg1+uV+aNHj1a22eRO1lOWkvG6cuUKMjMz0b17d9VPK27Ezs4OzzzzjDKt1+vxzDPPID09HQcPHgQArF27Fv7+/spFKQHA3t4eL7zwAnJycrB9+3bVMh9++GHVtkdERAAAHnvsMdX1TyIiIlBQUIC///5b9fyAgADV6+Xu7o6RI0fi8OHDyu//f/jhB3Tv3h2enp6qWEZFReH69evYsWNHmdu8adMmZGRkYNiwYarn2traIiIiQvN1GDdunGq6e/fu5b6+QPPmzREZGWkWj3vuuQeBgYFm803LvXDhAuLi4jB69Gh4eXkp/Vq3bo17770Xa9euBQBcv34dGzZswKBBg1TLa9asGXr37q0ay4oVK2A0GvHII4+ott3f3x9hYWHl3ge14vHvv/8iKysLAJSxTZgwQdXv5ZdfBgD8+uuvqvkhISFmYzUZOXIk7O3tlemIiAiICMaMGaPqFxERgfPnz6OoqEiZdyvHk5u5fPkyRASenp5mbV26dIGNjY1y7a1du3bB3t4eHTt2hKurK1q3bq2c0m/6t/Tp/ACUZZf8+RERlY15jRrzGuY1zGsqJq8p73J1Oh0efvhhrF27Fjk5Ocrzly1bhnr16il/62/nNXr22WdV0+U55txpPP7991/Y2dnB1dXVrK1bt26qa3Ht2rULXbp0AQB07doVhw8fVsa1a9cuREREaF730LSPk+Xi1S6pys2bNw+NGzeGnZ0d/Pz80KRJE9jYVEzN9cMPP8SoUaPQoEEDhIeH44EHHsDIkSPRsGFDAMUfZCdMmIBZs2bh22+/Rffu3TFgwAA89thjquRh165dmDZtGnbv3m12EM/MzFT1LfnHz8TT0xNXrlxRps+cOYMhQ4bccOyJiYk4fvw4fHx8NNvT09PLfO7Zs2cBAGFhYar59vb2yrZXxHrKsmbNGsyYMQNxcXGq62GYkt2bCQgIgIuLi2qe6e4oKSkp6Ny5M86ePYuwsDCzfaVZs2YA/hcDk9Kvi+k1a9Cggeb8kq8XAISGhpqNv+SY/P39kZiYiCNHjtxWLBMTEwGgzDvbubu7q6YdHR3N1lN6P7uR242HKa5NmjQxW2azZs2wYcMG5ObmIjs7G3l5eWb7oOm5psQRKN52EdHsC0BVULqVbTIVaK5cuQJ3d3ecPXsWNjY2CA0NVfXz9/eHwWAw22dK3pHwZuu6UfyMRiMyMzNRp04dALd2PCkv0bh+lsFgQIsWLVTFrHbt2ikf2Lp06aJq0+v16NSpU5nLLu/7l8jaMa/RxryGeU1JzGturnQecivLHTp0KGbPno1ffvkFw4cPR05ODtauXYtnnnlGed1v9TWys7ND/fr1zcZ4s2NORcVDS7du3fDf//4Xu3btQq9evXDs2DF8+OGHAIrznKKiIuzbtw9BQUG4cOECnnrqKc3liAjzHAvHQhdVuU6dOqFDhw5ltut0Os0PceW5OOUjjzyC7t27Y+XKldi4cSM++ugjfPDBB1ixYgX69OkDAPjPf/6D0aNH4+eff8bGjRvxwgsvYObMmdizZw/q16+PM2fOoFevXmjatClmzZqFBg0aQK/XY+3atfjvf/9rdjFOW1tbzbFobcONGI1GtGrVCrNmzdJsL/2H+3ZV9Hp+//13DBgwAHfddRfmz5+PunXrwt7eHosWLcJ3331XEUO+LWW9LhX1egHFsbz33nsxceJEzXZTAlnWcwHgm2++gb+/v1l76W+fyhp3eVVFPMrLaDRCp9Nh3bp1muvX+gZPS3nHXt5EpuQ3+OVd183GcKvHk5vx8vKCTqcr84NAt27dEBsbi4yMDNW3nEBxAvjll1+isLAQO3fuRHh4uOpuRiamZXt7e9/S2IisFfMabcxrKhbzGjVLzGtK5yG3stzOnTsjODgYy5cvx/Dhw7F69Wrk5eVh6NChquUB5X+NHBwcNIv2Nzvm3Gk86tSpg6KiImRnZ8PNzU3VZjo7befOnXB2dgYA5cw+b29vhIWFYefOncpF77XOXAeKcx3mOZaNhS6qcTw9PTVPWy79zVZZ6tati+eeew7PPfcc0tPT0b59e7z77rtKQggArVq1QqtWrfDGG2/gjz/+QNeuXREbG4sZM2Zg9erVyM/Pxy+//KL6tuh2Tn03adSoERISEm7aJz4+Hr169brlbxiCgoIAFH+DUvJbmsLCQiQnJ6NNmzYVsh4tP/30ExwdHbFhwwY4ODgo8xctWlTuZfzzzz/Izc1Vfft56tQpAFDuSBUUFIQjR47AaDSq/uieOHFCaa9Ip0+fNvu2p/SYGjVqhJycHLO7wpSH6Y55vr6+t/X8qmKK68mTJ83aTpw4AW9vb7i4uMDR0RFOTk7Kt4UllX5uo0aNICIICQm5YdJ8p4KCgmA0GpGYmKh8Qw4AaWlpyMjIqPB9RktFH0/s7OzQqFEj5W5upXXr1g0LFizA5s2bcfjwYbz66qtKW5cuXZCXl4dff/0VSUlJZZ6NYVp2yZgR0e1jXsO8BmBeU1PUprzmVpf7yCOP4JNPPkFWVhaWLVuG4OBgdO7cWbU8oGJeoxsdc+40Hk2bNgVQnI+0bt1a1ebr66sUs1xcXNC8eXMYDAal3XT2+l9//QVbW1vVz1tLKn0cIcvDa3RRjdOoUSOcOHECFy9eVObFx8erbher5fr162bXmfD19UVAQIBy2nlWVpbq2jlA8YHaxsZG6WP65qHkNz+ZmZm3lOCUNmTIEMTHx2PlypVmbab1PPLII/j777/x+eefm/XJy8tDbm5umcvv0KEDfHx8EBsbi4KCAmX+4sWLkZGRoep7J+vRYmtrC51Op/pmOiUlBatWrSr3MoqKilS3ay4oKMCnn34KHx8fhIeHAwAeeOABpKamYtmyZarnzZ07F66urujRo8ctjftm/vnnH9XrlZWVha+//hpt27ZVvgV75JFHsHv3bmzYsMHs+RkZGWb7Wkm9e/eGu7s73nvvPRQWFpq1l9z/q1PdunXRtm1bfPXVV6p9KSEhARs3bsQDDzwAoHg/6N27N1atWoVz584p/Y4fP24Wn8GDB8PW1hbTp083+4ZVRPDvv/9WyNhNY5s9e7Zqvulb/759+1bIem6kMo4nkZGROHDggGab6ZvLWbNmobCwUHVGV3BwMOrWrauc4l/Wt5wHDx6Eh4cHWrRocdtjJKL/YV7DvIZ5DfOa23Gryx06dCjy8/Px1VdfYf369XjkkUdU7RXxGpXnmHOn8TAVp26U68TFxWHjxo2qPAcoLnTt3r0bv//+O1q3bm12RhhQfPw7c+aM2XPJsvCMLqpxxowZg1mzZqF379548sknkZ6ejtjYWLRo0UK5yLSW7Oxs1K9fHw899BDatGkDV1dXbN68Gfv378d//vMfAMDWrVsRExODhx9+GI0bN0ZRURG++eYb2NraKmc33HfffdDr9ejfvz+eeeYZ5OTk4PPPP4evry8uXLhwW9v06quv4scff8TDDz+MMWPGIDw8HJcvX8Yvv/yC2NhYtGnTBo8//jiWL1+OcePGYdu2bejatSuuX7+OEydOYPny5diwYUOZP42wt7fHjBkz8Mwzz+Cee+7B0KFDkZycjEWLFpldy+JO1qOlb9++mDVrFu6//34MHz4c6enpmDdvHkJDQ3HkyJFyLSMgIAAffPABUlJS0LhxYyxbtgxxcXH47LPPlN/xjx07Fp9++ilGjx6NgwcPIjg4GD/++CN27dqF2bNna/4huxONGzfGk08+if3798PPzw9ffvkl0tLSVB8MXn31Vfzyyy/o168fRo8ejfDwcOTm5uLo0aP48ccfkZKSUuZp0e7u7liwYAEef/xxtG/fHo8++ih8fHxw7tw5/Prrr+jatSv+7//+r0K36XZ99NFH6NOnDyIjI/Hkk08iLy8Pc+fOhYeHB9566y2l3/Tp07F+/Xp0794dzz33nJKwt2jRQrUvNGrUCDNmzMDkyZORkpKCQYMGwc3NDcnJyVi5ciXGjh2LV1555Y7H3aZNG4waNQqfffYZMjIy0KNHD+zbtw9fffUVBg0ahLvvvvuO13EzlXE8GThwIL755hucOnXK7JvSwMBANGjQALt370ZwcDACAgJU7V26dMFPP/0EnU6Hrl27ai5/06ZN6N+/P69dQVRBmNcwr2Few7zmdvKaW11u+/btERoaitdffx35+fmqny0CFfMaleeYc6fxaNiwIVq2bInNmzeb3fQHKC50LVq0CPv370d0dLSqrUuXLsjMzERmZiaef/55zeVv3rwZIoKBAwfecFuplqvEOzoSqZhuw71///6b9l2yZIk0bNhQ9Hq9tG3bVjZs2HDT23Dn5+fLq6++Km3atBE3NzdxcXGRNm3ayPz585X+SUlJMmbMGGnUqJE4OjqKl5eX3H333bJ582bVcn/55Rdp3bq1ODo6SnBwsHzwwQfy5ZdfCgBJTk5W+gUFBUnfvn3Nxq91K/F///1XYmJipF69eqLX66V+/foyatQouXTpktKnoKBAPvjgA2nRooU4ODiIp6enhIeHy/Tp0yUzM/OmcZs/f76EhISIg4ODdOjQQXbs2KE5ljtZj9br8MUXX0hYWJg4ODhI06ZNZdGiRcqtkm+mR48e0qJFCzlw4IBERkaKo6OjBAUFyf/93/+Z9U1LS5MnnnhCvL29Ra/XS6tWrWTRokWqPqbbcH/00Ueq+du2bdO8HbLWfml6XTds2CCtW7dWtkvrVsrZ2dkyefJkCQ0NFb1eL97e3tKlSxf5+OOPlVuI38i2bdukd+/e4uHhIY6OjtKoUSMZPXq0HDhwQOkzatQocXFxMXtueWNc1n4KwOy29WXFb/PmzdK1a1dxcnISd3d36d+/v/z5559my9y+fbuEh4eLXq+Xhg0bSmxsbJnj/Omnn6Rbt27i4uIiLi4u0rRpU4mOjpaTJ0/ecHtMy7t48aJqvum1LPkeLSwslOnTp0tISIjY29tLgwYNZPLkyarbrt8oRrey35Q1tvIeT7Teq1ry8/PF29tb3nnnHc32YcOGCQAZPny4WdusWbMEQJm31D5+/LgAMDsmEpE55jXMa7Qwr2FeU1F5ze0s9/XXXxcAEhoaWub67uQ1Ku8x507iIVKcr7i6usrVq1fN2k6ePCkABICcOnVK1WY0GsVgMAgAWbZsmeayhw4dKt26dbvpGKh204lU4pX5iIhuomfPnrh06dJNr/VRlYKDg9GyZUusWbOmuodCpOmdd97BokWLkJiYeMcX9C1p/Pjx2LFjBw4ePMgzuoiIbgPzGqI7l5mZiYYNG+LDDz/Ek08+WWHLTU1NRUhICJYuXcozuiwcr9FFRERUy7z00kvIycnB0qVLK2yZ//77LxYuXIgZM2awyEVERETVxsPDAxMnTsRHH310y3eovpHZs2ejVatWLHJZAV6ji4iIqJZxdXVFenp6hS6zTp06yMnJqdBlEhEREd2OSZMmYdKkSRW6zPfff79Cl0c1F8/oIiIiIiIiIiIii8BrdBERERERERERkUXgGV1ERERERERERGQRWOgiIiIiIiIiIiKLwEIXERERERERERFZhBp518UdO3bgo48+wsGDB3HhwgWsXLkSgwYNUtpFBNOmTcPnn3+OjIwMdO3aFQsWLEBYWJjS5/Lly3j++eexevVq2NjYYMiQIfjkk0/g6uqq9Dly5Aiio6Oxf/9++Pj44Pnnn8fEiRPLPU6j0Yh//vkHbm5uvBU7ERGRFRMRZGdnIyAgADY22t8jMr8hIiKi2qQ8+U2NJDXQ2rVr5fXXX5cVK1YIAFm5cqWq/f333xcPDw9ZtWqVxMfHy4ABAyQkJETy8vKUPvfff7+0adNG9uzZI7///ruEhobKsGHDlPbMzEzx8/OTESNGSEJCgnz//ffi5OQkn376abnHef78eQHABx988MEHH3zwIQDk/PnzzG/44IMPPvjggw+Letwov6mJavxdF3U6neobTxFBQEAAXn75ZbzyyisAgMzMTPj5+WHx4sV49NFHcfz4cTRv3hz79+9Hhw4dAADr16/HAw88gL/++gsBAQFYsGABXn/9daSmpkKv1wMAXnvtNaxatQonTpwo19gyMzNhMBhw/vx5uLu7V/i2G41GXLx4ET4+PrWrelrJGBdtjIs2xsUcY6KNcdHGuGgrHZesrCw0aNAAGRkZ8PDwuOnzmd9wnyqNcdHGuGhjXLQxLtoYF22Mi7aSccnJybml/KamqJE/XbyR5ORkpKamIioqSpnn4eGBiIgI7N69G48++ih2794Ng8GgJIEAEBUVBRsbG+zduxcPPvggdu/ejbvuuktJAgGgd+/e+OCDD3DlyhV4enqarTs/Px/5+fnKdHZ2NgDA1dVV9ZOBimI0GpGXlwdXV1e+8UpgXLQxLtoYF3OMiTbGRRvjoq10XIxGIwDc9k/9mN8Q46KNcdHGuGhjXLQxLtoYF20l42JS2y5lUOsKXampqQAAPz8/1Xw/Pz+lLTU1Fb6+vqp2Ozs7eHl5qfqEhISYLcPUppUIzpw5E9OnTzebf/HiRVy7du02t6hsRqMRmZmZEBGrfuOdXn8aofeH4vT60wAAgaDQvhCnC09DB52qrbSy2kLvD63UMVeW0tti2r7Q+0ORuD7RLC6WzBSLm73+iesT4R3hbfXvo5J4bNHGuGhjXLSVjoupOHS7mN8Q46KNcdHGuGhjXLQxLtoYF20l45Kbm1vdw7ktta7QVZ0mT56MCRMmKNOmnyn4+PhU2qn9Op3O6k+l/KvgL/j6+uKvgr8AFBe6AMCxwBE66FRtpZXVVvqDQm1ReltM2+fr64vzBecBqONiyUyxuNnrf77gPAwGg9W/j0risUUb46KNcdFWOi6Ojo7VPaTbxvymZmBctDEu2hgXbYyLNsZFG+OirWRccnJyqns4t6XWFbr8/f0BAGlpaahbt64yPy0tDW3btlX6pKenq55XVFSEy5cvK8/39/dHWlqaqo9p2tSnNAcHBzg4OJjNt7GxqbQ3hk6nq9Tl1wY6FMdAB51qnum/0m0lldVWW+NZeltM22f6t3RcLJkpFuV5/fk+MseYaGNctDEu2krG5U5jw/yGAMalLIyLNsZFG+OijXHRxrhoq+1xqXWjDgkJgb+/P7Zs2aLMy8rKwt69exEZGQkAiIyMREZGBg4ePKj02bp1K4xGIyIiIpQ+O3bsQGFhodJn06ZNaNKkieZp/URERESVhfkNERERUcWokYWunJwcxMXFIS4uDkDxBVrj4uJw7tw56HQ6jB8/HjNmzMAvv/yCo0ePYuTIkQgICFDuXNSsWTPcf//9ePrpp7Fv3z7s2rULMTExePTRRxEQEAAAGD58OPR6PZ588kkcO3YMy5YtwyeffKI6dZ+IiIioojC/ISIiIqp8NfKniwcOHMDdd9+tTJuSs1GjRmHx4sWYOHEicnNzMXbsWGRkZKBbt25Yv3696voY3377LWJiYtCrVy/Y2NhgyJAhmDNnjtLu4eGBjRs3Ijo6GuHh4fD29sbUqVMxduzYqttQIiIishrMb4iIiIgqX40sdPXs2RMiUma7TqfD22+/jbfffrvMPl5eXvjuu+9uuJ7WrVvj999/v+1xEhEREZUX8xsiIiKiylcjf7pIRERERERERER0q1joIiIiIiIiIiIii8BCFxERERERERERWQQWuoiIiIiIiIiIyCKw0EVERERERERERBaBhS4iIiIiIiIiIrIILHQREREREREREZFFYKGLiIiIiIiIiIgsAgtdRERERERERERkEVjoIiIiIiIiIiIii8BCFxERERERERERWQQWuoiIiIiIiIiIyCKw0EVERERERERERBaBhS4iIiIiIiIiIrIILHQREREREREREZFFYKGLiIiIiIiIiIgsAgtdRERERERERERkEVjoIiIiIiIiIiIii8BCFxERERERERERWQQWuoiIiIiIiIiIyCKw0EVERERERERERBaBhS4iIiIiIiIiIrIILHQREREREREREZFFYKGLiIiIiIiIiIgsAgtdRERERERERERkEVjoIiIiIiIiIiIii8BCFxERERERERERWQQWuoiIiIiIiIiIyCKw0EVERERERERERBaBhS4iIiIiIiIiIrIILHQREREREREREZFFYKGLiIiIiIiIiIgsAgtdRERERERERERkEVjoIiIiIiIiIiIii8BCFxERERERERERWQQWuoiIiIiIiIiIyCKw0EVERERERERERBaBhS4iIiIiIiIiIrIILHQREREREREREZFFYKGLiIiIiIiIiIgsAgtdRERERERERERkEVjoIqt08LOD1T0EqmKHFh6q7iEQERERERFRJWOhi4iIiIiIiIiILAILXUREREREREREZBFY6CIiIiIiIiIiIovAQhcREREREREREVkEFrqIiIiIiIiIiMgi1MpC11tvvQWdTqd6NG3aVGm/du0aoqOjUadOHbi6umLIkCFIS0tTLePcuXPo27cvnJ2d4evri1dffRVFRUVVvSlEREREAJjfEBEREVUEu+oewO1q0aIFNm/erEzb2f1vU1566SX8+uuv+OGHH+Dh4YGYmBgMHjwYu3btAgBcv34dffv2hb+/P/744w9cuHABI0eOhL29Pd57770q3xYiIiIigPkNERER0Z2qtYUuOzs7+Pv7m83PzMzEF198ge+++w733HMPAGDRokVo1qwZ9uzZg86dO2Pjxo34888/sXnzZvj5+aFt27Z45513MGnSJLz11lvQ6/VVvTlEREREzG+IiIiI7lCtLXQlJiYiICAAjo6OiIyMxMyZMxEYGIiDBw+isLAQUVFRSt+mTZsiMDAQu3fvRufOnbF79260atUKfn5+Sp/evXvj2WefxbFjx9CuXTvNdebn5yM/P1+ZzsrKAgAYjUYYjcYK30aj0QgRqZRl1yaC4hgIRJk2/QdA1Vbazdpqm9LbYto+07+l42LJbuX1FxElTsRjS1kYF22Mi7bScamo+DC/sV6MizbGRRvjoo1x0ca4aGNctJWMS22NTa0sdEVERGDx4sVo0qQJLly4gOnTp6N79+5ISEhAamoq9Ho9DAaD6jl+fn5ITU0FAKSmpqqSQFO7qa0sM2fOxPTp083mX7x4EdeuXbvDrTJnNBqRmZkJEYGNTa28nFqFuKa/hvT0dFzTF8dYICi0LwQA6KBTtZV2s7bapvS2mLbP9G/puFgyUyzK8/pnZGQocSIeW8rCuGhjXLSVjkt2dvYdL5P5jXVjXLQxLtoYF22MizbGRRvjoq1kXHJzc6t7OLelVha6+vTpo/x/69atERERgaCgICxfvhxOTk6Vtt7JkydjwoQJynRWVhYaNGgAHx8fuLu7V/j6jEYjdDodfHx8rPqN91fBX/D19cVfBX8B+N+ZPI4FjtBBp2or7WZttU3pbTFtn6+vL84XnAegjoslM8XiZq/x+YLzMBgMyCnIsfiYlBePLdoYF22Mi7bScXF0dLzjZTK/sW6MizbGRRvjoo1x0ca4aGNctJWMS05OTnUP57bUykJXaQaDAY0bN8bp06dx7733oqCgABkZGapvPdPS0pRrXvj7+2Pfvn2qZZjuWqR1XQwTBwcHODg4mM23sbGptDeGTqer1OXXBjoUx0AHnWqe6b/SbSXdrK22Kb0tpu0z/Vs6LpbMFIvyvP46nXXE5Fbw2KKNcdHGuGgrGZfKiA3zG+vDuGhjXLQxLtoYF22MizbGRVttj0vtHHUpOTk5OHPmDOrWrYvw8HDY29tjy5YtSvvJkydx7tw5REZGAgAiIyNx9OhR1c+YNm3aBHd3dzRv3rzKx09ERERUGvMbIiIioltXK8/oeuWVV9C/f38EBQXhn3/+wbRp02Bra4thw4bBw8MDTz75JCZMmAAvLy+4u7vj+eefR2RkJDp37gwAuO+++9C8eXM8/vjj+PDDD5Gamoo33ngD0dHRmt9oEhEREVU25jdEREREd65WFrr++usvDBs2DP/++y98fHzQrVs37NmzBz4+PgCA//73v7CxscGQIUOQn5+P3r17Y/78+crzbW1tsWbNGjz77LOIjIyEi4sLRo0ahbfffru6NomIiIisHPMbIiIiojtXKwtdS5cuvWG7o6Mj5s2bh3nz5pXZJygoCGvXrq3ooRERERHdFuY3RERERHfOIq7RRURERERERERExEIXERERERERERFZBBa6iIiIiIiIiIjIIrDQRUREREREREREFoGFLiIiIiIiIiIisggsdBERERERERERkUVgoYuIiIiIiIiIiCwCC11ERERERERERGQRWOgiIiIiIiIiIiKLwEIXERERERERERFZBBa6iIiIiIiIiIjIIrDQRUREREREREREFoGFLiIiIiIiIiIisggsdBERERERERERkUVgoYuIiIiIiIiIiCwCC11ERERERERERGQRWOgiIiIiIiIiIiKLwEIXERERERERERFZBBa6iIiIiIiIiIjIIrDQRUREREREREREFoGFLiIiIiIiIiIisggsdBGRVTn42UEc/OxgdQ+DiIiIiIiIKgELXUREREREREREZBFY6CIiIiIiIiIiIovAQhcREREREREREVkEFrqIyGrw2lxERERERESWjYUuIiIiIiIiIiKyCCx0ERERERERERGRRWChi4iIiIiIiIiILAILXUREREREREREZBFY6CIiIiIiIiIiIovAQhcREREREREREVkEFrqIiIiIiIiIiMgisNBFREREREREREQWgYUuIiIiIiIiIiKyCCx0ERERERERERGRRWChi4iIiIiIiIiILAILXUREREREREREZBFY6CIiIiIiIiIiIovAQhcREREREREREVkEFrqIiIiIiIiIiMgisNBFREREREREREQWgYUuIiIiIiIiIiKyCCx0ERERERERERGRRWChi4iIiIiIiIiILAILXUREREREREREZBFY6CIiIiIiIiIiIotg9YWuefPmITg4GI6OjoiIiMC+ffuqe0hEREREd4w5DhEREVkjqy50LVu2DBMmTMC0adNw6NAhtGnTBr1790Z6enp1D42IiIjotjHHISIiImtl1YWuWbNm4emnn8YTTzyB5s2bIzY2Fs7Ozvjyyy+re2hEREREt405DhEREVkru+oeQHUpKCjAwYMHMXnyZGWejY0NoqKisHv3bs3n5OfnIz8/X5nOysoCABiNRhiNxgofo9FohIhUyrJrE0FxDASiTJv+A6BqK+1mbbVN6W0xbZ/p39JxsWS38vqLiGbsrBWPLdoYF22Mi7bScalJ8bnVHIf5Tc3AuGhjXLQxLtoYF22MizbGRVvJuNTW2FhtoevSpUu4fv06/Pz8VPP9/Pxw4sQJzefMnDkT06dPN5t/8eJFXLt2rcLHaDQakZmZCRGBjY31nnxXf0B9pKeno/6A+gD+FxcPDw/Y2Nio2kq7WVttU3pbTNuXnp6Oev3qmcXFkplicbPXuF6/esjIyEC9fvVU7yNLj8+N8NiijXHRxrhoKx2X7Ozs6h6S4lZzHOY3NQPjoo1x0ca4aGNctDEu2hgXbSXjkpubW93DuS1WW+i6HZMnT8aECROU6aysLDRo0AA+Pj5wd3ev8PUZjUbodDr4+PjwjVcC46KNcdHGuJhjTLQxLtoYF22l4+Lo6FjdQ7ptzG9qBsZFG+OijXHRxrhoY1y0MS7aSsYlJyenuodzW6y20OXt7Q1bW1ukpaWp5qelpcHf31/zOQ4ODnBwcDCbb2NjU2lvDJ1OV6nLr60YF22MizbGxRxjoo1x0ca4aCsZl5oUm1vNcZjf1ByMizbGRRvjoo1x0ca4aGNctNX2uFhtoUuv1yM8PBxbtmzBoEGDABRXLrds2YKYmJhyLUOk+Jo/pmtZVDSj0Yjs7Gw4OjrW2h2sMjAu2hgXbYyLOcZEG+OijXHRVjouplzAlBtUpzvNcZjfVA/GRRvjoo1x0ca4aGNctDEu2krGxXRGV03Ib26F1Ra6AGDChAkYNWoUOnTogE6dOmH27NnIzc3FE088Ua7nm67H0aBBg8ocJhEREdUS2dnZ8PDwqO5h3FGOw/yGiIiISqop+U15WXWha+jQobh48SKmTp2K1NRUtG3bFuvXrze7eGtZAgICcP78ebi5uUGn01X4+EzXyDh//nylXCOjtmJctDEu2hgXc4yJNsZFG+OirXRcRATZ2dkICAio7qEBuLMch/lN9WBctDEu2hgXbYyLNsZFG+OirWRc3NzcalR+U146qW3noFmRrKwseHh4IDMzk2+8EhgXbYyLNsbFHGOijXHRxrhoY1xuH2OnjXHRxrhoY1y0MS7aGBdtjIs2S4gLf4hKREREREREREQWgYUuIiIiIiIiIiKyCCx01WAODg6YNm2a5i2/rRnjoo1x0ca4mGNMtDEu2hgXbYzL7WPstDEu2hgXbYyLNsZFG+OijXHRZglx4TW6iIiIiIiIiIjIIvCMLiIiIiIiIiIisggsdBERERERERERkUVgoYuIiIiIiIiIiCwCC11ERERERERERGQRWOiqoebNm4fg4GA4OjoiIiIC+/btq+4hVaodO3agf//+CAgIgE6nw6pVq1TtIoKpU6eibt26cHJyQlRUFBITE1V9Ll++jBEjRsDd3R0GgwFPPvkkcnJyqnArKtbMmTPRsWNHuLm5wdfXF4MGDcLJkydVfa5du4bo6GjUqVMHrq6uGDJkCNLS0lR9zp07h759+8LZ2Rm+vr549dVXUVRUVJWbUqEWLFiA1q1bw93dHe7u7oiMjMS6deuUdmuMiZb3338fOp0O48ePV+ZZY2zeeust6HQ61aNp06ZKuzXGxOTvv//GY489hjp16sDJyQmtWrXCgQMHlHZrPO4GBweb7S86nQ7R0dEArHt/qUjWlOMwv9HGHEcbc5ybY37zP8xxtDG/0WZ1OY5QjbN06VLR6/Xy5ZdfyrFjx+Tpp58Wg8EgaWlp1T20SrN27Vp5/fXXZcWKFQJAVq5cqWp///33xcPDQ1atWiXx8fEyYMAACQkJkby8PKXP/fffL23atJE9e/bI77//LqGhoTJs2LAq3pKK07t3b1m0aJEkJCRIXFycPPDAAxIYGCg5OTlKn3HjxkmDBg1ky5YtcuDAAencubN06dJFaS8qKpKWLVtKVFSUHD58WNauXSve3t4yefLk6tikCvHLL7/Ir7/+KqdOnZKTJ0/KlClTxN7eXhISEkTEOmNS2r59+yQ4OFhat24tL774ojLfGmMzbdo0adGihVy4cEF5XLx4UWm3xpiIiFy+fFmCgoJk9OjRsnfvXklKSpINGzbI6dOnlT7WeNxNT09X7SubNm0SALJt2zYRsd79pSJZW47D/EYbcxxtzHFujPmNGnMcc8xvymZtOQ4LXTVQp06dJDo6Wpm+fv26BAQEyMyZM6txVFWndCJoNBrF399fPvroI2VeRkaGODg4yPfffy8iIn/++acAkP379yt91q1bJzqdTv7+++8qG3tlSk9PFwCyfft2ESmOgb29vfzwww9Kn+PHjwsA2b17t4gUJ9g2NjaSmpqq9FmwYIG4u7tLfn5+1W5AJfL09JSFCxcyJiKSnZ0tYWFhsmnTJunRo4eSCFprbKZNmyZt2rTRbLPWmIiITJo0Sbp161ZmO4+7xV588UVp1KiRGI1Gq95fKpI15zjMb8rGHKdszHGKMb8xxxzHHPOb8rP0HIc/XaxhCgoKcPDgQURFRSnzbGxsEBUVhd27d1fjyKpPcnIyUlNTVTHx8PBARESEEpPdu3fDYDCgQ4cOSp+oqCjY2Nhg7969VT7mypCZmQkA8PLyAgAcPHgQhYWFqrg0bdoUgYGBqri0atUKfn5+Sp/evXsjKysLx44dq8LRV47r169j6dKlyM3NRWRkJGMCIDo6Gn379lXFALDu/SUxMREBAQFo2LAhRowYgXPnzgGw7pj88ssv6NChAx5++GH4+vqiXbt2+Pzzz5V2HneL/x4vWbIEY8aMgU6ns+r9paIwx1Hj++x/mOOYY46jxvxGG3McNeY35WMNOQ4LXTXMpUuXcP36ddUOBAB+fn5ITU2tplFVL9N23ygmqamp8PX1VbXb2dnBy8vLIuJmNBoxfvx4dO3aFS1btgRQvM16vR4Gg0HVt3RctOJmaqutjh49CldXVzg4OGDcuHFYuXIlmjdvbtUxAYClS5fi0KFDmDlzplmbtcYmIiICixcvxvr167FgwQIkJyeje/fuyM7OttqYAEBSUhIWLFiAsLAwbNiwAc8++yxeeOEFfPXVVwB43AWAVatWISMjA6NHjwZgve+hisQcR43vs2LMcdSY45hjfqONOY455jflYw05jl11D4CIbi46OhoJCQnYuXNndQ+lRmjSpAni4uKQmZmJH3/8EaNGjcL27dure1jV6vz583jxxRexadMmODo6Vvdwaow+ffoo/9+6dWtEREQgKCgIy5cvh5OTUzWOrHoZjUZ06NAB7733HgCgXbt2SEhIQGxsLEaNGlXNo6sZvvjiC/Tp0wcBAQHVPRQii8YcR405jhrzm7IxxzHH/KZ8rCHH4RldNYy3tzdsbW3N7nCQlpYGf3//ahpV9TJt941i4u/vj/T0dFV7UVERLl++XOvjFhMTgzVr1mDbtm2oX7++Mt/f3x8FBQXIyMhQ9S8dF624mdpqK71ej9DQUISHh2PmzJlo06YNPvnkE6uOycGDB5Geno727dvDzs4OdnZ22L59O+bMmQM7Ozv4+flZbWxKMhgMaNy4MU6fPm3V+0vdunXRvHlz1bxmzZopP3mw9uPu2bNnsXnzZjz11FPKPGveXyoKcxw1a3+fAcxxtDDHUWN+U37McZjflIe15DgsdNUwer0e4eHh2LJlizLPaDRiy5YtiIyMrMaRVZ+QkBD4+/urYpKVlYW9e/cqMYmMjERGRgYOHjyo9Nm6dSuMRiMiIiKqfMwVQUQQExODlStXYuvWrQgJCVG1h4eHw97eXhWXkydP4ty5c6q4HD16VHWw3rRpE9zd3c3+CNRmRqMR+fn5Vh2TXr164ejRo4iLi1MeHTp0wIgRI5T/t9bYlJSTk4MzZ86gbt26Vr2/dO3aFSdPnlTNO3XqFIKCggBY73HXZNGiRfD19UXfvn2Veda8v1QU5jhq1vw+Y45Tftae4zC/KT/mOMxvysNqcpzqvho+mVu6dKk4ODjI4sWL5c8//5SxY8eKwWBQ3eHA0mRnZ8vhw4fl8OHDAkBmzZolhw8flrNnz4pI8W1gDQaD/Pzzz3LkyBEZOHCg5m1g27VrJ3v37pWdO3dKWFhYrb4N7LPPPiseHh7y22+/qW4Fe/XqVaXPuHHjJDAwULZu3SoHDhyQyMhIiYyMVNpNt4G97777JC4uTtavXy8+Pj419jaw5fHaa6/J9u3bJTk5WY4cOSKvvfaa6HQ62bhxo4hYZ0zKUvKuRCLWGZuXX35ZfvvtN0lOTpZdu3ZJVFSUeHt7S3p6uohYZ0xEim/RbmdnJ++++64kJibKt99+K87OzrJkyRKljzUed0WK7wIYGBgokyZNMmuz1v2lIllbjsP8RhtzHG3MccqH+U0x5jjmmN/cmDXlOCx01VBz586VwMBA0ev10qlTJ9mzZ091D6lSbdu2TQCYPUaNGiUixbeCffPNN8XPz08cHBykV69ecvLkSdUy/v33Xxk2bJi4urqKu7u7PPHEE5KdnV0NW1MxtOIBQBYtWqT0ycvLk+eee048PT3F2dlZHnzwQblw4YJqOSkpKdKnTx9xcnISb29vefnll6WwsLCKt6bijBkzRoKCgkSv14uPj4/06tVLSQBFrDMmZSmdCFpjbIYOHSp169YVvV4v9erVk6FDh8rp06eVdmuMicnq1aulZcuW4uDgIE2bNpXPPvtM1W6Nx10RkQ0bNggAs20Vse79pSJZU47D/EYbcxxtzHHKh/lNMeY42pjflM2achydiEhVnT1GRERERERERERUWXiNLiIiIiIiIiIisggsdBERERERERERkUVgoYuIiIiIiIiIiCwCC11ERERERERERGQRWOgiIiIiIiIiIiKLwEIXERERERERERFZBBa6iIiIiIiIiIjIIrDQRUS1RufOnfHxxx9X2/qXLFkCf3//MtubNGmCzz//vApHVPEeeughjB8/Xpnu0KEDZs+eXW3jISIisnTMbyof8xsi68JCFxHVCkajEUePHkWbNm2qbQzx8fFo27YtgOIEacmSJar2HTt2YPTo0be0PBsbG2RmZlbgKO9MXFycso1FRUU4duyYMk1EREQVi/lN1WB+Q2RdWOgiolrh1KlTuHr1Klq3bl3u5xQWFlboGEomglr8/Pxgb29f7uXt27cPoaGh8PDwuKNxVdR2ZmdnIykpSdnGEydO4Nq1a9WafBMREVky5jdlY35DRLeLhS4iKrczZ85Ap9NhzZo16NWrF5ydndGkSRPs3btX1W/lypXo2LEjnJ2dERoaikWLFqnag4OD8cEHH2DEiBFwc3NDUFAQNm7ciPPnz2Pw4MFwc3ND06ZNcfjwYeU5cXFx8PPzw7Zt29CsWTO4ublh8ODBuHLlitJn9OjRGD58OF5//XX4+/sjPDwcAHD16lVMmTIF9evXh4uLC+666y4kJCTcdFv79esHZ2dnNG7cGNu3b79hIrh48WIEBwcr02+++SaioqIwb948hIWFwcXFBQ8++CDy8/MBACNHjsTYsWORmJgInU4HnU6HEydOAACOHTuGfv36wdXVFb6+voiJiVGeBwA9e/bEhAkT8Nxzz8HLywtDhgxBp06d8MYbb6jGdP78eTg5OWHXrl0AgC1btiAqKgre3t5wcXFB9+7dcfToUaV/fHw87Ozs0Lx5cyXmgYGB8PT0VPqsXr0aHTp0gKOjIxo2bIhPP/1Utc5PP/0UrVq1grOzM+rUqYP7778fRqPxhrEmIiKqTsxvmN8wvyGyMEJEVE4//fST6HQ6ufvuu2Xbtm1y6tQpiYqKkp49eyp9PvvsM/Hw8JDFixdLUlKSLF68WGxsbGTHjh0iInLlyhUBIGFhYbJ8+XJJTEyU3r17S1hYmPTs2VN+/fVXOXHihHTt2lUGDBigLHfSpEni4uIigwcPlmPHjsn27dulXr16Eh0drfRp27atuLm5yeTJk+XEiRNy6tQpycvLk44dO8qQIUNk//79curUKRkzZoyEhoaK0WjU3M60tDSpV6+ejB07Vo4fPy6bNm2SsLAwASDHjx8XEZHw8HD55ptvlOeMHz9eBg4cqEz3799fPDw85KWXXpJjx47J1q1bxcXFRRYvXiwiIpcvX5bOnTvL5MmT5cKFC3LhwgUxGo2ya9cu8fDwkNmzZ0tiYqLs2LFDQkND5Z133lGW7enpKV5eXvKf//xHEhMTJSkpScaMGSMPPvigajueeOIJVQyXLFkiK1eulFOnTsmRI0ekf//+0qlTJ6V97ty50rp1a2X65ZdfVj3/448/lqCgIPnxxx8lKSlJli5dKo6Ojspru2TJEqlfv76sWbNGUlJSZP/+/TJnzhzNGBMREdUUzG+Y3zC/IbIsLHQRUblNnTpVPD09JT09XZk3Z84cadGihYgUJ1BOTk6yfPly1fO6dOkiEydOFBGR3377TQDI1q1blfaFCxeKTqeThIQEZd7777+vSlJ69+4tbdu2levXryvz3n33XWXdBQUFotfrVYmhqU+PHj1USd+lS5cEgJw9e1ZzO8eMGSN33XWXat4rr7wizs7OqvWX1LNnT5k6daoyHRgYKCNGjFD1ad++vXz00UfKtMFgkNWrVyvTRUVF0rRpU/nyyy9Vz/v444/l7rvvFhGRlJQUAaBajojIrFmzpEmTJsr0sWPHRK/Xy7FjxzTHKyKyYcMG8fDwUKaffPJJGTlypDLdq1cvZZuSk5PFxcVFTpw4oVpGv379ZPr06SIi8vjjj8vw4cPLXB8REVFNxPyG+Q3zGyLLwp8uElG5xcfHY+DAgfDx8VHmJScnIzQ0FACwYsUKGAwGDBkyRPU8vV6vnJoeHx+PRo0a4e6771baz507h06dOqFFixaqeSEhIcp0XFwcXnjhBdjY/O+w5enpqZw2fvz4cRQUFOCFF15QrXvhwoXYvXs33Nzc4OrqCldXVwQFBQEA7OzszLbx2rVr+P7771V35gEAe3t7tGrVSrX+0rExnfafkZGBc+fO4emnn1b1SUlJUWKVnJyMjIwM1fUhdu3ahRMnTiAmJkYZq6urK6ZMmaKMNT4+Hnq9Hs8884xq2a1atcKZM2dQUFAAAJgyZQoee+wx5TT9wsJCzJ8/H126dEHdunXh6uqKAQMGoH79+qoYlxxPfHy8Mv3111/j6tWrCA8PV41t3bp1ytgeeOABLF++HF27dsUnn3yCCxcuaMaKiIioJmF+w/yG+Q2RZTE/ChIRlSE+Ph6TJ09WzYuLi8Ndd90FoPjaC82bN1clS0ajESdOnMBjjz2m9I+IiDBbRufOnc3m9evXDwCQmpqKtLQ0s+tH7NmzB+3atVP6161bF40bN1bas7KykJycjHXr1ikJWEkBAQFm806ePIm8vDy0b99eNf/QoUNlXr/i3LlzuHLlipI0xcfHw9bWFp06dVL1uXz5srKMuLg4eHl5oUGDBqptbt26NX766Sezdbi5uSl9wsPDlWmTli1boqioCImJicjKysLGjRtx6tQppX3s2LHYuXMnpk6dihYtWsDd3R0TJkxQllP6DkR//fUXLl26pBrvU089hYkTJ5qNzdfXFwDw6KOPomvXrli1ahW+/fZbTJ48GVu2bEFkZKRm3IiIiGoC5jdtzfoDzG+Y3xDVXix0EVG5ZGZmIiUlRUm8TEzfRALFyUpeXp6q/fvvv0d2djYGDRoEoDhJGjZsmNkyBg8erEyLCI4cOYLXX39daQeA69evK33++ecfLFu2DGvWrFGWW3pstra20Ol0sLOz00wEtZiS2JLbkZCQgI0bN2L+/Pmaz4mPj4e7u7vyDW18fDyaNGkCJycnpc/hw4dhMBiUC7pq3Urc3t4ely9fRqNGjaDT6cpcV+ntBAB/f394e3vjzz//xNy5c/H8888r32YWFBTgm2++wYoVKzBgwAAAxfHbvn27coFX0x2ISiZ+JbfJ3t4eV69evWkcGzRogOeffx4xMTEIDg7GoUOHmAgSEVGNxfyG+Q3zGyLLw58uElG5HDlyBHZ2dmjVqpUy7+zZs7hy5YqSPPTp0wd79uzBN998g5SUFHz99deIjo7GnDlzUKdOHbNv1QDgypUrOHfunOobxtOnTyMnJ8csKZk2bRrOnDmDPXv24N5778XgwYMRFRWl9CmdILm4uKBHjx546aWX8NtvvyElJQU7d+7Ea6+9hpSUFM3tDAsLg4+PD6ZMmYJTp05h27ZtePjhhyEiZX7jafqm0pS8aSVrpU+bNxqNuHjxIs6cOYPU1FQAQK9evXDx4kXExMTg+PHjOHnyJH7++WdMnTpVtRytRBAo/tZz1qxZSEhIUH0zbW9vD3d3d6xevRpJSUlYv349hgwZgqysLNU3xvXr14eXl5fmNj3wwANYtmwZYmNjkZSUhPj4eHzxxRf46quvABT/hGLBggU4evQozpw5gw8//BBXrlxB7969NcdKRERUEzC/YX7D/IbIAlXvJcKIqLaYO3eucmFUk5UrV4rBYFDNi42NlYYNG4qjo6OEh4fLypUrlbajR48KALl48aIyb9u2beLg4CCFhYXKvB9++EG8vb2V6aFDh0p0dLRMmjRJ3N3dxcfHR6ZOnap6Tp06deSHH34wG/c///wjw4cPFz8/P3F0dJTQ0FAZN26c6rmlbdiwQcLCwkSv10v79u3lvffeExsbG8nNzdXsP2TIEImJiVGmw8PDzS6mOnDgQHnxxReV6XPnzklERITo9XrVtq5bt046duwoLi4u4unpKZGRkfLdd9+JiEhWVpbodDrZv3+/5jief/55ASAffvihWdvPP/8sQUFB4uTkJFFRUfLdd9+pXouXX35Z+vXrV+Y2iRRfEDYsLEwcHBzEz89P+vbtq4wlNjZWWrVqJc7OzmIwGKRXr17yxx9/aI6TiIiopmB+w/yG+Q2R5dGJiFRnoY2IiIiIiIiIiKgi8KeLRERERERERERkEVjoIiIiIiIiIiIii8BCFxERERERERERWQQWuoiIiIiIiIiIyCKw0EVERERERERERBaBhS4iIiIiIiIiIrIILHQREREREREREZFFYKGLiIiIiIiIiIgsAgtdRERERERERERkEVjoIiIiIiIiIiIii8BCFxERERERERERWQQWuoiIiIiIiIiIyCL8P0VVftzNSjwSAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 1400x400 with 4 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig1, axs1 = plt.subplots(2, 2, figsize=(14, 4))\n", + "\n", + "fig1.subplots_adjust(wspace=0.1, hspace=0.5)\n", + "\n", + "axs1[0,0].plot(np.arange(n+1), T_i.value, color='purple', linewidth=1.2, alpha=0.4)\n", + "axs1[0,0].set_title(\"Température à l'intérieur du bâtiment (°C)\")\n", + "axs1[0,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[0,1].bar(np.arange(n), I_i.value, color='purple',alpha=0.4)\n", + "axs1[0,1].set_title(\"Inconfort\")\n", + "axs1[0,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,1].grid('on', alpha=0.3)\n", + "\n", + "\n", + "axs1[1,0].bar(np.arange(n), p_n_i.value, color='purple', alpha=0.4)\n", + "axs1[1,0].set_title(\"Puissance de la pompe en mode normal (W)\")\n", + "axs1[1,0].set_ylim(-30,1030)\n", + "axs1[1,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[1,1].bar(np.arange(n), p_r_i.value, color='purple',linewidth=1.2,alpha=0.4)\n", + "axs1[1,1].set_title(\"Puissance de la pompe en mode reverse (W)\")\n", + "axs1[1,1].set_ylim(-30,1030)\n", + "axs1[1,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,1].grid('on', alpha=0.3)\n", + "\n", + "title1 = fig1.suptitle(\"Graphes de la solution optimale (Inconfort minimal={} et budget utilisé={})\".format(objectif.value, c.T @ (p_n_i.value + p_r_i.value)),y=1.05)\n", + "title1.set_fontsize(15)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "bb0516f4", + "metadata": {}, + "source": [ + "### Intervalle 22504" + ] + }, + { + "cell_type": "markdown", + "id": "91c6e0e0", + "metadata": {}, + "source": [ + "##### Résolution du problème" + ] + }, + { + "cell_type": "code", + "execution_count": 385, + "id": "852abdb9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 385, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# ...et on retourne à nouveau à l'intervalle 22054...\n", + "intervalle_initial = 22504\n", + "heure_initiale = 0\n", + "T_ext = data[intervalle_initial:intervalle_initial+n]\n", + "objectif = cp.Minimize(cp.sum(I_i))\n", + "contraintes = [c.T@(p_n_i+p_r_i) <= budget, T_i[0] == T_initial, T_i[1:n+1] == T_i[0:n]+deltaT_i, 0 <= (p_n_i+p_r_i), (p_n_i+p_r_i) <= p_max, 0 <= p_n_i, 0 <= p_r_i,\n", + "\t\t\tdeltaT_i == -(1-eta)*(T_i[0:n]-T_ext)+(cp.multiply(p_n_i,COP_normal(T_ext)))*0.25/(V*Cx)-p_r_i*COP_reverse*0.25/(V*Cx),\n", + "\t\t\tI_i >= f_froid(T_i[0:n]), I_i >= f_chaud(T_i[0:n]), I_i >= 0]\n", + "probleme = cp.Problem(objectif, contraintes)\n", + "probleme.solve(solver=cp.SCIPY, scipy_options={\"method\":\"highs\"}, verbose=False)" + ] + }, + { + "cell_type": "markdown", + "id": "36627caa", + "metadata": {}, + "source": [ + "##### Affichage de la solution" + ] + }, + { + "cell_type": "code", + "execution_count": 386, + "id": "27b25fce", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAG3CAYAAAAuMzWRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8vElEQVR4nOzddZhUZfsH8O90z2wn23TD0t1LKUgIWCyKIiEqKoL6KhgvP0QRu8X2VewEQUDSIAUJYYmFZbtjNmbm/v0xnsPOzpnN2V3i/lwXl+6ZE895Tj3nPk/IiIjAGGOMMcYYY4wxxq5K8uZOAGOMMcYYY4wxxhhrPhwcYowxxhhjjDHGGLuKcXCIMcYYY4wxxhhj7CrGwSHGGGOMMcYYY4yxqxgHhxhjjDHGGGOMMcauYhwcYowxxhhjjDHGGLuKcXCIMcYYY4wxxhhj7CrGwSHGGGOMMcYYY4yxqxgHhxhjjDHGGGOMMcauYsrmTgBjjDHGGGOMeVNFRQWeeeYZEBEWLVoErVbb3ElijLFLGtccYowxxhhjjF1RHn74YTz00EMICgriwBBjjNUCB4fqoKSkBC+88AJGjRqF0NBQaDQamEwmtG/fHomJifj2229ht9ubO5kevfvuu5DJZFi2bFlzJ6XBtm7dCplMhsTExEbdjkwmQ3R0dKNuozGdOXMGMpkMQ4YMaZLtXe751diWLVsGmUyGd999t7mT4iYxMREymQxbt25tku0NGzYMLVq0QFlZmThNOF+v9HNo7969GDVqFHx8fCCTySCTyXDmzJnmTlaTiI6Ohkwmu+TW5W1NcR7v3LkTY8eOhZ+fH4xGI3r16oX333+/3uv77rvvMHjwYJjNZpjNZgwZMgQ//PCDF1PsfU1VFrhc0nGp8FTe9PQMbIznz8aNG/HMM89g0aJFmD17ttfWW9XZs2fx4osvYvTo0QgJCYFKpUJAQABGjx6Nb7/9tt7rrcv1LeRrTf+2bdsmuXxmZibuv/9+tGnTBjqdDn5+fujevTseeOABt3mzsrLw9ttv44477kDXrl2hVCprVa5xOBx4/fXX0bdvX5jNZqjVarRo0QI33HADDhw44DZ/bm4uli5dihEjRiAqKgp6vR56vR4dOnTA4sWLkZWVVe326rJPe/fuxbJly9CvXz/4+PhArVYjIiICN910E/766y/J9QvnbE3/kpOTJZc/c+YM7rzzTsTExECj0SAgIAB9+/bFqlWrPO5TRUUF1qxZg169esFsNsNoNKJ169a49dZbkZKS4nG5X3/9FZMnT0ZISAg0Gg3CwsIwZswYt/NTuI/V9O/xxx/3Wvo++ugj9O/fHyaTCUajET179sSbb74JIvK4P0Ddju/EiRMRHByMoqKiatfJnLhZWS3t3LkTU6dORWpqKrRaLXr27ImwsDCUlZUhKSkJ7733Ht577z20b98ef//9d3MnlzGv27p1K4YOHYqZM2deksGNS8GQIUPw66+/4vTp01d8gKMhfvjhB2zZsgUvv/wyNBpNcyenSRUWFuLaa69FamoqhgwZgoiICMhkMhiNxkbbpkwmQ1RU1FUTgLoafPHFF5g2bRocDgcGDRqEgIAA/PLLL5g5cyb++usvPPPMM3Va35o1a3DvvfdCqVRixIgR0Gg0+PnnnzF+/Hi8+OKLWLBgQSPtiROfow2zbNkyLF++HGvXrm2SAFViYiLee+89bNmypck+PtVFRkYGbrnlFowbN67al21vuPHGG7Fz505oNBr06dMHISEhOHXqFDZs2IANGzbg3nvvxerVq+u0zrpe3127dsXMmTMl15WSkoJNmzZBr9eje/fubr/v3bsXCQkJyM7ORocOHTBhwgQUFBTgyJEjeO6559zyb8eOHXUOthERpkyZgq+++go6nQ4DBw6ExWLB4cOH8cknn+Dzzz/H119/jbFjx7qk+//+7//g5+eHDh06oG/fvigsLMSePXuwatUqfPTRR9ixYwdiYmIatE82mw09evQAAPj5+aFfv34wGAzYv38/PvroI6xbtw4fffQRpkyZ4rKNAQMGeNzf48eP47fffkNUVBQiIiLcfv/pp58wZcoUWK1WdO/eHX369EF2djYOHTqE119/XTLAkZOTg1GjRmHv3r0IDQ3FiBEjAAAnT57E2rVrceuttyI8PNxtOeHeoNFo0L9/fwQFBSElJQXbt29HeHg4rr32WnHekJAQj+eR3W7Hhx9+CAAYOHCgV9I3d+5cvPbaa1Cr1ejbty8MBgN27dqFO+64Azt37vT4rlHXc/bRRx9FfHw8nn76aY+BLVYJsRrt3buXNBoNAaAHHniA8vPz3eZJTk6me+65h7RabTOksHbWrl1LAOixxx5r7qQ02JYtWwgAzZw5s1G3A4CioqIadRuN6fTp0wSABg8e3OB11SbPjx49SidPnmzwti5XgwcPJgB0+vRpyd8zMzPp6NGjlJeX17QJq4WZM2cSANqyZUujb6tz584UGBhIZWVlLtOF8/VyvuZq8ssvvxAAuvnmm5tsm5dSnp48eZKOHj16ya3L2xozz7Ozs8lsNhMA+uKLL8TpaWlp1LJlyzpfx8eOHSOFQkEajYZ27dolTj9+/Dj5+/uTUqmkEydOeHMX3NQ3v5qqLHCpp+Oxxx4jALR27dom2V5Nz4u8vDw6evQoZWZmukz3lM4LFy7Q0aNHqbi42Cvp27hxIz3++ONUUFDglfVVZ9q0afTiiy+6bev7778npVJJAGjDhg21Xp+3r+/FixcTALrxxhvdfsvIyKCAgADS6/X0zTffuP3++++/u03btWsXzZs3j9555x06dOgQ3X777TWee9988w0BoOjoaEpJSXH5beXKleJvleXl5dGePXvIbre7TLdarXTzzTcTAJo8eXKD96miooJ69uxJX3/9NdlsNnG63W6nhx9+mACQyWRyO5erc/311xMAevjhh91+O3r0KGm1WgoMDKSdO3e6/Ga32+nPP/90W8bhcNDQoUPFd7iKigqX35OSkiTTJ7z39e7dm86dO+fyW3FxMR06dKjW+/Tjjz8SAIqIiCCHw9Hg9H3++ecEgHx9fWnPnj3i9AsXLlDHjh0JAH388cdu6ajPOUtElJCQQHq9nrKysmq9z1crDg7VwG63U7t27QgAPfHEEzXOX/kEv9RwcKjuLqWXqvpo6uDQ1a6m4NClrKmCQzt27CAAtGDBArffrobg0Hvvvdfk9+ErPU8vRY2Z58LL1IQJE9x++/LLLwkAjR8/vtbrmzt3LgGgu+++2+231atXe7xevYmDQw1zqQWHPGnqdDa3O+64gwBQYmJirZfx5vXtcDgoIiKCAND69evdfheu/ZdffrnW6atqzpw5NR7T++67jwDQihUrJNNosVgIAKWnp9dqm+fOnRMDC1V5Y58qp61NmzYEgN59991aLZOfn086nY4A0LFjx9x+HzNmDAGgH374odbp+PTTTwkATZ06tdbLlJSUkL+/P5lMJkpNTa31cp7ccMMNBICWLFnilfQNHz6cANBTTz3l9tvPP/9MAKhr165uv9X3+H7wwQcEgJ599tk6LXc14j6HavDjjz/i6NGjiIyMxNKlS2ucPz4+3m2a0PdAeXk5Hn/8cbRt2xYajQYTJ04EAJSWluLtt9/GhAkTEBsbC51OBx8fHwwaNAj/+9//JLdTuX32Tz/9hAEDBsBoNMLX1xeTJk3CsWPHqk1ncnIybrjhBgQGBkKn06FHjx747rvvPM5/9OhRJCYmIiIiAhqNBsHBwZg+fbrHJnQ//vgjRo4cifDwcLF964ABA7B8+fJq01XV33//jYkTJ8LX1xcmkwkDBw7E+vXrq12GiPDJJ59g2LBh8PX1hVarRbt27bBs2TKUlJTUafvVrX/69Olo3bo1DAYDTCYTevXqhVdeeQUOh6NO68vMzMSSJUvQvn17GI1GWCwWtG7dGrfccgv++OMPt/mPHDmCG2+8EaGhoVCr1QgPD8ctt9yC48eP13qbNfV9U7Uvj8TERAwdOhQA8N5777m0Pa7cp0B1/WwI54RwTNq0aYMlS5YgLy+v2vQdOnQI1157LXx9fWEwGDB48GDs2rWr1vsqyM7OxgMPPIBWrVpBq9XCz88Po0ePxs8//yw5f+Xr9rHHHkNcXBy0Wi1iY2Px6KOPorS0VJxX6Cvn119/BQDExMS45JHUflU2ZMgQsd+ZTz/9FD179oRer0d4eDgWL16M8vJyAEBSUhJmzJiBoKAg6PV6DB06VLI9fF5eHl588UUkJCQgKioKGo0G/v7+GD16NDZu3FjnvCspKcGKFSvQrVs3GI1GGI1G9OnTB++9916d1/XWW28BAGbMmFHrZSr355GTk4O5c+eK/b517NgR77zzjsdlz507h4ULF6J169Ziu/QePXpg+fLlKCgocNvPJ554Ah07doROp4PFYqn2Plz5OnnrrbfQuXNn6HQ6hISEYM6cOS7ntnCOCFW2ly9fLp4fVZuBfPDBBxgwYADMZjP0ej06d+6MFStWuJxzgsrPgg0bNmDo0KFiX0Zr1qwR03f27FmXc7I2TUEq53tGRgZuu+02hISEwGAwYMCAAS7X4WuvvSbuf0REBJYtWyZ5L5TqJ6hy32hWqxVLliwRz9uWLVti5cqVkv0P1LSu4uJiLFq0CBEREdDpdOjevbvLc27dunXo3bs3DAYDgoODsXDhQlitVrftHDhwAIsXL0Z8fDwCAwOh0WgQGxuLefPm4cKFCzXmo7cJ/QBVbeYAAOPGjYNWq8WmTZskz5e6rk+YVl35QEpt7xlC3zRA/c7RylJTU5GYmIjg4GDxeEv10VJTX3zVPR/rUybJysrC3LlzERYWBp1Oh44dO+Lll18GEVX7zPz9998xdepU8VnfokULzJ49260Pk+joaLFsNWvWLJc8rE0fPtX13SXVl5JMJhOP49ChQ122JzQLrGsfl576HKpr+SgnJwdLly5F+/btxXv4sGHD8P3339cqHd7WpUsXAKjTfcKb1/fWrVtx7tw5hISEiM18BFarFR9++CEMBgNmzZpV6/TVR3XNx4VzR6FQwGKx1Gp9KpUKAKBWq12me3ufZDIZOnfuDKD2x/CLL76A1WpFz5490aZNG5ffzp07hw0bNiA2NtalCV1N3nzzTQDAXXfdVetlvvzyS2RnZ2Pq1KkICQmp9XJSiouL8c033wAAbr75Zq+kb+/evQAgeR8ePHgw5HI5Dhw44HK/a8jxnThxInQ6nZhWVo3mjU1d+ubNm0cA6L777qv3OvBvNbwxY8aQwWCgsWPH0tSpU+nOO+8kImcVQwAUFhZGQ4cOpWnTptHgwYNJpVJ5/MIsfLWZN28eyWQy6tmzJ02fPp3at29PAMhisdCBAwdclhFqDs2cOZOCgoIoLi6Opk2bRn379iUAJJfLJau+fvXVV2Kzuq5du9KUKVOod+/eJJPJSK/X06+//uoy/0svvUQASKFQ0KBBg2jGjBk0cuRIatGiBdXllPvzzz/JaDQSAOrYsSNNnz6d4uPjSSaTicel6lc6u91OM2bMIABkNBppyJAhdN1114lfTnr16kUlJSW1TgMkvmZarVYCQP7+/jRw4ECaNm0ajRgxgvR6fZ2/HBYUFFBMTIx4jkycOJGmTJlCvXr1IpVK5XbsN23aJH6R6NatG02fPp26du0q7u+2bdtc5vdUc6imr3dRUVEux+rNN9+khIQEAkBxcXE0c+ZM8d9XX31VbX4REf33v/8lAKRUKmn48OE0bdo08Xxo3bo1paWlSaZv/vz5pNfrqVOnTjRt2jTq0qULASCtVlun6rDnz5+n2NhYAkCRkZE0bdo0GjZsGCkUCgJAq1evdltGmHf8+PGk0+lo/PjxNGnSJPEL1/Dhw8UqyJmZmTRz5kwKDg4WqzpXzqOa8l2ocXTPPfeQUqmkESNG0HXXXUcBAQEEgG655Rb6559/KCAggNq2bUvTpk2jTp06EQDy8/Nzy7+ffvpJrKY9cuRI8TqXyWQkk8no7bffdttfT1+C09PTqXPnzgSAQkJCaOzYsTRmzBgxH+paoyAwMJB0Op1btWMizzWHhK/yEyZMoNatW1NYWBhNnTqVhg4dKh7DN998021927ZtIx8fHzEvpk6dSuPHjxer5u/fv1+ct6CggOLj4wkABQYG0pQpU2jMmDHivW/hwoVu6xeukwceeIDUajWNGjWKrrvuOgoKCiIANHDgQLH6tXCO9O/fnwBQly5dxPOjctqFL81arZbGjh1LU6ZMEc+Dvn37ujW7EI7b7bff7vIs6NmzJ23dulX83WAwuJyTUl9wqxLy/dprr6XY2FiKioqiadOmUe/evQkA6fV6Onz4MC1cuJB0Oh2NHTuWxo8fTyaTiQDQQw895DHPpI573759acCAAeTn50eTJk2ihIQE0mq1Hqvn17Su3r17U1BQEE2ZMoWGDBlCcrmcFAoFbdy4kVavXi3ej6677jry9/cnAHTDDTe4bWfatGmkVCqpe/fuNHHiRJo4cSJFR0cTAAoNDXVrJkHUuDWHhGvv77//lvy9R48eBIAOHjxY47pyc3MJAAGgoqIiyXmE80+qSb2Uutwztm/f7pVz9JprrqHIyEgKDg6m66+/nkaOHCk26an6HK2pRq2n+3R9yiSZmZnUqlUrsYwnpE2lUtHdd9/t8Tx5+eWXSS6Xk1wup969e9PUqVPFPA0MDKQjR46I8953333is7F///4ueVibZpdS15FAqkbUzJkzKS4ujgBQQkKCy/aEpiOeaqp7ylup509dy0fHjx8Xy3rR0dE0YcIEGjZsmFg2W7VqVY154W1CjZlbbrml1st48/q+9dZbCQDde++9br9t27aNANCAAQOIyNls6N5776W5c+fSc889J3lfk1KbmkNbt24Vj4unZmW1LTuXl5fTnXfeSQDo1ltvbZR9qkwoF7zzzju1mn/YsGEEgJ5//nm3395//30CQDfddBNVVFTQp59+SgsXLqT58+fTq6++Sjk5OZL7q9VqSalUUmlpKR08eJAeeeQRuuOOO2j58uVu73oC4di/9dZblJubSy+99BLdeeeddO+999K6desky2CeCOnu1q2b19InvONWvpdVJjSt/Pbbb8VpDT2+AwcOJACUlJRU212/KnFwqAZCQf7DDz+s9zqEglfLli3p/Pnzbr9nZWXRxo0b3dpwnjp1iqKjo0kul7s1UxEepADojTfeEKc7HA568MEHJavjCQ9rIdhVuR3vc889J77MVHb69GkyGAxkNBpp48aNLr/99NNPpFKpKCIiwqXvkMjISJLJZG7tZh0OR62rIDscDjHQ9eijj7r89vLLL4v7UfVh8vTTTxMAGjJkiEs1yrKyMrrtttsIAD344IO1SgORdAG/oqKCvvrqKyovL3eZnpGRIT60qwbMPHnnnXfEl6+q7aozMjJcAiBFRUVi8OGll15ymVeo+t+iRQuyWq3idG8Fh4hqV21eKr/++OMPksvlZDQa6bfffhOnl5aW0tSpU8VgilT6pB6w99xzDwF167Nl/Pjx4otf5XN1+/btpNfrSaFQuAQKhH0R8rTygyQjI0NsD/3cc8+5LFNTs7KagkNGo9HluklNTaXg4GCSyWTUrl07WrJkiXifcDgcYrv7qtfIqVOnaPfu3W7b37dvH/n4+JDZbKbCwkKX3zwFh8aOHUuAs8lJaWmpOD0tLU0833/66SfJ/a1KCIT369dP8veagkMAaPr06S7p+Oqrr8RAXmXZ2dkUGBgovhRUvb527drlUoV9wYIFBICGDh3q0nfE0aNHxWDPd99957IO4ToJCQlxqT6emZkpBqB++eUXl2Wqa94rtMEPCwujf/75R5yel5dHAwYMEO/dlVV+Fvzvf/9zWydRw5vsCIXZyvc84Vxu3749hYWFufQ19vfff5NarSa9Xu92nlUX0BHuVZWDEH/++ScpFIp6rWvYsGEuAQ8h71u2bEm+vr4u11pKSop4nKsWHDdv3uwWgLXb7bR8+XICQLNmzXLLO095LqS5Lv8qX5P5+fnidE/BmokTJ7oVqj05ePAgAdLNMwTCB4i//vqrxvUR1e+e4Y1zdOTIkS7H+48//iCj0UhyuZz27t0rTq9PcKi+ZRKh3HHttde6PJv37t0rBgGq7vfu3btJoVBQeHi4W1cFb731FgHOPkRqSnNt1TU4RFRzszJvBIfqUj6y2WziB5Onn37aZf4TJ05QTEwMKRQKt49KwrO3Lv9qm8e5ubniM6hy30HV8eb1bbVaxXNs3759br+/9tprBIAmTZpEEyZMcNtPnU4n2edLVbUJDhERPfDAA+J6ExISaOrUqdSuXTtSqVSUmJhY7YfbW2+9lWbOnEnXXnsthYeHE+AMhFbtP8Zb+yTYvn07ASC1Wk0XLlyocf7z58+TXC4npVIp2URuyZIlBIDuvPNO6tOnj1v6/Pz8aPPmzS7LHDt2jABQcHAwrVixguRyucsyMpmM7rnnHrdtCetfsWIFhYaGum2rU6dOlJycXKt8GDVqFAHSH1Lrm76wsDCP5cfs7Gxx+RdffFGc3tDjKwRraxvou1pxcKgGbdu2JUC6rS7RxRtW5X/bt293mUc4adetW1fn7b/55psEgF544QWX6cKDVOolq7y8XKyVUTktwsM6JibGrSPYiooK8vX1JZVK5fKb8GWr8sVZ2cKFCwkAffnll+I0nU5XbUGzNjZv3kwAKDY21qWDOIHw5bpygaWiooICAgLIYDC4FeSJnO1vQ0JCyNfX162g4UldC6wbN24kALRo0aJazS98MVmzZk2N8woFpb59+0r+LnzdqBzIvBSCQ7fccgsBoKVLl7rNn56eTjqdjuRyuctDSkhf//793ZbJysqq03FJSkoiwBl4yc7Odvt90aJFBIBmz57tti+Aa/BVINTMiYuLc5ne0ODQI4884rbMvffeK14LVQOSwotdXfqUEjpYrFqwlCqc79+/nwBQz549Ja+Zffv2iYX32hDapUu9TBPVHBwym82SnQkKwbrK+S5cW6NHj64xXUVFReJ5KPWl/YUXXiAANGLECJfpwnUiVWvpmWeekXw5qi44NGjQIAJAr7/+uttvBw8eJJlMRkaj0eUlUzhu48aN87h/DX3xNpvNbl808/LySCaTEeD8MlnVddddJ/nyWF1ARy6XS/bRIAR367qu48ePu/xmt9vFWjDVXWt1ecEODw8nf39/t+me8vy+++5zKzPU9K/yOZmSkiLemzx9+b3xxhsJAH300Uc1pn/nzp0EgMLDwz3OI3wkq9p5qpT63jMaeo56OneEj2W33XabOK0+waH6lEkKCwtJq9WSQqGQfCYI9+Kq+y289FQNRguuvfZatxf+KzE4VJfykfCRQKqDYqKLffVUrQG6YsWKOl+PVcv4nkybNo0AUJ8+fdw+/nrizetbeN526NBB8vcVK1YQ4KzRrdFo6OWXX6aMjAw6c+YM3X///QSAVCqV24ezqmobHCIiWrNmjVijT/jXsmXLGvdFqCEs/BsyZIjkNeWtfSJyBuqEWn+1/agsnLOensdCXimVSvLx8aGPP/6YcnJy6Pjx43TTTTcR4Gz5Ubkiwe7du8VlAGeLkaSkJMrKyqK3335brBlX9aOx0FeSUqmkDh060Pbt26mgoIB+//136t69u3ifruncvHDhAikUClIoFJJ9F9U3fdOnTycANG3aNLd1rlq1SjzW//3vf8XpDT2+wju1VE1wdhEPZd9A7733Hux2u8u0IUOGuA1xKJPJcM0111S7rh07dmDr1q1ISUlBaWkpiAipqakAgBMnTkguM336dLdpKpUKU6ZMwZo1a7B9+3a3tAwZMsStna5SqURMTAz27duH7OxshIaGAoDYH8ukSZMktz9w4EC88MIL+OOPP3DdddcBcPa7tGPHDtx2221YtGgROnToUO1+S9m+fTsAZ5trhULh9vuMGTPw+++/u0zbt28fsrKyMHLkSAQHB7sto9PpEB8fjx9++AEnTpxwawtcVwcOHMDPP/+Ms2fPoqSkBESEwsJCAJ6PV1VCH1WrVq1CcHAwxo0bB5PJJDmvkCc33nij5O833XQT9u7di+3bt3ucpzlUl+6goCCMGjUK33zzDXbu3Ol2Po8aNcptGX9/f/j5+YnXRk127NgBABg9ejT8/Pzcfr/55puxevVqMZ1VSV1jo0ePhq+vL5KSkpCamipeLw0ltb+xsbEAnNet0M6+6m9SeWG32/HLL79g165dSE1NRVlZGYCL52ZtzlHh+p84cSLkcvcu6oT+RKT6fpCSkZEBAPD19a3V/FXFx8fD39/fbXrr1q1x+PBhpKamiv13bNq0CQAwZ86cGte7d+9eWK1W9OjRA23btnX7/eabb8bChQuxc+dOOBwOt7yQOm6tW7cGIH1spFRUVOC3334DIH2tdO7cGZ07d8bBgwdx4MAB9OnTx+X3ysPReluPHj3cjpnFYoGfnx+ys7OrPW9ru/8AEBUVJXlfrmteAs5+VITlBHK5HFFRUcjKyqpzmrOzs/Htt9/i8OHDyMvLE5/7FRUVyM7ORk5OjuT9paq6DjF/ufH2PaO2unbtKnnuzJgxAytXrvR4f6+t+pRJ9u7di9LSUvTp00eyX6Fp06bhqaeecpnmcDjwyy+/QK/XIyEhQTItAwcOxLfffos//vgD3bp1q+ceXfrqUj6qTVkVgNt5t2TJEm8l18XKlSvx6aefws/PDx999JHHPp0akzDsuFQfMQDEPuFsNhueeuopzJs3T/xt1apVOHv2LNatWycOG98QZWVluOWWW/DFF1/g4YcfxqxZs+Dv7489e/Zg4cKFuPHGG5GSkiI5hLuQRsB5b965cyeWLl2KTp064fPPP3e5Try1T3a7HTfeeCNOnDiBXr161Xr487rk+euvv47rr78egLNM9MEHH+D48eP4888/8corr4j3hsrLjBkzBi+//LK4vltvvRWlpaWYP38+VqxYgfnz57ttS6FQ4KeffkJERAQAoFevXvjpp58QGxuLP//8E5s2bcLIkSM97tMnn3wCu92O0aNHS/ZdVN/03X///fj888/x6aefIjIyEgsWLIBer8cXX3yBRx99FEqlEjabzeU50tDjKzyjMzMzPe4vAzg4VAPhRSQrK0vyd+GGBQB33nknXn/9dcn5goKCPHbIlp+fj0mTJmHz5s0e0yEEHaqKioqSnC4URKQ6UGvRooXkMsJDV3iJBCB2LhgeHu4xbYBr/rz88suYOHEi3nnnHbzzzjsIDg7G4MGDMWnSJI8Fq6qEdNe0f5UJad24cWOND+KsrKx6B4fKy8uRmJiITz75xOM8no5XVcOHD8e9996LNWvWYMaMGVAqlejevTtGjhyJW2+9VXxZAS7miafOK4XpKSkptduRJtKQdFd3rubk5DT69oVOR6VERUUhNzcXFy5c8FpwSOo6MxqNNf5W+ZoFgPPnz2P8+PE4ePCgx23V5hwVrqmHH34YDz/8sMf5atvxbX5+PgB4zNOa1OXede7cOQBAXFxcjeut6Rzx8fGBxWJBfn4+cnNz3QJUUumSSlN1srOzUV5ejoCAABgMBsl5oqOjcfDgQclzNTIyslbbqQ9P93+j0Yjs7Ow6nZvVqcvxrUl1afb0u6c0f/LJJ7jjjjtQVFTkcXuFhYW1Cg41lJBGwNnps9lsdpunuLgYQO2uM2F91Q3WUJf1efueUVv1KQvVRX3KJEKQUXgpq0rqms3KyhLPs6of8aTmvZLVpXwknHc33nhjtR/HmiLPPvzwQyxduhQGgwE//PCDSzpr4q3rOzs7G+vXr4dcLveYH5W3JdW576xZs7Bu3TpxoI2GWLFiBT777DPcfffdLgPTDB06FD/88APat2+PZcuWYdasWQgICPC4ntDQUEyZMgU9e/ZEp06dkJiYiJMnT4rPTG/t09y5c/H999+jTZs2+OGHH2q8FgHgr7/+wqFDh2A2mz1+rBHSZzQaMXXqVMn0/fnnny7pq2mfEhMTMX/+fKSkpODkyZNo2bKly3LDhw93uwcFBQVh3Lhx+Oyzz/Drr79WGxyqKeBV3/TFx8dj7dq1uP3227Fq1SqsWrVKXGbcuHFQqVT4+uuvXT5MNfT4CteT1EA47CIODtWgS5cu2LlzJ/bv39+g2hhardbjbw8++CA2b96MwYMHY/ny5ejYsSN8fHygUCjw888/IyEhQXKklvqS+prniRClnfnvCDue9O7dW/z/zp0748iRI1i/fj1+/PFHbN26FZ999hk+++wz9O3bF1u3bq3VjbauhLS2bNkS/fv3r3ZeqdoHtbV69Wp88skn6NSpE55++ml0794dvr6+UKlU+Oeff9CmTZs6Ha/Vq1djzpw5+Oabb7Bp0ybs3LkTf/zxB55++ml88sknmDx5cq3W480vU3Udca0hqkt3Xc7Vxth+U6tuf+uSF7Nnz8bBgwcxefJkLF68GG3atIHJZIJcLscbb7yBOXPm1OocFc6DAQMG1CrIUhNhJJLaBk+raorzwZPmPk9rSkN1z5iGqmn/vLX/3sxHb6X57Nmz4khNa9aswbhx4xAeHg6dTgcA6NevH3bv3l3re/79999f5xfUJUuWiDXazGazGKg8f/482rdv7zb/+fPnAXgOZFQmBChyc3NRXFwsGZisy/q8fc9oDk35/PO0baPRWOOzvz61suubnuZS2/KRkM7Ro0dL1hwXVA08/N///V+No/tWNXv2bLca+YLvv/8es2bNgkqlwpdffulWw7Mm3rq+P/30U1RUVGDo0KEeg+7C8nq9HoGBgW6/CwFPocZvQ3zwwQcApEdgi4yMRO/evbF582bs3bvXY425yqKiojBw4ED8+OOP+P333zFs2DBxOtCwfVqyZAnefPNNREREYOPGjdUGqyoTgiiTJ08Wnw9S6Qac+yz1PJdKX+XjLBWE1uv1CAoKQkZGBjIyMsTgS1RUFPbv31/jh9Hq8uLo0aPYv38/jEajOMK2p32qa/oAZ4uHoUOH4rPPPsM///wDrVaL4cOHY9y4cWJtv8r3uYYeX+EDpY+Pj8d9ZhwcqtGYMWPwyiuvYN26dVi5cmWtar3U1VdffQWFQoFvv/3W7SvBqVOnql327Nmz1U4PCwtrUNpatGiBpKQkPPvss3UKqGi1WkycOFG8mfz999+44YYbsHv3brz11lsuVQGlCDUxatq/qmkFgLZt23ocot0bvvrqKwDOr8lVC2c1HS9P2rRpg8WLF2Px4sUoLS3FSy+9hAceeABz584VCz/CsfSUJ7Wt5QVc/CIp9SXcbrcjLS2tPrshKSwsDKdPn8bZs2clCzp1SXd9tw/UL99yc3NRWFgo+YVOGF6zodeYtxUXF2Pjxo0IDg7Gp59+6nbPqss5KlxTEydOxH333dfgtAUFBQFArWt9NURERASOHTuGpKQkdOrUqdp5azpH8vPzkZeXB51OV+8mcTXx9/eHWq1GVlaWx5f0xr5WmLsff/wR5eXluP/++3H33Xe7/V7Xe/7nn3/u8TzzJDEx0aW5Y5cuXbBt2zbs27fP7Z5aUVGBw4cPQ6vVujWrk+Lj44PIyEgkJydj//79bi+9586dQ1ZWFqKioiRrMVTl7XtGbdWlLFTd8w+4WOuwsvqUSYRlpNbnaXpAQAC0Wi3kcjnWrl3bJB8vKudH5S/zntLY1GpTPhLOu9mzZ9f6gxoArF+/vs41Y6S6jgCAX3/9FVOnTgUR4eOPP5Zsulob3ri+a6rtAUBskmi1WlFWVubWukF4Tlc9J+pDCGh5GqpemJ6bm1vrdQpBm8pNhBq6T08//TRWrlyJoKAgbNy40WOtv6ocDofYmqA2ee5pP6XSZ7FYEBMTg9OnT0su53A4xJowlZfr1q0bvv766zptqyohqDdp0iTo9XrJeeqbPkF4eDjuvfdel2lWqxUHDhyAyWRC9+7dXfZJ+L0+x1dIn1RgiV3UfJ9hLxNjx45Fu3btkJycjBUrVjTKNnJzc2E2myULXp999lm1y0r9brPZ8MUXXwCAx68btSVUNRQCIvXVoUMHsa3p4cOHa5xfiBh/8cUXkl+u/ve//7lN69mzJywWC3799ddGffkUbi5SX2NqOl61odVqcf/99yM0NBSZmZliBFzIE0/N2YTCgDBfdYRC6z///OP225YtW1BRUeE2XShAVm5KWRvVpTszMxMbNmyATCarsbZXfQnXwPr16yWrktaUb1LH9Oeff0ZOTg5iY2NdmpTVN4+8KT8/Hw6HA6GhoW6BoYqKijpdy966/gVdunQBABw/ftwr66vOiBEjAABvvPFGjfPGx8dDp9Nh7969kn0xCedI//79G62WkEqlEr8yS93fDh8+jIMHD8JoNKJr1651XndznpOXs+ru99u2bUN6enqd1nfmzBmQczCQWv8bMmSIyzrGjRsHwBloqur7779HaWkpRowYUevaZNWtT5hWU5+JgvreMxp6jh44cEDy2hWupcploYCAACiVSpw+fdptmxUVFZLBgvqUSeLj46HVarFnzx7xY0JlUs8WpVKJIUOGoKCgAL/88ovb75405NlTXXlg48aNXt9eQ3gqH9X3vNu6dWudr0ehJmFl+/btw7XXXouysjK89dZbdQpQVdXQ6/vUqVPYvXs3dDpdtemIjIxEly5dQESS57wwzRv9Wgl91ezZs8ftN7vdjv379wPw3LRbahmhP8nKNRQbsk9vvvkmHnzwQfj4+GDDhg116npi69atOH/+PCIiItzu15X169cP/v7+SEtLkywHeUqf0Ext69atbsv89ttvKC8vh06nc0mzsMyuXbvcyvQOh0PMP0/HVwhyAtUHvOqbvuq88847KC4uxs033+xSC6uh5+zRo0cBoM5lqKsNB4dqIJfL8cEHH0Cj0eA///kPFi9eLFZLqyw7O7veLzytW7dGbm4uPv30U5fpzz33HLZs2VLtsjt27MA777zjMu2xxx5DcnIyOnfuXKtAQXXuu+8+6HQ63H///fjyyy/dfi8rK8Pnn38ufhUoKSnBCy+84PYS7nA4sH79egCe299XNmTIELRt2xZJSUl48sknXX57/fXXsXv3brdlNBoNFi9ejMLCQkyaNEnyi25KSooYCa8v4WvNa6+95jL9888/x/vvv1+ndX399ddiJ7SV7d27F+np6TAajWL1x+uvvx7BwcHYsWOH2wvvCy+8gD179iA8PLxWhZJBgwYBcL70CrURAOD06dNYuHCh5DLCl9e6nufz58+HXC4X0ygoLy/HXXfdBavVikmTJtX6C01dxcbGYty4cSgsLMTdd9/t8pDcvXs3Xn31VSgUCpeO8ipbvny5Sx5lZWWJnSZWXaa+eeRNQUFBsFgsOHz4MHbu3ClOt9vtePDBByVfADzp3bs3Ro4ciZ07d2L+/PkoKChwm+fgwYPitV2TNm3aICgoCAcOHGj0l4rZs2cjICAAP/30E9asWePW7Oe3334TXywMBgNuvfVWOBwOzJ8/X+zTAXC+MAn3IE/XhrfcddddAIBly5a53L8KCwuxYMECEBHmzJlT5yZkYWFhSE9P53b29SDc7z/88EOX8yIlJQV33nlns6Rp9uzZMJvN+Oabb1yeyxkZGVi8eDEASNbaadu2Ldq2bevWZ9Xdd98NhUKB1157zeV5dOLECTz11FNQKpWStaak1Pee0dBz1OFw4K677nLpO2nv3r146aWXIJPJMHfuXHG6Wq1G3759kZOT49J5qs1mw3333YfTp0+7rb8+ZRKj0Ygbb7wRNpsNd999t0tfVgcPHsSLL74ouS8PP/ww5HI5Zs2aJfmyVVRUhHfeeQdWq1Wc1pBnz+DBgwE4+4WpPMDKJ5984vFjVFM86+pSPpo8eTLat2+Pjz76CE888YRbv2FEhJ07d7o8E73l+PHjGD16NAoKCvD8889LBo+kDB8+HG3btnXrJLu+17dA+JgxYcKEGmv7Ceu7//77XTriP3DgAJ599lkA8Mp9TmhF8Oijj7qUQex2Ox566CGcOXMGUVFR6NGjh/jb//73Pxw6dMhtXTk5Objjjjtw6tQpdOrUSey4vCH79Pnnn+POO++E0WjEjz/+WOfggZDnN954Y7W1/ZRKJRYtWgQicrs/btq0Ce+++y5kMpnbQBr33HMP1Go1XnrpJZdrIisrC/fccw8AZ387lWvSdO3aFSNHjsTZs2fxyCOPuJSBnnzySRw7dgxBQUEeO3Hfvn07zp49i/DwcLHZnif1SR8gHSz85ptvsHjxYgQEBLj0TyVoyDkrXGvCPY950HgDoV1Ztm/fTiEhIQSANBoNDRo0iKZPn04TJ06kHj16kEqlIgDUtm1bOnTokMuyqGGI1g8//FAcsm/gwIE0Y8YMat++PcnlcnFoXU/DiM6dO5dkMhn16tWLZsyYQR06dBCHHq48zClR9UMoE3kehvvrr78WhyJs2bIlXXPNNTR9+nQaOHAgGQwGAiAOG5ibmysOJdinTx+aPn06TZo0iSIiIggARUdHSw5FLeW3334T19+pUyeaMWMG9ezZk2QyGc2bN08yX+x2O918880EgNRqNfXu3VtMQ4cOHUgmk1GXLl1qtX0i6WP366+/isNqxsfH04wZM6hHjx4EQBxKsbZDi999993iMMLjx4+nG264gYYMGSKu/9lnn3WZf9OmTaTT6Vy23a1bN8K/Q7Vv27bNZf7qhuwVhpi3WCx0zTXX0PDhw8lgMNDUqVM9Dm3buXNncfjLxMREuu222+ibb76pNr+IiJ566ilx+MkRI0bQ9OnTxXOiVatWlJaW5jJ/TcPyVjf0rpTz589TTEyMmL7p06fT8OHDPeazsC+RkZE0fvx40uv1dM0119CkSZPIx8eHANDQoUPdhpr94osvxOtvypQpdNttt7kMoVzTUPZSQ7PWdN1K5bmQ3wqFgkaOHEnTpk2j6Oho0ul0NH/+fMn1eRqaOD09XTzHfHx8aMiQIXTDDTfQuHHjxGN49913S6ZNSmJiIgGgHTt2uP1W01D2Va/3mtK+ZcsWMplMBIBiYmLo+uuvp2uuuYZatmzpct8iIiooKKD4+HgCQEFBQTR16lQaO3YsabVaj0Of1mcI6JqO5x133EEASKfT0bhx42jq1KkUGBhI+HdI5OLi4lrte2V33XWXmAc33ngj3XbbbfT00097nL+mfRBUt/+ezvXqhp+vy9Di9V1XXa+1srIy8bkaEhJCkydPpnHjxpFer6d+/fpRv379JNdX03O/oT7//HOSy+Ukk8lo6NChNGXKFPHetGjRIsllhHKG1L6vXr1avEePGTOGJkyYID5rXnjhhTqlrT73jIaeo+PHj6eIiAgKCQmh66+/nhISEsRy2SOPPOK23MaNG0kulxMA6tu3L1133XUUGRlJAQEB4jVV9XyrT5kkMzNTvN+Eh4fTtGnTxLQtWLBAfAZW9eqrr4rPp44dO9KkSZNo2rRp1Lt3b9JoNASAcnNzxflTUlJIq9WSQqGg0aNH06233kq33XYbHTt2rMY8TEtLE+8xrVu3pilTplCXLl1IoVB4LIPu2bOHZDIZabVamjBhgvisE8p33hjKvq7lo3/++Ud8zgcFBdGIESPohhtuoFGjRlFQUBABoOeee67G/Kirrl27EgAKDAx0G/Ze+LdixQq35YT7l9S9uz7Xt6B169YEgH744YdapV/Iex8fHxo7diwNHTpUPMduv/12yWV69+4t/hPyNjY2Vpw2d+5cl/mzsrLEodU1Gg0NHTqUJk+eTLGxseLz7pdffpFMV2xsLE2YMIFmzJhBgwYNIqPRKJ4XR44cafA+paenk1qtFq9rT8fwq6++ktyW1Wols9lMAOjvv/+uMb/Ly8tpxIgRBICCg4NpwoQJ1L9/f/G8fuqppySXe/vtt0kmk5FKpaJBgwbRNddcQ/7+/gSAunfvToWFhW7LJCcnU3h4uHhtT548mdq3by/m+caNGz2m8/bbbycA9MADD9S4T/VNHwCKi4uj8ePH07Rp08Rnrb+/P/35558et1Wfc7awsJC0Wi21bdu2VvtzNePgUB0UFxfT888/T8OHD6fg4GBSqVRkNBqpTZs2dOONN9JXX33l9rJIVLtC4g8//EB9+vQhk8lEPj4+NGLECNq6davHwnnlB+l3331Hffv2Jb1eTxaLhSZMmCB5g6pvcIiI6OTJkzRv3jxq1aoVabVaMplM1KZNG5o+fTp99tlnVFZWRkREFRUV9PLLL9OkSZMoLi6O9Ho9+fj4UOfOnWn58uWUnZ1dbT5U9ddff9E111xDFouFDAYD9e3bl77//vsaX1q++eYbGjduHAUFBZFKpaKgoCCKj4+nxYsX0969e2u9fU/Hbvfu3TRs2DDy9fUlk8lE/fr1oy+++KLGF5Oq9u/fT/fddx/17NmTgoKCSKPRUFRUFF1zzTW0adMmyWUOHz5MM2bMEM/B0NBQuummmyQLgdWlp6ysjJYsWUIRERGkVqspLi6OnnzySbLZbB5f+k6cOEETJ04kf39/sWBd+Xyq7lz//vvvafjw4WSxWEitVlPLli1p8eLFlJOT4zavt4NDRM7CyX333UdxcXGkVqvJx8eHRo0aRRs2bJCcX9iX0tJSeuihhyg6OprUajVFRUXRww8/TCUlJZLLPffcc9S+fXvxQVU5nU0VHCIieu+996hbt26k1+vJ39+fJkyYQAcPHvS4vuqCDFarlV544QXq16+fePwiIiJo8ODBtGrVKjp37pxk2qTs3LmTANC8efPcfvN2cIiI6NSpU3TnnXeKx8/Pz4/i4+Pp8ccfp4KCApd5i4qKaPny5eLxM5lMNGDAAPr4448lt9sYwSEiovfff5/69etHRqORtFotdejQgZ566inJc642waGioiJasGABRUREkFKprPU9ioNDTjk5OTR37lyKjo4mjUZDsbGx9OCDD1JxcbHH9TV2cIiIaMeOHTR69Gjy8fEhvV5PPXr0oHfffdfj/NUFh4iIvv32Wxo4cCAZjUYyGo00cOBA+u677+qVtrreM7xxjqakpNBNN91EgYGBpNFoqEuXLh6fIUTOZ1LPnj1Jo9GQn58fXX/99XT69Olqnz/1KZNkZGTQnDlzKCQkhDQaDbVr147WrFlDycnJYtBXyv79+2nmzJkUFRUlPrM6dOhAt956K33//ffkcDhc5t+wYQP1799ffHmu6b5Q2dGjR2n8+PFkMpnIYDDQoEGDaPPmzdXu10cffUTdu3cXg4iVzy1vBIfqUz7Ky8ujJ598krp37y7eP6OjoykhIYFefvllyszMrFV+1IVwH6run9S5XF1wiKju1zcR0e+//y4Gx6TeR6Q4HA564403KD4+nvR6vXhe1+ZeUpf9LSgooMcee4w6d+5MBoOBVCoVRUZG0syZMyWDPNu3b6d58+ZRly5dKCAggJRKJfn4+FCfPn3oqaeeory8PK/sk/DMqOmfp2f2p59+SgCoW7duHtNTVXl5Oa1cuZI6dOhAWq2WzGYzDRs2rMb77ZYtWyghIYF8fHzEe8myZcuoqKjI4zIZGRk0f/58ioyMFN+Hpk+f7laRobLS0lLy9fUlAHTw4MFa71dd03fvvfdSt27dxPlbtWpFixYtovT09Gq3U59z9v3335cMKjN3MqIqde3ZZSExMRHvvfcetmzZUm37VsZY/chkMkRFRbk0KWPe0a1bN5w/fx7nz593q2bMGGNXg//973+YMWMG7rzzTrz66qvNnRzGGLtiJSQkYMeOHUhOTm7QiNVXA+5ziDHGWJN66qmnkJWVhTfffLO5k8IYY41q7969btMOHDgg9l130003NXWSGGPsqrFv3z78/PPPuO+++zgwVAs8lD1jjLEmNXbsWAwdOhT/93//h9tvv51rDzHGrlj9+/dHSEgI2rVrB7PZjNOnT2Pv3r1wOBxYsGBBo43UyRhjDHj88ccRFBQkdmbNqsfBIcYYY01u8+bNzZ0ExhhrdEuXLsWPP/6IPXv2IC8vD0ajEYMGDcLs2bNx4403NnfyGGPsivb11183dxIuK9znEGOMMcYYY4wxxthVjPscYowxxhhjjDHGGLuKcXCIMcYYY4wxxhhj7CrGwSHGGGOMMcYYY4yxqxgHhxhjjDHGGGOMMcauYhwcYowxxhhjjDHGGLuKcXCIMcYYY4wxxhhj7CrGwSHGGGOMMcYYY4yxqxgHhxhjjDHGGGOMMcauYhwcYowxxhhjjDHGGLuKcXCIMcYYY4wxxhhj7CrGwSHGGGOMMcYYY4yxqxgHhxhjjDHGGGOMMcauYhwcYowxxhhjjDHGGLuKcXCIMcYYY4wxxhhj7CrGwSHGGGOMMcYYY4yxqxgHhxhjjDHGGGOMMcauYhwcYowxxhhjjDHGGLuKcXCIMcYYY4wxxhhj7CrGwSHGGGOMMcYYY4yxqxgHhxhjjDHGGGOMMcauYhwcYowxxhhjjDHGGLuKcXCIMcYYY4wxxhhj7CrGwSF2Vdm2bRsef/xx5OfnN3dSmlR+fj4ef/xx7Nq1q7mT0iAVFRX4v//7P3z33XfNnZQr2kcffYTXX3+9uZPBGGOMMcYYayIcHGJXjbNnz2LixIkwmUywWCzNnZwmZbFYoNfrcd111yE1NbVOy7777ruQyWQ4c+aMx3nOnDkDmUyGd999t2EJrcGSJUvw1ltvoU+fPrVepjbpv5TIZDIsW7bMa+sbMmQIOnbsWOv5//jjD9x1111YtmwZfvjhhzpta9myZZDJZHVN4mXhjz/+gFqtxtmzZ91+Ky8vb/D6KyoqEBERgVdeeaXB62KMMcYEJ06cwKhRo2CxWCCTyfD11183d5IYY5coDg6xWpHJZLX6t3Xr1uZOqqSKigpMmzYNiYmJuPfeextlG6+88kqjB0ca4v7778fUqVMxY8YM2O32Bq1ryJAhSExM9Eq6SkpKsGzZshrPnW+++QYffvgh1q9fj8DAQK9sm7kqLy/HrFmz8Morr+DDDz/E3Llz3WrZ1fZ4Xcr++9//1rlw/PDDD2PGjBmIiooSp5WWluKGG26AwWBAcHAwPvvsM8llk5KSMGfOHMTGxkKr1cJsNqN///54/vnnYbVaAQAqlQqLFi3CU089hdLS0nrvG2OMscYjfHDas2dPcyel1mbOnIlDhw7hqaeewgcffIAePXp4Zb27du3CsmXLkJeX55X1Mcaan7K5E8AuDx988IHL3++//z42btzoNr1du3ZNmaxa+/vvvzF9+nTcfffdjbaNV155BQEBAV4LmjSGF154Ac899xyOHz+O9u3be229UVFRsFqtUKlUdV62pKQEy5cvB+AMOnly5swZ/PTTT2jZsmWd1n/zzTdj+vTp0Gg0dU7b1eb48eO45557MH36dADAypUrceTIEfTt21ecp7rj9cgjj2DJkiVNlt76+u9//4spU6Zg4sSJtZr/wIED2LRpk1uzzGeffRaHDh3CJ598grNnz2L27Nno06cPIiMjxXl++OEHTJ06FRqNBrfccgs6duyI8vJy7NixAw888AD+/vtvvPHGGwCAWbNmYcmSJfj4449x6623em1/GWOMXZ2sVit2796Nhx9+GAsWLPDqunft2oXly5cjMTERPj4+Xl03Y6x5cHCI1cpNN93k8vdvv/2GjRs3uk2/VHXt2hVdu3at9fxEhNLSUuh0usZLVDOkQy6X47777vPKuiqTyWTQarVeX29ldQ3sFRcXw2AwQKFQQKFQNFKqPLPZbHA4HFCr1U2+7frq1KkTOnXqJP49Y8aMOi2vVCqhVF55j5W1a9ciMjLSrTnj7t278eSTT2LChAkAgB07duDPP/8Ug0OnT5/G9OnTERUVhc2bNyM0NFRcdv78+Th58qRL0z0fHx+MGjUK7777LgeHGGOMNVhmZiYAeDV4I5SvGGNXHm5WxrzG4XBgzZo16NChA7RaLYKDgzFnzhzk5ua6zBcdHY3x48dj69at6NGjB3Q6HTp16iQ2U/nyyy/RqVMnaLVaxMfHY//+/S7LJyYmwmg04tSpU0hISIDBYEBYWBgef/xxEFGD0rRhwwYxTUKHvGvXrsWwYcMQFBQEjUaD9u3b49VXX3Vb/u+//8avv/4qNrETalV46odFqi+c6tKRl5eHe+65BxEREdBoNGjZsiVWrlwJh8NR47H55ptvMG7cOISFhUGj0SAuLg5PPPFEg5uXCaT6HBKOU0pKCiZOnAij0YjAwEDcf//94nbPnDkjNhFbvny5mHeV+9w5duwYpkyZAj8/P2i1WvTo0QPffvuty/aFvPz1118xb948BAUFoUWLFi6/Ve1z6KeffsLAgQNhMBhgMpkwbtw4/P333y7zDBkyRLI2U2JiIqKjo932/5lnnsGaNWsQFxcHjUaDI0eOeMyzsrIy3HvvvQgMDITJZMK1116L8+fP17gtQV3799m7dy/69esHnU6HmJgYvPbaay6/l5eX49FHH0V8fDwsFgsMBgMGDhyILVu2uOxndcdLKk0ymQwLFizAunXr0L59e+h0OvTt2xeHDh0CALz++uto2bIltFothgwZItk31O+//47Ro0eLfWcNHjwYO3fulMyPkydPil8xLRYLZs2ahZKSEpf0FBcX47333hPTX1Ntv6+//hrDhg1z27fY2Fi88cYbOH78ODZu3Iht27a51Gx7+umnUVRUhLffftslMCRo2bKlW9Bz5MiR2LFjB3JycqpNE2OMseZXm7KOwOFw4PnnnxfLuIGBgRg9erRLEzWbzYYnnnhCLEdER0fjoYceQllZmcu6hPLijh070KtXL2i1WsTGxuL9998X51m2bJnYFPqBBx6ATCZzKU/s378fY8aMgdlshtFoxPDhw/Hbb7+5bMdT+WrZsmV44IEHAAAxMTHi8/Ry6d+RMSbtyvvEy5rNnDlz8O6772LWrFlYuHAhTp8+jZdeegn79+/Hzp07XZocnTx5EjfccAPmzJmDm266Cc888wyuueYavPbaa3jooYcwb948AMCKFStw/fXX4/jx45DLL8Yy7XY7Ro8ejT59+uDpp5/G+vXr8dhjj8Fms+Hxxx+vV5qOHz+OGTNmYM6cObj99tvRpk0bAMCrr76KDh064Nprr4VSqcR3332HefPmweFwYP78+QCANWvW4K677oLRaMTDDz8MAAgODq5XPkqlo6SkBIMHD0ZKSgrmzJmDyMhI7Nq1C0uXLkVqairWrFlT7TrfffddGI1GLFq0CEajEZs3b8ajjz6KgoICrFq1ql7prA273Y6EhAT07t0bzzzzDDZt2oRnn30WcXFxmDt3LgIDA/Hqq69i7ty5uO666zBp0iQAQOfOnQE4mwP2798f4eHhWLJkCQwGAz777DNMnDgRX3zxBa677jqX7c2bNw+BgYF49NFHUVxc7DFdH3zwAWbOnImEhASsXLkSJSUlePXVVzFgwADs379fMhhTG2vXrkVpaSnuuOMOaDQa+Pn5eZx39uzZ+PDDD3HDDTegX79+2Lx5M8aNG1ev7dYkNzcXY8eOxfXXX48ZM2bgs88+w9y5c6FWq8UaKgUFBXjrrbcwY8YM3H777SgsLMTbb7+NhIQE/PHHH+jatWuNx8uT7du349tvvxWvlxUrVmD8+PFYvHgxXnnlFcybNw+5ubl4+umnceutt2Lz5s3isps3b8aYMWMQHx+Pxx57DHK5XAzYbt++Hb169XLZ1vXXX4+YmBisWLEC+/btw1tvvYWgoCCsXLkSgPPYz549G7169cIdd9wBAIiLi/OY9pSUFCQnJ6N79+5uvy1duhRDhw5F27ZtATg7TO/SpYv4+3fffYfY2Fj069ev2vypLD4+HkSEXbt2Yfz48bVejjHGWPOoqawjuO222/Duu+9izJgxmD17Nmw2G7Zv347ffvtN7Ado9uzZeO+99zBlyhTcd999+P3337FixQocPXoUX331lct2T548iSlTpuC2227DzJkz8c477yAxMRHx8fHo0KEDJk2aBB8fH9x7772YMWMGxo4dC6PRCMBZvho4cCDMZjMWL14MlUqF119/HUOGDMGvv/6K3r17u2yravlqzJgx+Oeff/DJJ5/gueeeQ0BAAABwn5CMXe6IsXqYP38+VT59tm/fTgDoo48+cplv/fr1btOjoqIIAO3atUuctmHDBgJAOp2Ozp49K05//fXXCQBt2bJFnDZz5kwCQHfddZc4zeFw0Lhx40itVlNmZma907R+/Xq3fS0pKXGblpCQQLGxsS7TOnToQIMHD3ab97HHHiOpS23t2rUEgE6fPl1jOp544gkyGAz0zz//uExfsmQJKRQKSk5Odlt/TfswZ84c0uv1VFpaWu2yUums6vTp0wSA1q5dK04TjtPjjz/uMm+3bt0oPj5e/DszM5MA0GOPPea23uHDh1OnTp1c0uhwOKhfv37UqlUrtzQOGDCAbDZbtekvLCwkHx8fuv32213mS0tLI4vF4jJ98ODBksd05syZFBUV5bb/ZrOZMjIy3Oav6sCBAwSA5s2b5zL9hhtucMuLqtsSeDqvqho8eDABoGeffVacVlZWRl27dqWgoCAqLy8nIiKbzUZlZWUuy+bm5lJwcDDdeuut4rTqjpdUmgCQRqNxOX+E6zokJIQKCgrE6UuXLnU5Vg6Hg1q1akUJCQnkcDjE+UpKSigmJoZGjhzptu3KaSUiuu6668jf399lmsFgoJkzZ0rklrtNmzYRAPruu+8kfy8rK6M9e/bQmTNnXKbn5+cTAJowYUKttiO4cOECAaCVK1fWaTnGGGONTyhT/Pnnn0RU+7LO5s2bCQAtXLjQbZ3C800oG8yePdvl9/vvv58A0ObNm8VpQnlx27Zt4rSMjAzSaDR03333idOE8smqVatc1jlx4kRSq9WUlJQkTrtw4QKZTCYaNGiQ2/5Kla9WrVpVY/mQMXZ54WZlzCvWrVsHi8WCkSNHIisrS/wXHx8Po9Ho0jQFANq3b+/Sya3whWLYsGEunbkK00+dOuW2zcod6wlNV8rLy7Fp06Z6pSkmJgYJCQlu26nc309+fj6ysrIwePBgnDp1ym0kJ2+QSse6deswcOBA+Pr6uuzLiBEjYLfbsW3btmrXWXkfCgsLkZWVhYEDB6KkpATHjh3z+j5Uduedd7r8PXDgQMnjWVVOTg42b96M66+/XkxzVlYWsrOzkZCQgBMnTiAlJcVlmdtvv73G/oU2btyIvLw8zJgxwyUvFQoFevfu7XZe1MXkyZNr9dXsxx9/BAAsXLjQZfo999xT721XR6lUYs6cOeLfarUac+bMQUZGBvbu3QsAUCgUYv9IDocDOTk5sNls6NGjB/bt29eg7Q8fPtylNpZwXU+ePBkmk8ltunB+HDhwACdOnMANN9yA7Oxs8VgVFxdj+PDh2LZtm1uzSqnzLTs7GwUFBfVKe3Z2NgDA19dX8ne1Wo34+HiXUcwAiNurvH+1IWwnKyurrklljDHWTGoq63zxxReQyWR47LHH3JYVmiwLZYNFixa5/C70FVm5jzrAWZYeOHCg+HdgYCDatGlTYxnLbrfj559/xsSJExEbGytODw0NxQ033IAdO3a4PTNrU75ijF3+uFkZ84oTJ04gPz8fQUFBkr9nZGS4/F05AAQAFosFABARESE5vWofQXK53OWBBgCtW7cGALG9c13TFBMTIznfzp078dhjj2H37t0ufZcAzmCRkEZvkUrHiRMn8Ndff3kMPFTdl6r+/vtvPPLII9i8ebPbA78xAlwCoU19Zb6+vm7HU8rJkydBRPjPf/6D//znP5LzZGRkIDw8XPzb0zGs7MSJEwCcgUgpZrO5xnV4UpvtA8DZs2chl8vdmjMJTRm9LSwszK3zyMrXi9DR8nvvvYdnn30Wx44dQ0VFhThvbffLk/pe78Kxmjlzpsd15+fnuwRuqm5L+C03N7dBx5aq9GdWE2FbhYWF9dpOXfqTYowx1nxqU9ZJSkpCWFhYtc3NhbJB1VFZQ0JC4OPjg7Nnz7pMr/q8k9qulMzMTJSUlEiWOdq1aweHw4Fz586hQ4cO4vSGlgMYY5cHDg4xr3A4HAgKCsJHH30k+XvVh6anrw+eptf1xaw+aZIaESwpKQnDhw9H27ZtsXr1akRERECtVuPHH3/Ec889V6vOoD295HnqDFoqHQ6HAyNHjsTixYsllxFe9KXk5eVh8ODBMJvNePzxxxEXFwetVot9+/bhwQcfrNU+1FdDvjIJ6br//vsla3QBcCtA1WZUN2G9H3zwAUJCQtx+rzzalkwmkzz36nLsGqqu5099ffjhh0hMTMTEiRPxwAMPICgoCAqFAitWrEBSUlKD1l3f6104VqtWrfI42qDQf0Jt11lX/v7+ANwD1DUxm80ICwvD4cOH67ScsB2h/wbGGGOXNm/XqKntxwFvP++q09yj9zLGmgYHh5hXxMXFYdOmTejfv3+TPEAcDgdOnTrlEhT5559/AEBsvuKNNH333XcoKyvDt99+6/KFRqrpkaeHuVBzIS8vz2Uo0apfgKoTFxeHoqIijBgxotbLCLZu3Yrs7Gx8+eWXGDRokDj99OnTdV5XY/CUb0LNMJVKVa/99kSorRMUFFTjen19fSWrZ9fl2EmJioqCw+FAUlKSy5e748ePS6YhLy+vQWm4cOGC29CzVa+Xzz//HLGxsfjyyy9djknVKvBNWaNFOFZms9mr50Bd9kHobLo+18v48ePxxhtvYPfu3S7NaKsjbKddu3Z13h5jjLFLU1xcHDZs2ICcnByPtYeEssGJEydcngHp6enIy8tza75cX4GBgdDr9ZJljmPHjkEul7vV7JXCNVwZu/Jwn0PMK66//nrY7XY88cQTbr/ZbDbJl9uGeumll8T/JyK89NJLUKlUGD58uNfSJHyVqfwVJj8/H2vXrnWb12AwSK5TeMGt3C+QMJR2bV1//fXYvXs3NmzY4PZbXl4ebDZbnfahvLwcr7zySq2335j0ej0AuOVdUFAQhgwZgtdffx2pqaluy2VmZtZrewkJCTCbzfjvf//r0nRKar1xcXE4duyYy7SDBw+6DaNeV2PGjAEAvPDCCy7TpUadi4uLQ35+Pv766y9xWmpqqtuoJdWx2Wx4/fXXxb/Ly8vx+uuvIzAwEPHx8QCkz5Pff/8du3fvdlmXp+PVGOLj4xEXF4dnnnkGRUVFbr/X9xzwdK1KCQ8PR0REhMtQw7W1ePFiGAwGzJ49G+np6W6/JyUl4fnnn3eZtnfvXshksloHkxhjjF36Jk+eDCLC8uXL3X4Tnrtjx44F4F4WWL16NQB4bURThUKBUaNG4ZtvvnEZej49PR0ff/wxBgwYUKtm2MIHp6YoDzDGmgbXHGJeMXjwYMyZMwcrVqzAgQMHMGrUKKhUKpw4cQLr1q3D888/jylTpnhte1qtFuvXr8fMmTPRu3dv/PTTT/jhhx/w0EMPic3FvJGmUaNGQa1W45prrsGcOXNQVFSEN998E0FBQW4Bi/j4eLz66qt48skn0bJlSwQFBWHYsGEYNWoUIiMjcdttt+GBBx6AQqHAO++8g8DAQCQnJ9dqfx944AF8++23GD9+vDhMaXFxMQ4dOoTPP/8cZ86c8dgMpV+/fvD19cXMmTOxcOFCyGQyfPDBB41S7bg+dDod2rdvj08//RStW7eGn58fOnbsiI4dO+Lll1/GgAED0KlTJ9x+++2IjY1Feno6du/ejfPnz+PgwYN13p7ZbMarr76Km2++Gd27d8f06dPFY/HDDz+gf//+YuDx1ltvxerVq5GQkIDbbrsNGRkZeO2119ChQ4d6d3AMAF27dsWMGTPwyiuvID8/H/369cMvv/yCkydPus07ffp0PPjgg7juuuuwcOFClJSU4NVXX0Xr1q1r3VF0WFgYVq5ciTNnzqB169b49NNPceDAAbzxxhtQqVQAnLVcvvzyS1x33XUYN24cTp8+jddeew3t27d3CcxUd7y8TS6X46233sKYMWPQoUMHzJo1C+Hh4UhJScGWLVtgNpvx3Xff1Xm98fHx2LRpE1avXo2wsDDExMS4Ddtb2YQJE/DVV1+BiOr0pTQuLg4ff/wxpk2bhnbt2uGWW25Bx44dUV5ejl27dmHdunVITEx0WWbjxo3o37+/2JyNMcbY5W/o0KG4+eab8cILL+DEiRMYPXo0HA4Htm/fjqFDh2LBggXo0qULZs6ciTfeeEPsEuCPP/7Ae++9h4kTJ2Lo0KFeS8+TTz6JjRs3YsCAAZg3bx6USiVef/11lJWV4emnn67VOoSPSw8//DCmT58OlUqFa665xq2PQ8bYZaTpB0hjV4KqQ9kL3njjDYqPjyedTkcmk4k6depEixcvpgsXLojzREVF0bhx49yWBUDz5893mSY1BOfMmTPJYDBQUlISjRo1ivR6PQUHB9Njjz1Gdrvdq2kiIvr222+pc+fOpNVqKTo6mlauXEnvvPOO2/CdaWlpNG7cODKZTATAZQj0vXv3Uu/evUmtVlNkZCStXr3a41D2ntJRWFhIS5cupZYtW5JaraaAgADq168fPfPMM+Jw5J7s3LmT+vTpQzqdjsLCwmjx4sW0YcMGAkBbtmypdtmGDGVvMBjc5pUa7nzXrl0UHx9ParXabZj0pKQkuuWWWygkJIRUKhWFh4fT+PHj6fPPP3dLozC0bG3Sv2XLFkpISCCLxUJarZbi4uIoMTGR9uzZ4zLfhx9+SLGxsaRWq6lr1660YcMGj0PZVx0qtjpWq5UWLlxI/v7+ZDAY6JprrqFz585JDhP/888/U8eOHUmtVlObNm3oww8/rNNQ9h06dKA9e/ZQ3759SavVUlRUFL300ksu8zkcDvrvf/9LUVFRpNFoqFu3bvT999+77SuR5+PlaSj72lzXRM5jAoDWrVvnMn3//v00adIk8vf3J41GQ1FRUXT99dfTL7/8Is4jbDszM9NlWanjf+zYMRo0aBDpdDoCUOOw9vv27SMAtH379mrn8+Sff/6h22+/naKjo0mtVpPJZKL+/fvTiy++SKWlpeJ8eXl5pFar6a233qrXdhhjjDUuqaHsa1vWsdlstGrVKmrbti2p1WoKDAykMWPG0N69e8V5KioqaPny5RQTE0MqlYoiIiJo6dKlLs8KIs/lxcGDB7uUP6srn+zbt48SEhLIaDSSXq+noUOH0q5du6rd36qeeOIJCg8PJ7lczsPaM3YFkBFdItUHGKulxMREfP7555LNTBhjrDEMHz4cYWFh+OCDDxptG2vWrMHTTz+NpKQk7vyTMcYYY4w1Ke5ziDHGGKvBf//7X3z66acN7ozck4qKCqxevRqPPPIIB4YYY4wxxliT4z6HGGOMsRr07t0b5eXljbZ+lUpV6z7IGGOMMcYY8zauOcQYY4wxxhhjjDF2FeM+hxhjjDHGGGOMMcauYlxziDHGGGOMMcYYY+wqxsEhxhhjjDHGGGOMsavYFdshtcPhwIULF2AymSCTyZo7OYwxxhhrJkSEwsJChIWFQS6/vL+LcfmGMcYYY4D3yzdXbHDowoULiIiIaO5kMMYYY+wSce7cObRo0aK5k9EgXL5hjDHGWGXeKt80S3BoxYoV+PLLL3Hs2DHodDr069cPK1euRJs2bcR53njjDXz88cfYt28fCgsLkZubCx8fn1pvw2QyAXBmlNls9mr6HQ4HMjMzERgYeNl/gfQmzhdpnC/SOF+kcb5I43yRxvkirWq+FBQUICIiQiwb1MXLL7+MVatWIS0tDV26dMGLL76IXr16eZx/3bp1+M9//oMzZ86gVatWWLlyJcaOHSv+npiYiPfee89lmYSEBKxfv75W6WnM8g3A55QnnC/SOF+kcb5I43yRxvnijvNEmjfLN1KaJTj066+/Yv78+ejZsydsNhseeughjBo1CkeOHIHBYAAAlJSUYPTo0Rg9ejSWLl1a520IVa3NZnOjBIdKS0thNpv5ZK2E80Ua54s0zhdpnC/SOF+kcb5I85QvdW2G9emnn2LRokV47bXX0Lt3b6xZswYJCQk4fvw4goKC3ObftWsXZsyYgRUrVmD8+PH4+OOPMXHiROzbtw8dO3YU5xs9ejTWrl0r/q3RaGqdpsYs3wB8TnnC+SKN80Ua54s0zhdpnC/uOE+keat840mzBIeqfh179913ERQUhL1792LQoEEAgHvuuQcAsHXr1iZOHWOMMcYYsHr1atx+++2YNWsWAOC1117DDz/8gHfeeQdLlixxm//555/H6NGj8cADDwAAnnjiCWzcuBEvvfQSXnvtNXE+jUaDkJCQptkJxhhjjLFauCT6HMrPzwcA+Pn51XsdZWVlKCsrE/8uKCgA4IyuORyOhiWwCofDASLy+novd5wv0porX0rzSlGaVwpbqQ2+cb5QqBQoySqBvdwOU5gJ5CBk/5Mt/gYAOSdzIFfKYSu1wWF3wL+VPxRqhdu6K6wVyD+bD52fDoYgQ73SJ+RLUUYRCpIL4BvnC52vDuVF5cg+ng1jqBGmMBNyT+VCppCBHATfGF8AcM7zTzZ0/jr4RPnAYXM49yXWF0qt87aWezoXen89NGb3L/K5p3KhD3D+Vl5UjqK0Ivi1rPv9hxyEzKOZAAFBHZ21CPLO5EHrq0VZfhmUWmWt8qc4oxj5yfnwa+kHtVkNIkJBagHkMjmMIUYAQFlBGaw5VvhE+7jmo9257wFtAiCTO78a2MvtyD2Vi4C2AW7byjmZA1O4CQq1wm25CmsFso5lQWvRosJagYC2ASgvKkfe6TwotUqo9Cro/HRQG9V1zquGqu91JJU/2SeyYQ43oyi9SPIcKUorQnlROXR+OlhzrSgrKINKp4LapIbWRwu1oen33xNv3F+sOVbknsqFT4wP9P56cXrl66SssAxFqUXwb+2PorQiOGwOmFtUX2vFVmpD9olsgABHhQOQA3KFHHKVHOZws+S16S1V86U++VNeXo69e/e61F6Wy+UYMWIEdu/eLbnM7t27sWjRIpdpCQkJ+Prrr12mbd26FUFBQfD19cWwYcPw5JNPwt/fX3KdTVm+EdbLz3J3nC/SOF+kcb5I43yRxvnijvNEmjfKN9Vp9uCQw+HAPffcg/79+7tUua6rFStWYPny5W7TMzMzUVpa2pAkunE4HMjPzwcRcTW3SjhfpDVXvhz54Ij4/35t/BDSKwRJ3ybBXmZH66mtkXcyDxd2X0Bor1D4tvFFzvEcpP2R5rKO4Kxg+LdzvrA4bA4UnClA/ul8lKSXgIigsWgQd21cvdLncDiQfjodeb/ngewE0ykTIoZEIPmXZBRdKILaqEbEsAgkfZskLtPm+jYoyy/D+a3nYSuzQa6Qo+V1LXF++3mUpJcguIczvdZsK07/eBpaXy1ix8eKy1uzrUjZkYLygnIx7UI+tZrcCiq9qtbpJyJc2HkB+aedwe0SWQnK8sqQ+lsqlBolbGU2qAwqtJrUqtr12CvsSPomCTarDeazZoT1D0NeXh6OfH8EMpkM7W9uDwBI3pyM4gvFaD2ttRjMA4DcE7lI/S0VESURMEU42xtn/pWJzIOZiHHEQBegE+ctSilC8uZkGEIMUOqVyD+Vj9As5/EnIpzdcBYlmSXi/D4nfVB4rhD2MrtLmvVBeliiLTBFmcRgXGOr73WUcywHaX+miflTklmCM+vPwNTChMLzhfBp6YOwvmHi/NZsK86sPwNykMd1GsON8G/vD0NI/QKj3uSN+8vZTWdRnFoM40kjIodFAgCsWVac/sl5DcWMjcHpH0+jNLcUob1Dkb4nHXKVHK2ntpZcHxEh70QeMg9kwlZm87hdjY8G5igzAjpeDNx5S9V8KSwsrPM6srKyYLfbERwc7DI9ODgYx44dk1wmLS1Ncv60tIv31tGjR2PSpEmIiYlBUlISHnroIYwZMwa7d++GQuEejG/K8g3Az3JPOF+kcb5I43yRxvkijfPFHeeJNG+Ub6rT7MGh+fPn4/Dhw9ixY0eD1rN06VKXr3VC50yBgYGN0ueQTCbjDrKq4HyR1lz5ct50Xvx/k94Ei9YCjUMDqIDAgEDk/ZEHs8kMk9YEfx9/pCalwmz691qRASBARzqYVCZkHc1Czj85sJfboVQo0aJjC9hKbShOK4ZRYYRCpahzLQBrnhUn9p2AyWgCHIAGGujsOsgL5c50yABk4mKaAOhJj4y9GTDqjVAFqVCWV4bsHdlQliid+6IxISgoCCmnU2A2maFUKV36BTm28xi0pIXWpAUIsGgt4vr9ffyh9dHWOv3ndp4DZREsFgvIQXCkOlBypuRietWAQq2Q7Jeksgt7LkCv1AMmwKR1pt+aYYXJZIJcJkdQUBDIQbhgvQCT0QQ/sx80pot5XXq8FGaTGRaDBQFBzppChY5CmE1m+Jp9YQ66mH/283aYTWaooII91/n/vr6+CAoKQkFKAZSlSgTHBMOabXXW9kh3wKgzImp0FBRqBSpKKlB4oRD5Z/JRfLQYxceKYW5hhm9LX/jG+kKuaLzzu77XUcHeAmf+GJ35k3r+3/M833lumXQm8RhVWCuQvjEdJoMJpnAT9IF66Px00Fg0sFltKCssQ2GKc/9zf8tFeXA5oodFuxyPptbQ+4vD7kCK1Xm9GHQGMS/OHjsLs8kMuUwOZAJqmxpqkxrFR4ph1DtrswX4B7gd86K0IpzbdQ7WLCvMPmZYIi1Q6VVijTeH3QGb1Yb85Hzkn81H2akyFJQVIGZEDJQa7xVJquaLVlv7a7uxTZ8+Xfz/Tp06oXPnzoiLi8PWrVsxfPhwt/mbsnwD8LPcE84XaZwv0jhfpHG+SON8ccd5Iq2xyzfNGhxasGABvv/+e2zbtq3BQ69pNBrJDh3lcnmjnFAymazR1n0543yR1tT5Yiu1uXyJ1xg1KEwpFKeV5ZWhOK0YMrkMNqsNOf/kwGFzIHpINPxb+0Mml+HQx4dQkFyA3KRcZ6DIT4fA9oHwa+knNkk6k3EGx786DgBiEypDkAHGECMMwQaXF8cKawWK0orEf8UZxbCX2hE7Lha5J3ORdzYPyb8mQ6FWwNzCjLwzecg6kuWyH+d3nYejwoGYYTHQWDQ49tUx2Kw2hHQNQfpf6bBZbZDJZMg7nQeZXAZDkEHMc4fdgbKCMnF9Oj8dcpNyxb/JVvsvE5lHMpF1NAvmFmbEDIvBXx/+hfwz+ZCr5IgbFYeckznIOZkDpVZZ7TrLi8uReTgTOn8d7OV2OCoczq8A5wshl8khkzvPm+KsYpCdIJPL4Ch3uKzTmmN17oMD4vTS3FLI5DKQjZB/Jh+FFwoROSASFUUVkMll0Fq0KEorcq5f4TwvC885z4/YYbHQmDVI3pmM3FO5aJnQEqawiyMgBLUPgr3Cjvyz+cg5mYP8c/koTClE5uFMxA6PrVOAra7qeh057A4UpxeLeSGXy1F0ocjlnKp83JN/TYbNakPMsBj4t5Zu4hPSKQRlBWVIO5iGrKNZOP71ccQMjYEl0tLwHaynhtxfitOKAYIzj+zOvCAHIf9sPmRyGRRqBdL3p4tNMAHntWPNscJR5oDS6CxGlBeXI+X3FOSczIFMLkNo91CEdAtxqeVWmV+sH8hBOLfrHDKPZOLEdyfQcnRLrzY1q5wv9cmbgIAAKBQKpKenu0xPT0/32F9QSEhIneYHgNjYWAQEBODkyZOSwaGmLt8A/Cz3hPNFGueLNM4XaZwv0jhf3HGeSGto+aY6zRIcIiLcdddd+Oqrr7B161bExMQ0RzIYu2JZc6wuf9vL7Sg4VyD+nfF3hvj/ZYVlKDhfAJVeBb9WfheDJ/465J/Nh8asQfSQaLHvG4E5wuysVWHWQG1UozijGAXnC5Cf7GxmJVPIoNQoIVfJAXL2mSNQapWwRFlg8bfAJ9oH1iwrcMbZl1DkgEhA5uy7BwDCe4XDEmnBkc+PoLyoHMYQI/xa+oGI4BPtA2OIEcGdg5H9TzYqiitQlFokvsQ6bBfb4RZeKISjwoGgTkHIOZkDW6kNOSdzxN8rz1tt3uZacW73OahNasSNioNCrYDGokFZfhlihsXAHG6GOdyM8sJylGSXVLuulD9S4LA50KJPC6T8kQJ7ubP5VmFyIXRyZ3MwIkLhhYtVRm2lF5vpkIOctXwAcVl7uR3lhc79t1fYkX08G0VpRQjvHY6SrBK3dTgqnPuddzYPapMaOj/ndqMGRiGyfyTkSveHjkKlgF9LP/i19IOt1Ib0Q+lIO5CGo18eRUT/CAS0ce/rqDkIfeMAzv102Bwozih2mUfIN2uuFQXnnX1feQoMCTRmDaIGRsEnygent5zGyfUnEd47HCFdLr8Ohivnh73CLk4TmhLarM5zJbzXv+ePDNBatDj/23mUF5dDbVQj80gmzv92Hg6bA5ZIC1r0bQGtpeYgoUwuQ+SASGh9tDi3+xyOf3scHad3lDznmoNarUZ8fDx++eUXTJw4EYDzi90vv/yCBQsWSC7Tt29f/PLLL+KgGgCwceNG9O3b1+N2zp8/j+zsbISGhnoz+YwxxhhjddIswaH58+fj448/xjfffAOTySS2xbdYLNDpnC8maWlpSEtLw8mTJwEAhw4dgslkQmRkZIM6rmbsaiAEAaIGReHstrNicyBB9vFsKNQKKNQKFKUWAQBa9GnhUtMnsF0gZDLny5tUXzwqnQrtp7R3meawO1CSWSLWDrKV2uCwOTtO82/tD2OIEcYQI7Q+WjgcDmRkOINUQm0TS6QFge0DUZByMZDl37pSp9gyIKJ/hPN/ZTLEjbrY35HKoEJZQRmSdySLzeKEwAcA5J3Oc+5X+0CUF5aLwSeFWgF7uV0MElTHYXfg9C+nQQ5CzLAYMV1Rg6JgL7PDJ8pHnFeukrtsv6rijGLknMiBuYUZlggL0g+mo6SoBCVZJagoroDO5LwXOiocHoND1lyr2DeOEASpHJByVDjEQKHNaoM11/n/pXkX+ymxl9thzbGivLBc7FQbcL6416YfGKVWifCe4TC3MOP05tM4++tZyBXyenXw7W2VA6L2cjsKUwtBDoJCoxCDH8JxzzqWBQAI6lB9M8DKLJEWtJ/cHifXn0TKHykwh5uhD9DXvOAlpDizGJAB+gC9GFQUAryGIAOKM4ohVzqPZ2D7QAAQg6rlheU4c+wMso9nQ21SI7J/ZL1qUAV1DILGrIGt1HbJBIYEixYtwsyZM9GjRw/06tULa9asQXFxsTh62S233ILw8HCsWLECAHD33Xdj8ODBePbZZzFu3Dj873//w549e/DGG28AAIqKirB8+XJMnjwZISEhSEpKwuLFi9GyZUskJCQ0234yxhhjjDVLcOjVV18FAAwZMsRl+tq1a5GYmAjAOVxs5Q4YhSHuK8/DGJMmBAR8Ynxwbvc5FKYWwmFziM1BhN/KCspQXlQOhVrhNrKVJdJS5xc9uUIuBoDqwifGB6GFoeKLuc5XJ6ZBCEwFtAuAxqRxGU2pMrVBDWu2FRUlFWjRpwWyjmeJARMiQt6ZPOj8dNBatFDqLt76AtsHIu1Amlhrojopv6fAmmNFWI8wGIMv7qMp1OQ2r0KlcPZFZHe49ctSmleKkxtOQiaXoUVfZ5NaIUiVm5QLANAH6mHNtsJWZkNRWhHkSrmzU/BzBWL/PpU7jxZrwGRfrDVmzbWK04vSigCJPpbtFXbknc0DAFii6t80yhRqQrtJ7XBk3RGc230O5gizV/uQqY+C8wVivtkr7ChMcQbZogZFofBCIYrTi1FeVC6OaKb10db53FUb1YgeGo2jXx5F8o5ktJnQBjKZdztXbkwlmSXQ+mih0qnEcyfvbB6UOiV8Y31RnFEsNiUVCNfk6c2nAThrEcYMa1ifQc3ZLK8606ZNQ2ZmJh599FGkpaWha9euWL9+vdjpdHJyskuV7n79+uHjjz/GI488goceegitWrXC119/LQ64oVAo8Ndff+G9995DXl4ewsLCMGrUKDzxxBOSTccYY4wxxppKszUrq8myZcuwbNmyxk8Mu2rZSm1I3pmM4vRi8eVRY9bAGGyEMdQIvzg/r4+g01RKskugNqqh1Cih1CjFZlY+0T5icMgvzg/Z/2QDAAI7BEoOWd9UFCoFwuIvjhil0qvQcXpHlyHTowZGVbsO4YXVJ9oHwZ2DkXsqFxUlFQAg1mISaj6odM551SY1TOEmpB1Iq7aWDwAUpRch43AGjCFGhHSrufmQkJ+OCtfgUHlROf754R/YSm2IGxknBsIUGgVAQPY/2VAZVDC3MMOabXU2h7M54Bvni9ykXOSczIHGrEFYjzCxhhhw8XyuXCuoKK1I/P/CVOnRDBwVDuSfzYdCrZAMctWFSqdCi74tcGbLGaT8noKoQdUfs8ZUUVIBa44VvrG+yD2VC0eFs0mZUquET7QPfGN8cXL9SVhzrcg7kwd7mR2h3erXrEfvr0dwp2Ck/5WOrKNZ4nl2qbOV2lBeVA7/1v5w2B0gB6E0vxSluaXwb+MPcwtn09Hgzq6jb6kMF2sShnQLQViPsMsqIFZXCxYs8NiMbOvWrW7Tpk6diqlTp0rOr9PpsGHDBm8mjzHGGGPMKy6t+tuMNZHijGIc/fIocpNyoVAroPPTwRRmgqPCgaxjWTiz5QxObjgJh712/dBcSshBKM0tFfuOqdwkyxxxcWQbY6izho/aqHZpTnSp0Jg1dQrO+bX0g2+cL6KHRAMA5Eq5WBtIaFLmE+MD4GIgya+ln9hhbnU1h4icHefK5DJEDYqq1YuwXOW8vVZurmYrteHEjydQUVyBmKEx4ghOAMRaFzarDeYoM+Rq5/L5Z51NfHxjfMV5haBQSVaJOJR87qlcZP6d6ex4XOFMX2nuxUCR0DRNqBljDDECMmctpuKMYpgjzF4Jhvq38ocpzISsY1kuwammVnDe2aTMEmWBTC5DWWEZrNlWmMJN4vFTqBUgOyHz70zI5LIa+xqqTmh8KFQGFVL+SEGFtcIr+9DYhPNIH6AXrwOh5ppPlA90fjq0n9LerZNxjUkDnZ8Ood1DEd4z/IoODDHGGGOMXS2afSh7xppazskcnNl6BpABUYOj3DrPLS8qx4U9F5D9TzaSNiQhblTcJdcPRnWEfmh0/q7BIZ2vzmUkILlCjsD2gZdNLYeamMJMLqNqyZUX+/zJPZ0LjflikzRzhBmWKGf/RsI81dUcyjmRg5LMEgR3Dq71aFzCy7bQtM1eYcfJ9SdRmleKiH4Rbn3yKDQXa26Zo8xQwPl3wfkCyBQyl2Y3Wh8tyEEoyS6BKdSEovQil/QbggxiX1KC8sJyKDQK6Px1KEorgiHIAGuOVeyQuHJ/SQ0VOTASR9YdwdntZ9F+cvtmqYGXf84ZVDO3MEOhVqA43bmf5vCLAVLh2ihKK4JvrK8YaKsPhUqByP6RSPo5Ced3n0fMsEt/oIXKwaGyQmeH8cJoY6Zwz7XIZHKZW39jjDHGGGPs8nb5vPEy5gXlReU4u+0slDol2k5sKzmqktqodgaN2gag4HyBswZRLUeyuhQI/YYIgRDhBdgQbIBKp0LkgMir4sVOrnIOyV2UXoSK4gqXWjoakwYtE1pCbVC71PARmqFVZi+34/zv56HUKhHavfbNjiqvlxyEUxtPoTijGCHdQiRragk1h9RmNXQBOnF5h80BY4jRJUDpsDtQmlcKshP0gXq34cIr94dUmT5ALwZA9IF68dyQyWUutcoaSmvRIqRbCEpzS5F2MM1r660tIkJhSiH0AXqodCoxLwG4BD0qN6Ws2udWffhE+8ASaUHOyRyXTtUvVULn5Tp/nXgOleaVwhhq9DgEPWOMMcYYuzJxcIhdVZJ3JMNhcyBqUJTHjo0B50hYkQMjEdg+EIUphTi54aQ4KtSlTuhTSKw59G+NFEOQAYCzA2ahydmVTHi5zTnhHFlJaFLmab6Mwxn466O/XPrxAYC0A2mwWW0I6xlWp36ZKjdXO7frHArOFyCgbQDCe4ZLz//vun1jfV2WByDWiGo/1RnUc1Q4nKNM4d8mQVXSpfO/GFxSmy7226T318MSYYG5hRnmFmax+ZkxxOj1zqNDuoZA66NF6t5UcZS0plKSVQJbqQ3mFs6Al5CXapMaGtPF2nOV8626mjJ1EdE/AnKl3HmvucSbpZZklUBj0UChUrjkhZBvjDHGGGPs6sHBIXbVyD2Vi/zkfPi19IMlouaRcYRh3APaBaAwpRBnt51tglQ2XEl2CeRKudiETKgp4qk2yZVKqGmTk5QDlV4lBsfc5qtUqwTkDBIJKqwVSD+UDp2frs41S4T1Zh7JROaRTJjCTIgcEOlxfnOEGQHtAsRaRS6Bi3+DQ0KTNofN4dIkqGqzR53fxZoglTuZ1gfoYQgyoNXYVlBqlCgrcDYlqusIXbUhV8gRPSQaRIQzW840aXBVGMJeDA79m5eVm5QBEPsG0pg1Xus3R2PSIDQ+FGX5ZUjb3/S1pmrLXm5HWX4Z9AHOIHnl66BqPjHGGGOMsSsfB4fYVcFe7qy9odAoxKHDayuyfyQskRZk/5ON1P2pjZTCuiMHIftEtttLd2luKbS+WvFlN7hzMGJHxta6r5wrhRAwsZfZ4RPt4/Hlv+r0nJM5sJXaADgDRWQnhHYPrXPwQAjO5J/Nh9qoRuyI2Gr73lFqlIgaGCV2li28rMuVchgCDWJahY62S7JKoNAooDFpxOBHWI8wtJ3YFjrfizWHjKEXAz9CbTLRv6eOIVg6cNZQhiADQrqEoCSrBGkHGi9Q4rA7O5IXroWC8wWQq+Ri0EvIn6q1g4TAWViPMHhTcKdg6Px0SDuQ5jJ63KVEqGEoBIeE81WpVbqfJ4wxxhhj7IrHwSF2VUg/lI6Kkgq06NNCHMa8tmRyGWKGx0Dnp8OFPReavImMJzknc3BmyxnkJ+eL04R+cyoHgtQGtctIV1eLyjUhhKZaNQnrEQZyELKOZcFebkfm35nQWDQem6RVp3J/PrEjY+vc2bHwsm4MMboEleQqOexldlizrWLQSAwEhRjFGlJVaw7JlXK3AKHQrExYT2MIjQ+F1leLtANpjTaKV9bRLJzddhZ5Z/NgL7ejKL0IpjCTmG9KrRKQwaXDcsDZR1Dnmzu7dQ7eUMKoduQgnN12FkSXXpNUseaZv2vNocqjuTHGGGOMsasHB4fYFY+IkP1PNlR6Vb2HqlaoFIgaHAUQkPJHipdTWD9CZ7JCLRcAYi2Fq62WkBSh5pBCo6ix2ZRPtA9MYSaEdA2BSq8Sm4LZy+0I6RJSr5dlrY8WWh8togZF1Sv4ojapYQwxIqCda3M2hUoBa44VDptDrPUhBD8q1/hQGVRQGVTOJlMKGXR+Orf9aD+5PVqObtmgUbpqIlfIEdYjDA6bAxmHMmpeoB5yTzuHX7dZbSi8UAiQa785YT3C0Hpca8nAcF2DxbVlCDIgsEMgitKKkH08u1G20RCVmyUCzk7EIQP84rwbKGOMMcYYY5cHHsqeXfGK04tRXliO4C7BDfoibgg0wDfWF7mnclGYWujSl0tzEJqF2Mrcg0M6X24WItSc8Yn2qXEo9bhRceL/B7QLQOreVFzYcwEqgwp+rer3sqzUKtHh+g71WhZwBlXaXNvGfbpKLo6eJ7zYh8WHwb+Vv0un0lGDosT5ogdHQ21Uu61LCGA1Np9oH2h9tMj4OwPBXYK92vm1rdSGorQi8f+FoGnlfsXURrXk/je28J7hyDudh/O/n4clytJogaj6KMkqgdqoFgODWh8tus3q5tZ/FWOMMcYYuzpwKZBd8bL/cX61929Vv1pDlYX3CodMLkPK781fe6g01xkIspfbL07jmkMijcXZIXddj3tgu0DI5DKQgxDcKRhyxaV1m6w8ipkQHFIb1W5NplQ6lTgyl19Lv0bpdLq2ZDIZQrqFwFHhQObfmV5dd97ZPLHvJFupDQXnC6Axa8QO2ZuTQq1ARP8I2MvsOL/7fHMnR+SwO2DNtYrnj4ADQ4wxxhhjVy8uCbIrmsPmQO6pXOgD9F4Zvl1j1iCwfSCKM4qReyrXCymsH1upDRUlzv5b7GUXg0PWXCtkctkl8WLc3EyhJnRN7OoWNKmJ0PxQZVC5Nem6FFRuLnc5HWe/OD+oTWqkH0qHvcJe8wK1lHc6D/i3YlhxhrOW4KU0FLtvjC8sURbknMxBYWphcycHwL+1DgluwSHGGGOMMXb14uAQu6IJHdTWt2mQlNDuoZCr5Ej5I6VJh+eurHKn2FVrDmnMmhqbUV0tKg8HXxeRAyPRcXpHl1o6lwqh4+DL7cVeJpchpGsI7GV2ZB3N8so6hZpC5hZmyBQyFGcUA8AlFRwCgIi+EZdMjUPgYn9DPCoZY4wxxhgTcHCIXdFyTuQ4O1n14mhESq0SIV1CUFZQhqxj3nnJrSuhvyHgYnDIYXegrKCMm5R5gUwmu+SakwmEgNXlFhwCAP/W/lBqlcg86p2mZTknc0AOculvSSaX1bm2WGPTmDUIaBeA4oxi5J3Ja+7kuHVGzRhjjDHG2KX59sOYF1RYK5B/Lh+WCO93BBvcORhKrRJpB9KapfaQEBySyWVih9RlBWUAcX9DVzqh5lBjDj/fWOQKOfxa+qEsvwzFmcUNXl/2iWzIVXL4RPuIHSsbgg31rjHWmEK7h0KubN4ah4KSrBIodUqoDU3fSTdjjDHGGLs0cXCIXbHyz+YD5N1aQwK5Uo6gTkEoLypHzskcr6+/JqW5pWKfM0LNIaGDaq0vB4euZGqDGjK5DIagyy84BEBs4plzomHXTWleKUoyS+Ab4wu5Ug6FxhkQutSalAlUOhWCOwejNK9U7CS/KRARknckI/9cvvNvB8GaY4Xen2sNMcYYY4yxizg4xK5YBecLADTey2JQhyAo1Apn7SFq2poA1hwrdH46KDQKsUNqHqns6hDUKQjtp7ZvlqHZvcEQaIDWRys2Cauv7BPOAIsQbBJqDlUewv5SI9Q4vLDngktfYY2pLL8MmUcyxWBcaV4pyE7cpIwxxhhjjLng4BC7IhERClIKoA/Qiy+N3qZQKxDYPhCleaXOEZO8LCcpB2kH09ymlxeVw15udwaH1IqLNYc4OHRVkCvk0Fou72Ps18pP7Ey6PogIOSdyoDKoxP6F/Fr6wb+1/yXdybJCrUB4r3BUlFTg/G+NN7R9SXaJGHgT+hcSRojj/oYYY4wxxpgUDg6xK1JJVgnsZXaYIxq3iUlQpyDIlXKkHXAP4jTUhT0XkLo31W26MFKZztcZHHLYHCAHoTSvFCqD6pIcYYuxyoSmnkLtn7oqSitCeVE5/Fv5QyZzjsznG+OL6CHR4t+XqoC2ATCFm5B1LKvewbHqFKUV4egXR8XmrkIwyFHhgL3cjtT9znuKPpCDQ4wxxhhj7CIODrErUsG5xm1SJlDpVAhoG4CSrBKxTw9vqLBWoCy/zBn4qdJkTeiMWqg5BDhHLCvNK4XO99KtNcGYQGPSwBhqRN6ZvHo1rxKaSAlNyi43UYOiIFfKcXbbWa83LxMCTuXF5QBcaw4VnC9AWX4ZQruHQmPSeHW7jDHGGGPs8sbBIXZFKjhfALlSDmOwsdG3Fdw5GDK5DGn7vVd7qDj94khOQs0gIUhUueNpoZaQNdcKh83BTcrYZcO/lT/ITsg9nVun5Rx2B3JP5UIfoL9sg6EakwYt+rRAeVE5zv/u3eZlhRcKAUAMLFeuOST8v2+sr1e3yRhjjDHGLn8cHGJXHHu5HcUZxTCFmSCTN34TE7VRDf/W/ihKKxJfzBqqKK1I/H9HhQNHvjiC5O3JAJw1h1QGFZQapTiseXGGM5jEwSF2ufCN9YVMLqvzqGU5J3JgL7dftrWGBAHtAmAKMyHraBYKUrzTvMxhc4j3AkeFA+WF5WLNJHuFHdYcK2RyGd8nGGOMMcaYGw4OsStOYWohyEFNOqR1SNcQQAak7nPvI6g+itIvBodK80pRmlsKa64VRARrrnOkMgBizaGSTGeNAH7pY5cLhVoBS5QFhRcKxSZQNXHYHUjdlwqlVomAtgGNnMLGJZPJXJuXVTS8eVlRWpHYEbW9wi7WFAIu1hzS+emaJGjOGGOMMcYuLxwcYlecxh7CXorGrIF/K38UXihEYWrDag857A4x2ANAXJ+jwoGygjKQncTmNEKfQ2LNIV8ODrHLh9AxdW1H+8s/mY+KogoEdwm+Ijpe15g1CO8djvLCcqT8kdLg9VWuueiocKA403lf0Fg0sJfbUVFScUmP5sYYY4wxxpoPB4fYFafgfAHURnWT16IJ6ead2kMlmc5hqFV6FQCgKNVZi0hoFgJArDkkNCsrLyqHQqOASqdq0LYZa0qWCAvkSnmt+h1y2B3IOpwFpU6JoA5BTZC6phHYPhDGUCMy/85scGC5MLUQCrUCMoUMDpuzppBcKYch0CDOo/fnUcoYY4wxxpg7Dg6xK0p5UTnK8suatNaQQGvRwq+lHwpTCl36DKorYVlhHyr3IVI1OFS59gQ3KWOXG7lSDnMLM4pSi1Bhrah23qyjWagocdYakiuvnEeXTCZD9OBoyBQyJO9IFpuF1ZW9wo6SzBIYQ41QqBRiszKd/8VRDQFwzSHGGGOMMSbpyilhM4aLgRVjSOOPUiYltFsogIbVHipKK4JMLoMpzATA2cks8O9w9cJIZf8Ggiq/9HFwiF2OhJGz8s7keZynrLAMafvToNQpEdg+sIlS1nQ0Zg1CuoSgNLcUWcey6rWOolRnf0OmMBPkKjlKc0thL7NDH6AXaxgCXHOIMcYYY4xJ4+AQu6KIwaHQ5gkOaX2ctYcKzheINX5qw5pjFYerL0ovgj5ALzYrE5DDOSy1xqIRa05Ufum7XIf1Zlc3S6QFMrnMY79DpXmlOP7tcdisNgT3uLJqDVUW3CUYKr0KF/ZcgK3MVuflc085m+ZZIp1N9WylznUYAg1iDUO1Se0SUGaMMcYYY0xwZZay2VWrKK0IKr0KGpOm2dIQ0i0EQO1rD2Udz8KRz4/g6JdHkX08G/YyOwzBBpeXYGF0obKCMrFJGcDNytjlT6FWwBRuQuGFQlSUuDYtK8kuwfHvjqOipALRw6NhibY0Uyobn0KlQHjvcNhKbUjdW7eahw6bA3mn86AP1ENr0brcFyrXHOJaQ4wxxhhjzBMODrErhq3MBmuOtdlqDQl0vjr4xvoiPzlfHC3IE3IQUvelQq6UozSvFGe3nQXgbBZX+Qu/PuDiS13lGkLcrIxdCfxb+4MchKNfHkX+uXw4bA5c2HMBx746BnuZHXEj4+AX59fcyWx0fi39YAgyIPNIJqy51lovV3i+EI4KB/xb+QO4WKNQppBB63MxWMT9DTHGGGOMMU84OMSuGMXpzkBMc/U3VFlo99r1PZRzMgflheUI6RqCDtd3gCXKArVRDVOoyaXmUOV9qlxzqPJLoNqk9uYuMNZk/OL8EDMsBg6bAyd/OolDnxxC6r5UaCwatL6mNXyifZo7iU1CJpMhol8EiAhntpypdefUBacLANnF/puEYJDeXw+ZXAaNxVmTUujHjDHGGGOMsaqUzZ0AxryluTujrkznp4NPjA/yTuehJKtEch5yEFL3p0KhViCoYxAUagVaJrS8+Ds5Xwy1PlqX/odcgkMKOWRyGbQWLWQyWSPtDWONz6+lHwzBBpzZcgYlWSVo0acFgjoGiU0qrxaGIANCuoQg7UAaUvelIqxHWLXz20ptKLpQhLA2YeJ9QggsCzUOTaEmdLmlC5RafuQzxhhjjDFpXFJkV4yitCIo1AqX4ElzCu0eirzTeUjbnwZjF/eAVe6pXJTllyG0e6hkJ7EKtQJypdzZ/5BQQ0gug8bs2p9SQNsAaH25SRm7/GlMGrS5tg0cdgfkiqu3YmtYjzAUnC9A6v5UWCItMAQZPM6beyoX5CD4tbrY7E7sY6hSc1QODDHGGGOMsepcvaVvdkVx2B0oziiGIdhwydSg0fvrYYmyIO90njgEvcBhdzj7GlLJEdQpSHJ5uUKOthPbokWfFmIzEa2v1q0mReSASAR1kF4HY5ejqzkwBDiDwNFDoyGTy3B68+lqRy/LOZkDuVLu0vROCDbrA7kDasYYY4wxVjtXdwmcXTFKMktADrokmpRVJvQ9lHkgU+w/xGF34NTGUyjNK0Vwp2AoNZ6/6Ov8dFBqlOLLHg9Xz9jVQeerQ4s+LVBWUIYTP56AvdzuNk9+cj6K04phbGF0GaEsqEMQogZF8ehkjDHGGGOs1jg4xK4IxRn/dkYdfGkFhwyBBliiLSg8X4ijXzhHYkrakIT85Hz4t/ZHaHxordaj0PBoQ4xdbYI6BCG0eyhKMkucAaKKiwGigvMFSPo5CQqtAoFdAl2WUxvVCGgb0NTJZYwxxhhjlzHuhIBdEYTg0KXYjCJmWAxKZaUoSy7DyZ9OAgAC2gUgckBkrZvAGYONiB4aDd8Y38ZMKmPsEhPWIwzkIKQdSMPRL4/CEmGBxqxByh8pkCvlaDmuJYrsRc2dTMYYY4wxdpnj4BC7IhSlF0Hnp3NpWnGpkCvlCOwSCEtvC9L2pUFj1tQ4ApEU/1b+jZA6xtilLrxXOGQKGTL/zkTG4QwAzk6nW41tBZ2/DkUZHBxijDHGGGMNw8EhdtkrLy5HRXEFLBGW5k5KtTRmDWKGxTR3Mhhjl6Gw+DCExYehNL8UJZkl0AfqobVo4XA4mjtpjDHGGGPsCsDBIXbZE5qUGYI9D/fMGGNXAq1FC61F29zJYIwxxhhjVxjukJpd9orT/w0OBXFwiDHGGGOMMcYYqysODrHLXnFGMRRqBbQ+/DWdMcYYY4wxxhirKw4OscsaOQjFmcUwBBlqPfIXY4wxxhhjjDHGLuLgELusWXOsIDtxkzLGGGOMMcYYY6yeODjELmtF6c4hnDk4xBhjjDHGGGOM1Q8Hh9hlTRypjINDjDHGGGOMMcZYvTRLcGjFihXo2bMnTCYTgoKCMHHiRBw/ftxlntLSUsyfPx/+/v4wGo2YPHky0tPTmyO57BJWnFEMjVkDpVbZ3ElhjDF2BXr55ZcRHR0NrVaL3r17448//qh2/nXr1qFt27bQarXo1KkTfvzxR5ffiQiPPvooQkNDodPpMGLECJw4caIxd4ExxhhjrEbNEhz69ddfMX/+fPz222/YuHEjKioqMGrUKBQXF4vz3Hvvvfjuu++wbt06/Prrr7hw4QImTZrUHMlllyhbqQ1l+WUwBHOtIcYYY9736aefYtGiRXjsscewb98+dOnSBQkJCcjIyJCcf9euXZgxYwZuu+027N+/HxMnTsTEiRNx+PBhcZ6nn34aL7zwAl577TX8/vvvMBgMSEhIQGlpaVPtFmOMMcaYm2YJDq1fvx6JiYno0KEDunTpgnfffRfJycnYu3cvACA/Px9vv/02Vq9ejWHDhiE+Ph5r167Frl278NtvvzVHktkliJuUMcYYa0yrV6/G7bffjlmzZqF9+/Z47bXXoNfr8c4770jO//zzz2P06NF44IEH0K5dOzzxxBPo3r07XnrpJQDOWkNr1qzBI488ggkTJqBz5854//33ceHCBXz99ddNuGeMMcYYY64uibY4+fn5AAA/Pz8AwN69e1FRUYERI0aI87Rt2xaRkZHYvXs3+vTp47aOsrIylJWViX8XFBQAABwOBxwOh3fTm5KP1P2p8Evwg1J1SWThJcHhcICIvJ7fnhSmFYIcBH2gvsm2WR9NnS+XC84XaZwv0jhfpHG+SKuaL/XJn/LycuzduxdLly4Vp8nlcowYMQK7d++WXGb37t1YtGiRy7SEhAQx8HP69GmkpaW5lG8sFgt69+6N3bt3Y/r06W7rbMryjbBePqfccb5I43yRxvkijfNFGueLO84Tad4o31Sn2SMbDocD99xzD/r374+OHTsCANLS0qBWq+Hj4+Myb3BwMNLS0iTXs2LFCixfvtxtemZmpteramccyUDK/hSYokwwBhu9uu7LmcPhQH5+PogIcnnjV0q7cOICSkpKUGgrRFFGUaNvr76aOl8uF5wv0jhfpHG+SON8kVY1XwoLC+u8jqysLNjtdgQHB7tMDw4OxrFjxySXSUtLk5xfKLsI/61unqqasnwD8DnlCeeLNM4XaZwv0jhfpHG+uOM8keaN8k11mj04NH/+fBw+fBg7duxo0HqWLl3q8rWuoKAAERERCAwMhNlsbmgyXajbqpH1VxZ0dh2CgoK8uu7LmcPhgEwmQ2BgYKNfxESE1LJUBMcGIzgkuOYFmlFT5svlhPNFGueLNM4XaZwv0qrmi1arbe4k1VtTlm8APqc84XyRxvkijfNFGueLNM4Xd5wn0hq7fNOswaEFCxbg+++/x7Zt29CiRQtxekhICMrLy5GXl+dSeyg9PR0hISGS69JoNNBoNG7T5XK5108oU7AJMpkM1kwrn6xVyGSyRsnzqkrzSuGwOWAKMV0Wx6Cp8uVyw/kijfNFGueLNM4XaZXzpT55ExAQAIVC4TZSanVlkZCQkGrnF/6bnp6O0NBQl3m6du0quc6mLN8I+JySxvkijfNFGueLNM4XaZwv7jhPpDW0fFOdZslpIsKCBQvw1VdfYfPmzYiJiXH5PT4+HiqVCr/88os47fjx40hOTkbfvn2bOrluFGoFND4aFKVfuk2ZrnRC3nNn1IwxxhqDWq1GfHy8S1nE4XDgl19+8VgW6du3r8v8ALBx40Zx/piYGISEhLjMU1BQgN9///2SKN8wxhhj7OrVLDWH5s+fj48//hjffPMNTCaT2M7eYrFAp9PBYrHgtttuw6JFi+Dn5wez2Yy77roLffv2leyMujnoAnSwpdlQXlQOtVHd3Mm56vBIZYwxxhrbokWLMHPmTPTo0QO9evXCmjVrUFxcjFmzZgEAbrnlFoSHh2PFihUAgLvvvhuDBw/Gs88+i3HjxuF///sf9uzZgzfeeAOA82vfPffcgyeffBKtWrVCTEwM/vOf/yAsLAwTJ05srt1kjDHGGGue4NCrr74KABgyZIjL9LVr1yIxMREA8Nxzz0Eul2Py5MkoKytDQkICXnnllSZOqWe6QB2K0opQlF4EP6NfcyfnqlOcUQyVXsWBOcYYY41m2rRpyMzMxKOPPoq0tDR07doV69evFzuUTk5OdqnS3a9fP3z88cd45JFH8NBDD6FVq1b4+uuvxQE3AGDx4sUoLi7GHXfcgby8PAwYMADr16+/rPtFYowxxtjlr1mCQ0RU4zxarRYvv/wyXn755SZIUd3pAnUoQhGK04vhF8fBoaZkr7DDmmOFT7RPcyeFMcbYFW7BggVYsGCB5G9bt251mzZ16lRMnTrV4/pkMhkef/xxPP74495KImOMMcZYg3HvTvWkMWug0Cq436FmUJJZAhA3KWOMMcYYY4wxxryBg0MNYAgywJpthcPmaO6kXFWE/oaMwcZmTgljjDHGGGOMMXb54+BQAxiCDSAHoSSrpLmTclUpzigGZIA+QN/cSWGMMcYYY4wxxi57HBxqAKHmCjcta1rFGcXQ++shV/LpyxhjjDHGGGOMNRS/XTeAPlAPyIDi9OLmTspVo7yoHBUlFdzfEGOMMcYYY4wx5iUcHGoAhUoBnZ+Oaw41ISGvOTjEGGOMMcYYY4x5BweHGsgYbITNakNZYVlzJ+WqIHRGzcEhxhhjjDHGGGPMOzg41ECGYGeQgpuWNY3ijGIoNApoLJrmTgpjjDHGGGOMMXZF4OBQA3Gn1E3HYXegJKsEhiADZDJZcyeHMcYYY4wxxhi7InBwqIE0Zg2UWiXXHGoC1mwryE7cpIwxxhhjjDHGGPMiDg55gSHYAGuOFQ6bo7mTckXj/oYYY4wxxhhjjDHv4+CQFxiDjSAHoTiTaw81Jg4OMcYYY4wxxhhj3sfBIS/gTqmbRnFGMbQ+Wig1yuZOCmOMMcYYY4wxdsXg4JAXGAINgIw7pW5MFdYKlBWUca0hxhhjjDHGGGPMyzg45AVypRx6fz3XHGpE3KSMMcYYY4wxxhhrHBwc8hJDsAG2UhvKCsqaOylXJCHwxsEhxhhjjDHGGGPMuzg45CXGYCMAoCiNm5Y1hqK0IshVcuj8dM2dFMYYY4wxxhhj7IrCwSEvMYb8Gxzifoe8zmFzoDijGMYQI2RyWXMnhzHGGGOMMcYYu6JwcMhL1EY1VAYV9zvUCIozikEOginU1NxJYYwxxhhjjDHGrjgcHPIiY7AR1hwr7OX25k7KFaUwtRAAYAw1NnNKGGOMMcYYY4yxKw8Hh7yIm5Y1jqLUIsiVchgCuTNqxhhjjDHGGGPM2zg45EVCcIiblnmPw+5AUXoRDMEG7m+IMcYYY4wxxhhrBBwc8iKdnw5ypZxHLPOikswSkJ37G2KMMcYYY4wxxhoLB4e8SCaXwRBkEDtQZg3H/Q0xxhhjjDHGGGONi4NDXmYMMcJhc6Aku6S5k3JFKEotgkzhDLoxxhhjjDHGGGPM+zg45GVip9Sp3LSsochBKEorgiHIALmCT1XGGGOMMcYYY6wx8Bu3lxmCDYAMl3S/Q0e+OIJzu841dzJqVJJVAofNwf0NMcYYY4wxxhhjjYiDQ16mUCmgD9CjKK0IRJdev0NEBGu2Fdknsi/J9FXG/Q0xxhhjjDHGGGONj4NDjcAUaoKt1IbSvNLmToobR4UDAGAvs6Mk89LuF6kotQgyuQzGYA4OMcYYY4wxxhhjjYWDQ43gUu53yGFziP+ffy6/GVNSPaG/IX2gHnIln6aMMcYYY4wxxlhj4bfuRiAEhwpSCpo5Je4qB4cKzl166RMUpRXBXm6HuYW5uZPCGGOMMcYYY4xd0ZTNnYArkVKrhCHYgILzBXDYHU060lbe2Txk/p0Jra8WpjATTKEmKNQK8Xd7hV38/+LMYthKbVBqG34akIO82odR7ulcAIBvjK/X1skYY4wxxhhjjDF3XHOokfhE+cBR4WiypmUOmwNnt59F0oYkFJwvQMahDCRtSMKhTw6hrKDs4nz/9jmk9dECVP/aTeVF5cg4nAHA2cn14f8dRspvKQ3fkX/Xl3cmDxqzBjo/nVfWyRhjjDHGGGOMMWkcHGoklkgLACA/ufH79bGV2nD0y6PIOpoFU5gJnW7ohPZT2/9/e3ceVkXZ/gH8ew5wOOwHZBMVUMF9R0Vc0pIyNZf0LVNLTcssqMxWrVezerPttdLXpVUrK7VSS3NNTdPU1ATFVFBBNAVUZBVZPPfvD35nYjiDgqx6vp/r4qqZ55mZZ+4zDLf3mQUNujbA1fyrOPXbKaWv5bYyzybFV+RknSl/cSg3LRcFOQUAgAvHLuD076eRk5IDc5EZBTkFVbavl89fRmFuIUyNTVWyPiIiIiIiIiIqG4tD1cTJywkGNwMyTmVU63ZEBEm/JuFKxhUEdAlA6MBQGFwNcPJ0gn8Hf3i38Eb239m4cOwCgH+KQ0aTEUZPY7mfOyQiiF8Tj+SdyQCK33YGAJcvXFauRsrPzMfVgqtlrqO8eEsZERERERERUc1hcagaeQR6oCC7AHmX8qptG+cPn0dmcibqNauH+h3rQ6fTqdobdmsIB2cHnNl1BoWXC5VnDunt9fBo5IHCy4XIS9ceX0FuAVIPpUJEYC4yw1xkRm5qLoB/iky553NVzzG6cvFKpfcpIzEDDi4OcPZxrvS6iIiIiIiIiOjaWByqRqYgEwAg81T13Fp2JeMKzuw5A0d3RzTq0Uizj53BDoE9A3G14CpO/35aucpH76BX3gRW1ivtLxy9gDO7ziDnXI6yXNGVIuRn/XOF0OXz/1w5BAB5F4sLTbnnc5GTUvHnLeWl5yE/Kx+ejT2tCl1EREREREREVPVYHKpGrvVdoXfQV8tzh8QsSNyaCDELgm8Php2DXZl9TcEmeAR64NLJS7iSUXxlj95eXzw+e32Zt5ZZCkA5qTnqt5yl5SpXDl3JuILCy4VKW96F4uJQ8m/JOL7+OMRcsTeYXTp5SRkzEREREREREVU/Foeqkd6u+OqcnNQcFF0pqtJ1nztwDpfPX4Z/e3+4+rlet79PKx8AwMX4iwAAOwc76O30cAtwQ06KuvhjYSkO5abmqq4Oyj2fq3q2UMkrhCy3lRVdKcLVgqsVeuA1UFwcsjfaw9X/+vtERERERERERJXH4lA1MwWZAAEykjKqbJ2553Nx7s9zcKrnhIDOAeVaxr2hOxycHZSijt5er8wXsyD7bLbVMpaCUG5abplXDgFQlrVztEPh5cLiZxv9/3bSj6eXe79yUnJwJeMKvEK8oNPzljIiIiIiIiKimsDiUDUzBZugt9crbwurLHORGUlbk6DT6dD49sblLqLo9Dp4hXop03qH/y8ONSp+7pDl1rITG08g9WAqgH+uHCq6UoTLFy4ry16+cBlFV4pgcDUAKC5WAcW30QH/X0z6/2UzTmWoCknXcuFocYy8W3iXqz8RERERERERVR6LQ9XMzmAHU2MTclNzlef9VMaZ3WdwJeMKGnRtACcvpwot6938n6KL5coho4cRju6OyDydCXORGRlJGTj/13kAUF0tlP138dVBRpMRclVQkFMAg6sBju6OwP8/VsgtwK247/9fSaTT62AuNJf5wOuSivKLkH4iHS5+LhXeLyIiIiIiIiK6cSwO1QBLUaayVw9lJmfi/F/n4RbgBt+2vhVe3mgywsXPBTo7nVIcAopvLSvILlCeHZSflY+C3AJcLbiqXGFkKfhYCkBA8dVHJV837+LnAr2dXnnOkOWh0pdOXLru2NKPp0OuCnxa+lR4v4iIiIiIiIjoxrE4VAPcAtzg6O6Ii/EXK/z2LouiK0VI2pYEO4MdgvsE3/Br3hvf0Rih/UNVy1tuLbuYcFGZZ3l9vdFkhIOzg3JrmFuDf4pDdg52cPb+pzhk72gPo5cR+Rn5AACjpxGu/q7ITM687q1lF45cgJ3BDp5NPG9ov4iIiIiIiIjoxrA4VEPqNa+HoryiG36t/antp1CUV4TAnoHKs35uhKObo+rqH6C4eKXT65CRmKHMyz6bjasFV2FnsIOLr8s/y7s7wuBWvH29vR4uPv+06e31MNYzKtN2Bjt4NvUsvl3t1D/rLi03LRd56XnwCvVSXdFERERERERERNWvVv4lvn37dgwaNAgBAQHQ6XRYtWqVqj01NRXjxo1DQEAAnJ2dcffddyMhIaE2hlpl6jWrB+j+eehyRaTFpSEjKQOeTT3hFeJ1/QUqyM7BDi5+LlZvILtaeLW4rURxyM7BTikI2RnUVw7ZGezg5O2kmvZs7AnogNTYVM2rpkQE5/48B4APoiYiorojPT0do0ePhru7O0wmEyZMmICcnJxrLnPlyhVERUWhXr16cHV1xfDhw5Gamqrqo9PprH6WLl1anbtCREREdF21UhzKzc1F+/btMW/ePKs2EcHQoUNx8uRJ/Pjjjzhw4ACCgoIQGRmJ3NzcWhht1TC4GODRyAOZpzNx4dgFJKxNQN6lPKQeTEXcsjjkpedpLpd6MBWnfz8NRw9HBPYMrLbxuTd0V/7faDIiPysfEFhdOaS31yvTens97Ax2cPRwBADo7HRWVw45ODvAv4M/Ll+4jDN7zlhtNyUmBZnJmfAK9YJzPWerdiIiotowevRoHD58GJs2bcKaNWuwfft2TJw48ZrLPPPMM1i9ejW+++47bNu2DWfPnsWwYcOs+i1atAjnzp1TfoYOHVpNe0FERERUPva1sdH+/fujf//+mm0JCQnYvXs34uLi0Lp1awDAggUL4O/vj2+//RaPPPJITQ61StXvVB9ZZ7JwatspAMDxdcdRlF8Ec6EZx1YfQ2j/UKXwIubiK2rO/XkOTl5OCB0QCnvH6vu43Bu44+zeswAAzyaeytU8pR86rXfQw9W/+JX19k7F46kXWg+5abnQ6XTFby/7f3YGOwBAQFgAcs7lIO1QGtwC3GAKMgEAMk9n4uzes3DyckJQr6Bq2zciIqKKOHLkCNavX4+9e/eic+fOAIC5c+diwIABeO+99xAQEGC1TGZmJj777DN88803uOOOOwAUF4FatmyJ3bt3o1u3bkpfk8kEf3//mtkZIiIionKoleLQteTn///DjI3/XIGi1+vh6OiIHTt2lFkcys/PV5YFgKys4jdmmc1mmM3XfhhyRZnNZohIhdfr5O2EBt0a4PSO4iuB8jOLx+vs44wrl67g6I9H4RXqhYKcAuSm5sJcaIaTtxNCBoTAzmhX5ftRkrGeEXoHPa7mX4VHsAfO7isuFOnsdNDZ6eBocsSV9CuAvng/mvZvChdfF5jNZvh18ANQIi5iht6sB3RQxhzUJwhHfjiCxC2J8G7hDTELLsZfhN5ej8aRjQE9qnX/atONHi+3OsZFG+OijXHRxrhoKx2XisZn165dMJlMSmEIACIjI6HX67Fnzx7ce++9Vsvs378fhYWFiIyMVOa1aNECgYGB2LVrl6o4FBUVhUceeQRNmjTBpEmT8PDDD5f5oomazG8s6+UxZY1x0ca4aGNctDEu2hgXa4yJtsrmN9dT54pDlkRq6tSp+Oijj+Di4oL3338fZ86cwblz58pcbtasWZg5c6bV/PPnz+PKlStVOkaz2YzMzEyICPT6Ct6Z5w14RnjC6GVE+pF0nI89D1NXE5xaOOHMr2eQuTcTejs9jN5GuDRwgamVCelZ6UBWle6CJjEJ8s7lIbsoG1dwBQXZBXAtckVaWhrsG9jD3miP8+fPF3d2AK5cUsfVEhdDIwPSj6Qj80omLqddVtpd27rizLYzuLSj+NX2ejs9GtzWAJlXMoGq/YjqlEodL7cwxkUb46KNcdHGuGgrHZfs7OwKLZ+SkgJfX1/VPHt7e3h5eSElJaXMZQwGA0wmk2q+n5+fapnXXnsNd9xxB5ydnbFx40Y88cQTyMnJwVNPPaW53prMbwAeU2VhXLQxLtoYF22MizbGxRpjoq2y+c311LnikIODA1asWIEJEybAy8sLdnZ2iIyMRP/+/SFS9mvgp06diilTpijTWVlZaNSoEXx8fODu7l7mcjfCbDZDp9PBx8fnxg7W/8836zeoj6JeRcrtYo1CG6EgpwAGNwP0djX/S+AzyAdiFujt9aj3cPHb1Sy3iZVOkrUocbnbB3KnwM7BTtXu6+uLoFZBuFpwFTo7HewMdlZ9bkWVPl5uUYyLNsZFG+OijXHRVjoulquRZ8yYgQ8++OCayx45cqRax/bvf/9b+f+OHTsiNzcX7777bpnFoZrMbwAeU2VhXLQxLtoYF22MizbGxRpjoq2s/Kaq1LniEACEhYUhJiYGmZmZKCgogI+PD8LDw1WXd5fm6OgIR0dHq/l6vb5aDiidTlcl6zY4/fNaer1BD3uvWvxISuyK3lEPB0eHCq9CiUsZr6Q3OBsAG3zudFUdL7caxkUb46KNcdHGuGgrGRdLbJ588kk89thj11yuSZMm8Pf3R1pammp+UVER0tPTy3xWkL+/PwoKCpCRkaG6eig1NfWazxcKDw/H66+/jvz8fM08pqbzG4DHVFkYF22MizbGRRvjoo1xscaYaNPKb6pKnSwOWXh4eAAofkj1vn378Prrr9fyiIiIiOhm5e3tXa6rbSIiIpCRkYH9+/cjLCwMALBlyxaYzWaEh4drLhMWFgYHBwds3rwZw4cPBwAcO3YMycnJiIiIKHNbMTEx8PT01CwAEREREdWUWikO5eTk4Pjx48p0YmIiYmJi4OXlhcDAQHz33Xfw8fFBYGAgDh06hKeffhpDhw7FXXfdVRvDJSIiIhvSsmVL3H333Xj00UexcOFCFBYWIjo6Gg888IDyprK///4bffv2xZdffomuXbvCw8MDEyZMwJQpU+Dl5QV3d3c8+eSTiIiIUB5GvXr1aqSmpqJbt24wGo3YtGkT3nzzTTz33HO1ubtEREREtVMc2rdvH26//XZl2nIv/dixY7F48WKcO3cOU6ZMQWpqKurXr48xY8ao7tEvD8vziSxv9ahKZrMZ2dnZMBqNvMytBMZFG+OijXHRxrhoY1y0MS7aSsfFkgtc69mFpX399deIjo5G3759odfrMXz4cMyZM0dpLywsxLFjx3D58j8vXnj//feVvvn5+ejXrx/mz5+vtDs4OGDevHl45plnICIICQnB7Nmz8eijj5Z7XNWZ3wA8psrCuGhjXLQxLtoYF22MizXGRFtV5DfXopOqWlMdc+bMGTRq1Ki2h0FERER1xOnTp9GwYcPaHkalML8hIiKikqoqv7lli0Nmsxlnz56Fm5sbdDpdla7b8qaQ06dPV8ubQm5WjIs2xkUb46KNcdHGuGhjXLSVjouIIDs7GwEBATf9N5DVmd8APKbKwrhoY1y0MS7aGBdtjIs1xkRbdec3dfqB1JWh1+ur/dtBd3d3HqwaGBdtjIs2xkUb46KNcdHGuGgrGRfLSy5udjWR3wA8psrCuGhjXLQxLtoYF22MizXGRFt15Tc399dnRERERERERERUKSwOERERERERERHZMBaHboCjoyNmzJgBR0fH2h5KncK4aGNctDEu2hgXbYyLNsZFG+Ny4xg7bYyLNsZFG+OijXHRxrhYY0y0VXdcbtkHUhMRERERERER0fXxyiEiIiIiIiIiIhvG4hARERERERERkQ1jcYiIiIiIiIiIyIaxOEREREREREREZMNYHLoB8+bNQ3BwMIxGI8LDw/HHH3/U9pCq1fbt2zFo0CAEBARAp9Nh1apVqnYRwfTp01G/fn04OTkhMjISCQkJqj7p6ekYPXo03N3dYTKZMGHCBOTk5NTgXlStWbNmoUuXLnBzc4Ovry+GDh2KY8eOqfpcuXIFUVFRqFevHlxdXTF8+HCkpqaq+iQnJ2PgwIFwdnaGr68vnn/+eRQVFdXkrlSpBQsWoF27dnB3d4e7uzsiIiKwbt06pd0WY1LaW2+9BZ1Oh8mTJyvzbDUur776KnQ6neqnRYsWSrutxgUA/v77bzz44IOoV68enJyc0LZtW+zbt09pt8XzbnBwsNXxotPpEBUVBcC2j5eqwvxmlardFn/PAOY4ZWGOc33McYoxvykb8xtrdSq/EaqQpUuXisFgkM8//1wOHz4sjz76qJhMJklNTa3toVWbtWvXyssvvywrVqwQALJy5UpV+1tvvSUeHh6yatUqiY2NlcGDB0vjxo0lLy9P6XP33XdL+/btZffu3fLbb79JSEiIjBw5sob3pOr069dPFi1aJHFxcRITEyMDBgyQwMBAycnJUfpMmjRJGjVqJJs3b5Z9+/ZJt27dpHv37kp7UVGRtGnTRiIjI+XAgQOydu1a8fb2lqlTp9bGLlWJn376SX7++WeJj4+XY8eOybRp08TBwUHi4uJExDZjUtIff/whwcHB0q5dO3n66aeV+bYalxkzZkjr1q3l3Llzys/58+eVdluNS3p6ugQFBcm4ceNkz549cvLkSdmwYYMcP35c6WOL5920tDTVsbJp0yYBIFu3bhUR2z1eqgrzG+Y3FsxxtDHHuTbmOP9gfqON+Y22upTfsDhUQV27dpWoqChl+urVqxIQECCzZs2qxVHVnNLJk9lsFn9/f3n33XeVeRkZGeLo6CjffvutiIj89ddfAkD27t2r9Fm3bp3odDr5+++/a2zs1SktLU0AyLZt20SkOAYODg7y3XffKX2OHDkiAGTXrl0iUpyU6vV6SUlJUfosWLBA3N3dJT8/v2Z3oBp5enrKp59+avMxyc7OltDQUNm0aZP07t1bSZxsOS4zZsyQ9u3ba7bZclxefPFF6dmzZ5ntPO8We/rpp6Vp06ZiNptt+nipKsxvmN+UhTlO2ZjjFGOOo8b8Rhvzm/KpzfyGt5VVQEFBAfbv34/IyEhlnl6vR2RkJHbt2lWLI6s9iYmJSElJUcXEw8MD4eHhSkx27doFk8mEzp07K30iIyOh1+uxZ8+eGh9zdcjMzAQAeHl5AQD279+PwsJCVVxatGiBwMBAVVzatm0LPz8/pU+/fv2QlZWFw4cP1+Doq8fVq1exdOlS5ObmIiIiwuZjEhUVhYEDB6r2H+CxkpCQgICAADRp0gSjR49GcnIyANuOy08//YTOnTvjvvvug6+vLzp27IhPPvlEaed5t/jv8ZIlSzB+/HjodDqbPl6qAvMba/w9+wdzHGvMcdSY41hjfmON+c311XZ+w+JQBVy4cAFXr15VBR4A/Pz8kJKSUkujql2W/b5WTFJSUuDr66tqt7e3h5eX1y0RN7PZjMmTJ6NHjx5o06YNgOJ9NhgMMJlMqr6l46IVN0vbzerQoUNwdXWFo6MjJk2ahJUrV6JVq1Y2HZOlS5fizz//xKxZs6zabDku4eHhWLx4MdavX48FCxYgMTERvXr1QnZ2tk3H5eTJk1iwYAFCQ0OxYcMGPP7443jqqafwxRdfAOB5FwBWrVqFjIwMjBs3DoBt/x5VBeY31vh7Vow5jhpzHGvMcawxv9HG/Ob6aju/sb+xYRORRVRUFOLi4rBjx47aHkqd0Lx5c8TExCAzMxPff/89xo4di23bttX2sGrN6dOn8fTTT2PTpk0wGo21PZw6pX///sr/t2vXDuHh4QgKCsLy5cvh5ORUiyOrXWazGZ07d8abb74JAOjYsSPi4uKwcOFCjB07tpZHVzd89tln6N+/PwICAmp7KES3NOY4asxx1JjjaGN+o435zfXVdn7DK4cqwNvbG3Z2dlZPB09NTYW/v38tjap2Wfb7WjHx9/dHWlqaqr2oqAjp6ek3fdyio6OxZs0abN26FQ0bNlTm+/v7o6CgABkZGar+peOiFTdL283KYDAgJCQEYWFhmDVrFtq3b48PP/zQZmOyf/9+pKWloVOnTrC3t4e9vT22bduGOXPmwN7eHn5+fjYZFy0mkwnNmjXD8ePHbfZ4AYD69eujVatWqnktW7ZULkm39fPuqVOn8Msvv+CRRx5R5tny8VIVmN9Ys/XfM4A5jhbmOGrMccqH+U0x5jfXVhfyGxaHKsBgMCAsLAybN29W5pnNZmzevBkRERG1OLLa07hxY/j7+6tikpWVhT179igxiYiIQEZGBvbv36/02bJlC8xmM8LDw2t8zFVBRBAdHY2VK1diy5YtaNy4sao9LCwMDg4OqrgcO3YMycnJqrgcOnRIdYLbtGkT3N3drU6cNzOz2Yz8/HybjUnfvn1x6NAhxMTEKD+dO3fG6NGjlf+3xbhoycnJwYkTJ1C/fn2bPV4AoEePHlavjY6Pj0dQUBAA2z3vWixatAi+vr4YOHCgMs+Wj5eqwPzGmi3/njHHKT/mOMxxyoP5TTHmN9dWJ/Kbqniiti1ZunSpODo6yuLFi+Wvv/6SiRMnislkUj0d/FaTnZ0tBw4ckAMHDggAmT17thw4cEBOnTolIsWvHDSZTPLjjz/KwYMHZciQIZqvHOzYsaPs2bNHduzYIaGhoTf1Kwcff/xx8fDwkF9//VX16sHLly8rfSZNmiSBgYGyZcsW2bdvn0REREhERITSbnnt4F133SUxMTGyfv168fHxualfU/nSSy/Jtm3bJDExUQ4ePCgvvfSS6HQ62bhxo4jYZky0lHyTh4jtxuXZZ5+VX3/9VRITE2Xnzp0SGRkp3t7ekpaWJiK2G5c//vhD7O3t5T//+Y8kJCTI119/Lc7OzrJkyRKljy2ed0WK36AVGBgoL774olWbrR4vVYX5DfMbC+Y42pjjlA9zHOY3ZWF+U7a6kt+wOHQD5s6dK4GBgWIwGKRr166ye/fu2h5Stdq6dasAsPoZO3asiBS/dvDf//63+Pn5iaOjo/Tt21eOHTumWsfFixdl5MiR4urqKu7u7vLwww9LdnZ2LexN1dCKBwBZtGiR0icvL0+eeOIJ8fT0FGdnZ7n33nvl3LlzqvUkJSVJ//79xcnJSby9veXZZ5+VwsLCGt6bqjN+/HgJCgoSg8EgPj4+0rdvXyVpErHNmGgpnTjZalxGjBgh9evXF4PBIA0aNJARI0bI8ePHlXZbjYuIyOrVq6VNmzbi6OgoLVq0kI8//ljVbovnXRGRDRs2CACrfRWx7eOlqjC/YX4jwhynLMxxyoc5DvOba2F+o62u5Dc6EZGKXWtERERERERERES3Cj5ziIiIiIiIiIjIhrE4RERERERERERkw1gcIiIiIiIiIiKyYSwOERERERERERHZMBaHiIiIiIiIiIhsGItDREREREREREQ2jMUhIiIiIiIiIiIbxuIQEVVat27d8N5779Xa9pcsWQJ/f/8y25s3b45PPvmkBkdU9f71r39h8uTJynTnzp3xwQcf1Np4iIiIbAFznOrHHIeobmBxiIgqxWw249ChQ2jfvn2tjSE2NhYdOnQAUJxQLFmyRNW+fft2jBs3rkLr0+v1yMzMrMJRVk5MTIyyj0VFRTh8+LAyTURERFWPOU7NYI5DVDewOERElRIfH4/Lly+jXbt25V6msLCwSsdQMnHS4ufnBwcHh3Kv748//kBISAg8PDwqNa6q2s/s7GycPHlS2cejR4/iypUrtZqsEhER3eqY45SNOQ7RrYfFIaJbwIkTJ6DT6bBmzRr07dsXzs7OaN68Ofbs2aPqt3LlSnTp0gXOzs4ICQnBokWLVO3BwcF4++23MXr0aLi5uSEoKAgbN27E6dOnMWzYMLi5uaFFixY4cOCAskxMTAz8/PywdetWtGzZEm5ubhg2bBguXbqk9Bk3bhxGjRqFl19+Gf7+/ggLCwMAXL58GdOmTUPDhg3h4uKC2267DXFxcdfd13vuuQfOzs5o1qwZtm3bds3EafHixQgODlam//3vfyMyMhLz5s1DaGgoXFxccO+99yI/Px8AMGbMGEycOBEJCQnQ6XTQ6XQ4evQoAODw4cO455574OrqCl9fX0RHRyvLAUCfPn0wZcoUPPHEE/Dy8sLw4cPRtWtXvPLKK6oxnT59Gk5OTti5cycAYPPmzYiMjIS3tzdcXFzQq1cvHDp0SOkfGxsLe3t7tGrVSol5YGAgPD09lT6rV69G586dYTQa0aRJE3z00UeqbX700Udo27YtnJ2dUa9ePdx9990wm83XjDUREVFtY47DHIc5DlENESK66f3www+i0+nk9ttvl61bt0p8fLxERkZKnz59lD4ff/yxeHh4yOLFi+XkyZOyePFi0ev1sn37dhERuXTpkgCQ0NBQWb58uSQkJEi/fv0kNDRU+vTpIz///LMcPXpUevToIYMHD1bW++KLL4qLi4sMGzZMDh8+LNu2bZMGDRpIVFSU0qdDhw7i5uYmU6dOlaNHj0p8fLzk5eVJly5dZPjw4bJ3716Jj4+X8ePHS0hIiJjNZs39TE1NlQYNGsjEiRPlyJEjsmnTJgkNDRUAcuTIERERCQsLk6+++kpZZvLkyTJkyBBletCgQeLh4SHPPPOMHD58WLZs2SIuLi6yePFiERFJT0+Xbt26ydSpU+XcuXNy7tw5MZvNsnPnTvHw8JAPPvhAEhISZPv27RISEiKvv/66sm5PT0/x8vKS//73v5KQkCAnT56U8ePHy7333qvaj4cfflgVwyVLlsjKlSslPj5eDh48KIMGDZKuXbsq7XPnzpV27dop088++6xq+ffee0+CgoLk+++/l5MnT8rSpUvFaDQqn+2SJUukYcOGsmbNGklKSpK9e/fKnDlzNGNMRERUlzDHYY7DHIeoZrA4RHQLmD59unh6ekpaWpoyb86cOdK6dWsRKU44nJycZPny5arlunfvLi+88IKIiPz6668CQLZs2aK0f/rpp6LT6SQuLk6Z99Zbb6n+qPfr1086dOggV69eVeb95z//UbZdUFAgBoNBlUhZ+vTu3VuVJF24cEEAyKlTpzT3c/z48XLbbbep5j333HPi7Oys2n5Jffr0kenTpyvTgYGBMnr0aFWfTp06ybvvvqtMm0wmWb16tTJdVFQkLVq0kM8//1y13HvvvSe33367iIgkJSUJANV6RERmz54tzZs3V6YPHz4sBoNBDh8+rDleEZENGzaIh4eHMj1hwgQZM2aMMt23b19lnxITE8XFxUWOHj2qWsc999wjM2fOFBGRhx56SEaNGlXm9oiIiOoq5jjMcZjjENUM3lZGdAuIjY3FkCFD4OPjo8xLTExESEgIAGDFihUwmUwYPny4ajmDwaBcMhwbG4umTZvi9ttvV9qTk5PRtWtXtG7dWjWvcePGynRMTAyeeuop6PX/nE48PT2Vy3mPHDmCgoICPPXUU6ptf/rpp9i1axfc3Nzg6uoKV1dXBAUFAQDs7e2t9vHKlSv49ttvVW+zAAAHBwe0bdtWtf3SsbFcjp2RkYHk5GQ8+uijqj5JSUlKrBITE5GRkaG6133nzp04evQooqOjlbG6urpi2rRpylhjY2NhMBjw2GOPqdbdtm1bnDhxAgUFBQCAadOm4cEHH1Quny4sLMT8+fPRvXt31K9fH66urhg8eDAaNmyoinHJ8cTGxirTX375JS5fvoywsDDV2NatW6eMbcCAAVi+fDl69OiBDz/8EOfOndOMFRERUV3DHIc5DnMcopphfXYioptObGwspk6dqpoXExOD2267DUDxfeStWrVSJRdmsxlHjx7Fgw8+qPQPDw+3Wke3bt2s5t1zzz0AgJSUFKSmplrdC79792507NhR6V+/fn00a9ZMac/KykJiYiLWrVunJCwlBQQEWM07duwY8vLy0KlTJ9X8P//8s8x78ZOTk3Hp0iUlyYiNjYWdnR26du2q6pOenq6sIyYmBl5eXmjUqJFqn9u1a4cffvjBahtubm5Kn7CwMGXaok2bNigqKkJCQgKysrKwceNGxMfHK+0TJ07Ejh07MH36dLRu3Rru7u6YMmWKsp7Sb+04c+YMLly4oBrvI488ghdeeMFqbL6+vgCABx54AD169MCqVavw9ddfY+rUqdi8eTMiIiI040ZERFRXMMfpYNUfYI7DHIeo6rE4RHSTy8zMRFJSkpKoWFi+7QKK/7jn5eWp2r/99ltkZ2dj6NChAIqTipEjR1qtY9iwYcq0iODgwYN4+eWXlXYAuHr1qtLn7NmzWLZsGdasWaOst/TY7OzsoNPpYG9vr5k4abEkfSX3Iy4uDhs3bsT8+fM1l4mNjYW7u7vyLWBsbCyaN28OJycnpc+BAwdgMpmUBzpqvbLWwcEB6enpaNq0KXQ6XZnbKr2fAODv7w9vb2/89ddfmDt3Lp588knlG7OCggJ89dVXWLFiBQYPHgygOH7btm1THvBoeWtHyUSp5D45ODjg8uXL141jo0aN8OSTTyI6OhrBwcH4888/mTgREVGdxhyHOQ5zHKKaw9vKiG5yBw8ehL29Pdq2bavMO3XqFC5duqT8se3fvz92796Nr776CklJSfjyyy8RFRWFOXPmoF69elbf3ADApUuXkJycrPoW6/jx48jJybH6Iz5jxgycOHECu3fvxp133olhw4YhMjJS6VM6oXBxcUHv3r3xzDPP4Ndff0VSUhJ27NiBl156CUlJSZr7GRoaCh8fH0ybNg3x8fHYunUr7rvvPohImd+qWb4NsyQ7WslN6cuZzWYzzp8/jxMnTiAlJQUA0LdvX5w/fx7R0dE4cuQIjh07hh9//BHTp09XrUcrcQKKv1mbPXs24uLiVN9+Ojg4wN3dHatXr8bJkyexfv16DB8+HFlZWapvJRs2bAgvLy/NfRowYACWLVuGhQsX4uTJk4iNjcVnn32GL774AkDxpe0LFizAoUOHcOLECbzzzju4dOkS+vXrpzlWIiKiuoI5DnMc5jhENah2H3lEtzIAMmPGjNoeRp3Wu3dv6d27d6XWMXfuXOXBiGPHjpWgoCBZuXKlmEwmVb+FCxdKkyZNxGg0SlhYmKxcuVJpO3TokACQ8+fPK/O2bt0qjo6OUlhYqMz77rvvxNvbW5keMWKEREVFyYsvviju7u7i4+Mj06dPVy1Tr149+e6776zGffbsWRk1apT4+fmJ0WiUkJAQmTRpkmrZ0jZs2CChoaFiMBikU6dO8uabb4per5fc3FzN/sOHD5fo6GhlOiwszOphikOGDJGnn35amU5OTpbw8HAxGAyqfV23bp106dJFXFxcxNPTUyIiIuSbb74REZGsrCzR6XSyd+9ezXE8+eSTAkDeeecdq7Yff/xRgoKCxMnJSSIjI+Wbb75RfRbPPvus3HPPPWXuk0jxAyFDQ0PF0dFR/Pz8ZODAgcpYFi5cKG3bthVnZ2cxmUzSt29f+f3335VlZ8yYIfxTcH0V+V3Nzs4WHx8fWbJkSZVt/8KFC+Ls7Cw///xzla2TiCqGec31VUVeU1LXrl3FwcFBNY85TjHmONo5zvjx45nX1IC3335bmjdvXubD0m/Eiy++qHogPNU8/uaQiIgsWrRIACg/jo6OEhoaKlFRUZKSknJD62QSdX1VnURZikNE5cXiUPlU5Hf1jTfekCZNmkhRUZGIFCdQAOTPP/9U9TObzWIymQSAnDx5UtWWl5cnBoNBRo4cqcx76qmnpFOnTpXbESIbwbymdjCvodrGvKb6ZWZmipeXl/KGu6KiInFzc5PBgwdb9Z09e7YAUL2RzuLf//63AJBjx46JiMi5c+fE0dFRfvzxx+rdASoTnzlEKq+99hoaN26MK1euYMeOHViwYAHWrl2LuLg4ODs7V2hdeXl5mm9kICK6VRUWFuLDDz/EM888Azs7OwBAz549AQA7duxQXZZ/+PBhZGRkwN7eHjt37lS9IWfv3r0oKChQlgWASZMmYc6cOdiyZQvuuOOOGtojopsb8xoioqr1+eefo6ioSHmOl52dHbp164bff//dqu/OnTuVPEerzdfXV3mgu7+/P4YMGYL33ntPeU4V1Sw+c4hU+vfvjwcffBCPPPIIFi9ejMmTJyMxMRE//vhjhddlNBqZRBFRlRMRq4eP1hVr1qzB+fPncf/99yvzOnfuDKPRiB07dqj67ty5E/Xq1UPfvn2t2izTJYtDLVu2RJs2bbB48eLq2wGiWwzzGiKqarm5ubU9BCs1OaZFixZh8ODBMBqNyryePXviwoULOHLkiKrvzp07cf/996uecwUUv6luz5496NGjh6r//fffjx07duDkyZPVuxOkicUhuibLt9OJiYkAgD59+qBPnz5W/caNG6e8CcFCp9Ph1VdfVaazs7MxefJkBAcHw9HREb6+vrjzzjvx559/Kn0SEhIwfPhw+Pv7w2g0omHDhnjggQeQmZmp9Fm0aBHuuOMO+Pr6wtHREa1atcKCBQusxhQcHIx77rkHO3bsQNeuXWE0GtGkSRN8+eWXVn0zMjLwzDPPKGNr2LAhxowZgwsXLih98vPzMWPGDISEhMDR0RGNGjXCCy+8gPz8/HLF8uOPP0bTpk3h5OSErl274rffftPsV9ntlPbee++he/fuqFevHpycnBAWFobvv/++XMv26dMHbdq0wf79+9G9e3c4OTmhcePGWLhwoVXftLQ0TJgwAX5+fjAajWjfvr3ywECLpKQk6HQ6vPfee5g3bx6aNGkCZ2dn3HXXXTh9+jREBK+//joaNmwIJycnDBkyBOnp6ap1WD7XjRs3okOHDjAajWjVqhVWrFhhNaaMjAxMnjwZjRo1gqOjI0JCQvD222/DbDaXa//XrVuHXr16wcXFBW5ubhg4cCAOHz6s6jNu3Di4urri77//xtChQ+Hq6gofHx8899xzqjeclMWyP7/++is6d+4MJycntG3bFr/++isAYMWKFWjbti2MRiPCwsJw4MABq3Vs2bJFGafJZMKQIUOs/jgDxQWHLl26wGg0omnTpvjoo4/KHNeSJUsQFhYGJycneHl54YEHHsDp06evuz+vvvoqdDodjh8/jnHjxsFkMsHDwwMPP/wwLl++rOpbVFSE119/HU2bNoWjoyOCg4Mxbdo0q2PdEqMNGzYoMfroo4/w66+/QqfTYfny5Zg5cyYaNGgANzc3/Otf/0JmZiby8/MxefJk+Pr6wtXVFQ8//LDVust7PimvVatWITg4GE2bNlXmGQwGdOnSxepbs507dyIiIgI9evTQbDOZTGjTpo1q/p133onVq1dDRG54jES2jHkN8xrmNcxrbiSv+euvvzBq1Ch4enqqvri53nqjo6Ph6upqlQMBwMiRI+Hv76+Ka0U+oxMnTmDAgAFwc3PD6NGjAZTvnFOZeCQmJuLgwYPKQ9ktLDEpmc+cPHkSKSkpiI6OhtFoVLXFxMQgNzdXFUsAynpvpIBPVaB272qjusJyb37ph819+OGHAkAWLlwoImXfS651TzhK3Zs/atQoMRgMMmXKFPn000/l7bfflkGDBikPbc3Pz5fGjRtLQECAvPHGG/Lpp5/KzJkzpUuXLpKUlKSsp0uXLjJu3Dh5//33Ze7cuXLXXXcJAPnf//6n2n5QUJA0b95c/Pz8ZNq0afK///1POnXqJDqdTuLi4pR+2dnZ0qZNG7Gzs5NHH31UFixYIK+//rp06dJFDhw4ICIiV69elbvuukucnZ1l8uTJ8tFHH0l0dLTY29vLkCFDrhvfTz/9VABI9+7dZc6cOTJ58mQxmUzSpEkTVTwrux2tz6Fhw4byxBNPyP/+9z+ZPXu2dO3aVQDImjVrrru+3r17S0BAgPj6+kp0dLTMmTNHevbsKQDks88+U/pdvnxZWrZsKQ4ODvLMM8/InDlzpFevXgJAPvjgA6VfYmKiAJAOHTpIq1atZPbs2fLKK6+IwWCQbt26ybRp05QYPfXUU6LT6eThhx9WjSkoKEiaNWsmJpNJXnrpJZk9e7a0bdtW9Hq9bNy4UemXm5sr7dq1k3r16sm0adNk4cKFMmbMGNHpdKqHM5blyy+/FJ1OJ3fffbfMnTtX3n77bQkODhaTySSJiYmqmBuNRmndurWMHz9eFixYIMOHDxcAMn/+/Otux3Kc1q9fX1599VV5//33pUGDBuLq6ipLliyRwMBAeeutt+Stt94SDw8PCQkJUT38b9OmTWJvby/NmjWTd955R2bOnCne3t7i6empGufBgwfFyclJAgMDZdasWfL666+Ln5+ftGvXzure/DfeeEN0Op2MGDFC5s+fr6wzODhYLl26dM39sdzr37FjRxk2bJjMnz9fHnnkEQEgL7zwgqrv2LFjBYD861//knnz5smYMWMEgAwdOtQqRiEhIeLp6SkvvfSSLFy4ULZu3Spbt25VjqeIiAjVcfPAAw/IqFGjpH///jJv3jx56KGHBIDMnDlTte7ynk/K+xyNkJAQGTZsmNX8qVOnCgDVZ9KkSRN588035ZdffhGdTqfE1mw2i6enp/Tv399qPUuWLBEAcujQoeuOhciWMa9hXqOFeQ3zmhvNa1q1aiVDhgyR+fPny7x588q93u3btwsAWb58uWq9ubm54uLiIlFRUTf0GTk6OkrTpk1l7NixsnDhQvnyyy/Lfc6pTDwsecjBgwet9sfe3l7Gjh2r2h8XFxcpLCyUnj17yjPPPKO0ffDBBwJA9uzZY7WNkJAQGT58+DXHQdWDxSESkX+SqF9++UXOnz8vp0+flqVLl0q9evXEyclJzpw5IyKVS6I8PDxUJ8DSDhw4IAA03/pQ0uXLl63m9evXT5o0aaKaFxQUJABk+/btyry0tDRxdHSUZ599Vpk3ffp0ASArVqywWq/ZbBYRka+++kr0er389ttvqvaFCxcKANm5c2eZ4y0oKBBfX1/p0KGD5OfnK/M//vhjAaCKZ2W2I6L9OZSOV0FBgbRp00buuOOOa65LpPjzBiD//e9/lXn5+fnSoUMH8fX1lYKCAhH55wRf8u1MBQUFEhERIa6urpKVlSUi/yRRPj4+kpGRofS1/MO5ffv2qjd5jBw5UgwGg1y5ckWZZ/lcf/jhB2VeZmam1K9fXzp27KjMe/3118XFxUXi4+NV+/TSSy+JnZ2dJCcnl7nf2dnZYjKZ5NFHH1XNT0lJEQ8PD9V8S4HjtddeU/Xt2LGjhIWFlbmN0vtT8g1iGzZsEADi5OQkp06dUuZ/9NFHAkC2bt2qzLN8FhcvXlTmxcbGil6vVz38b+jQoWI0GlXr++uvv8TOzk6VRCUlJYmdnZ385z//UY3z0KFDYm9vbzW/NEsSNX78eNX8e++9V+rVq6dMx8TECAB55JFHVP2ee+45ASBbtmyxitH69etVfS3FoTZt2ijHokjxcaPT6ayKKxEREdf9/RDRPp+UpzhUWFgoOp1OdX6x+PnnnwWAfPXVVyJS/NBFALJt2zbJzs4WOzs75U1kcXFxAkAz1r///rsAkGXLll1zLES2jnkN8xotzGuY11hUNK8p+YKIiqzXbDZLgwYNrIody5cvV/0+38hn9NJLL6n6luecU9l4vPLKKwJAsrOzrdq6dOkiTZs2VaYfe+wxuf3220VE5IUXXpAuXboobf/617/E2dlZ8w1+d911l7Rs2fKa46DqwdvKSCUyMhI+Pj5o1KgRHnjgAbi6umLlypVo0KBBpddtMpmwZ88enD17VrPdw8MDALBhwwbNSy8tnJyclP/PzMzEhQsX0Lt3b5w8edLqkslWrVqhV69eyrSPjw+aN2+uuo/1hx9+QPv27XHvvfdabUun0wEAvvvuO7Rs2RItWrTAhQsXlB/L5elbt24tc7z79u1DWloaJk2aBIPBoMwfN26css8WldlOWUrG69KlS8jMzESvXr1Ul71fi729PR577DFl2mAw4LHHHkNaWhr2798PAFi7di38/f2VB9MBgIODA5566ink5ORg27ZtqnXed999qn0PDw8HADz44IOq5zmEh4ejoKAAf//9t2r5gIAA1efl7u6OMWPG4MCBA8r9zN999x169eoFT09PVSwjIyNx9epVbN++vcx93rRpEzIyMjBy5EjVsnZ2dggPD9f8HCZNmqSa7tWrV7nvl27VqhUiIiKs4nHHHXcgMDDQar5lvefOnUNMTAzGjRsHLy8vpV+7du1w5513Yu3atQCAq1evYsOGDRg6dKhqfS1btkS/fv1UY1mxYgXMZjPuv/9+1b77+/sjNDS03MegVjwuXryIrKwsAFDGNmXKFFW/Z599FgDw888/q+Y3btzYaqwWY8aMgYODgzIdHh4OEcH48eNV/cLDw3H69GkUFRUp8ypyPrme9PR0iAg8PT2t2rp37w69Xq88S2jnzp1wcHBAly5d4Orqinbt2imXW1v+W/pSawDKukveGkJEZWNeo8a8hnkN85qqyWvKu16dTof77rsPa9euRU5OjrL8smXL0KBBA+Vv/Y18Ro8//rhqujznnMrG4+LFi7C3t4erq6tVW8+ePVXPFtq5cye6d+8OAOjRowcOHDigjGvnzp0IDw/XfI6b5Rinmsen6pHKvHnz0KxZM9jb28PPzw/NmzeHXl81NcR33nkHY8eORaNGjRAWFoYBAwZgzJgxaNKkCYDif/xNmTIFs2fPxtdff41evXph8ODBePDBB1V/cHfu3IkZM2Zg165dVie+zMxMVd+SfzAsPD09cenSJWX6xIkTGD58+DXHnpCQgCNHjsDHx0ezPS0trcxlT506BQAIDQ1VzXdwcFD2vSq2U5Y1a9bgjTfeQExMjOr+fkuCeD0BAQFwcXFRzbO8VSApKQndunXDqVOnEBoaanWstGzZEsA/MbAo/blYPrNGjRppzi/5eQFASEiI1fhLjsnf3x8JCQk4ePDgDcUyISEBAMp8I5S7u7tq2mg0Wm2n9HF2LTcaD0tcmzdvbrXOli1bYsOGDcjNzUV2djby8vKsjkHLspZkCyjedxHR7AtAVYSpyD5ZihqXLl2Cu7s7Tp06Bb1ej5CQEFU/f39/mEwmq2Om5Ju8rreta8XPbDYjMzMT9erVA1Cx80l5icbzgEwmE1q3bq0qAHXs2FH5R0737t1VbQaDAV27di1z3eX9/SWydcxrtDGvYV5TEvOa6yudh1RkvSNGjMAHH3yAn376CaNGjUJOTg7Wrl2Lxx57TPncK/oZ2dvbo2HDhlZjvN45p6rioaVnz554//33sXPnTvTt2xeHDx/GO++8A6A4zykqKsIff/yBoKAgnDt3Do888ojmekSEeU4tYXGIVLp27YrOnTuX2a7T6TT/4VOeB9Tdf//96NWrF1auXImNGzfi3Xffxdtvv40VK1agf//+AID//ve/GDduHH788Uds3LgRTz31FGbNmoXdu3ejYcOGOHHiBPr27YsWLVpg9uzZaNSoEQwGA9auXYv333/f6oF8lldJl6a1D9diNpvRtm1bzJ49W7O99B+7G1XV2/ntt98wePBg3HbbbZg/fz7q168PBwcHLFq0CN98801VDPmGlPW5VNXnBRTH8s4778QLL7yg2W5JuspaFgC++uor+Pv7W7WX/pajrHGXV03Eo7zMZjN0Oh3WrVunuX2tb4q0lHfs5f3jX/Kb4vJu63pjqOj55Hq8vLyg0+nKTJ579uyJhQsXIiMjQ/VtGlCcNH3++ecoLCzEjh07EBYWpnoLiIVl3d7e3hUaG5GtYl6jjXlN1WJeo3Yr5jWl85CKrLdbt24IDg7G8uXLMWrUKKxevRp5eXkYMWKEan1A+T8jR0dHzUL39c45lY1HvXr1UFRUhOzsbLi5uanaLFdB7dixA87OzgCgXEHm7e2N0NBQ7NixQ3nwtdYV0kBxrsM8p3awOEQV4unpqXlJaelvUMpSv359PPHEE3jiiSeQlpaGTp064T//+Y+SRAFA27Zt0bZtW7zyyiv4/fff0aNHDyxcuBBvvPEGVq9ejfz8fPz000+qbyVu5LJki6ZNmyIuLu66fWJjY9G3b98KV7KDgoIAFFfqS34bUFhYiMTERLRv375KtqPlhx9+gNFoxIYNG+Do6KjMX7RoUbnXcfbsWeTm5qq+ZYuPjwcA5U0uQUFBOHjwIMxms+oP1dGjR5X2qnT8+HGrbxVKj6lp06bIycmxeptCeVjeNOXr63tDy9cUS1yPHTtm1Xb06FF4e3vDxcUFRqMRTk5OyrdSJZVetmnTphARNG7c+JqJZmUFBQXBbDYjISFB+SYWAFJTU5GRkVHlx4yWqj6f2Nvbo2nTpspbkErr2bMnFixYgF9++QUHDhzA888/r7R1794deXl5+Pnnn3Hy5Mkyv/W3rLtkzIjoxjGvYV4DMK+pK26mvKai673//vvx4YcfIisrC8uWLUNwcDC6deumWh9QNZ/Rtc45lY1HixYtABTnI+3atVO1+fr6KgUgFxcXtGrVCiaTSWm3XCV95swZ2NnZqW49LKn0eYRqDp85RBXStGlTHD16FOfPn1fmxcbGWr2GubSrV69a3Tfv6+uLgIAA5ZLgrKws1bNAgOKTm16vV/pYKtwlv2HIzMysUFJQ2vDhwxEbG4uVK1datVm2c//99+Pvv//GJ598YtUnLy8Pubm5Za6/c+fO8PHxwcKFC1FQUKDMX7x4MTIyMlR9K7MdLXZ2dtDpdKpvQJOSkrBq1apyr6OoqEj1atCCggJ89NFH8PHxQVhYGABgwIABSElJwbJly1TLzZ07F66urujdu3eFxn09Z8+eVX1eWVlZ+PLLL9GhQwfl25b7778fu3btwoYNG6yWz8jIsDrWSurXrx/c3d3x5ptvorCw0Kq95PFfm+rXr48OHTrgiy++UB1LcXFx2LhxIwYMGACg+Djo168fVq1aheTkZKXfkSNHrOIzbNgw2NnZYebMmVbf5IkILl68WCVjt4ztgw8+UM23fLs8cODAKtnOtVTH+SQiIgL79u3TbLN8QzZ79mwUFhaqrhwKDg5G/fr1lcuvy/o2bf/+/fDw8EDr1q1veIxE9A/mNcxrmNcwr7kRFV3viBEjkJ+fjy+++ALr16/H/fffr2qvis+oPOecysbDUtC5Vq4TExODjRs3qvIcoLg4tGvXLvz2229o166d1ZVHQPH578SJE1bLUs3glUNUIePHj8fs2bPRr18/TJgwAWlpaVi4cCFat26tPGhWS3Z2Nho2bIh//etfaN++PVxdXfHLL79g7969+O9//wsA2LJlC6Kjo3HfffehWbNmKCoqwldffQU7OzvlW/S77roLBoMBgwYNwmOPPYacnBx88skn8PX1xblz525on55//nl8//33uO+++zB+/HiEhYUhPT0dP/30ExYuXIj27dvjoYcewvLlyzFp0iRs3boVPXr0wNWrV3H06FEsX74cGzZsKPOydQcHB7zxxht47LHHcMcdd2DEiBFITEzEokWLrO7Nr8x2tAwcOBCzZ8/G3XffjVGjRiEtLQ3z5s1DSEgIDh48WK51BAQE4O2330ZSUhKaNWuGZcuWISYmBh9//LFyX/LEiRPx0UcfYdy4cdi/fz+Cg4Px/fffY+fOnfjggw80T/6V0axZM0yYMAF79+6Fn58fPv/8c6SmpqqS6eeffx4//fQT7rnnHowbNw5hYWHIzc3FoUOH8P333yMpKanMS1bd3d2xYMECPPTQQ+jUqRMeeOAB+Pj4IDk5GT///DN69OiB//3vf1W6Tzfq3XffRf/+/REREYEJEyYgLy8Pc+fOhYeHB1599VWl38yZM7F+/Xr06tULTzzxhJLktm7dWnUsNG3aFG+88QamTp2KpKQkDB06FG5ubkhMTMTKlSsxceJEPPfcc5Ued/v27TF27Fh8/PHHyMjIQO/evfHHH3/giy++wNChQ3H77bdXehvXUx3nkyFDhuCrr75CfHy81TdygYGBaNSoEXbt2oXg4GAEBASo2rt3744ffvgBOp0OPXr00Fz/pk2bMGjQIN6LT1RFmNcwr2Few7zmRvKaiq63U6dOCAkJwcsvv4z8/HzVLWVA1XxG5TnnVDYeTZo0QZs2bfDLL79YvfgDKC4OLVq0CHv37kVUVJSqrXv37sjMzERmZiaefPJJzfX/8ssvEBEMGTLkmvtK1aQa34RGNxHLK1/37t173b5LliyRJk2aiMFgkA4dOsiGDRuu+8rX/Px8ef7556V9+/bi5uYmLi4u0r59e5k/f77S/+TJkzJ+/Hhp2rSpGI1G8fLykttvv11++eUX1Xp/+uknadeunRiNRgkODpa3335bPv/8cwEgiYmJSr+goCAZOHCg1fi1Xlt78eJFiY6OlgYNGojBYJCGDRvK2LFj5cKFC0qfgoICefvtt6V169bi6Ogonp6eEhYWJjNnzpTMzMzrxm3+/PnSuHFjcXR0lM6dO8v27ds1x1KZ7Wh9Dp999pmEhoaKo6OjtGjRQhYtWqS8lvN6evfuLa1bt5Z9+/ZJRESEGI1GCQoKkv/9739WfVNTU+Xhhx8Wb29vMRgM0rZtW1m0aJGqj+WVr++++65qvuWV5KVfval1XFo+1w0bNki7du2U/dJ6bWd2drZMnTpVQkJCxGAwiLe3t3Tv3l3ee+891avPy7J161bp16+feHh4iNFolKZNm8q4ceNk3759Sp+xY8eKi4uL1bLljXFZxykAq1cklxW/X375RXr06CFOTk7i7u4ugwYNkr/++stqndu2bZOwsDAxGAzSpEkTWbhwYZnj/OGHH6Rnz57i4uIiLi4u0qJFC4mKipJjx45dc38s6zt//rxqvuWzLPk7WlhYKDNnzpTGjRuLg4ODNGrUSKZOnap6xe+1YlSR46assZX3fFKeV9mLFJ/rvL295fXXX9dsHzlypACQUaNGWbXNnj1bAJT5+tYjR44I/v/V3ER0bcxrmNdoYV7DvKaq8pobWe/LL78sACQkJKTM7VXmMyrvOacy8RApzldcXV3l8uXLVm3Hjh0TAAJA4uPjVW1ms1lMJpMAkGXLlmmue8SIEdKzZ8/rjoGqh06kGp8ARkQ3tT59+uDChQvXfXZBTQoODkabNm2wZs2a2h4KkabXX38dixYtQkJCQqUf6lnS5MmTsX37duzfv59XDhER3QDmNUSVl5mZiSZNmuCdd97BhAkTqmy9KSkpaNy4MZYuXcorh2oJnzlERERUhZ555hnk5ORg6dKlVbbOixcv4tNPP8Ubb7zBwhARERHVGg8PD7zwwgt49913K/xm12v54IMP0LZtWxaGahGfOURERFSFXF1dkZaWVqXrrFevHnJycqp0nUREREQ34sUXX8SLL75Ypet86623qnR9VHG8coiIiIiIiIiIyIbxmUNERERERERERDaMVw4REREREREREdkwFoeIiIiIiIiIiGwYi0NERERERERERDaswm8r2759O959913s378f586dw8qVKzF06FClXUQwY8YMfPLJJ8jIyECPHj2wYMEChIaGKn3S09Px5JNPYvXq1dDr9Rg+fDg+/PBDuLq6Kn0OHjyIqKgo7N27Fz4+PnjyySfxwgsvlHucZrMZZ8+ehZubG1/7S0REZMNEBNnZ2QgICIBer/29GPMbIiIiupmUJ7+p6AorZO3atfLyyy/LihUrBICsXLlS1f7WW2+Jh4eHrFq1SmJjY2Xw4MHSuHFjycvLU/rcfffd0r59e9m9e7f89ttvEhISIiNHjlTaMzMzxc/PT0aPHi1xcXHy7bffipOTk3z00UflHufp06cFAH/4wx/+8Ic//OGPAJDTp08zv+EPf/jDH/7whz+31M+18puKqNTbynQ6neqbNRFBQEAAnn32WTz33HMAgMzMTPj5+WHx4sV44IEHcOTIEbRq1Qp79+5F586dAQDr16/HgAEDcObMGQQEBGDBggV4+eWXkZKSAoPBAAB46aWXsGrVKhw9erRcY8vMzITJZMLp06fh7u5+o7tYJrPZjPPnz8PHx6dqqnS3CMbFGmOijXHRxrhoY1y0MS7aSsclKysLjRo1QkZGBjw8PK67PPMbHlOlMS7aGBdtjIs2xkUb42KNMdFW2fzmeip8W9m1JCYmIiUlBZGRkco8Dw8PhIeHY9euXXjggQewa9cumEwmJXECgMjISOj1euzZswf33nsvdu3ahdtuu01JnACgX79+ePvtt3Hp0iV4enpabTs/Px/5+fnKdHZ2NgDA1dVVdTl3VTGbzcjLy4OrqysP2BIYF2uMiTbGRRvjoo1x0ca4aCsdF7PZDAA3fBsW8xtiXLQxLtoYF22MizbGxRpjoq2q85vSqrQ4lJKSAgDw8/NTzffz81PaUlJS4Ovrqx6EvT28vLxUfRo3bmy1DkubVvI0a9YszJw502r++fPnceXKlRvco7KZzWZkZmZCRGzmgD2+/jhC7g65ZpstxuV6GBNtjIs2xkUb46KNcdFWOi6WgsqNYn5DjIu2G41LyZzyWvnlzaq6j5ebNWbXi8vNul+VxfOLtbJiUvoYsbVjpqrzm9KqtDhUm6ZOnYopU6Yo05ZLrHx8fKrtsmudTmdTl7qdKThjlfiWbrPFuFwPY6KNcdHGuGhjXLQxLtpKx8VoNNb2kG4Y85u6gXHRdqNxKZlTXiu/vFlV9/Fys8bsenG5Wfersnh+sVZWTEofI7Z2zFR3flOlxSF/f38AQGpqKurXr6/MT01NRYcOHZQ+aWlpquWKioqQnp6uLO/v74/U1FRVH8u0pU9pjo6OcHR0tJqv1+ur7ZdMp9NV6/rrGh10Ze5ryTZbi0t5MCbaGBdtjIs2xkUb46KtZFwqGxvmNwQwLmW5kbio8sZr5Jc3s+o8Xm7mmF0rLjfzflUWzy/WtGJS+hixxWOmKvOb0qp0bY0bN4a/vz82b96szMvKysKePXsQEREBAIiIiEBGRgb279+v9NmyZQvMZjPCw8OVPtu3b0dhYaHSZ9OmTWjevLnmJddUMfs/3n/9TkRERASA+Q0RERHd+ipcHMrJyUFMTAxiYmIAFD+kMSYmBsnJydDpdJg8eTLeeOMN/PTTTzh06BDGjBmDgIAA5Y0fLVu2xN13341HH30Uf/zxB3bu3Ino6Gg88MADCAgIAACMGjUKBoMBEyZMwOHDh7Fs2TJ8+OGHqsuqiYiIiKoK8xsiIiKyZRW+rWzfvn24/fbblWlLQjN27FgsXrwYL7zwAnJzczFx4kRkZGSgZ8+eWL9+vep+uK+//hrR0dHo27cv9Ho9hg8fjjlz5ijtHh4e2LhxI6KiohAWFgZvb29Mnz4dEydOrMy+EhEREWlifkNERES2rMLFoT59+kBEymzX6XR47bXX8Nprr5XZx8vLC9988801t9OuXTv89ttvFR0eERERUYUxvyEiIiJbZltPbyIiIiIiIiIiIhUWh4iIiIiIiIjolsOXMZUfi0NERERERERERDaMxSEiIiIiIiIiIhvG4hARERERERERkQ1jcYiIiIiIiIiIyIaxOEREREREREQ14s9P/6ztIRCRBhaHiIiIiIiIiIhsGItDREREREREREQ2jMUhIiIiIiIiIiIbxuIQVQveS0xERERERER0c2BxiIiIiIiIiIjIhrE4RERERERERERkw1gcIiIiIiIiIiKyYSwOERERERERERHZMBaHiIiIiIjoprP/4/21PQSbxLgT3ZpYHCIiIiIiIiIismEsDhERERERERHdInh1F90IFoeIiIiIiIiIiGwYi0NERERERERERDaMxSEiIiIiIiIiIhvG4hARERERERERkQ1jcYiIiIiIiIiIyIaxOEREREREREREZMNYHCIiIiIiIqKbGl/fTlQ5LA4REREREREREdkwFoeIiIiIiIiIiGwYi0NERERERERERDaMxSEiIiIiIiIiIhvG4hARERERERFVCz4omujmwOIQEREREREREZENY3GIiIiIiIiIiMiGsThERERERERERGTDWBwiIiIiIiIiIrJhLA4REREREREREdkwFoeIiIiIiIiIiGwYi0NERERERERERDaMxSFS2f/x/toeAhERERERERHVIBaHiIiIiIiIiIhsGItDRERERER0U+PV70RElcPiEBERERERERGRDWNxiIiIiIiIiIjIhrE4RERERERERERkw1gcIiIiIiIiIiKyYSwOERERERERERHZMBaHiIiIiIiIiIhsGItDREREREREREQ2rMqLQ6+++ip0Op3qp0WLFkr7lStXEBUVhXr16sHV1RXDhw9Hamqqah3JyckYOHAgnJ2d4evri+effx5FRUVVPVQiIiKicmF+Q0Q3g/0f76/tIRDRTcq+OlbaunVr/PLLL/9sxP6fzTzzzDP4+eef8d1338HDwwPR0dEYNmwYdu7cCQC4evUqBg4cCH9/f/z+++84d+4cxowZAwcHB7z55pvVMVwiIiKi62J+Q0RERLeqaikO2dvbw9/f32p+ZmYmPvvsM3zzzTe44447AACLFi1Cy5YtsXv3bnTr1g0bN27EX3/9hV9++QV+fn7o0KEDXn/9dbz44ot49dVXYTAYqmPIRERERNfE/IaIiIhuVdVSHEpISEBAQACMRiMiIiIwa9YsBAYGYv/+/SgsLERkZKTSt0WLFggMDMSuXbvQrVs37Nq1C23btoWfn5/Sp1+/fnj88cdx+PBhdOzYUXOb+fn5yM/PV6azsrIAAGazGWazucr30Ww2Q0SqZd3VTVD2uCvbZonLtframpv5WKlOjIs2xkUb46KNcdFWOi5VFR/mN7aLcdF2o3EpmSdWJmesqvVUteo+Xm40X6+J7V+r//X+nVDZsdelY6AiquN4uVljYVFWTErvV3n282aPRUnVld9YVHlxKDw8HIsXL0bz5s1x7tw5zJw5E7169UJcXBxSUlJgMBhgMplUy/j5+SElJQUAkJKSokqcLO2WtrLMmjULM2fOtJp//vx5XLlypZJ7Zc1sNiMzMxMiAr3+5nqu9xXDFaSlpVVLmyUu1+pra27mY6U6MS7aGBdtjIs2xkVb6bhkZ2dXep3Mb2wb46LtRuNSMk+sTM5YVeupatV9vNxovl4T279W/+v9O6GyY69Lx0BFVMfxcrPGwqKsmJTer/Ls580ei5KqI78pqcqLQ/3791f+v127dggPD0dQUBCWL18OJyenqt6cYurUqZgyZYoynZWVhUaNGsHHxwfu7u5Vvj2z2QydTgcfH5+bLkk4U3AGvr6+1dJmiUtOQU6ZfW3NzXysVCfGRRvjoo1x0ca4aCsdF6PRWOl1Mr+xbYyLthuNS8mc8lr5ZWXW8+enf6LTI51uaL2VVd3Hy43m6zWx/Wv1v96/Eyo79prY9+pQHcfLzRoLi7JiUnq/yrOfN3ssSqqO/KakarmtrCSTyYRmzZrh+PHjuPPOO1FQUICMjAzVt2upqanKPfz+/v74448/VOuwvO1D6z5/C0dHRzg6OlrN1+v11fZHXKfTVev6q4sOujLHXBVtOp3umn1t0c16rFQ3xkUb46KNcdHGuGgrGZfqiA3zG9vDuGi7kbio8sZK5IzXWk9t56LVebzcaL5eE9u/Xv9r/TuhsmOv7c+8Mqr6eLmZY2GhFZMb+T2/FWJRUnXmN9UepZycHJw4cQL169dHWFgYHBwcsHnzZqX92LFjSE5ORkREBAAgIiIChw4dUl36tWnTJri7u6NVq1bVPVwiIiKi62J+Q0RERLeSKr9y6LnnnsOgQYMQFBSEs2fPYsaMGbCzs8PIkSPh4eGBCRMmYMqUKfDy8oK7uzuefPJJREREoFu3bgCAu+66C61atcJDDz2Ed955BykpKXjllVcQFRWl+c0ZERERUXVjfkNERES3siovDp05cwYjR47ExYsX4ePjg549e2L37t3w8fEBALz//vvQ6/UYPnw48vPz0a9fP8yfP19Z3s7ODmvWrMHjjz+OiIgIuLi4YOzYsXjttdeqeqhERERE5cL8hoiIiG5lVV4cWrp06TXbjUYj5s2bh3nz5pXZJygoCGvXrq3qoRERERHdEOY3RES1Z//H+xE2May2h0F0S7t1nsxEREREREREREQVxuIQEREREREREZENY3GIiIiIiIiIiMiGsThERERERERUR+3/eH9tD4HolsLfKW0sDhERERERERER2TAWh4iIiIiIiIhucrwihiqDxSEiIiIiIiIiIhvG4hARERERERERkQ1jcYiIiIiIiIiIyIaxOERERERERFQD+EwYIqqrWBwiIiIiIiIiIrJhLA4REREREREREdkwFoeIiIiIiIiIiGwYi0NERERERERERDaMxSEiIiIiIiIiIhvG4hARERERERERkQ1jcYiIiIiIiKga8NX1RHSzYHGIiIiIiIiIiMiGsThERERERERERGTDWBwiIiIiIiIiIrJhLA4REREREREREdkwFoeIiIiIiIiIiGwYi0NERERERERERDaMxSEiIiIiIiIiIhvG4hAREREREdmM/R/vr+0hEBHVOSwOERERERERERHZMBaHiIiIiIiIiIhsGItDREREREREREQ2jMUhIiIiIiKiGsZnHxFRXcLiEBERERERERGRDWNxiIiIiIiIqI7gFUVEVBtYHCIiIiIiIiKimxaLqpXH4hAREREREdH/4z8yicgWsThEZeIfRiIiIiIiIqJbH4tDREREREREREQ2jMUhIiIiIiIiIiIbxuIQERERERERXRMfOUF0a2NxiIiIiIiIiIjIhrE4RERERERERERkw1gcIiIiIiKiWxpviSIeA0TXxuIQEREREREREZENY3GIiIiIiIiIiMiGsThERERERERERGTDWBwiIiIiIiIiIrJhLA4REREREREREdkwFoeIiIiIiIiIiMrpVnz7HYtDREREREREpHIr/uOXiMpWp4tD8+bNQ3BwMIxGI8LDw/HHH3/U9pCIiIiIKo05DhEREdUldbY4tGzZMkyZMgUzZszAn3/+ifbt26Nfv35IS0ur7aFVK1boiYiIbm22muMQERHdSm61f7vX2eLQ7Nmz8eijj+Lhhx9Gq1atsHDhQjg7O+Pzzz+v7aERERER3TDmOERERFTX2Nf2ALQUFBRg//79mDp1qjJPr9cjMjISu3bt0lwmPz8f+fn5ynRWVhYAwGw2w2w2V/kYzWYzRKTK1y2o+nVWZBsl20r3K89ylrjUxH7cLKrrWLnZMS7aGBdtjIs2xkVb6bjUpfhUNMe5VfKbmx3jou1G43KtfLOq1nOt6etts7J5bMm43Mg4KrIvVT328oyjotso778TKrtf1f25VpeqPL/c6GdU15QVk6r4fbpW34oQiDLWmlLd+Y1ORKRK11gFzp49iwYNGuD3339HRESEMv+FF17Atm3bsGfPHqtlXn31VcycOdNqfnx8PNzc3Kp8jGazGZmZmfDw8IBeX2cvwKpxjIs1xkQb46KNcdHGuGhjXLSVjkt2djaaNWuGzMxMuLu71+rYKprjML+pGxgXbYyLNsZFG+OijXGxxphoq+78pk5eOXQjpk6diilTpijTWVlZaNSoEXx8fKolETSbzdDpdPDx8eEBWwLjYo0x0ca4aGNctDEu2hgXbaXjYjQaa3tIN4z5Td3AuGhjXLQxLtoYF22MizXGRFt15zd1sjjk7e0NOzs7pKamquanpqbC399fcxlHR0c4Ojpazdfr9dV2QOl0umpd/82KcbHGmGhjXLQxLtoYF22Mi7aScalLsalojsP8pu5gXLQxLtoYF22MizbGxRpjoq0685s6WRwyGAwICwvD5s2bMXToUADFVbLNmzcjOjq6XOuw3C1nuTe/qpnNZmRnZ8NoNPKALYFxscaYaGNctDEu2hgXbYyLttJxseQCdeFO+srmOMxvagfjoo1x0ca4aGNctDEu1hgTbdWd39TJ4hAATJkyBWPHjkXnzp3RtWtXfPDBB8jNzcXDDz9cruWzs7MBAI0aNarOYRIREdFNIjs7Gx4eHrU9jErlOMxviIiIqKSqym/qbHFoxIgROH/+PKZPn46UlBR06NAB69evh5+fX7mWDwgIwOnTp+Hm5gadTlfl47Pc83/69Olaf7hlXcK4WGNMtDEu2hgXbYyLNsZFW+m4iAiys7MREBBQ20MDULkch/lN7WBctDEu2hgXbYyLNsbFGmOirbrzmzr5trKbQVZWFjw8POrEm0/qEsbFGmOijXHRxrhoY1y0MS7aGJcbx9hpY1y0MS7aGBdtjIs2xsUaY6KtuuPCG/iIiIiIiIiIiGwYi0NERERERERERDaMxaEb5OjoiBkzZmi+XtaWMS7WGBNtjIs2xkUb46KNcdHGuNw4xk4b46KNcdHGuGhjXLQxLtYYE23VHRc+c4iIiIiIiIiIyIbxyiEiIiIiIiIiIhvG4hARERERERERkQ1jcYiIiIiIiIiIyIaxOEREREREREREZMNYHLoB8+bNQ3BwMIxGI8LDw/HHH3/U9pCq1fbt2zFo0CAEBARAp9Nh1apVqnYRwfTp01G/fn04OTkhMjISCQkJqj7p6ekYPXo03N3dYTKZMGHCBOTk5NTgXlStWbNmoUuXLnBzc4Ovry+GDh2KY8eOqfpcuXIFUVFRqFevHlxdXTF8+HCkpqaq+iQnJ2PgwIFwdnaGr68vnn/+eRQVFdXkrlSpBQsWoF27dnB3d4e7uzsiIiKwbt06pd0WY6Llrbfegk6nw+TJk5V5thibV199FTqdTvXTokULpd0WY2Lx999/48EHH0S9evXg5OSEtm3bYt++fUq7LZ53g4ODrY4XnU6HqKgoALZ9vFQV5jerVO22+HsGMMcpC3Oc62N+U4z5TdmY31irU/mNUIUsXbpUDAaDfP7553L48GF59NFHxWQySWpqam0PrdqsXbtWXn75ZVmxYoUAkJUrV6ra33rrLfHw8JBVq1ZJbGysDB48WBo3bix5eXlKn7vvvlvat28vu3fvlt9++01CQkJk5MiRNbwnVadfv36yaNEiiYuLk5iYGBkwYIAEBgZKTk6O0mfSpEnSqFEj2bx5s+zbt0+6desm3bt3V9qLioqkTZs2EhkZKQcOHJC1a9eKt7e3TJ06tTZ2qUr89NNP8vPPP0t8fLwcO3ZMpk2bJg4ODhIXFycithmT0v744w8JDg6Wdu3aydNPP63Mt8XYzJgxQ1q3bi3nzp1Tfs6fP6+022JMRETS09MlKChIxo0bJ3v27JGTJ0/Khg0b5Pjx40ofWzzvpqWlqY6VTZs2CQDZunWriNju8VJVmN8wv7FgjqONOc61Mb/5B/MbbcxvtNWl/IbFoQrq2rWrREVFKdNXr16VgIAAmTVrVi2OquaUTp7MZrP4+/vLu+++q8zLyMgQR0dH+fbbb0VE5K+//hIAsnfvXqXPunXrRKfTyd9//11jY69OaWlpAkC2bdsmIsUxcHBwkO+++07pc+TIEQEgu3btEpHipFSv10tKSorSZ8GCBeLu7i75+fk1uwPVyNPTUz799FPGRESys7MlNDRUNm3aJL1791aSJ1uNzYwZM6R9+/aabbYaExGRF198UXr27FlmO8+7xZ5++mlp2rSpmM1mmz5eqgrzG+Y3ZWGOUzbmOMWY36gxv9HG/KZ8ajO/4W1lFVBQUID9+/cjMjJSmafX6xEZGYldu3bV4shqT2JiIlJSUlQx8fDwQHh4uBKTXbt2wWQyoXPnzkqfyMhI6PV67Nmzp8bHXB0yMzMBAF5eXgCA/fv3o7CwUBWXFi1aIDAwUBWXtm3bws/PT+nTr18/ZGVl4fDhwzU4+upx9epVLF26FLm5uYiIiGBMAERFRWHgwIGqGAC2fbwkJCQgICAATZo0wejRo5GcnAzAtmPy008/oXPnzrjvvvvg6+uLjh074pNPPlHaed4t/nu8ZMkSjB8/HjqdzqaPl6rA/MYaf8/+wRzHGnMcNeY31pjfWGN+c321nd+wOFQBFy5cwNWrV1WBBwA/Pz+kpKTU0qhql2W/rxWTlJQU+Pr6qtrt7e3h5eV1S8TNbDZj8uTJ6NGjB9q0aQOgeJ8NBgNMJpOqb+m4aMXN0nazOnToEFxdXeHo6IhJkyZh5cqVaNWqlU3HBACWLl2KP//8E7NmzbJqs9XYhIeHY/HixVi/fj0WLFiAxMRE9OrVC9nZ2TYbEwA4efIkFixYgNDQUGzYsAGPP/44nnrqKXzxxRcAeN4FgFWrViEjIwPjxo0DYLu/Q1WF+Y01/p4VY46jxhzHGvMba8xvtDG/ub7azm/sb2zYRGQRFRWFuLg47Nixo7aHUic0b94cMTExyMzMxPfff4+xY8di27ZttT2sWnX69Gk8/fTT2LRpE4xGY20Pp87o37+/8v/t2rVDeHg4goKCsHz5cjg5OdXiyGqX2WxG586d8eabbwIAOnbsiLi4OCxcuBBjx46t5dHVDZ999hn69++PgICA2h4K0S2NOY4acxw15jfamN9oY35zfbWd3/DKoQrw9vaGnZ2d1dPBU1NT4e/vX0ujql2W/b5WTPz9/ZGWlqZqLyoqQnp6+k0ft+joaKxZswZbt25Fw4YNlfn+/v4oKChARkaGqn/puGjFzdJ2szIYDAgJCUFYWBhmzZqF9u3b48MPP7TpmOzfvx9paWno1KkT7O3tYW9vj23btmHOnDmwt7eHn5+fzcamJJPJhGbNmuH48eM2fbzUr18frVq1Us1r2bKlckm6rZ93T506hV9++QWPPPKIMs+Wj5eqwPzGmq3/ngHMcbQwx1FjflM+zG+KMb+5trqQ37A4VAEGgwFhYWHYvHmzMs9sNmPz5s2IiIioxZHVnsaNG8Pf318Vk6ysLOzZs0eJSUREBDIyMrB//36lz5YtW2A2mxEeHl7jY64KIoLo6GisXLkSW7ZsQePGjVXtYWFhcHBwUMXl2LFjSE5OVsXl0KFDqhPcpk2b4O7ubnXivJmZzWbk5+fbdEz69u2LQ4cOISYmRvnp3LkzRo8erfy/rcampJycHJw4cQL169e36eOlR48eVq+Njo+PR1BQEADbPe9aLFq0CL6+vhg4cKAyz5aPl6rA/MaaLf+eMccpP1vPcZjflA/zm2LMb66tTuQ3VfFEbVuydOlScXR0lMWLF8tff/0lEydOFJPJpHo6+K0mOztbDhw4IAcOHBAAMnv2bDlw4ICcOnVKRIpfOWgymeTHH3+UgwcPypAhQzRfOdixY0fZs2eP7NixQ0JDQ2/qVw4+/vjj4uHhIb/++qvq1YOXL19W+kyaNEkCAwNly5Ytsm/fPomIiJCIiAil3fLawbvuuktiYmJk/fr14uPjc1O/pvKll16Sbdu2SWJiohw8eFBeeukl0el0snHjRhGxzZiUpeTbPERsMzbPPvus/Prrr5KYmCg7d+6UyMhI8fb2lrS0NBGxzZiIFL8O2N7eXv7zn/9IQkKCfP311+Ls7CxLlixR+tjieVek+A1agYGB8uKLL1q12erxUlWY3zC/sWCOo405Tvkwv2F+UxbmN2WrK/kNi0M3YO7cuRIYGCgGg0G6du0qu3fvru0hVautW7cKAKufsWPHikjxawf//e9/i5+fnzg6Okrfvn3l2LFjqnVcvHhRRo4cKa6uruLu7i4PP/ywZGdn18LeVA2teACQRYsWKX3y8vLkiSeeEE9PT3F2dpZ7771Xzp07p1pPUlKS9O/fX5ycnMTb21ueffZZKSwsrOG9qTrjx4+XoKAgMRgM4uPjI3379lWSJhHbjElZSidPthibESNGSP369cVgMEiDBg1kxIgRcvz4caXdFmNisXr1amnTpo04OjpKixYt5OOPP1a12+J5V0Rkw4YNAsBqX0Vs+3ipKsxvmN+IMMcpC3Oc8mF+w/zmWpjfaKsr+Y1ORKRi1xoREREREREREdGtgs8cIiIiIiIiIiKyYSwOERERERERERHZMBaHiIiIiIiIiIhsGItDREREREREREQ2jMUhIiIiIiIiIiIbxuIQEREREREREZENY3GIiIiIiIiIiMiGsThERJXWrVs3vPfee7W2/SVLlsDf37/M9ubNm+OTTz6pwRFVvX/961+YPHmyMt25c2d88MEHtTYeIiIiW8Acp/oxxyGqG1gcIqJKMZvNOHToENq3b19rY4iNjUWHDh0AFCcUS5YsUbVv374d48aNq9D69Ho9MjMzq3CUlRMTE6PsY1FREQ4fPqxMExERUdVjjlMzmOMQ1Q0sDhFRpcTHx+Py5cto165duZcpLCys0jGUTJy0+Pn5wcHBodzr++OPPxASEgIPD49Kjauq9jM7OxsnT55U9vHo0aO4cuVKrSarREREtzrmOGVjjkN062FxiOgWcOLECeh0OqxZswZ9+/aFs7Mzmjdvjj179qj6rVy5El26dIGzszNCQkKwaNEiVXtwcDDefvttjB49Gm5ubggKCsLGjRtx+vRpDBs2DG5ubmjRogUOHDigLBMTEwM/Pz9s3boVLVu2hJubG4YNG4ZLly4pfcaNG4dRo0bh5Zdfhr+/P8LCwgAAly9fxrRp09CwYUO4uLjgtttuQ1xc3HX39Z577oGzszOaNWuGbdu2XTNxWrx4MYKDg5Xpf//734iMjMS8efMQGhoKFxcX3HvvvcjPzwcAjBkzBhMnTkRCQgJ0Oh10Oh2OHj0KADh8+DDuueceuLq6wtfXF9HR0cpyANCnTx9MmTIFTzzxBLy8vDB8+HB07doVr7zyimpMp0+fhpOTE3bu3AkA2Lx5MyIjI+Ht7Q0XFxf06tULhw4dUvrHxsbC3t4erVq1UmIeGBgIT09Ppc/q1avRuXNnGI1GNGnSBB999JFqmx999BHatm0LZ2dn1KtXD3fffTfMZvM1Y01ERFTbmOMwx2GOQ1RDhIhuej/88IPodDq5/fbbZevWrRIfHy+RkZHSp08fpc/HH38sHh4esnjxYjl58qQsXrxY9Hq9bN++XURELl26JAAkNDRUli9fLgkJCdKvXz8JDQ2VPn36yM8//yxHjx6VHj16yODBg5X1vvjii+Li4iLDhg2Tw4cPy7Zt26RBgwYSFRWl9OnQoYO4ubnJ1KlT5ejRoxIfHy95eXnSpUsXGT58uOzdu1fi4+Nl/PjxEhISImazWXM/U1NTpUGDBjJx4kQ5cuSIbNq0SUJDQwWAHDlyREREwsLC5KuvvlKWmTx5sgwZMkSZHjRokHh4eMgzzzwjhw8fli1btoiLi4ssXrxYRETS09OlW7duMnXqVDl37pycO3dOzGaz7Ny5Uzw8POSDDz6QhIQE2b59u4SEhMjrr7+urNvT01O8vLzkv//9ryQkJMjJkydl/Pjxcu+996r24+GHH1bFcMmSJbJy5UqJj4+XgwcPyqBBg6Rr165K+9y5c6Vdu3bK9LPPPqta/r333pOgoCD5/vvv5eTJk7J06VIxGo3KZ7tkyRJp2LChrFmzRpKSkmTv3r0yZ84czRgTERHVJcxxmOMwxyGqGSwOEd0Cpk+fLp6enpKWlqbMmzNnjrRu3VpEihMOJycnWb58uWq57t27ywsvvCAiIr/++qsAkC1btijtn376qeh0OomLi1PmvfXWW6o/6v369ZMOHTrI1atXlXn/+c9/lG0XFBSIwWBQJVKWPr1791YlSRcuXBAAcurUKc39HD9+vNx2222qec8995w4Ozurtl9Snz59ZPr06cp0YGCgjB49WtWnU6dO8u677yrTJpNJVq9erUwXFRVJixYt5PPPP1ct995778ntt98uIiJJSUkCQLUeEZHZs2dL8+bNlenDhw+LwWCQw4cPa45XRGTDhg3i4eGhTE+YMEHGjBmjTPft21fZp8TERHFxcZGjR4+q1nHPPffIzJkzRUTkoYceklGjRpW5PSIiorqKOQ5zHOY4RDWDt5UR3QJiY2MxZMgQ+Pj4KPMSExMREhICAFixYgVMJhOGDx+uWs5gMCiXDMfGxqJp06a4/fbblfbk5GR07doVrVu3Vs1r3LixMh0TE4OnnnoKev0/pxNPT0/lct4jR46goKAATz31lGrbn376KXbt2gU3Nze4urrC1dUVQUFBAAB7e3urfbxy5Qq+/fZb1dssAMDBwQFt27ZVbb90bCyXY2dkZCA5ORmPPvqoqk9SUpISq8TERGRkZKjudd+5cyeOHj2K6OhoZayurq6YNm2aMtbY2FgYDAY89thjqnW3bdsWJ06cQEFBAQBg2rRpePDBB5XLpwsLCzF//nx0794d9evXh6urKwYPHoyGDRuqYlxyPLGxscr0l19+icuXLyMsLEw1tnXr1iljGzBgAJYvX44ePXrgww8/xLlz5zRjRUREVNcwx2GOwxyHqGZYn52I6KYTGxuLqVOnqubFxMTgtttuA1B8H3mrVq1UyYXZbMbRo0fx4IMPKv3Dw8Ot1tGtWzereffccw8AICUlBampqVb3wu/evRsdO3ZU+tevXx/NmjVT2rOyspCYmIh169YpCUtJAQEBVvOOHTuGvLw8dOrUSTX/zz//LPNe/OTkZFy6dElJMmJjY2FnZ4euXbuq+qSnpyvriImJgZeXFxo1aqTa53bt2uGHH36w2oabm5vSJywsTJm2aNOmDYqKipCQkICsrCxs3LgR8fHxSvvEiROxY8cOTJ8+Ha1bt4a7uzumTJmirKf0WzvOnDmDCxcuqMb7yCOP4IUXXrAam6+vLwDggQceQI8ePbBq1Sp8/fXXmDp1KjZv3oyIiAjNuBEREdUVzHE6WPUHmOMwxyGqeiwOEd3kMjMzkZSUpCQqFpZvu4DiP+55eXmq9m+//RbZ2dkYOnQogOKkYuTIkVbrGDZsmDItIjh48CBefvllpR0Arl69qvQ5e/Ysli1bhjVr1ijrLT02Ozs76HQ62NvbayZOWixJX8n9iIuLw8aNGzF//nzNZWJjY+Hu7q58CxgbG4vmzZvDyclJ6XPgwAGYTCblgY5ar6x1cHBAeno6mjZtCp1OV+a2Su8nAPj7+8Pb2xt//fUX5s6diyeffFL5xqygoABfffUVVqxYgcGDBwMojt+2bduUBzxa3tpRMlEquU8ODg64fPnydePYqFEjPPnkk4iOjkZwcDD+/PNPJk5ERFSnMcdhjsMch6jm8LYyopvcwYMHYW9vj7Zt2yrzTp06hUuXLil/bPv374/du3fjq6++QlJSEr788ktERUVhzpw5qFevntU3NwBw6dIlJCcnq77FOn78OHJycqz+iM+YMQMnTpzA7t27ceedd2LYsGGIjIxU+pROKFxcXNC7d28888wz+PXXX5GUlIQdO3bgpZdeQlJSkuZ+hoaGwsfHB9OmTUN8fDy2bt2K++67DyJS5rdqlm/DLMmOVnJT+nJms9mM8+fP48SJE0hJSQEA9O3bF+fPn0d0dDSOHDmCY8eO4ccff8T06dNV69FKnIDib9Zmz56NuLg41befDg4OcHd3x+rVq3Hy5EmsX78ew4cPR1ZWlupbyYYNG8LLy0tznwYMGIBly5Zh4cKFOHnyJGJjY/HZZ5/hiy++AFB8afuCBQtw6NAhnDhxAu+88w4uXbqEfv36aY6ViIiormCOwxyHOQ5RDardRx4RUWXNnTtXeTCixcqVK8VkMqnmLVy4UJo0aSJGo1HCwsJk5cqVStuhQ4cEgJw/f16Zt3XrVnF0dJTCwkJl3nfffSfe3t7K9IgRIyQqKkpefPFFcXd3Fx8fH5k+fbpqmXr16sl3331nNe6zZ8/KqFGjxM/PT4xGo4SEhMikSZNUy5a2YcMGCQ0NFYPBIJ06dZI333xT9Hq95ObmavYfPny4REdHK9NhYWFWD1McMmSIPP3008p0cnKyhIeHi8FgUO3runXrpEuXLuLi4iKenp4SEREh33zzjYiIZGVliU6nk71792qO48knnxQA8s4771i1/fjjjxIUFCROTk4SGRkp33zzjeqzePbZZ+Wee+4pc59Eih8IGRoaKo6OjuLn5ycDBw5UxrJw4UJp27atODs7i8lkkr59+8rvv/+uOU4iIqK6hDkOcxzmOEQ1RyciUpvFKSIiIiIiIiIiqj28rYyIiIiIiIiIyIaxOEREREREREREZMNYHCIiIiIiIiIismEsDhERERERERER2TAWh4iIiIiIiIiIbBiLQ0RERERERERENozFISIiIiIiIiIiG8biEBERERERERGRDWNxiIiIiIiIiIjIhrE4RERERERERERkw1gcIiIiIiIiIiKyYSwOERERERERERHZsP8DXQ2vWbKZ5p4AAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 1400x400 with 4 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig1, axs1 = plt.subplots(2, 2, figsize=(14, 4))\n", + "\n", + "fig1.subplots_adjust(wspace=0.1, hspace=0.5)\n", + "\n", + "axs1[0,0].plot(np.arange(n+1), T_i.value, color='purple', linewidth=1.2, alpha=0.4)\n", + "axs1[0,0].set_title(\"Température à l'intérieur du bâtiment (°C)\")\n", + "axs1[0,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[0,1].bar(np.arange(n), I_i.value, color='purple',alpha=0.4)\n", + "axs1[0,1].set_title(\"Inconfort\")\n", + "axs1[0,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,1].grid('on', alpha=0.3)\n", + "\n", + "\n", + "axs1[1,0].bar(np.arange(n), p_n_i.value, color='purple', alpha=0.4)\n", + "axs1[1,0].set_title(\"Puissance de la pompe en mode normal (W)\")\n", + "axs1[1,0].set_ylim(-30,1030)\n", + "axs1[1,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[1,1].bar(np.arange(n), p_r_i.value, color='purple',linewidth=1.2,alpha=0.4)\n", + "axs1[1,1].set_title(\"Puissance de la pompe en mode reverse (W)\")\n", + "axs1[1,1].set_ylim(-30,1030)\n", + "axs1[1,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,1].grid('on', alpha=0.3)\n", + "\n", + "title1 = fig1.suptitle(\"Graphes de la solution optimale (Inconfort minimal={} et budget utilisé={})\".format(objectif.value, c.T @ (p_n_i.value + p_r_i.value)),y=1.05)\n", + "title1.set_fontsize(15)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e4aee6ab", + "metadata": {}, + "source": [ + "### Commentaires" + ] + }, + { + "cell_type": "markdown", + "id": "cef532c6", + "metadata": {}, + "source": [ + "L'objectif était de minimiser l'inconfort occasionné par la température en fonction d'un budget donné, fixé ici à 3\\$. La pénalité minimale liée à l'inconfort est de 6681.20 pour l'intervalle de départ 13050 et de 0.0 pour le 22504ème intervalle avec un budget utilisé de 2.262\\$. Notre code s'exécute en respectivement 0.04708 et 0.03928 secondes pour les deux semaines testées.\n", + "\n", + "Lorsque les températures extérieures sont proches des températures ne causant aucun inconfort, il est moins coûteux de rester dans la plage confortable. 3\\$ suffisent en commençant à l'intervalle 22504 (l'inconfort est donc nul), mais pas pour 13050. Les pics d'inconfort surviennent évidemment durant les pics de températures trop basses." + ] + }, + { + "cell_type": "markdown", + "id": "db6baecb", + "metadata": {}, + "source": [ + "On remplace à présent la notion d'inconfort décrite ci-dessus par une pénalisation quadratique : à présent l'inconfort est proportionnel au *carré* du dépassement de la température maximale admissible, ou au *carré* du dépassement par le bas de la température minimale admissible (les coefficients de proportionnalité restent identiques)." + ] + }, + { + "cell_type": "markdown", + "id": "cf7d1ad5", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 2.3</b> :<br> \n", + " Modélisez ce nouveau problème de façon linéaire, en utilisant une approximation. Cette approximation pourra par exemple être basée sur des tangentes (choisissez un nombre pas trop élevé, par exemple 5). Expliquez votre technique de modélisation. Résolvez ce modèle approché, affichez les solutions et commentez (en particulier l'effet sur la solution par rapport au modèle d'inconfort initial).\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "3d678078", + "metadata": {}, + "source": [ + "### Technique de l'épigraphe avec approximations linéaires" + ] + }, + { + "cell_type": "markdown", + "id": "06fe7ddc", + "metadata": {}, + "source": [ + "##### Mise en équations" + ] + }, + { + "cell_type": "markdown", + "id": "06ad1cc3", + "metadata": {}, + "source": [ + "Etant donné la nouvelle fonction non-linéaire de l'inconfort en fonction de la température à un intervalle donné, $\\\\$\n", + "$I(T) = 3(T-T_{min})^2 \\qquad T \\lt T_{min}$ \n", + "\n", + "$I(T) = 0 \\qquad \\qquad T_{min} \\lt T \\lt T_{max}$ \n", + "\n", + "$I(T) = (T-T_{max})^2 \\qquad T \\gt T_{max}$ \n", + "$\\\\$ nous avons décidé de rendre cette fonction linéaire en l'approximant par six tangentes, en plus de l'axe des abscisses. Celle-ci étant convexe, l'épigraphe ainsi formé l'est également. Nous allons dès lors pouvoir à nouveau effectuer la technique de l'épigraphe. Voici l'équation des tangentes (approximation de Taylor) pour $T_{min}$=19°C et $T_{max}$=21°C de la courbe quadratique aux abscisses 17, 18, 18.5, 21.5, 23 et 25 :\n", + "\n", + "$f_1(T) = 12 - 12(T - 17)$\n", + "\n", + "$f_2(T) = 3 - 6(T - 18)$ \n", + "\n", + "$f_3(T) = 0.75 - 3(T - 18.5)$\n", + "\n", + "$f_4(T) = 0.25 + (T - 21.5)$\n", + "\n", + "$f_5(T) = 4 + 4(T - 23)$\n", + "\n", + "$f_6(T) = 16 + 8(T - 25)$" + ] + }, + { + "cell_type": "code", + "execution_count": 387, + "id": "57d9bdeb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHRCAYAAABuPWNbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXGElEQVR4nOzdd3gUxRvA8e+l99AhgRB67733IiWAgoggTRCk/AABQVCaSFUQla50QUHpRSAginQQQu8k9F4SSELK3fz+OHJyJIEELtnc5f08T57cze3tvrO7l3uzMzujU0ophBBCCCFsmJ3WAQghhBBCpDRJeIQQQghh8yThEUIIIYTNk4RHCCGEEDZPEh4hhBBC2DxJeIQQQghh8yThEUIIIYTNk4RHCCGEEDZPEh4hhBDCRq1bt45JkyYRExOjdSiak4RHAKDT6Rg9erTWYZgZPXo0Op1O6zBMQkJC0Ol0LFy40GLrTMp+r1OnDnXq1LHYNlNDbGwsQ4YMwc/PDzs7O1q1aqV1SCnu/PnzNGrUCG9vb3Q6HWvWrNE6pHhS4hx+U5Y+v7t06UKePHkstj5rdujQIdq1a0eBAgVwdHTUOhzNScKTRDNnzkSn01G5cmWtQ7EpERERjB49mr/++kvrUNKEhQsXpqkk73XNnz+fr7/+mjZt2rBo0SI++eQTi6w3LZ8vnTt35vjx44wbN44lS5ZQoUIFzWJZtmwZ06ZN02z7tsRa9+WjR49o27YtEydOpHXr1imyjfHjx6fJxD5RSiRJtWrVVJ48eRSgzp8/r3U4FhcZGaliYmJSfbt3795VgBo1alS812JiYlRkZGSqx5SY4OBgBagFCxZYbJ0v1n3BggXqxY9lVFSUioqKstg2U8N7772ncubMafH1vux80VJERIQC1Oeff651KEoppZo1a6b8/f3jlRsMBhUZGaliY2NTP6hE1K5dW9WuXdti6+vcuXOCdX9die3LtG7Hjh1q3rx5KboNd3d31blz5xTdhiXJFZ4kCA4OZs+ePUydOpWsWbOydOlSzWKJjY0lOjra4ut1cXHBwcHB4ut9Ew4ODri4uGgdhuacnJxwcnLSOoxkuXPnDhkyZLDY+gwGA0+fPrXY+izt7t27ABatc0rQ6XS4uLhgb2+vdSgihdWpU4cPP/wwycunlc9YSsYhCU8SLF26lIwZM9KsWTPatGmTYMIT1zb+zTff8O233+Lv74+rqyu1a9fmxIkTZst26dIFDw8PLl26ROPGjXF3d8fX15cvv/wS9dzk9c+vc9q0aeTPnx9nZ2dOnToFwJ9//knNmjVxd3cnQ4YMtGzZktOnT5vev2DBAnQ6HfPnzzfb/vjx49HpdGzatMlU9mJfkrj+M+fOneODDz7A29ubrFmzMmLECJRSXL16lZYtW+Ll5UWOHDmYMmWK2Taio6MZOXIk5cuXx9vbG3d3d2rWrMmOHTvM6pc1a1YAxowZg06nM4sjoT48sbGxjB071rQv8uTJw/Dhw4mKijJbLk+ePDRv3pxdu3ZRqVIlXFxcyJcvH4sXL4537BLy6NEjunTpgre3NxkyZKBz5848evQowWXPnDlDmzZtyJQpEy4uLlSoUIF169YlaTtJ8WIfh7/++gudTseKFSsYN24cuXLlwsXFhfr163PhwoV479+/fz9NmzYlY8aMuLu7U6pUKb777juzZV51LsF/x+PChQt06dKFDBky4O3tTdeuXYmIiAD+O2d37NjByZMnTcc0rgkqPDycQYMG4efnh7OzM4ULF+abb74xO+/BeD727duXpUuXUrx4cZydnZk9e/ZLz5fEPHr0iAEDBpi2WaBAASZNmoTBYDAt8/xnbe7cuabzq2LFihw8ePCl6x89ejT+/v4AfPrpp+h0OrM+JEeOHKFJkyZ4eXnh4eFB/fr12bdvn9k64poyd+/ezcCBA8maNSvu7u68/fbbpmTqeX/88Qe1a9fG09MTLy8vKlasyLJlywDj+bJx40YuX75s2kdx8STWh8dSx/9V4vatq6srlSpV4p9//klwuaioKEaNGkWBAgVwdnbGz8+PIUOGxPucJ9U333xDtWrVyJw5M66urpQvX57ff//9le972b5MTpxx5/Nvv/1GsWLFcHV1pWrVqhw/fhyAOXPmUKBAAVxcXKhTpw4hISHx4ihRogT//vsv1apVw9XVlbx58zJ79ux4MSc3puc/Y5s3b07y/tLpdISHh7No0SLTvunSpQuQeD+qhP6mvyyO69ev8+GHH5I9e3acnZ0pXrx4vO+zZNH4CpNVKFKkiOrWrZtSSqmdO3cqQB04cMBsmbjmjpIlS6o8efKoSZMmqTFjxqhMmTKprFmzqlu3bpmW7dy5s3JxcVEFCxZUHTt2VNOnT1fNmzdXgBoxYkS8dRYrVkzly5dPTZw4UX377bfq8uXLKjAwUDk4OKhChQqpyZMnqzFjxqgsWbKojBkzquDgYNM6mjdvrry9vdWVK1eUUkodO3ZMOTk5meoThxeaCUaNGqUAVaZMGfX++++rmTNnqmbNmilATZ06VRUuXFj16tVLzZw5U1WvXl0B6u+//za9/+7du8rHx0cNHDhQzZo1S02ePFkVLlxYOTo6qiNHjiillHry5ImaNWuWAtTbb7+tlixZopYsWaKOHj1qFsPzOnfurADVpk0bNWPGDNWpUycFqFatWpkt5+/vrwoXLqyyZ8+uhg8frqZPn67KlSundDqdOnHixEuPt8FgULVq1VJ2dnaqd+/e6ocfflD16tVTpUqVitekdeLECeXt7a2KFSumJk2apKZPn65q1aqldDqdWrVq1Uu3k9B+T6hJ68VL/jt27FCAKlu2rCpfvrz69ttv1ejRo5Wbm5uqVKmS2Xu3bt2qnJyclL+/vxo1apSaNWuW6tevn2rQoIFpmaSeS3HHo2zZsuqdd95RM2fOVN27d1eAGjJkiFLKeEyXLFmiihQponLlymU6prdu3VIGg0HVq1dP6XQ61b17dzV9+nQVEBCgADVgwIB4+6Vo0aIqa9asasyYMWrGjBlq165dLz1fEhIeHq5KlSqlMmfOrIYPH65mz56tOnXqpHQ6nerfv79pubjPWtmyZVWBAgXUpEmT1OTJk1WWLFlUrly5VHR0dKLbOHr0qPr2228VoN5//321ZMkStXr1aqWU8fxwd3dXPj4+auzYsWrixIkqb968ytnZWe3bty/ecS9btqyqV6+e+uGHH9SgQYOUvb29atu2rdn2FixYoHQ6nSpRooQaN26cmjFjhurevbvq2LGj6ZiXKVNGZcmSxbSP4uJJqFnWksf/ZX766ScFqGrVqqnvv/9eDRgwQGXIkEHly5fP7PzW6/WqUaNGys3NTQ0YMEDNmTNH9e3bVzk4OKiWLVu+cjsJNWnlypVL9e7dW02fPl1NnTpVVapUSQFqw4YNL13Xy/ZlcuIEVKlSpZSfn5+aOHGimjhxovL29la5c+dW06dPV8WKFVNTpkxRX3zxhXJyclJ169Y1e3/t2rWVr6+vypYtm+rbt6/6/vvvVY0aNRRg1myV3Jhe/IzF/W1Oyv5asmSJcnZ2VjVr1jTtmz179iR6DJRK+G96YnHcunVL5cqVS/n5+akvv/xSzZo1S7Vo0UIB6ttvv33pcUuMJDyvcOjQIQWowMBApZTxyzBXrlxmfyyV+u8Piaurq7p27ZqpfP/+/QpQn3zyiaks7kv7f//7n6nMYDCoZs2aKScnJ3X37l2zdXp5eak7d+6Yba9MmTIqW7Zs6v79+6ayo0ePKjs7O9WpUydT2c2bN1WmTJlUw4YNVVRUlCpbtqzKnTu3Cg0NNVtfYglPjx49TGWxsbEqV65cSqfTqYkTJ5rKHz58qFxdXc3acmNjY+P1O3n48KHKnj27+vDDD01lL+uT8eKHIygoSAGqe/fuZssNHjxYAerPP/80lfn7+ytA7dy501R2584d5ezsrAYNGhRvW89bs2aNAtTkyZPN6lOzZs14Xxb169dXJUuWVE+fPjWVGQwGVa1aNVWwYMGXbkep+Ps9IYklPEWLFjXbx999950C1PHjx00x582bV/n7+6uHDx+ardNgMJgeJ/Vcijsezx8/pZR6++23VebMmePFXLx4cbOyuP361VdfmZW3adNG6XQ6deHCBVMZoOzs7NTJkyfNlk1uH56xY8cqd3d3de7cObPyzz77TNnb25v+EYj7rGXOnFk9ePDAtNzatWsVoNavX//S7cS9/+uvvzYrb9WqlXJyclIXL140ld24cUN5enqqWrVqmcriEp4GDRqYHZtPPvlE2dvbq0ePHimllHr06JHy9PRUlStXjte/7fn3JdbvJKGEJyWO/4uio6NVtmzZVJkyZczO2blz5yrA7PxesmSJsrOzU//884/ZOmbPnq0AtXv37pduK6Ev24iIiHjxlChRQtWrV++l61Iq8X2ZnDgB5ezsbJZAzpkzRwEqR44cKiwszFQ+bNgwBZgtW7t2bQWoKVOmmMqioqJMxy4uIU9uTAl9xpRK+v5KrA9PchOehOLo1q2b8vHxUffu3TMrb9eunfL29o4XY1JIk9YrLF26lOzZs1O3bl3AePntvffe49dff0Wv18dbvlWrVuTMmdP0vFKlSlSuXNms+ShO3759TY/jLutFR0ezbds2s+Vat25tupQPcPPmTYKCgujSpQuZMmUylZcqVYqGDRuabStHjhzMmDGDwMBAatasSVBQEPPnz8fLyytJ9e/evbvpsb29PRUqVEApRbdu3UzlGTJkoHDhwly6dMls2bh+JwaDgQcPHhAbG0uFChU4fPhwkrb9orh6DRw40Kx80KBBAGzcuNGsvFixYtSsWdP0PGvWrPHiTGw7Dg4O9OrVy6w+//vf/8yWe/DgAX/++Sdt27bl8ePH3Lt3j3v37nH//n0aN27M+fPnuX79evIrmkRdu3Y169sTV9e4+h05coTg4GAGDBgQr29J3GXl5JxLcT7++GOz5zVr1uT+/fuEhYW9NN5NmzZhb29Pv379zMoHDRqEUoo//vjDrLx27doUK1bspet8ld9++42aNWuSMWNG0/G5d+8eDRo0QK/Xs3PnTrPl33vvPTJmzGhWN+CV50xC9Ho9W7dupVWrVuTLl89U7uPjQ/v27dm1a1e8fdajRw+zS/41a9ZEr9dz+fJlAAIDA3n8+DGfffZZvP5tr3N3X2od/0OHDnHnzh0+/vhjs3M2rtn4eb/99htFixalSJEiZsesXr16AGbN4knl6upqevzw4UNCQ0OpWbPma/8tep0469evb9bME3fHb+vWrfH09IxX/uI55+DgQM+ePU3PnZyc6NmzJ3fu3OHff/99rZgS+4ylxP56mRfjUEqxcuVKAgICUEqZ1aVx48aEhoa+Vixpq5dqGqPX6/n111+pW7cuwcHBpvLKlSszZcoUtm/fTqNGjczeU7BgwXjrKVSoECtWrDArs7OzM/sjGLccEK/9Nm/evGbP4/74FS5cON62ihYtypYtWwgPD8fd3R2Adu3a8fPPP7Nx40Z69OhB/fr1X1ZtM7lz5zZ77u3tjYuLC1myZIlXfv/+fbOyRYsWMWXKFM6cOWM26NWL9Umqy5cvY2dnR4ECBczKc+TIQYYMGUz7JbHYATJmzMjDhw9fuR0fHx88PDzMyl/c3xcuXEApxYgRIxgxYkSC67pz545ZAmxJL9Yv7os6rn4XL14EoESJEomuI7nn0qu2+7JE+vLly/j6+pr9cY/bzvOxxHnd8+R558+f59ixY2b/MDzvzp07Zs9ftU+T4+7du0RERCS6bw0GA1evXqV48eJJ3n5SjmlypNbxj9vOi38fHR0d4/0dPH/+PKdPn07yMUuKDRs28NVXXxEUFGTWl+VNhoBIbpwJ/S0F8PPzS7D8xXPO19fX7DiA+XdGlSpVkh1TYp+xlNhfL/NiHHfv3uXRo0fMnTuXuXPnJvie1zkPJOF5iT///JObN2/y66+/8uuvv8Z7fenSpfESnpTwfLb9Ou7fv8+hQ4cAOHXqFAaDATu7pF3cS+hujsTu8FDPdTz9+eef6dKlC61ateLTTz8lW7Zs2NvbM2HCBNMf7deV1A9dUuJ8E3GdXgcPHkzjxo0TXObF5MySUrp+Wm/3Tc97MB6jhg0bMmTIkARfj/vCiKPVPk0r20+K1PhclSxZkqlTpyb4+osJwqv8888/tGjRglq1ajFz5kx8fHxwdHRkwYIFpo7eqRFnYvvNkvszuTEl9BmzxP5K7G90Qq0iCcUR97f1gw8+oHPnzgm+p1SpUkmK5XmS8LzE0qVLyZYtGzNmzIj32qpVq1i9ejWzZ882O1jnz5+Pt+y5c+fi9Vg3GAxcunTJ7A/uuXPnAF45SmjcHSFnz56N99qZM2fIkiWL2X8Cffr04fHjx0yYMIFhw4Yxbdq0eM1Clvb777+TL18+Vq1aZXbyjxo1ymy55PzH4O/vj8Fg4Pz586arAgC3b9/m0aNHpv3ypvz9/dm+fTtPnjwxu8rz4v6O+8/U0dGRBg0aWGTblpQ/f34ATpw4kWh8yT2X3oS/vz/btm3j8ePHZld5zpw5YxbLyyT3P8z8+fPz5MkTTY5P1qxZcXNzS3Tf2tnZJfvL+/lj+rJkOqn7KbWOf9x2zp8/b2peAYiJiSE4OJjSpUubyvLnz8/Ro0epX7++Ra4orFy5EhcXF7Zs2YKzs7OpfMGCBUl6f2IxWDrOV7lx40a8q20vfmdYIqbk7K/EtpExY8YE72p98SpuYrJmzYqnpyd6vd6in13pw5OIyMhIVq1aRfPmzWnTpk28n759+/L48eN4tx+vWbPGrN/GgQMH2L9/P02aNIm3jenTp5seK6WYPn06jo6Or2xy8vHxoUyZMixatMjspDpx4gRbt26ladOmprLff/+d5cuXM3HiRD777DPatWvHF198YfqgpJS4/1qe/y9l//797N2712w5Nzc3gERv+X5eXL1eHPU07r+ZZs2avW648bYTGxvLrFmzTGV6vZ4ffvjBbLls2bJRp04d5syZw82bN+OtJ6HbiVNTuXLlyJs3L9OmTYu3f+OOS3LOpTfVtGlT9Hq92XkP8O2336LT6RL8jLwoOecLQNu2bdm7dy9btmyJ99qjR4+IjY1N0npeh729PY0aNWLt2rVmzdS3b99m2bJl1KhRI8l96eI0atQIT09PJkyYEG+skuc/a+7u7oSGhr5yfal1/CtUqEDWrFmZPXu22ThiCxcujHcs27Zty/Xr1/nxxx/jrScyMpLw8PBkbdve3h6dTmd2dSEkJCTJIwQnti8tHeerxMbGMmfOHNPz6Oho5syZQ9asWSlfvrzFYkrO/nJ3d0/ws5g/f35CQ0M5duyYqezmzZusXr36lduPi6F169asXLky3rAu8Pp/W+UKTyLWrVvH48ePadGiRYKvV6lSxTQI4XvvvWcqL1CgADVq1KBXr15ERUUxbdo0MmfOHO+SuouLC5s3b6Zz585UrlyZP/74g40bNzJ8+PBE21+f9/XXX9OkSROqVq1Kt27diIyM5IcffsDb29s0LsmdO3fo1asXdevWNXWQnj59Ojt27KBLly7s2rUryU1bydW8eXNWrVrF22+/TbNmzQgODmb27NkUK1aMJ0+emJZzdXWlWLFiLF++nEKFCpEpUyZKlCiRYB+F0qVL07lzZ+bOncujR4+oXbs2Bw4cYNGiRbRq1crUsfxNBQQEUL16dT777DNCQkIoVqwYq1atSvCP3owZM6hRowYlS5bko48+Il++fNy+fZu9e/dy7do1jh49apGYXoednR2zZs0iICCAMmXK0LVrV3x8fDhz5gwnT540JQFJOZcsISAggLp16/L5558TEhJC6dKl2bp1K2vXrmXAgAGmqxcvk5zzBYzj4qxbt47mzZvTpUsXypcvT3h4OMePH+f3338nJCQkXn80S/rqq68IDAykRo0a9O7dGwcHB+bMmUNUVBSTJ09O9vq8vLz49ttv6d69OxUrVqR9+/ZkzJiRo0ePEhERwaJFiwAoX748y5cvZ+DAgVSsWBEPDw8CAgISXGdqHH9HR0e++uorevbsSb169XjvvfcIDg5mwYIF8frwdOzYkRUrVvDxxx+zY8cOqlevjl6v58yZM6xYsYItW7Yka9qOZs2aMXXqVN566y3at2/PnTt3mDFjBgUKFDD7Qk5MYvvS0nG+iq+vL5MmTSIkJIRChQqxfPlygoKCmDt3rmmeLEvElJz9Vb58ebZt28bUqVPx9fUlb968VK5cmXbt2jF06FDefvtt+vXrR0REBLNmzaJQoUJJ7mw8ceJEduzYQeXKlfnoo48oVqwYDx484PDhw2zbto0HDx4kfycm+76udCIgIEC5uLio8PDwRJfp0qWLcnR0VPfu3TO7LXXKlCnKz8/PNEbBi+OEdO7cWbm7u6uLFy+axkzInj27GjVqlNLr9ablErvVNc62bdtU9erVlaurq/Ly8lIBAQHq1KlTptffeecd5enpqUJCQszeF3er7aRJk0xlJHJbetwt8i/G/qIXb0M2GAxq/Pjxyt/fXzk7O6uyZcuqDRs2JHi74p49e1T58uWVk5OTWRwJ3cIYExOjxowZo/LmzascHR2Vn5+fGjZsmNlt4UoZb0tv1qxZgnEmZRj7+/fvq44dOyovLy/l7e2tOnbsqI4cOZLg1BIXL15UnTp1Ujly5FCOjo4qZ86cqnnz5ur3339/5XZe3O8JSey29N9++81sucSmvti1a5dq2LCh8vT0VO7u7qpUqVLqhx9+MFvmVeeSUomfE3G3VL94G+2Lt6UrpdTjx4/VJ598onx9fZWjo6MqWLCg+vrrr81uqY7bL3369ElwfyR2viTm8ePHatiwYapAgQLKyclJZcmSRVWrVk198803ptt5X/ZZS8o2Xvb+w4cPq8aNGysPDw/l5uam6tataxqvJE7cPjx48KBZedyx3rFjh1n5unXrVLVq1UzHq1KlSuqXX34xvf7kyRPVvn17lSFDBgWYPnOJnSOWPv6JmTlzpmkcogoVKqidO3cm+JmMjo5WkyZNUsWLF1fOzs4qY8aMqnz58mrMmDHxhtR4UUJ/Y+bNm6cKFiyonJ2dVZEiRdSCBQsS/PuSkMT2ZXLiTOh8TuycSejzHfd5OnTokKpatapycXFR/v7+avr06fHifZOYkru/zpw5o2rVqqVcXV0VYHaL+tatW1WJEiWUk5OTKly4sPr5558TvS09sThu376t+vTpo/z8/JSjo6PKkSOHql+/vpo7d26Cy7+K7tkGxRsKCQkhb968fP311wwePPily3bp0oXff//d7EqHEEIIkZA6depw7969BJt3RNJJHx4hhBBC2DxJeIQQQghh8yThEUIIIYTNkz48QgghhLB5coVHCCGEEDZPEh4hhBBC2DxJeIQQQghh82Sk5WcMBgM3btzA09MzVeZFEUIIIcSbU0rx+PFjfH19Xzp7gCQ8z9y4cSPZE/kJIYQQIm24evUquXLlSvR1SXieiZu9+erVq8me0O9lYmJi2Lp1K40aNTLNd2JrbL2OUj/rZ+t1lPpZP1uvY0rWLywsDD8/P9P3eGIk4XkmrhnLy8vL4gmPm5sbXl5eNnkSg+3XUepn/Wy9jlI/62frdUyN+r2qO4p0WhZCCCGEzZOERwghhBA2T5q0ksFgMBAdHZ2s98TExODg4MDTp0/R6/UpFJm2bL2O6aV+er3eJi+lCyEESMKTZNHR0QQHB2MwGJL1PqUUOXLk4OrVqzZ7u7ut1zG91O/SpUtkzJiRHDly2GQ9hRDpmyQ8SaCU4ubNm9jb2+Pn5/fS+/xfZDAYePLkCR4eHsl6nzWx9Tqmh/o9fvwYOzs77t27B4CPj4/GUQkhhGVJwpMEsbGxRERE4Ovri5ubW7LeG9cM5uLiYpNflmD7dUwv9fPy8sLOzo47d+6QLVs27O3ttQ5NCCEsxvb+eqeAuH4bTk5OGkciRMqKS+hjYmI0jkQIISxLEp5kkH4NwtbJOS6EsFWS8AghhBDC5llFwrNz504CAgLw9fVFp9OxZs2aeMucPn2aFi1a4O3tjbu7OxUrVuTKlSupH6wQGlm4cCF//PGH1mEIIUSaZBUJT3h4OKVLl2bGjBkJvn7x4kVq1KhBkSJF+Ouvvzh27BgjRozAxcUllSMVL0osQU3vLL1fVq5cyeTJk6lSpYrF1imEEJZy7do1jh8/zrVr1zSLwSru0mrSpAlNmjRJ9PXPP/+cpk2bMnnyZFNZ/vz5UyO0NO/WrVuMGzeOjRs3cv36dbJly0aZMmUYMGAA9evX1zq8dOvmzZtkzJjRIuu6cOECX3zxBZs3b7bYOoUQwlLmzZtHjx49MBgMjBo1irlz59KtW7dUj8MqEp6XMRgMbNy4kSFDhtC4cWOOHDlC3rx5GTZsGK1atUr0fVFRUURFRZmeh4WFAca7U168QyUmJgalFAaD4bUGHoz7ndz3vqmQkBBq1qxJhgwZmDRpEiVLljTNWNunTx9OnTplke0kVMfo6GjTXW2vs9/Skufr9/TpU4vcrZctWzYAi+yXfPnycfLkydde34vHTylFTEyMTd2WHveZttW7z6R+1s9W63jt2jVTsgPGv1E9e/akXr165MqVyyLbSOo+06m4v3ZWQqfTsXr1alMyc+vWLXx8fHBzc+Orr76ibt26bN68meHDh7Njxw5q166d4HpGjx7NmDFj4pUvW7Ys3lg7Dg4O5MiRAz8/P6u6Nf3dd9/l1KlTHDhwAHd3d7PXQkND8fb2BuDq1asMHTqUnTt3YmdnR/369Zk0aZLpS7l3796EhoaydOlS0/uHDRvG8ePH2bBhAwDNmzenaNGiODg4sGLFCooVK8b69evJmDEj33zzDX/88Qe7d+8me/bsjBkzhpYtW5rWde3aNUaMGMGff/6JnZ0dVatWZeLEieTOnTvBeun1egYMGMDOnTu5c+cOuXLlolu3bnz88cemZeJiLlWqFD/++CPR0dG0bt2aSZMmmY5hXMwAy5cvx9HRkQ8//JDhw4eb7lYqVaoUHTt25OLFi2zatInmzZszc+ZM1q1bx4QJE7h06RLZs2enR48e9O3bF4DJkyezYMECdu/eTaZMmQBo27YtkZGRrF27Fjs7OzJmzMjPP/9Ms2bNuHLlCqVLl2b+/PnMnTuXoKAgihYtyty5cwkLC2PQoEGcP3+eKlWqMHv2bLJkyWKq5+LFi5kxYwaXL18md+7c9OjRg+7du7/2vo2Ojubq1avcunWL2NjYhE8sIYRIouPHjzNixIh45WPHjqVkyZIW2UZERATt27cnNDQULy+vxBdUVgZQq1evNj2/fv26AtT7779vtlxAQIBq165dout5+vSpCg0NNf1cvXpVAerevXsqOjra7CcsLEydPHlShYeHK71eb/oJC0v8JzzcuExsbKx6+PChCg2NTXTZJ0/0SVrv88u86ufu3btKp9OpcePGvXS5mJgYVaZMGVWjRg114MABtWfPHlW+fHlVu3Zt0zKdOnVSLVq0MHtfv379TMvExsaq6tWrKw8PDzV48GB16tQpderUKaXX6xWgMmfOrObMmaNOnz6tPv/8c2Vvb69OnDih9Hq9evr0qSpatKjq2rWrCgoKUidOnFDvv/++Kly4sIqMjEww5qdPn6oRI0ao/fv3qwsXLqjFixcrNzc39csvv5jF7OHhodq2bauOHTum1q1bp7JmzaqGDRtmWqZ27drKw8ND9evXT506dcq0ntmzZ5uW8ff3V15eXmrs2LHq7Nmz6ty5c+rAgQPKzs5OjRkzRp0+fVrNmzdPubq6qnnz5im9Xq+io6NV1apVVcuWLZVer1c//PCDypAhgwoODjatF1ArV65Uer1eXbx4UQGqSJEiatOmTerEiROqSpUqqnz58qpOnTpq586d6tChQ6pAgQKqZ8+epnUsXrxY+fj4qN9++01duHBB/fbbbypTpkxq/vz5ydq3cedobGysCg8PVydPnlRhYWHxPgfW/BMeHq7WrFmjwsPDNY9F6if1S091vHTpkrJDpwDTj729vbp06ZLFtnHv3j0FqNDQ0JfnD2+UfWjgxYQnKipKOTg4qLFjx5otN2TIEFWtWrUkrzc0NDTRHRYZGalOnTqlIiMjX4gl8Z+mTY3L6PV69fDhQ+XmZkh02dq1zbeXJUvCyyXH/v37FaBWrVr10uW2bt2q7O3t1ZUrV0xlJ0+eVIA6cOCAUkqpzp07q5YtW5q9r3///qr2s8D1er2qXr26Klu2bLz1A+rjjz82K6tcubLq1auXUkqpJUuWqMKFCyuDwWB6PSoqSrm6uqotW7Ykub59+vRRrVu3Nj3v3LmzypQpkwoPDzeVzZo1S3l4eCi9Xq+UUqp27dqqaNGiZtseOnSoKlq0qOm5v7+/atmypXr48KHpfe3bt1cNGzY02/6nn36qihUrZnp+8eJF5enpqYYOHapcXV3V0qVL4+2XuPM4ODhYAeqnn34yvf7LL78oQG3fvt1UNmHCBFW4cGHT8/z586tly5aZrXfs2LGqatWqSqmk79u4c1Sv1yd6rlu76OhotWbNGhUdHa11KClC6mf9bLmOI10LKfvnkp3n/9ZZwsu+v59nFXdpvYyTkxMVK1bk7NmzZuXnzp3D399fo6i0p5LYUnn69Gn8/Pzw8/MzlRUrVowMGTJw+vTpZG2zXLlyCZZXrVo13vO4dR89epQLFy7g6emJh4cHHh4eZMqUiadPn3Lx4sVEtzVjxgzKly9P1qxZ8fDwYO7cufGGIShdurRZ82TVqlV58uQJV69eNZVVqVLFbLC9qlWrcv78ebNZ0StUqGC23tOnT1O9enWzsurVq5u9L1++fHzzzTdMmjSJFi1a0L59+0TrEqdUqVKmx9mzZwcwu+SbPXt27ty5AxjvXLx48SLdunUz7TcPDw+++uor03573X0rhBAWc/Mmo5+eJwQY8dEwzp8/r0mHZbCSTstPnjzhwoULpufBwcEEBQWRKVMmcufOzaeffsp7771HrVq1TH141q9fz19//ZXCcSX+2ov9PW/dUtjZJTyK7YvTM4WEvFlcAAULFkSn03HmzJk3XpednV28BCqhTmIv9hNKiidPnlC+fHmz/kFxsmbNmuB7fv31VwYPHsyUKVOoWrUqnp6efP311+zfvz/Z20+K16kXGMePsre3JyQkhNjYWBwcXv5xc3R0ND2OS8JeLIvr+Pfk2cn3448/UrlyZbP1xHU2fp19K4QQFrVyJTql8K1cmfLNKluso/LrsIqE59ChQ9StW9f0fODAgQB07tyZhQsX8vbbbzN79mwmTJhAv379KFy4MCtXrqRGjRopGldyvgfd3eMnNpZYb2IyZcpE48aNmTFjBv369Yv3pf3o0SMyZMhA0aJFuXr1KlevXjVd5Tl16hSPHj2iWLFigPHL8cSJE2bvDwoKMvsyfpl9+/bRqVMns+dly5YFjFeFli9fTrZs2V7e2ew5u3fvplq1avTu3dtUltAVi6NHjxIZGYmrq6tpux4eHmZXs15Mkvbt20fBggVfeodS0aJF2b17d7yYChUqZHrf8uXLWbVqFX/99Rdt27Zl7NixCXaSf13Zs2fH19eXS5cu0aFDhwSXeZ19K4QQFvXbbwCoNm00DsRKBh6sU6cOytjfyOxn4cKFpmU+/PBDzp8/T2RkJEFBQWZ3AaVXM2bMQK/XU6lSJVauXMn58+c5ffo033//vamZqUGDBpQsWZIOHTpw+PBhDhw4QKdOnahdu7apKadevXocOnSIxYsXc/78eUaNGhUvAXqZ3377jfnz53Pu3DlGjRrFgQMHTHc0dejQgSxZstCyZUv++ecfgoOD+euvv+jXr1+iA1QVLFiQQ4cOsWXLFs6dO8eIESM4ePBgvOWio6Pp1q0bp06dYtOmTYwaNYq+ffuazXh+5coVBg4cyNmzZ/nll1/44Ycf6N+//0vrM2jQILZv387YsWM5d+4cixYtYvr06QwePBgw3hnVq1cvJk2aRI0aNViwYAHjx49n3759Sd5nSTFmzBgmTJjA999/z7lz5zh+/DgLFixg6tSpwOvtWyGEsJSb/95A/fMPAIZ33tE4GitJeMTryZcvH4cPH6Zu3boMGjSIEiVK0LBhQ7Zv386sWbMAYzPJ2rVryZgxI7Vq1aJBgwbky5eP5cuXm9bTuHFjRowYwZAhQ6hYsSKPHz82u2LzKmPGjOHXX3+lVKlSLF68mF9++cV09cjNzY2dO3eSO3du3nnnHYoWLUq3bt14+vRpolclevbsyTvvvMN7771H5cqVuX//vtnVnjj169enYMGC1KpVi/fee48WLVowevRos2U6depEZGQklSpVok+fPvTv358ePXq8tD7lypVjxYoV/Prrr5QoUYKRI0fy5Zdf0qVLF5RSdOnShUqVKpmSusaNG9OrVy8++OADU1OUJXTv3p2ffvqJBQsWULJkSWrXrs3ChQvJmzcv8Hr7VgghLOXMOGNz1nHPavDclXWtWN04PCklLCwMb2/vBO/jf/r0KcHBweTNmzfZ01UYDAbCwsLw8vIyu7JgS9JiHbt06cKjR49eOn1DnTp1KFOmDNOmTXvputJi/Szp+fpFR0e/9rmelsXExLBp0yaaNm2a5KZYayL1s362WMcgr5qUebyLf975liq/9kmx+r3s+/t5tvfXWwghhBCaurL3OmUe7wKg8Ofa998BSXiEEEIIYWHnxv8OwHHv6mQrp92dWc+ziru0hEiu5zu0Jyalhy0QQoj0KsuOFQCEvdVW40j+I1d4hBBCCGExl/6+SpnwPRjQUfTz1lqHYyIJjxBCCCEsJnyRsTnrZMYaZCqZU+No/iMJjxBCCCEspuQZ42CDOQekneYskIRHCCGEEJZy5Qrs3Qs6HZk+SjvNWSAJjxBCCCEs5PFCY3MWtWqBj4+2wbxAEh4hhBBCvDGl4MJ4491ZN2u8q3E08UnCI4QQQog3dmxdCGWj9mNAh/eHaas5CyThsVk6ne6lPy/OKZWW6XS6l04RIYQQQntXphqbs05nq41bvhwaRxOfDDxoo27evGl6vHz5ckaOHMnZs2dNZR4eHlqEJYQQwgYZDOC319icFft22ro7K45c4bFROXLkMP14e3uj0+lMz8PDw+nQoQPZs2fHw8ODihUrsm3bNrP358mTh/Hjx/Phhx/i6elJ7ty5mTt3rtkye/bsoUyZMri5uVG3bl3WrFmDTqcjKCjItMyJEydo0qQJHh4eZM+enY4dO3Lv3j3T63Xq1KFfv34MGTKETJkykSNHDrOrT3ny5AHg7bffRqfTmZ4DrF27lnLlyuHi4kK+fPkYM2YMsbGxACilGD16NLlz58bZ2RlfX1/69etnmZ0rhBDCzMEVwZSJOYgeO4oMf0frcBIkCc/rUArCw7X5scDk9k+ePKFp06Zs376dI0eO8NZbbxEQEMCVK1fMlpsyZQoVKlTgyJEj9O7dm169epmuEoWFhREQEEDJkiU5dOgQw4cPZ9iwYWbvf/ToEfXq1aNs2bIcOnSIzZs3c/v2bdq2Nc/+Fy1ahLu7O/v372fy5Ml8+eWXBAYGAnDw4EEAFixYwM2bN03P//nnHzp16kT//v05deoUc+bMYeHChYwbNw6AlStX8u233zJnzhzOnz/PmjVrKFmy5BvvOyGEEPFdm2ZszjrnUwfn3Nk1jiYRSiillAoNDVWACg0NjfdaZGSkOnXqlIqMjDQWPHmilDH1SP2fJ0+SXbcFCxYob2/vly5TvHhx9cMPP5ie+/v7qw8++MD03GAwqGzZsqlZs2YppZSaNWuWypw5s4qMjFR6vV49fPhQzZkzRwHqyJEjSimlxo4dqxo1amS2natXrypAnT17VimlVO3atVWNGjXMlqlYsaIaOnSo6TmgVq9ebbZM/fr11fjx483KlixZonx8fJRSSk2ZMkUVKlRIRUdHv7TeSRFXP71e/8brSouer1+8c91GREdHqzVr1ljkfEiLpH7Wz5rrGBWl1GH7CkqBOtlvdoLLpGT9Xvb9/Ty5wpMOPXnyhMGDB1O0aFEyZMiAh4cHp0+fjneFp1SpUqbHcU1id+7cAeDs2bOUKlUKFxcX0zKVKlUye//Ro0fZsWMHHh4epp8iRYoAcPHixQS3A+Dj42PaTmKOHj3Kl19+abbujz76iJs3bxIREcG7775LZGQk+fLl46OPPmL16tWm5i4hhBCWY3/5EmX1hzDo7Cj0WdpszgLptPx63NzgyZMkLWowGAgLC8PLyws7Owvkl25ub7yKwYMHExgYyDfffEOBAgVwdXWlTZs2REdHmy3n6Oho9lyn02EwGJK8nSdPnhAQEMCkSZPivebz3IBUr7OdJ0+eMGbMGN55J/6Hy8XFBT8/P86ePcu2bdsIDAykd+/efP311/z999/xtieEEOL12a8yTiVhV78edj5ZNY4mcZLwvA6dDtzdk7aswQB6vXF5SyQ8FrB79266dOnC22+/DRiTh5CQkGSto3Dhwvz8889ERUWZEoi4/jVxypUrx8qVK8mTJw8ODq9/qjk6OqLX6+Ot++zZsxQoUCDR97m6uhIQEEBAQAB9+vShSJEiHD9+nHLlyr12LEIIIV6wwnh3Fu+mvcEGn5c2voFFqipYsCCrVq0iKCiIo0eP0r59+2RduQFM7+nRowenT59m+/btTJ06FTBeoQHo06cPDx484P333+fgwYNcvHiRLVu20LVr13gJzMvkyZOH7du3c+vWLR4+fAjAyJEjWbx4MWPGjOHkyZOcPn2aX3/9lS+++AKAhQsXMm/ePE6cOMGlS5f4+eefcXV1xd/fP1n1FEIIkbi/froAhw+j7O3h2T/RaZUkPOnQ1KlTyZgxI9WqVSMgIIDGjRsn+6qHl5cX69evJygoiHLlyvHVV1+Zko24fj2+vr7s3r0bvV5Po0aNKFmyJAMGDCBDhgzJat6bMmUKgYGB+Pn5UbZsWQAaN27Mhg0b2Lp1KxUrVqRKlSp8++23poQmQ4YM/Pjjj1SvXp1SpUqxbds21q9fT+bMmZNVTyGEEIm7OtXYnHXBrx5kTbvNWSBNWulCly5d6NKli+l5njx5+PPPP82W6dOnj9nzhJq4nh9fB6BatWocPXrU1E9p/fr1ODo6kjt3btMycVeTEvPXX3/FK3txVOW4ZqkXNW7cmMaNGye43latWtGqVatEtyuEEOLNPHwIJc8Ym7PcuqTNwQafJwmPeG2LFy8mX758+Pj4sG/fPoYNG0bbtm1xdXXVOjQhhBApbNus87yrgojFnpx903ZzFkjCI97ArVu3GDlyJLdu3SJ79uy0adOG8ePHax2WEEKIVBA2z9icdaVgA/JZQXcBSXjEaxsyZAhDhgyx/K33Qggh0rQbN6D8JWNzllf3tN+cBdJpWQghhBDJtOX7s5ThKLE6B7J0b6V1OEkiCY8QQgghkqXQMWNz1vViDSFTJo2jSRpJeIQQQgiRLNWvGZuzfPtbR3MWSMIjhBBCiOQ4fRqOHwdHRxzbtNQ6miSThEcIIYQQSaIUXP7G2JxFw4aQMaO2ASWDVSQ8O3fuJCAgAF9fX3Q6XbyB6Z738ccfo9PpmDZtWqrFJ4QQQqQH+/bB4/nG5ixDG+tpzgIrSXjCw8MpXbo0M2bMeOlyq1evZt++ffj6+qZSZLZt4cKFZMiQQeswAKhTpw4DBgzQOgwhhEjXtv9wihKcJNbOEbu3rac5C6wk4WnSpAlfffWVaXbvhFy/fp3//e9/LF261DR7d3rXpUsXdDodOp0OJycnChQowJdffklsbGyS3v/ee+9x7ty5ZG0zLScmr7o6KIQQInExMeC4xtic9aBiY0gj/xAnlU0MPGgwGOjYsSOffvopxYsXT9J7oqKiiIqKMj0PCwsDICYmhpiYGLNlY2JiUEphMBiSPau4Usr0O7nvfVNKKRo3bsz8+fOJiopi06ZN/O9//8PBwYHPPvvsle93dnbG2dn5lXE/X8e43ylRV0us19qOYWp4sX5KKWJiYrC3t9c4MsuJ+0y/+Nm2FVI/62cNddy4UUfzSGNzVoaP3klWrClZv6Su0yYSnkmTJuHg4EC/fv2S/J4JEyYwZsyYeOVbt27Fzc3NrMzBwYEcOXLw5MkToqOjXyvGx48fA8YrUZcuXSJfvnzkzJnztdaVVHFfWm5ubri5udGhQwdWrlzJmjVr6N27N48ePeKzzz5j8+bNREdHU61aNSZNmkT+/PkBWLZsGcOGDePy5csATJw4kY0bN9KnTx/Gjx/Po0ePaNCgAd999x2enp507NiRv//+m7///pvvv/8egKNHj+Ll5cWnn37Kjh07CA8Px9fXl4EDB9KhQ4cE4w4PD2fQoEFs2LABDw8P+vbtS2xsLNHR0abENCoqiq+++oqVK1cSGhpK0aJFGT16NDVq1EhwnaVKlQKgdevWAPj5+XHs2DGCg4P5/PPPOXToEBERERQqVIiRI0dSp04ds/d27tyZ4OBg1q5di7e3N4MHDzabkHX//v0MHjyY8+fPU7RoUQYPHswHH3zAzp07KVmyJACnTp1i5MiR7Nu3Dzc3N+rWrcv48eNNM7g3b96c4sWL4+zszJIlS3BycqJr165myWloaCijRo1i06ZNhIWFkTdvXkaNGsVbb70FwN69e/nyyy8JCgoiU6ZMNG/enJEjR+Lu7v7K8+Xx48dER0cTGRnJzp07k3wl0JoEBgZqHUKKkvpZv7Rcx1VjPVjMKWLsHAl0dSZ206ZkryMl6hcREZGk5aw+4fn333/57rvvOHz4MDqdLsnvGzZsGAMHDjQ9DwsLw8/Pj0aNGuHl5WW27NOnT7l69SoeHh64uLgkKz6lFI8fP8bT05P58+fz8ccfYzAYsLOzY/bs2XTr1i1Z60sOR0dHHBwczOrj4eFBaGgoXl5edOrUiQsXLrB27Vq8vLz47LPPaNeuHSdOnMDR0REXFxd0Op3p/c7OzoSEhLB161Y2bNjAw4cPadeuHTNnzmTo0KFMnz6dkJAQihcvbkoms2bNyoABA7hw4QKbNm0iS5YsXLhwgcjIyHj7Oc6wYcPYu3cvq1evJlu2bHz++eccO3aM8uXLm97To0cPTp8+zS+//IKvry9r1qyhTZs2HD16lIIFC8Zb58GDB8mRIwfz5s3jrbfewt7e3rSugIAAJk6caEo03n//fU6fPm2a9d3Ozo4ZM2bw5ZdfMnLkSFauXMmgQYNo3LgxhQsXJiwsjPbt29OkSRN++eUXLl++bDq33N3d8fLy4tGjR7Rq1Ypu3brx/fffExkZyWeffcZHH33Etm3bAGNi/euvv/LJJ5+wb98+9u7dy4cffkjdunVp2LAhBoOBJk2a8PjxY5YsWUL+/Pk5deqUqS4XL17k3XffZezYsSxcuJC7d+/Sr18/Pv/8c+bPn5/oefL8ORoVFYWrqyu1atVK9rmelsXExBAYGEjDhg1tsslb6mf90nodw8LgxNGxADyp3phG776brPenZP3i/hF+JWVlALV69WrT82+//VbpdDplb29v+gGUnZ2d8vf3T/J6Q0NDFaBCQ0PjvRYZGalOnTqlIiMjkx2vXq9XDx8+VJcvX1Z2dnYKMP3Y29urq1evJnudSdW5c2fVsmVLpZRSBoNBBQYGKmdnZzV48GB17tw5Bajdu3eblr93755ydXVVK1asUEoptWDBAuXt7W16fdSoUcrNzU2FhYWZyj799FNVuXJl9fDhQ6XX61Xt2rVV//79zeIICAhQXbt2TVLMjx8/Vk5OTqYYlFLq/v37ytXV1bTey5cvK3t7e3X9+nWz99avX18NGzYs0XW/eO4kpnjx4uqHH34wPff391dt27ZVer1eKWXcl9myZVOzZs1SSik1a9YslTlzZrPz48cff1SAOnLkiFJKqbFjx6pGjRqZbefq1asKUGfPnlVKKVW7dm1Vo0YNs2UqVqyohg4dqpRSasuWLcrOzs60/Iu6deumevToYVb2zz//KDs7u5eeu3HnqF6vf6NzPS2Ljo5Wa9asUdHR0VqHkiKkftYvrdfxl2UGdYoiSoEyLPk52e9Pyfq97Pv7eVZ/hadjx440aNDArKxx48Z07NiRrl27ahRVfOfPn4/X/0Ov13PhwgVy5cqVYtuNaxaKiYnBYDDQvn17Ro8ezfbt23FwcKBy5cqmZTNnzkzhwoU5ffp0ouvLkycPnp6epuc+Pj7cuXPnpTH06tWL1q1bc/jwYRo1akSrVq2oVq1agstevHiR6Ohos7gyZcpE4cKFTc+PHz+OXq+nUKFCZu+NiooyNQ8l1ZMnTxg9ejQbN27k5s2bxMbGEhkZyZUrV8yWe75vmE6nI0eOHKZ6nz17llKlSpldEalUqZLZ+48ePcqOHTvw8PBIsM5xdYlreovz/P4NCgoiV65c8er9/DaOHTvG0qVLTWXqWb+c4OBgihYt+sr9IYQQCXmv+Al0nEHv6Ix9iwCtw3ktVpHwPHnyhAsXLpieBwcHm/oo5M6dO96XnKOjIzly5DD7ktRawYIFsbOzM0t67O3tKVCgQIput27dusyaNQsnJyd8fX1xcHizQ/7ipUidTvfKjrxNmjTh8uXLbNq0icDAQOrXr0+fPn345ptvXiuGJ0+eYG9vz7///huvY21CCcXLDB48mMDAQL755hsKFCiAq6srbdq0iddX63Xq/WLMAQEBTJo0Kd5rPj4+SdqOq6vrK7fRs2fPBPuyxTXPCSHE69D9ZuysbN/0LUikO0JaZxUJz6FDh6hbt67peVz/iM6dO7Nw4UKNokqeXLlyMXfuXHr27Iler8fe3p45c+ak6NUdMPYhSSipKlq0KLGxsezfv990teX+/fucPXuWYsWKvfb2nJyc0Ov18cqzZs1K586d6dy5MzVr1uTTTz9NMOHJnz8/jo6O7N+/3/Ql/fDhQ86dO0ft2rUBKFu2LHq9njt37lCzZs0kx+bo6Bgvtt27d9OlSxfTkAdPnjwhJCQkyesEKFy4MD///DNRUVE4OzsDxj5DzytXrhwrV64kT548r510lipVimvXrnHu3LkEr/KUK1eOU6dOpXgSLYRIX5RBoVthTHhoa12DDT7PKsbhqVOnDkqpeD+JJTshISFpciyYbt26ERISwo4dOwgJCUnRDsuvUrBgQVq2bMlHH33Erl27OHr0KB988AE5c+akZcvXH0wqT5487N+/n5CQEO7du4fBYGDkyJGsXbuWCxcucPLkSTZs2JBo84qHhwfdunXj008/5c8//+TEiRN06dIFO7v/TtVChQrRoUMHOnXqxKpVqwgODubAgQNMmDCBjRs3vjS27du3c+vWLR4+fGjaD6tWrSIoKIijR4/Svn37ZN96HveeuI7UW7ZsMSVzcR3p+/Tpw4MHD3j//fc5ePAgFy9eZMuWLXTt2jXBBDEhtWvXplatWrRu3ZrAwECCg4P5448/2Lx5MwBDhw5lz5499O3bl6CgIM6fP8/atWvp27dvsuojhBDP+7DicTh3DuXsDAHW2ZwFVpLw2JJcuXJRp06dFL+ykxQLFiygfPnyNG/enKpVq6KUYtOmTW/Ug37w4MHY29tTrFgxsmbNypUrV3BycmLYsGGUKlWKWrVqYW9vz6+//proOr7++mtq1qxJQEAADRo0oEaNGpQvXz5e7J06dWLQoEEULlyYVq1acfDgwZc23UyZMoXAwED8/PwoW7YsAFOnTiVjxoxUq1aNgIAAGjduTLly5ZJVZy8vL9avX09QUBBlypTh888/Z+TIkQCmfj2+vr7s3r0bvV5Po0aNKFmyJAMGDCBDhgxmydyrrFy5kooVK/L+++9TrFgxhgwZYkqYSpUqxd9//825c+eoWbMmZcuWZeTIkTLyuBDitR09CvkPG6/uxDRsCs/14bQ2OqWejTqWzoWFheHt7W26Zft5T58+JTg4mLx58yb7Vl2DwUBYWBheXl7J+mKzJrZex9ep39KlS+natSuhoaGv7HujtefrFx0d/drneloWExPDpk2baNq0aZq85fdNSf2sX1qt4+BBih5TC1OI8/DLL9Cu3WutJyXr97Lv7+dZRR8eIdK6xYsXmwaTPHr0KEOHDqVt27ZpPtkRQojE6PVwdPFRCnEevZML9s2bax3SG5GERwgLuHXrFiNHjuTWrVv4+Pjw7rvvMm7cOK3DEkKI17Z9O9S9Z2zO0jVrBsm8CzatkYRHCAsYMmQIQ4YM0ToMIYSwmMWLFKMxJjx27az37qw4ttfhQgghhBBv5PFjuLTyCAW4iN7ZFZo10zqkNyYJTzJI/25h6+QcF0IAxMTAxPLPru4ENIMkTECc1knCkwRxo/m+7kzpQliLuFmH09JdIkKI1Jcpo6LWrd8A0FnxYIPPkz48SeDg4ICbmxt3797F0dExWbdeGwwGoqOjefr0qU3esg22X8f0UL+oqCju37/PvXv3yJAhQ7wpO4QQ6czhw3DpEri5QdOmWkdjEZLwJIFOp8PHx4fg4GAuX76crPcqpYiMjMTV1dU06q6tsfU6pqf6ZcyYkRw5cmgdkhBCQ6tWQcmlKygI0Ly5TTRngSQ8Sebk5ETBggWT3awVExPDzp07qVWrls02E9h6HdNL/erXr29Tgw0KIZJPKfhsqGLLBeufO+tFkvAkg52dXbK/EOzt7YmNjcXFxcUmvyzB9uuYXuonzVhCiH37wPvCIfISgnJ3R9ekidYhWYztdUgQQgghxGtZtAjaPht7RxcQYOzDYyPkCo8QQgghePoUlv+qCML2mrNArvAIIYQQAli3DgqFHsCfKygPD3jrLa1DsihJeIQQQggRvznLxiY/loRHCCGESOdiYuDuHcW7GAcbtLXmLJCERwghhEj3HB3hwA/7yc1V46zoNtacBZLwCCGEEAJgxbPOyi1bgg2OySUJjxBCCJGO3b4NYY8M8JvtNmeBJDxCCCFEujZ2LLTKsQ+uXQMvL2jUSOuQUoQkPEIIIUQ69fQpLFsGLaJsuzkLJOERQggh0q116+DRQwPt7Gy7OQsk4RFCCCHSrQULoBp7yGG4Ad7e0LCh1iGlGEl4hBBCiHTo+nXYupX/xt5p1QqcnTWNKSVJwiOEEEKkQ4sXgzIY6OD0LOF5911tA0phkvAIIYQQ6YxSxoSnOrvJEn3T5puzQGZLF0IIIdIdnQ4CA+HWuytgH/D22+DkpHVYKUoSHiGEECIdyuWjJ1fI78YnNnx3Vhxp0hJCCCHSo1274NYtyJgR6tfXOpoUJwmPEEIIkY4sXGicG/TKN88GG0wHzVlgJQnPzp07CQgIwNfXF51Ox5o1a0yvxcTEMHToUEqWLIm7uzu+vr506tSJGzduaBewEEIIkUb9+CMEbtGT+a/005wFVpLwhIeHU7p0aWbMmBHvtYiICA4fPsyIESM4fPgwq1at4uzZs7Ro0UKDSOO7du0ax48f59q1a1qHIoQQIp07fRr27IG6djtxf3IHMmWCevW0DitVWEWn5SZNmtCkSZMEX/P29iYwMNCsbPr06VSqVIkrV66QO3fu1AgxQfPmzaNHjx4YDAZGjRrF3Llz6datm2bxCCGESN8WLDD+Huj3G1wG3nkHHB01jSm1WEXCk1yhoaHodDoyZMiQ6DJRUVFERUWZnoeFhQHGJrKYmJg3juHatWumZAfAYDDQs2dP6tWrR65cud54/WlJ3P6yxH5Li6R+1s/W6yj1s36pUceYGFi0yAF79NR7tBKA2LffRqXCfk3J+iV1nTqllLL41lOQTqdj9erVtGrVKsHXnz59SvXq1SlSpAhLly5NdD2jR49mzJgx8cqXLVuGm5vbG8d5/PhxRowYEa987NixlCxZ8o3XL4QQQiTHvn0+TJxYiQD3zawLb0KUpydbFixAOVj3tY+IiAjat29PaGgoXl5eiS5nUwlPTEwMrVu35tq1a/z1118vrXhCV3j8/Py4d+/eS9+XVNeuXaNAgQKmKzwA9vb2nD9/3iav8AQGBtKwYUMcbfDSqNTP+tl6HaV+1i816tiqlT2bNtmxp3RPqh6di6FbN/SzZqXItl6UkvULCwsjS5Ysr0x4rDute05MTAxt27bl8uXL/Pnnn69MWpydnXFOYJI0R0dHixyMvHnzMnfuXHp81AODMmAHzJkzh7x5877xutMqS+27tErqZ/1svY5SP+uXknVs2xYeP4yl4plVANi1a4ddKu/PlKhfUtdnEwlPXLJz/vx5duzYQebMmbUOCYBu3bqRJzw79v0DyIYHhTt11TokIYQQ6VTnztA551/Q8B5kyQJ16mgdUqqyioTnyZMnXLhwwfQ8ODiYoKAgMmXKhI+PD23atOHw4cNs2LABvV7PrVu3AMiUKRNOGg+mVP3D+sT098CTJ5xdd4rCrUtoGo8QQoh0bMWzwQZbtwYr77uTXFYxDs+hQ4coW7YsZcuWBWDgwIGULVuWkSNHcv36ddatW8e1a9coU6YMPj4+pp89e/ZoHDnYOztwyqMMALdWaR+PEEKI9GXvXvjuO7h/KwZWGZuz0stgg8+zivSuTp06vKxvdVrvd33drwSc3oVu/16gh9bhCCGESEe++w6WLwe77X/xv/v3IVs2qFVL67BSnVVc4bF2EaXzA1Do/l6NIxFCCJGe3LsHq1cbH7/vkH6bs0ASnlSR4a3sAOR4dBbu39c4GiGEEOnF4sUQHQ2VysWQ5e9nzVnvvqttUBqRhCcV6DN4oQoVMj7Zt0/bYIQQQqQLSsFPPxkfj6j+Jzx4kG6bs0ASnlSjqlQBIPpvadYSQgiR8vbsMU4W6uYGjR4+a85q0wbs7bUNTCOS8KSSc5mNCc+xOZLwCCGESHlz5xp/d3g3GqeNzzrypMO7s+JIwpNKnOoYE57CYQd4+iRW42iEEELYMqWMPw4OMLD0dnj4EHLkgBo1tA5NM5LwpJJcjYoRpvPCkyec+f2E1uEIIYSwYTqdscPy9etQ+Jg0Z4EkPKlGZ2/HpayVAbizVpq1hBBCpLxsGaLRrVljfJKOm7NAEp5UFVGqKgCOhyThEUIIkTIuXYLz55892bYNHj0CHx+oXl3LsDQnCU8qytisGgD+N/aSxgeHFkIIYaXGjoVChWDiRP6bO6tNG7BL31/56bv2qSx/e2OTVj7DBS7uvaNxNEIIIWzNo0fGaSQAaleJAmnOMpGEJxU5ZcvAjYzFAPA4IQMQCiGEsKwlSyAyEkqUgCqPAyE0FHx9oVo1rUPTnCQ8qcy3tfGkyxEs/XiEEEJYjlIwZ47x8ccfg+63Z81Z776b7puzQBKe1FfV2HGZvZLwCCGEsJw9e+DkSePIyh+0eQpr1xpfkOYsQBKe1Pcs4dHvO0DovRiNgxFCCGEr4q7utGsH3vu3QlgY5MoFz6Y2Su8k4UlthQsTZp8B+6hIDi88pnU0QgghbEB0NGzfbnzcsyf/3Z0lzVkmshdSm50dV3yNV3kebpJmLSGEEG/OyQkuXIBVq6Biyaewbp3xBWnOMpGERwP6SsaEx/3oHo0jEUIIYStcXeHtt0G3dQs8fgx+flC5stZhpRmS8Gggx9vGhKfQg72Eh2scjBBCCKsWGor5YLbPN2fpdJrElBZJwqOB7AGVMKAjLyEc+eOW1uEIIYSwYt26QZEi8OefGAfhkeasBEnCowUvL65mKAnA9d+lH48QQojXc+OGcTDlc+cga1Zg82Z48gRy54ZKlbQOL02RhEcjT0oYm7V0e6UfjxBCiNfz44+g10ONGlCyJP81Z7VtK81ZL5CERyPZWhoTnqaZ5AqPEEKI5IuJgblzjY979wYiImD9emOBNGfFIwmPRrK2MCY8HqcPGQdQEEIIIZJh/Xpjk1a2bPDOO8Aff0B4OOTJAxUqaB1emiMJj1YKFoTMmSEqCoKCtI5GCCGElZk50/i7Wzdwdkaas15BEh6t6HRElzde5dk5UfrxCCGESLqLF40jK+t0z0ZWjoiADRuML0pzVoIk4dHQ7XzGhOfBxr0YDBoHI4QQwmrkywc7dsCECeDvD2zaZEx68uaFcuW0Di9NkoRHQz7vGBOectF7OX1a42CEEEJYDZ0O6tSBoUOfFUhz1itJwqMhh6oV0evsyc1VDq+7pnU4QgghrIDZqMpg7KgszVmvJAmPljw8uJOjFGBs1hJCCCFeRimoWxc++QTu3n1WuHGjcYTl/PmhbFlN40vLJOHRmOHZRKKuQXvjZ+1CCCHEc3bvhr//hjlzwMHhWaE0ZyWJVSQ8O3fuJCAgAF9fX3Q6HWvWrDF7XSnFyJEj8fHxwdXVlQYNGnD+/Hltgk2muPF4SobvJThY42CEEEKkaTNmGH+3bw8ZM2KcRmLjRmOhNGe9lFUkPOHh4ZQuXZoZcUf6BZMnT+b7779n9uzZ7N+/H3d3dxo3bszTp09TOdLkc6pTDYByHCZoX9qPVwghhDZu3IDffzc+7tv3WeGGDfD0qXFst9KlNYvNGji8ehHtNWnShCZNmiT4mlKKadOm8cUXX9CyZUsAFi9eTPbs2VmzZg3t2rVLzVCTL29eYjNnw/n+Hd7JcxiopnVEQggh0qC5cyE21jhvVpkyzwqlOSvJrCLheZng4GBu3bpFgwYNTGXe3t5UrlyZvXv3JprwREVFERUVZXoeFhYGQExMDDExMRaLL25dL1unfbXKsH49+l27MFSsaLFtp5ak1NGaSf2sn63XUepn/V5Vx+homDPHAdDx8cexxMQoePwYhz/+QAfEtGplnFwrjUrJY5jUdVp9wnPr1i0AsmfPblaePXt202sJmTBhAmPGjIlXvnXrVtzc3CwbJBAYGJjoawUyZqQ4cHvNGg4WLmzxbaeWl9XRFkj9rJ+t11HqZ/0Sq+M//+Tk1q0KZMz4FGfnrWzapMi5cycVnj7lia8v269dg+vXUzna5EuJYxgREZGk5aw+4Xldw4YNY+DAgabnYWFh+Pn50ahRI7y8vCy2nZiYGAIDA2nYsCGOjo4JLqPz8oLFi3H89zIR4U1p867FNp8qklJHayb1s362Xkepn/V7VR2LFQODQY+PjyMtWxq7eNjPnw+Aa+fONG3WLFXjTa6UPIZxLTSvYvUJT44cOQC4ffs2Pj4+pvLbt29TxtTIGZ+zszPOzs7xyh0dHVPkA/XS9Vapgt7OgazRNwhad4P32/tbfPupIaX2XVoh9bN+tl5HqZ/1S6yOBQvC1Klxz+whLAy2bDE+e/997K1kv6TEMUzq+qziLq2XyZs3Lzly5GD79u2msrCwMPbv30/VqlU1jCwZXF15nK8MANF/ywCEQgghXmH9eoiKgiJFoEQJraOxClaR8Dx58oSgoCCCgoIAY0floKAgrly5gk6nY8CAAXz11VesW7eO48eP06lTJ3x9fWnVqpWmcSeHa33j3Vl5bu3l5k2NgxFCCJEm3LkDbdrAn3++MKWE3J2VbFbRpHXo0CHq1q1reh7X96Zz584sXLiQIUOGEB4eTo8ePXj06BE1atRg8+bNuLi4aBVysjnXqQpzvqcqe/n7b0jrd9MLIYRIeXPnwsqVcO0a7Nv3rDA0FDZvNj6WwQaTzCoSnjp16qBeMu+CTqfjyy+/5Msvv0zFqCzsWfNbWY6wZFsk7dq5ahyQEEIILcXEwKxZxsf/+99zL6xbZ7xPvVgxKF5ck9iskVU0aaULuXPzNKMPjsTyYOshraMRQgihsd9/N46unCMHvPv83bvPN2eJJJOEJ63Q6bCrYezH08B9L8+NiSiEECId+u474+9evcDJ6Vnho0ewdavx8btWNoaJxiThSUOcahubtboW3kMCd8wLIYRIJ/bvN/44OUHPns+9ENecVby4sUlLJJkkPGlJ3G30e/e+0B1fCCFEehJ3def998FsIgFpznptkvCkJeXKgaMj3LnDnf3BWkcjhBBCI3XqQKFC0L//c4UPH0pz1huQhCctcXHBUK48AJ9U3cuNGxrHI4QQQhM9esCZM1C27HOFa9cab90qWRKKFtUsNmslCU8aY1fN2KxVjT389Ze2sQghhNBOvPEEpTnrjUjCk9Y868dTlb3s2KFxLEIIIVLVmjU65s2Dp09feOHBA4ibaVyas16LVQw8mK48S3hKcYx928MBd23jEUIIkSqUgpEj7TlzBiIiXhhscM0aiI2F0qWhcGGtQrRqcoUnrcmVC0MuPxzQkzn4IFeuaB2QEEKI1HDkSDbOnNHh6QmdO7/wYlxzllzdeW2S8KRBz/fjkWYtIYRIH9atyw9At27g5fXcC/fvw/btxseS8Lw2SXjSouf68fz5p8axCCGESHEnTkBQUDbs7BT9+r3wYlxzVpkyxnvVxWuRPjxp0bOEp47LPhzeU8CLXfWFEELYku+/twegVStF3rwv/M2Xu7MsQq7wpEVly4KzM55P79Gk4AWtoxFCCJGCbt+GZcuMSc6AAQbzF+/dk+YsC5GEJy1ycoIKFYyP9+zRNhYhhBApKjQU6tZVFClynypVXphWaPVq0OuNI/EXKKBNgDZCEp606lmz1q3Ve1m5UuNYhBBCpJhChWD9ej1jxiTwD640Z1lMsvrw1KtXzyIb1el0bI+7RCcS9izhub12L732wDvvJDDqphBCCJvh7PxCc9bdu5juXJHmrDeWrITnLwvNdaCTb+5Xe5bwlOAET++GceKEFyVLahyTEEIIi9HrYfJk6NQJsmVLYIFVq8BggPLlIV++VI/P1iT7Lq233nqLoUOHvvYGJ06cyNa42V5F4nx8IE8e7ENCqMQBtm9vIAmPEELYkPXrYfhwmDYNgoMTWECasywq2QlPjhw5qF279mtvcOHCha/93nSnalUICaEqe9m+vQEDBmgdkBBCCEuZMsX4u1s3cHR84cU7dzDNIC3NWRaRrE7LhQoVwsfH5402mCNHDgrJwElJ89wAhH//DTExGscjhBDCIvbvh127jIlO374JLBDXnFWxIuTNm+rx2aJkXeE5c+bMG29wwoQJTJgw4Y3Xky5UqwZAVd0+njw2cPCgXVyREEIIK/b118bfHTqAr28C/9BKc5bFJesKz++//05ERERKxSJeVKoUuLqSUT2kMGdlXi0hhLAB588bL+AADB6cwAK3bsHffxsfS3OWxSQr4Wnbti1Zs2aldevWLF26lLCwsJSKS4DxWmfFigBsGL6XN+grLoQQIo2YOhWUgmbNoHjxBBaIa86qXBn8/VM9PluVrIRnxIgR5MuXj9WrV9OpUyeyZctGs2bNmD9/Pvfu3UupGNO3Z/148t/Zi4PMfCaEEFbPywvc3ODTTxNZQJqzUkSyEp4xY8Zw/Phxzpw5w9ixYylRogR//PEHH330ET4+PtSvX5+ZM2dy8+bNlIo3/YnrtLN3r7ZxCCGEsIhJk+DaNahVK4EXb96EnTuNj9u0SdW4bN1rTS1RqFAhhg8fzqFDhwgODubrr7+mUqVK/PXXX/Tt2xc/Pz+qV6/O1KlTCQkJsXDI6UyVKsbfJ0/Sv/MjJk/WNhwhhBBvLmPGhEfPt1u92tjeVaUK5M6d+oHZsDeeS8vf35+BAweye/durl+/zvTp06lduzYHDhxg8ODB5M+fnwoVKjB+/HiL3OWV7mTLBvnzA3Bm8X5+/lnjeIQQQryWDRtePR+0Lm7yRGnOsjiLTh6aI0cOevfuzfbt27l9+zY//fQTb731FidOnOCLL76gePHifPPNN5bcZPoQd3s6ezl+3NiBXwghhPWIiYHevaF69f/u0HqRy4MH6HbtMj6R5iyLS7HZ0jNlysSHH37Ixo0buXPnDkuWLOHtt9+WebRex7OOy409jf8ayLyrQghhXX75Ba5ehezZoWnThJfx2bMHnVLGf3L9/FI3wHQgVe778fLyokOHDnTo0CE1Nmd7niU8ZaP2o8PA1q12yK4UQgjrYDBg6n85YAC4uCS8XM7du40PpDkrRaTYFZ7UpNfrGTFiBHnz5sXV1ZX8+fMzduxYlFJah2YZJUqAuzsu0WEU4xSBgcY+bUIIIdK+DRvg5Enj7ei9eiWy0PXrZD592vhYmrNSRLISnvHjx7Nx48Y32uCGDRsYP378G63jRZMmTWLWrFlMnz6d06dPM2nSJCZPnswPP/xg0e1oxsHBOAAVUMthLzdvwqlTGsckhBDilZSCuNmUevcGb++El7N71rHHUL065MyZStGlL8lKeL744gtWxvUgf00rV65kxIgRb7SOF+3Zs4eWLVvSrFkz8uTJQ5s2bWjUqBEHDhyw6HY09axZq1W2PRQqBLdvaxyPEEKIV/r7b9i3D5ydoX//xJfT/f47AEqu7qQYmxi7t1q1asydO5dz585RqFAhjh49yq5du5g6dWqi74mKiiIqKsr0PG6ajJiYGGIsOC153LredJ26ihVxAOq77+HEibh1vml0lmGpOqZVUj/rZ+t1lPqlXY8e6ciTx57GjQ1kzmxI+O/21as47t2L0umIDgjAwQrr+SopeQyTuk6dSkZHFzs7Ozw8PMiSJctrB3bv3j3Cw8PR6/WvvY4XGQwGhg8fzuTJk7G3t0ev1zNu3DiGDRuW6HtGjx7NmDFj4pUvW7YMNzc3i8VmKY5hYTTt1AmATUuWEOPpqXFEQgghkkKv1/H0qT3u7rEJvl7+m2/ItWsX94oXZ/e4cakcnfWLiIigffv2hIaG4uXllehyyU54LEGn01k04fn111/59NNP+frrrylevDhBQUEMGDCAqVOn0rlz5wTfk9AVHj8/P+7du/fSHZZcMTExBAYG0rBhQxwdHd9oXQ4lSqA7d47YtWuJqt+EiAjIkMEycb4JS9YxLZL6WT9br6PUz3rpVq7E4f33Ufb2/D1pEpV69bK5OkLKHsOwsDCyZMnyyoQnWU1awcHBbxxYSvj000/57LPPaNeuHQAlS5bk8uXLTJgwIdGEx9nZGWdn53jljo6OKXKyWWS91arBuXP8O/0A9du3oHdv0tRUEym179IKqZ/1s/U6Sv3SjnPnjKMqd+gAiYZ85w78738AGIYOJbRAAauq4+tIifoldX3JSnj80+g09REREfGuPtnb22MwGDSKKIVUrQoLF+J/Yy/h4bBlS9pKeIQQQhiNGweLF8Pu3fDjjwksoJTxtq1796BUKQzDh8O2bakeZ3piE52WAwICGDduHLlz56Z48eIcOXKEqVOn8uGHH2odmmU9u1MrW8gB7NFz7Jg9N2+Cj4/GcQkhhDAJCYGlS42Pe/RIZKEVK2DlSuOwI4sWgZNTaoWXbtnEwIM//PADbdq0oXfv3hQtWpTBgwfTs2dPxo4dq3VollWsGHh5YRf+hLbFTgCwdavGMQkhhDAzaRLo9dCgAVSsmMACt29Dnz7Gx198AWXKpGZ46ZZNJDyenp5MmzaNy5cvExkZycWLF/nqq69wsrWM2d7eNABhu9zGebW2bNEyICGEEM+7fh3mzzc+TnDIOaWMwy3fv29MdIYPT83w0jWbSHjSlWfNWlXUXsB4hceCN7wJIYR4A998A9HRULMm1KqVwAK//AKrVxt7Mi9a9JIezcLSJOGxNs8SnqwX9+LlZfwn4d9/NY5JCCEEd+7AnDnGx198kcACN29C377GxyNHQqlSqRabsJFOy+lKlSoA6C5cYPiguxgyZ8XXV+OYhBBCEBpqHD0kLAwaNnzhRaWgZ094+BDKl4ehQzWJMT2ThMfaZMhg7Lx86hRDa+2FFi20jkgIIQRQsKDxzvLHj0Gne+HFn3+G9euNd2MtXChNWRqwWJPWnTt3LLUq8SrPmrXYu1fbOIQQQsQTb+af69ehXz/j4zFjoESJVI9JWDDh8fX15ciRIwB8+eWXrF+/nsuXL1tq9eJ5zyU89+/DsmWS+wghhFYePjTebJXg//1KGQfjefQIKlWCwYNTOzzxjMWatNauXYvPsxHwfvzxR65fv45Op8PLy4tSpUpRunRp00+JEiVwcXGx1KbTn2rVjL8PHmTyuBgmf+tIp07/5UFCCCFSz3ffwYQJ8OefsG/fCy8uXAibNoGzs/Gxg/Qk0YrF9nyzZs1Mj69evcqDBw84evSo6WfXrl3MnTuX6Oho7O3tU2SK+HSjcGFjX55Hj2hT6BiTKc/mzWAwgIXmdxVCCJEEjx7BtGnGxwMHvvDi1aswYIDx8dixULRo6gUm4kmxVDNTpkzUrVuXunXrmspiY2M5ffo0x44dS6nNpg92dsa7tTZvpuzTvXh4lOfOHTh8GCpU0Do4IYRIP777znh3VrFi0KbNcy8oBR99ZLxlq0qVBLIhkdqSdT2gQIECtGvXjsmTJ7Nt2zYePnyYrI05ODhQsmRJOnTokKz3iQQ8a79yOLiXBg2MRX/8oWE8QgiRzjx6BN9+a3w8atQLV9jnzTMOhe/iYmzKsrfXIELxvGRd4bl06RLBwcH89ttvpjJ/f3/Kly9PuXLlKF++POXLlydz5swWD1S8IK4fz969NB0Ga9YYm4kTHMpcCCGExX3/fSJXdy5f/u+Kzrhxxm4IQnPJSnhWrFjBv//+y7///svhw4d58OABISEhhISEsGrVKtNyfn5+ZglQ+fLlyZo1q8WDT9cqVTIO9BAcTPMKt4Ac7N8P9+5BlixaByeEELYt0as7SkH37sbBeKpXh/79tQpRvCBZCU+bNm1o81wae/nyZVMCFJcE3bt3jytXrnDlyhXWrl1rWjZnzpxcuXLFcpGnd15exrEcjh/HJ2QvpUu/zdGjxtvTAwK0Dk4IIWybXg8dOsCePS9c3Zk71zj6oKsrLFggTVlpyBt1Wvb398ff35933nnHVHb16lWzBOjff//lzp07XL9+/Y2DFS+oVg2OH4e9e/npp7fx9UWmmRBCiFSQOTNMnw6xsc9d3QkOhkGDjI8nTjQOvSzSDIvfpeXn54efnx+tWrUylV2/fp1/ZYZLy6ta1ThT3Z49VJisdTBCCJH+mIbVMRigWzcIDzdOkx43SahIM1Jl1JacOXPSQuZ8sry4kQYPHYLoaG1jEUKIdOD+fXj3XYj3P/ysWbBjB7i5GZuyZFC0NEeOiDUrWNB4XTUqCoKC2LoVGjeG0aO1DkwIIWzT11/D778bh9hR6lnhxYswZIjx8eTJkC+fZvGJxEnCY810unjzam3dCitXahuWEELYotu34YcfjI+//PLZjOgGA3z4IUREQN260KuXpjGKxEnCY+3iEp49e2jc2HhDwIkTEBKiaVRCCGFzJk405jWVK4NpNqXp02HnTvDwgPnzpSkrDZMjY+2eu8KTKZNx2AeAjRu1C0kIIWzNtWvGbjpgnBZLpwPOn4fPPjMWfv015MmjVXgiCSThsXYVKxr/o7h6Fa5fp3lzY/H69dqGJYQQtmTcOGN3yVq1ME7no9dD164QGWks6NlT6xDFK0jCY+08PKB0aePjvXtNCc+OHcaBPoUQQryZixfhp5+Mj01Xd77/HnbvBk9P44s6naYxileThMcWPNePp0gRKFDAeJd6YKC2YQkhhC3Ilcs4jUTnzsYrPJw9C8OHG1+cOhX8/TWNTySNxQceFBqoWhVmzoS9e9HpjMOc//uvcfYJIYQQb8bZ+blxBPV66NIFnj41jgPSrZuWoYlkkITHFsRd4Tl8GKKimDDBWdt4hBDCRuj1L0yHNXUq7Ntn/I/yxx+lKcuKSJOWLciXD7JlM7ZjHT6sdTRCCGET9u2DokWNAw0CcPo0jBhhfDxtGvj5aRWaeA2S8NiC5wcg3LPHVHzjBuzfr1FMQghhxZQy3nF+/jxs2oRxltAuXYy3ajVtanwsrIokPLbiufF4ALZsgZw5jZ3shBBCJM/WrfD338b+O6NHA998AwcOQIYMMHeuNGVZIUl4bMXzCY9SVK0Kjo7GmwnOntU2NCGEsCYGAwwbZnzcpw/kDjsBo0YZC777zvjfpLA6kvDYigoVwMHB2I519SpeXsZpXQDWrtU2NCGEsCYrVsCRI8YhdoYNjjE2X0VHQ0AAdOyodXjiNUnCYyvc3KBMGePjZ/14WrUyPl2zRouAhBDC+kRHw+efGx9/+ilkmTfJOM5HxowwZ440ZVkxm0l4rl+/zgcffEDmzJlxdXWlZMmSHDp0SOuwUtcL/XhatDA+3bcPbt3SKCYhhLAi69fDpUuQPTsManTMOC06GCcJ9fHRNjjxRmwi4Xn48CHVq1fH0dGRP/74g1OnTjFlyhQyZsyodWip64WEJ2dO41RbSsncWkIIkRStWxs7LM/6Pga3jztDTIzxcvn772sdmnhDNjHw4KRJk/Dz82PBggWmsrx582oYkUaqVTP+PnLEOKGdqyutWsHBg8Z+PB99pGl0QghhFRo2BMaMh6AgyJwZZs+WpiwbYBMJz7p162jcuDHvvvsuf//9Nzlz5qR379589JJv+KioKKKiokzPw8LCAIiJiSEmJsZiscWty5LrTJSPDw4+Puhu3iR23z5UjRq8+y7kzKmjSRNFSoWQqnXUgNTP+tl6HaV+b+7uXePvrFmBoCAcvvoKHRD73XeoTJlIsT+gz8gxfPN1v4pOKaUsvvVU5uLiAsDAgQN59913OXjwIP3792f27Nl0TmQgmtGjRzNmzJh45cuWLcPNzS1F401JFb7+mpy7d3OpaVOO9+ihdThCCGEVZswoza5dOend/V9GrH8f75AQrlerxqFPP5WrO2lcREQE7du3JzQ0FK+XTCJpEwmPk5MTFSpUYM9zowz369ePgwcPsvdZf5YXJXSFx8/Pj3v37r10hyVXTEwMgYGBNGzYEEdHR4utNzG6P//E4a23UG5uxAYHG+8sSGGpXcfUJvWzfrZeR6nfmzl5EsqXd8Bg0BHS6Qv8F49DZc1KbFDQs0s+KU+O4esLCwsjS5Ysr0x4bKJJy8fHh2LFipmVFS1alJUrVyb6HmdnZ5yd40+y6ejomCInW0qtN55GjaBUKXTHjuE4fz589hlRUcaxsjZvNg6R/uyCmMWlWh01IvWzfrZeR6nf6/niC+Ngg4Pq/Iv/0okA6GbOxNHX1+LbehU5hq+3zqSwibu0qlevztkXhhM+d+4c/v7+GkWkIZ0OBg0yPv7hB4iOxtERvv8eduyAbdu0DU8IIdKS7dth40Zws49i3PXOxunR33sP2rTROjRhYTaR8HzyySfs27eP8ePHc+HCBZYtW8bcuXPp06eP1qFpo10743gRN27A8uXY2cHbbxtfWrVK29CEECKt0Ov/+/9wdZkxOJ8/CdmyGcfcETbHJhKeihUrsnr1an755RdKlCjB2LFjmTZtGh06dNA6NG04OcH//md8PHUqKEXr1sana9em+M0GQghhFRYvhqNHoY77QRoemWQsnD0bsmTRNjCRImwi4QFo3rw5x48f5+nTp5w+ffqlt6SnCz17GqebCAqCHTuoUcP4GX7wAHbu1Do4IYTQ3vXr4G7/lN/dO6MzGKB9+/8uhwubYzMJj3hBpkzQtavx8ZQpODj8N7fW779rFpUQQqQZX3wBV7qOIvOd05Ajh7Gzo7BZkvDYsgEDjJ2YN22C06dNffBWrTK2XQshRLq2bx+Z5n9jfDxnjnFUZWGzJOGxZQUKQMuWxsfffku9epArF9SqBQ8fahuaEEJo5euv4dj+SOjSxXg/eqdO/822LGyWJDy2buBA4+/Fi3F8dJeQEPjtN+mTJ4RInw4cgCFDYFvVEXD2LPj6wrRpWoclUoEkPLauRg3jlOlRUTBzJvb2WgckhBDaMBigXz+oxm4GqKnGwh9/TJUR6YX2JOGxdTrdf1d5ZsyAp08BOHMGQkK0C0sIIVLbsmVwbH8Ei3RdsEMZb+xo2lTrsEQqkYQnPWjTBnLnNk4H/PPPDB8ORYvClClaByaEEKnjyRMYOhTGM5wC6oKxQ+PUqVqHJVKRJDzpgYOD8TouwNSpVK9mnC/299/lbi0hRPowYQLkv7GTfjy79fynnyBDBk1jEqlLEp70ont38PSE06dpZNhMhgxw6xbs2qV1YEIIkbKCg2Hm1+EsoKuxKat7d2jcWOuwRCqThCe98PY2fsgBxx+mmgYTXb5cw5iEECIV+PnB31U/Iz+XUH5+0p6fTknCk5707w92drBtG90rHgWMzVqxsRrHJYQQKcjhnx2U2mmcEFQ3fz54eWkckdCCJDzpib8/ccMtV9n7LZkzG/sx//WXtmEJIURKiI6GyLtP4MMPjQUffwwNGmgblNCMJDzpzaBBANj9uoxuTW4AsHKllgEJIUTKmDoVVhYYYhyDw98fJk/WOiShIUl40ptKlaB6dYiJYZDLDFavhm+/1TooIYSwrCtXYNfobXwQNstYMH++8cYNkW5JwpMePbvKk23lLFo1DMfFReN4hBDCwr7oF8aMqG4AqN59oF49jSMSWpOEJz1q0QLy5zfOILpokdbRCCGERW3dCjXWDsafK0Tlyodu0kStQxJpgCQ86ZG9PQwYAIBh6reM+kJP6dLGkUiFEMKaPX0Kv3TdSg9+BMB56QLw8NA4KpEWSMKTXnXtChkzYnfxArfnbeDYMVi3TuughBDizXw/NpQvbxibsqI+7ge1amkckUgrJOFJr9zdoWdPAD5zMg7CtWyZlgEJIcSbUQoq/jIQP67xOEcBnL8Zr3VIIg2RhCc9+9//wNGRPFf+oQIH2bIF7t3TOighhHg9uj82UTd4Pkqnw2PFAuM/dkI8IwlPeubrC+3aAfBVxqnExspUE0IIK/XwIXz0EQC6Tz5BV7OGxgGJtEYSnvRu4EAAGob+hh9XWLpU43iEECKZQkNhf7VP4MYNKFQIvvpK65BEGiQJT3pXpgzUq4edQU9/vmfvXrhwQeughBAi6Za1X0/lM4vQYwcLF4Krq9YhiTRIEh5hGoiwl+OP9OkYhk6ncTxCCJFEB7c8oNWmHgBcazsIqlbVOCKRVknCI+Ctt6BIEdxiwphedh7582sdkBBCvFp0NNx+rx8+3OKGdxH8F32pdUgiDZOER4CdnakvD999B7Gx2sYjhBBJsO7DNTQPXYoeO9x/W4TMkyNeRhIeYfTBB5A1K1y+zIXJq/j1V60DEkKIxF3Yd4+aS41jiZ0JGIJ3w0oaRyTSOkl4hJGrK/TuDcD9z6fwcU9FZKTGMQkhRCJuv/c/snOHEPfiFFsxWutwhBWQhEf8p3dvlLMzlTlA8bA9MtWEECJtWrmS6ld+Ra+zx2nZQnQuzlpHJKyAJDziP9myoevYEYCBTGXhQm3DEUKIeO7ehV69ALD/fBi+LSpoHJCwFpLwCHOffALA26zmwpaLXL+ucTxCCPGMUnDznT7GpKdkSRgxQuuQhBWxyYRn4sSJ6HQ6BgwYoHUo1qdYMWjSBDsU/dQ0lizROiAhhDDa3f93fHb9RqzOAbVgITg5aR2SsCI2l/AcPHiQOXPmUKpUKa1DsV7PblH/kPms/OkhSmkcjxAiXbt27RoHtx4ky2zjjRV7636Ornw5jaMS1samEp4nT57QoUMHfvzxRzJmzKh1ONarfn30JUrhTgTv3J0jzVpCCM3MmzePAgUKMG7mOMrwiK8c/aiybrjWYQkr5KB1AJbUp08fmjVrRoMGDfjqFZPHRUVFERUVZXoeFhYGQExMDDExMRaLKW5dllxnatAN6Afdu/OZ+w/EZvwfMTGJXzq21jomldTP+tl6HW21fteuXaNHjx4YDAYADMAo/XU63LlOrly5tA3Owmz1GMZJyfoldZ02k/D8+uuvHD58mIMHDyZp+QkTJjBmzJh45Vu3bsXNzc3S4REYGGjxdaYknbc3jTJmxOXmDY59/jnX6tZ95XusrY7JJfWzfrZeR1ur3/Hjx03JThyDwcDSpUspWbKkRlGlLFs7hi9KifpFREQkaTmdUtbfQ+Pq1atUqFCBwMBAU9+dOnXqUKZMGaZNm5bgexK6wuPn58e9e/fw8vKyWGwxMTEEBgbSsGFDHB0dLbbe1GA3cSL2I0diKFWa4JUHyO2f8Kyi1lzHpJD6WT9br6Ot1u9aUBAFKlXi+ZTH3t6e8+fP2+QVHls8hnFSsn5hYWFkyZKF0NDQl35/28QVnn///Zc7d+5Qrtx/ndj0ej07d+5k+vTpREVFYW9vb/YeZ2dnnJ3jD1bl6OiYIidbSq03RfXpg378ROyPHWVK813MPFPvpYtbZR2TQepn/Wy9jjZVv6go8vbvz1ygJ6DHmOzMmTOHvHnzahxcyrGpY5iAlKhfUtdnEwlP/fr1OX78uFlZ165dKVKkCEOHDo2X7IgkypSJqPe74LZgJk3PTuXo0XqULq11UEIIm6cUfPwx7N1LtwwZqPvb7yzbt5cOHTrYdLIjUpZNJDyenp6UKFHCrMzd3Z3MmTPHKxfJ4zb8EwwLZtGcjYyddJrSy4pqHZIQwsYZpkzFbuFCsLeHFSvwq12LkuFPbK4ZS6Qum7otXaSAAgW4V70lALl+n0Z4uMbxCCFs26ZNMGQIAP+8PRUaNtQ4IGErbDbh+euvvxLtsCySJ8s440CE7WIWs/anuxpHI4SwWadPo3/vfeyUgR/pzukG/9M6ImFDbDbhEZZjV6sGN3JVxJWnPPl6ltbhCCFs0YMHqOYB2D8JYyc12dR0Bh/1SPjOUCFehyQ84tV0OjxGGK/ytLw+gzNBTzUOSAhhU2JioG1bdJcuEkwePs6ykjkLnNBJviMsSBIekSReH7bhSabcZOcORf5dqnU4Qghb8sknsH07j/GgBeuYvCAr2bJpHZSwNZLwiKRxcMBjeD/j46lTkRlFhRAWMXs2zJiBAR0f8DO1+5SkeXOtgxK2SBIekXTdu4OnJ5w6hX7TFq2jEUJYu7/+gv8ZOybvbDyOK2Va8vXX2oYkbJckPCLpvL0Jf787AAfaTeGFKW6EECLpLl2C1q0hNhbat6fOH59x4AC4umodmLBVkvCI5OnfHz12VH2yjX1zj2kdjRDCGoWFQYsW8OAB+vIV4aefQKfDhmdUEGmAJDwiWdyL+XO0QBsAIsdN1TgaIYTV0euhQwc4eZLb9r40eLyGC9flso5IeZLwiGTLPH4QADWvLSNk702NoxFCWJXPP4cNG4i2d6G5fg0XInzJmFHroER6IAmPSDb/dytxMkN1nIjh/IDpWocjhLAWS5bApEkAdNbP54h9RX79FTJn1jgukS5IwiNeS1Rf41We8gdn8/iWTLAlhHiF/fvho48AmGQ/nF95n3HjoHp1jeMS6YYkPOK1lBnZgsuO+cmkHrC15w8cP36ca9euaR2WECItunYNWrWCqCi2ubdkmH4sTZrAp59qHZhITyThEa/FztGeu+0HMA/o8MdIRowYQYECBZg3b57WoQkh0pKICGjZEm7d4lqmkrQK/5lcfnYsWQJ28g0kUpGcbuK15RjWkB5A3HA8BoOBnj17ypUeIYSRUtC1Kxw+DFmy4LhpHZXrebBihfTbEanPQesAhPU6f+MGL449qNfruXDhArly5dIkJiFEGvLVV7BiBTg6wsqVZK+ch23bkElBhSbkCo94bQULFsTuhWvS9vb2FChQQKOIhBBpxqpVMHIkAIe7z4RatQBJdoR2JOERry1XrlzMnTsXO4x/wezQMWfOHLm6I0R6FxQEHTsCsMKnP+Vndefbb7UNSQhp0hJvpFu3buR/mh36BpAHHRRsqHVIQggt3blj7KQcEcHpXA1pf+0bvLygWTOtAxPpnVzhEW+seo/GuHnWIA8Gzvf7XutwhBBaiYqCd96BK1d4lL0Q1a4tx6BzYOlSKFRI6+BEeicJj7CI4FYBAFQ6+iN3LoRpHI0QItUpBb16we7dxHp4U/PBOh6RkTFjoHlzrYMTQhIeYSHOrQoS7FIEb8I4+LGMxSNEujNtGixYgLKzo4PDCk7EFObtt41TZwmRFkjCIyxCZ2/Hw879ACjx53c8uhercURCiFTzxx8weDAAe1pPZcWjRpQsCYsXy+CCIu2QU1FYTPGJHQh1zoq/uozXtlVahyOESA1nzkC7dmAwQLduVF/ej+XLYd068PDQOjgh/iMJj7AYO3dXvD/rbXz87RRjm74QwnY9eAABARAWhqpRE2bOBJ2Otm0hTx6tgxPCnCQ8wrJ69wZnZzhwALV7j9bRCCFSSmwsvPceXLjAkyz+vBW+klsPnLSOSohEScIjLCtbNvTtjQOObW8+lYgIjeMRQqSMgQNh2zb0ru7UfrSOrUeyMn++1kEJkThJeITFGfp/AkC90NX88tVFjaMRQljc3Lnwww8AdLb7mcOxpWjdGj77TOO4hHgJSXiExTmWLsbVEk2wQ6GmfUd4uNYRCSEs5u+/oU8fAKZk/Iql4a2oXBmWLJE7skTaJqenSBE+Xw8EoF3kfOZPeahxNEIIiwgOhtatITaWLZnaMfjhcPLmNd6R5eqqdXBCvJwkPCJFODSuz4NcpfAgnIeT5vL4sdYRCSHeyOPH0KIF3L9PcOYKtHown8yZdWzeDNmyaR2cEK8mCY9IGTod3mOMV3m6RXzPD1OiNQ5ICPHa9Hro0AFOnAAfH+zXr6FoWVc2bJA5soT1sImEZ8KECVSsWBFPT0+yZctGq1atOHv2rNZhpXv2H7xPZAYfcnKDy1+vkDu2hLBWX3wB69cbh5xYs4bcVXNy6BBUqaJ1YEIknU0kPH///Td9+vRh3759BAYGEhMTQ6NGjQiX3rLacnLCeXBfAKb5TcHNVQYiFMLqLF0KEycCcKj3fKhUCZAOysL62MQpu3nzZrp06ULx4sUpXbo0Cxcu5MqVK/z7779ah5bu2fX6GNzccD0bBH/9pXU4QojkOHAAunUDYDzDqPxde44d0zgmIV6Tg9YBpITQ0FAAMmXKlOgyUVFRREVFmZ6HhYUBEBMTQ0xMjMViiVuXJdeZ1ry0jp6e2HXqhP3s2Ri++YabhWpYXQdHWz+Gtl4/sP06pkj9rl/HoVUrdFFRrKUFX/AVgwbqKVrUQGrvRls/fmD7dUzJ+iV1nTqlbGvCI4PBQIsWLXj06BG7du1KdLnRo0czZsyYeOXLli3Dzc0tJUNMd9xv3KB+nz7olKKE/Qk+mnKHPHnCtA5LCJEI+6goqn/+ORkvXOA4JajGHqo3vsfHHx9Dp9M6OiHMRURE0L59e0JDQ/Hy8kp0OZtLeHr16sUff/zBrl27yJUrV6LLJXSFx8/Pj3v37r10hyVXTEwMgYGBNGzYEEdHR4utNy1JSh3tW7fGbv165tCD3xvMYuNGvdX84bT1Y2jr9QPbr6NF66cU9h07YrdiBXfJQiUOUPV9f+bP12Nvb5l4k8vWjx/Yfh1Tsn5hYWFkyZLllQmPTTVp9e3blw0bNrBz586XJjsAzs7OODs7xyt3dHRMkZMtpdablry0jp9+CuvX04nFfLHtK7Zty0rTpqkb35uy9WNo6/UD26+jReo3bhysWEEMDrRmJeVb52XxYnBw0L7Lp60fP7D9OqZE/ZK6Pu3PYAtQStG3b19Wr17Nn3/+Sd68ebUOSbyoRg2oUAFXntKLWQwaRKr3AxBCvMLq1cZb0IEVtWfi3bwWy5aBg039ayzSK5tIePr06cPPP//MsmXL8PT05NatW9y6dYvIyEitQxNxdDoYNAiA/+lmEHzmKTNnahyTEOI/x45Bx47Gx/360X7HR6xcCU5O2oYlhKXYRMIza9YsQkNDqVOnDj4+Pqaf5cuXax2aeF7r1uDnR1Z1hw4sZdQouHNH66CEENy5Q2SjFhAejqFBQ5gyBZ1Okh1hW2wi4VFKJfjTpUsXrUMTz3N0hP79ARjuMhWUkjE9hNBadDQP6rbG9fZlzlGQGTWXSxuWsEk2kfAIK9K9O3h6kv/pKULmbKFBA60DEiIdU4pLb/Ui06ldPMKb7+uvo+dnGbWOSogUIQmPSF3e3sakB8gwb4rGwQiRvu1v/x35dsxHjx2z6yzn2z+KSDOWsFmS8IjU16+fcSKebdvg2DE2bIAFC7QOSoj05bfuW6jwq/FGgpVVp/DptsbY8N3QQkjCIzSQJw+0aQPAvW5DaRFgoG9fCAnRNCoh0o1bf5+l4bz3sMfAwZIf8u6u/poNKihEapGER2jjiy/A2ZkshzazIPdoIiLg44/Btsb9FiINeviQHB8FkIFQruWtQcWDM9HZWcmw50K8AUl4hDZKloQffwSg85WxtHVYxZYtsHixxnEJYaNCQ+Hov7Hw3ntw/jzkzk2ufSshgRHnhbBFkvAI7XTsCJ98AsASu04U5wQDBsCNG9qGJYStuXwZqleHfdUHQWAguLvDunWQLZvWoQmRaiThEdqaPBnq1cMpOpzNzi3RPXpAjx7StCWEpRw8CJUrQ5WTP9Ez6ntj4ZIlULq0toEJkcok4RHacnCA5cshTx5yRV1iue59/tioZ9curQMTwvr98gvUqgWFbu9klq63sXDsWHj7bW0DE0IDkvAI7WXJAmvWgKsrDdVWzrwznJo1tQ5KCOul18Pnn0P79pD9aQjrnVrjqGKgXTvjC0KkQ5LwiLShdGnTYDwFV02GX3/VOCAhrNeMGTB+PHjwmL1ZW+AdfQ/Kl4d584wT+QqRDknCI9KO996DoUONjz/8kDtbg5g3T9uQhLBGPXpA7ZoGTpXriM/d4+DjA2vXgpub1qEJoRlJeETaMm4cvPUWREbytEkrhna/x6ZNWgclRNp36FA29HrjYxcX2FFjBH6H1xpvO1+zBnLm1DQ+IbQmCY9IW+ztYdkyKFCA3IbLrKAtH34QzeXLWgcmRNr05Al0727PV19VZezYZ3/Sly1DN2G88fG8eVCpknYBCpFGSMIj0p6MGWHNGpSHB/XYwQ8PO9C2tZ6nT7UOTIi05ehRqFABFi+2w85OGccQPHgQunUzLvDZZ9Chg6YxCpFWSMIj0qbixdGtWoVycuJdfqfHvz3o1dMg4/MIARgM8O23xgs3Z8+Cr6/iyy93M6zTVWjZEp4+hYAAYxOxEAKQhEekZQ0bovvlF5SdHd2YT6nFg5g6RTIekb5duwaNG8PAgRAdDc2bw8GDsZQqeAP7Nm3g5k0oUQKWLgU7+RMvRBz5NIi07Z130M2fD8AnTMNz2peEhFxjx44dXLt2TePghEh9ERGweze4usLs2cYZIrJmUZSdPh27f/+FzJmNhZ6eWocqRJoiCY9I+zp3Rn1nHBLf/vpo8ufLTb169fD392ee3Lcu0oFHj/57XKiQcZLdoCDo2RN0kRHYjRhBrn/+QTk4wMqVkDevVqEKkWZJwiOsgq7f/7g2eDA9AMOzjjwGg4GePXvKlR5hs2JjYdo0yJ0b/vnnv/I2rRWFbu00dk7OkQP7yZMB0H//PdSurU2wQqRxkvAIq3G+SRMML5Tp9XouXLigSTxCpKQDB4ydkj/5BB4/hvnzgeBgGDMGChQwJjbz58Pjx6h8+Tjaoweqe3etwxYizXLQOgAhkqpgoULY2dlhMPyX9uiww8OjgIZRCWFZt2/DsGGmmVbwy/CYxS1+p3bwIsj3938LenpC27bQuTOxlSsT8scfFNMmZCGsglzhEVYjV65czJ07F3t7ewDsgRnYM+XtEKRVS9iCuXOhYEFYuMBAXf5kV75OXI7KQZ3FH6L7+2/jPFgNG8LPP8OtW/DTT1CzpsyPJUQSSMIjrEq3bt0ICQlhx9atnK5al17EMPtaM3pVPszFi1pHJ8Sb8XlyniGPv+C6U17+pD7VLy1BFxkBhQsbZwO9fBm2bjUOJijzYgmRLNKkJaxOrly5yJUrF1SvztN6TfDev5P5NxrzTpV/+G5LEcqV0zpCIV7NYDDeUOXw5BFvx6yARYsI2LOHAIBoIEMGaNcOOneGypXlKo4Qb0gSHmG93Nxw2bqemJr1yHrsX36514D9O3ZRrlwerSMTIlGxsfD7cj07hgdS58oimrMGeDZvip2dcfLczp2hRQvjLKBCCIuQhEdYNy8vHLdvRl+zNrnOnCLXrAbQ/h/w8dE6MiHMRETAuomnCP1+Ec1Df6YdN0yv6YuVwL5rZ2NTlZy7QqQISXiE9cuSBfttW42dNy9ehEaNuPHL3wz/JhNTphgHnhUiNV27do3z589TsGBBcrm5cWTILxgWLqKd/qBpmQi3zNh/0B7nnl2wL1tWmqyESGGS8AjbkDMnbNsGNWrAiROEVW/CyrBtBAZ6snCh8cYWIVLDvHnz6NGjBwaDATtgrr093fR6AGJw4GrJZvgO64xb62bg5KRtsEKkI3KXlrAd+fJBYCBkykSRsANsdW3F/RtPadQIPvwQ7t3TOkBhy5SCwO+30qP7R6axogxAT72ea8WLc+F/07C7eYN8x9bg8v7bkuwIkcok4RG2pXhx2LwZPD2pGvknB/O+hwMxLFhgnIPou+8gKkrrIIWt0Oth//o7rKk7jVMuZXHo3xgDynwZ4ML06RT4vj/2ObJqE6gQwrYSnhkzZpAnTx5cXFyoXLkyBw4c0DokoYWKFWH9enBxoWTwOq436krpkgYePoQBA54N0S/Em4iOhlWr2O/TknItctLqr08oHh1Ebhzj/VG1t7enQAEZDVwIrdlMwrN8+XIGDhzIqFGjOHz4MKVLl6Zx48bcuXNH69CEFmrXht9/BwcHsm1dyuFqfZkzW1GxInTp8t9if/5pnHVaqcRWJNKzyEjYvx9mzIAPOiha+f3L0x7/A19faN2aanfX4UgsFzJX4kj3GeS4cou5P/3032jg9vbMmTPHOG6UEEJTNtNpeerUqXz00Ud07doVgNmzZ7Nx40bmz5/PZ599pnF0QhPNmsGSJdC+PXZzZtHjM28+2j/BdDOMUtC7N5w9C/nzQ5MmxjypfHnw9zcOiSJsX3g4ODr+16Vm2zaYNQtOnYLz5yGr/iYf8DOfsYgSnIQfn73R15fo9zpi17UzBUoWNa2vW7duNG7cmAsXLlCgQAFJdoRII2wi4YmOjubff/9l2LBhpjI7OzsaNGjA3r17E3xPVFQUUc915ggLCwMgJiaGmJgYi8UWty5LrjOtSdN1bN0a3YwZOPTuDRMnonbtQj0bkj82Fn55CHftdBguAtONP2eBC3bg46MoVhzsDAaq3L+P3fTpGGwwC7L1+gE8uKvIcj6Ww44zMeghVq9DHwsxMaA3QLlyiixZjMsWuQ4fnTRmxe6EU4092GPshKx3ckEf0BK7rh1R9eujs7dHEf/cz549O9mzZ4cEXksJafozaAG2Xj+w/TqmZP2Suk6dUtZ/Mf/GjRvkzJmTPXv2ULVqVVP5kCFD+Pvvv9m/f3+894wePZoxY8bEK1+2bBluMkeNzcm/Zg0lFi7UOgxhpe4XLcrVunW5Xr06se7uWocjhHhOREQE7du3JzQ0FC8vr0SXs4krPK9j2LBhDBw40PQ8LCwMPz8/GjVq9NIdllwxMTEEBgbSsGFDHB0dLbbetMQq6ti0KbEffggXLrxyUb0e7t0HHZAtG+j1ek6cOEGJEiVMfTNsia3XD+DWLQM7d14nt38unJ3scHExztrg4aHw9HzJDA46HapSJbwKFqQ4UDw1g04Gq/gMvgFbrx/Yfh1Tsn5xLTSvYhMJT5YsWbC3t+f27dtm5bdv3yZHjhwJvsfZ2RlnZ+d45Y6OjilysqXUetOSNF/HmjWNP6/gAOR87rmKieHapk2UatoUh7Rcv9dk6/UDyB4Tg3uxTVRu2jRtn6NvKM1/Bt+QrdcPbL+OKVG/pK7PJhrsnZycKF++PNu3bzeVGQwGtm/fbtbEJYQQQoj0ySau8AAMHDiQzp07U6FCBSpVqsS0adMIDw833bUlhBBCiPTLZhKe9957j7t37zJy5Ehu3bpFmTJl2Lx5s+lOCSGEEEKkXzbRpBWnb9++XL58maioKPbv30/lypW1DkmkQVu2bEGn0730Z+vWrVqHKV5CjqEQIrls5gqPEElVq1Ytbt68aXpeokQJevfuTe/evU1lWbPKnEdpmRxDIURyScIj0h1XV1dcXV0BuH79Ovfv36dmzZqJ3tEn0h45hkKI5LKpJi0hkuvIkSMAlCtXTuNIxOuSYyiESApJeES6dvjwYfz8/MicOXOy3/vnn38yZcqUFIhKJMebHEMhRPohTVoiXTt8+PBrXxmoV68e9erVs3BEIrne5BgKIdIPucIj0rXEvixbtGhB//79qVKlCsWLF+fcuXO88847+Pv7M3PmTNMyx48fB6Bp06aMHDmS6tWrky9fPk6cOJGq9UjP3uQY/vzzz1SqVImSJUvSrFkz04TC1atXN83B161bN7799tvUq5AQIkVIwiPSrXv37nH16tUEvyyPHz9OqVKl2LdvH/Xq1WPRokUsWrSIHTt2sGDBAgDOnDlDkSJFADhx4gS5c+dm9+7d9OvXj7Vr16ZqXdKrNz2GTZo04cCBAxw/fhxfX1/++usvAEaMGMHEiROZOnUqdnZ2fPLJJ6lZLSFECpCER6Rbhw8fBuJ3dn38+DFKKbp162Yqa9asGZ6eniil8PLy4vHjx7i4uODo6EhYWBg6nY7u3bsDxknyMmTIkGr1SM/e5Bgqpfjxxx+pWLEipUuXZuXKlbg8m0X0rbfe4sqVK2zcuNF0NUgIYd0k4RHp1pEjR8iePTu+vr5m5SdPnqRixYqm5ydOnKBQoUKmxyVLluTkyZMUL17cVPb88sePHze9JlLWmxzDhQsXcubMGXbu3MnRo0fJmDEjxYoVA+DgwYM8ePAAb29vm57IUYj0RDotP6OUApI+zXxSxcTEEBERQVhYmM3+4bTWOvbq1YtevXrFO+YHDhygcOHCpvKrV6/i5uZGWFgYhw4dokCBAhw4cICCBQsSFhbGwYMHKVKkiGn5oKAg8uTJY/FzKaVY6/GDNzuGcX1/YmJimDlzJuHh4Tg7O3PmzBk+/PBD1q5dS8eOHdm3b58pEUqrrPkYJoWt1w9sv44pWb+4z3nc93hidOpVS6QT165dw8/PT+swhBBCCPEarl69Sq5cuRJ9XRKeZwwGAzdu3MDT0xOdTmex9YaFheHn58fVq1fx8vKy2HrTEluvo9TP+tl6HaV+1s/W65iS9VNK8fjxY3x9fbGzS7ynjjRpPWNnZ/fSzPBNeXl52eRJ/Dxbr6PUz/rZeh2lftbP1uuYUvXz9vZ+5TLSaVkIIYQQNk8SHiGEEELYPEl4UpizszOjRo3C2dlZ61BSjK3XUepn/Wy9jlI/62frdUwL9ZNOy0IIIYSweXKFRwghhBA2TxIeIYQQQtg8SXiEEEIIYfMk4RFCCCGEzZOEx0J27txJQEAAvr7/b+/+Y6Ku/ziAP+/oDg/5odgh0HXgoCAkSCkLTaFU4kepRKuptXAsbZ6E2tyiWrlsy0qxcrqsBVFEKzZN0sL8QRAKKwtQC0kF54QDMjkZnMIN3t8/+sI6+XHHeXw+cj0f2/3h3Yv7PF/7MHj5/ryPTyAUCgW++eYbq9cVCsWQj3fffVeewKNkq7/Ozk6sWbMGOp0OGo0GERER+PDDD+UJ6yBbPba2tiI9PR2BgYHw8PBAYmIizpw5I09YB7z11lu477774OXlBT8/PyxZsgT19fVWNdeuXYPBYMCUKVPg6emJtLQ0tLa2ypR4dOzp76OPPkJ8fDy8vb2hUChgMpnkCesAW/1dvnwZmZmZCAsLg0ajgV6vxwsvvIArV67ImHp07DmHq1atQkhICDQaDbRaLRYvXozTp0/LlHh07OmvnxACSUlJQ/4sulnZ0198fPyg34PPP/+8JPk48DhJV1cXoqOjsWPHjiFfNxqNVo/c3FwoFAqkpaVJnNQxtvpbv349SkpKUFBQgLq6OqxduxZr1qxBcXGxxEkdN1KPQggsWbIEDQ0N2Lt3L6qrqxEUFIQFCxagq6tLhrSjV1ZWBoPBgKqqKhw8eBAWiwUJCQlW+detW4dvv/0WRUVFKCsrQ3NzMx5//HEZU9vPnv7MZjMSExPx8ssvy5jUMbb6a25uRnNzM7Zs2YJTp07h008/RUlJCTIyMmRObj97zmFMTAzy8vJQV1eHAwcOQAiBhIQE9Pb2ypjcPvb01++9995z6m2OpGBvf88995zV78N33nlHmoCCnA6A2LNnz4g1ixcvFg8//LA0gZxsqP6mT58u3njjDavnZs6cKV555RUJkznP9T3W19cLAOLUqVMDz/X29gqtVis+/vhjGRLeuLa2NgFAlJWVCSGEMJlMQqVSiaKiooGauro6AUBUVlbKFdNh1/f3b6WlpQKAaG9vlz6Yk4zUX7+vv/5aqNVqYbFYJEzmPPb0WFtbKwCIs2fPSpjMOYbrr7q6Wtx2223CaDTa9fvkZjVUf3FxcSIrK0uWPFzhkUFrayv2798/rv7nZcvs2bNRXFyMpqYmCCFQWlqKP//8EwkJCXJHc4ru7m4AwIQJEwaeUyqVcHd3R0VFhVyxbkj/pQ5fX18AwK+//gqLxYIFCxYM1ISHh0Ov16OyslKWjDfi+v5cjT39XblyBd7e3rjllvF520RbPXZ1dSEvLw/Tpk3D7bffLmU0pxiqP7PZjGXLlmHHjh3w9/eXK5pTDHf+vvjiC9x6662IjIxEdnY2zGazJHk48MggPz8fXl5e4+ZSgT22b9+OiIgI6HQ6qNVqJCYmYseOHZg3b57c0Zyi/xd/dnY22tvb0dPTg7fffhsXL16E0WiUO96o9fX1Ye3atZgzZw4iIyMBAC0tLVCr1Zg0aZJV7dSpU9HS0iJDSscN1Z8rsae/S5cuYdOmTVi5cqXE6ZxjpB537twJT09PeHp64vvvv8fBgwehVqtlSuqY4fpbt24dZs+ejcWLF8uY7sYN19+yZctQUFCA0tJSZGdn4/PPP8fTTz8tSabxOfaPc7m5uVi+fLnVasF4t337dlRVVaG4uBhBQUEoLy+HwWBAYGCg1YrBeKVSqbB7925kZGTA19cXbm5uWLBgAZKSkiDG4R8rNxgMOHXq1LhdnbLlv95fR0cHUlJSEBERgY0bN0obzklG6nH58uVYuHAhjEYjtmzZgieffBJHjx4dVz9Th+qvuLgYR44cQXV1tYzJnGO48/fvAfzuu+9GQEAA5s+fj3PnziEkJGRsQ8lyIc3FYYRrruXl5QKAqKmpkTaUE13fn9lsFiqVSuzbt8+qLiMjQzzyyCMSp3OOkc6hyWQSbW1tQgghZs2aJVavXi1hshtnMBiETqcTDQ0NVs8fPnx4yH0ter1e5OTkSJjwxgzX37+N5z08tvrr6OgQsbGxYv78+eLq1asSp3MOe85hv+7ubuHh4SEKCwslSOYcw/WXlZUlFAqFcHNzG3gAEEqlUsTFxckT1gGjOX+dnZ0CgCgpKRnzXLykJbFPPvkEMTExiI6OljuK01gsFlgsFiiV1t9Obm5u6OvrkynV2PHx8YFWq8WZM2dw/PjxcbP0LITAmjVrsGfPHhw5cgTTpk2zej0mJgYqlQqHDx8eeK6+vh4XLlxAbGys1HFHzVZ/4509/XV0dCAhIQFqtRrFxcXjasUDcOwcCiEghBjYZ3czs9XfSy+9hBMnTqCmpmbgAQDbtm1DXl6eDIlHx5Hz199jQEDAGKfjJS2n6ezsxNmzZwf+3djYiJqaGvj6+kKv1wP454dRUVERtm7dKldMh9nqLy4uDhs2bIBGo0FQUBDKysrw2WefIScnR8bUo2Orx6KiImi1Wuj1epw8eRJZWVlYsmTJuNmYbTAYUFhYiL1798LLy2tgX46Pjw80Gg18fHyQkZGB9evXw9fXF97e3sjMzERsbCweeOABmdPbZqs/4J99Si0tLQPn+eTJk/Dy8oJer7/pNzfb6q9/2DGbzSgoKEBHRwc6OjoAAFqtFm5ubnLGt4utHhsaGvDVV18hISEBWq0WFy9exObNm6HRaJCcnCxzetts9efv7z/kRmW9Xj8uBnhb/Z07dw6FhYVITk7GlClTcOLECaxbtw7z5s1DVFTU2Acc8zWk/4j+JfLrH88+++xAza5du4RGoxEmk0m+oA6y1Z/RaBTp6ekiMDBQTJgwQYSFhYmtW7eKvr4+eYOPgq0e33//faHT6YRKpRJ6vV68+uqroru7W97QozBUbwBEXl7eQM3Vq1fF6tWrxeTJk4WHh4dITU0VRqNRvtCjYE9/r7/+us2am5Wt/ob7/gUgGhsbZc1uL1s9NjU1iaSkJOHn5ydUKpXQ6XRi2bJl4vTp0/IGt5M936NDfc14+Vi6rf4uXLgg5s2bJ3x9fYW7u7sIDQ0VGzZsEFeuXJEkn+L/IYmIiIhcFvfwEBERkcvjwENEREQujwMPERERuTwOPEREROTyOPAQERGRy+PAQ0RERC6PAw8RERG5PA48RERE5PI48BAREZHL48BDRGPu3nvvhUKhGNVDq9WO6hjnz58f9B5vvvnmkLVmsxk7d+6EwWDA5s2bYTKZbL7/wYMHsWLFCtx5553w9vaGu7s7AgICsHDhQmzbtg1//fWXVX14eLhVlvj4+FH1Q0TOxZuHEtGYEkJgxowZiIyMtHq+sbER5eXl8PT0RFpa2qCvCw8Pd+h4EydOxBNPPAEAiI6OHvT6pUuXEBsba3Wj2A8++AA//PDDoIz99UuXLsWhQ4cAAMHBwXjooYcwceJEtLS04NixYzh06BBee+01HDp0CPfffz8AIDU1FUajES0tLThw4IBDvRCRE0lyxy4iouts2rRJABDz5893yvs1NjYKACIoKGjEulWrVgkfHx/x3Xffia6uLlFRUSF0Op2Ij48fVGsymURYWJgAIMLDw0V5efmgmmvXroldu3YJf3//IW/y2H9Tz7i4OAc7IyJn4CUtIpJFdXU1AGDmzJmSHreyshLp6elISkqCh4cH5syZg/Xr16OqqmpQbWZmJurr6xEcHIyjR49i7ty5g2rc3d2xcuVK1NTU4K677pKiBSJyAC9pEZEsfvvtNwDAjBkzJD2uv78/Kisr0dPTA7VaDSEEfvrpJwQHB1vVNTQ0oLCwEACQk5MDX1/fEd936tSpmDp16ljFJqIbxIGHiCTX3t6O8+fPA5B+hScrKwspKSkICwvDrFmzcPLkSdTV1SE3N9eqbt++fejt7cWkSZOwaNEiSTMSkfPxkhYRSa7/cpanpyfuuOMOSY+dnJyM3bt3Y9KkSdi/fz+USiXy8/OxYsUKq7rjx48D+Gcgc3NzkzQjETkfV3iISHL9A090dDSUyuH/37Vv3z4sWrQIzc3N8Pf3d9rxU1NTkZqaOmJN/8fM/fz8nHZcIpIPV3iISHL27t+ZOXMmfvnlF6cOO0T038QVHiKSnL2f0AoMDERgYKAUkQbp/8OHbW1tshyfiJyLKzxEJCmz2Yz6+noAtld4dDodNm7cKEGqwWJiYgD8sxrV29srSwYich4OPEQkqdraWvT19UGtVmP69OnD1v39999oamrCPffcI124f3n00UehVCphMplQXFwsSwYich4OPEQkqf79O5GRkVCpVMPW1dbWAhj69hBSCAkJwdKlSwEAL774Ii5fvjxifVtb28DKFRHdfDjwEJGk7N2/U1tbC29v70F/EFBK27dvR2hoKBobG/Hggw+ioqJiUE1PTw9yc3MxY8YM1NXVyZCSiOzBTctEJCl7P6FVW1uLqKgoKBQKKWINafLkyTh69Cieeuop/Pjjj5g7dy6mTZuGqKgoeHh4oLW1FT///DM6Ozvh7e0t2wZrIrKNAw8RScZiseD3338HYN8Kz5w5c6SINSI/Pz+UlpaipKQEX375JY4dO4bDhw+ju7sbU6ZMQWxsLFJSUvDMM8/YvP0EEcmHAw8RSUalUqG7u9tmncViwR9//IHVq1dLkMo+iYmJSExMlDsGETmIAw8R3XROnz6Nnp4ehzYsX7p0Cenp6QCAtLQ0PPbYY05OZ5/s7GwYjUa0tLTIcnwissaBh4huOrW1tVAqlYiMjBz113Z1dSE/Px8AEBoaKtvAs2fPHn5qi+gmohBCCLlDEBEREY0lfiydiIiIXB4HHiIiInJ5HHiIiIjI5XHgISIiIpfHgYeIiIhcHgceIiIicnkceIiIiMjlceAhIiIil8eBh4iIiFweBx4iIiJyeRx4iIiIyOVx4CEiIiKX9z+7nvH2swIehgAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "I_froid = lambda T: 3*(T-19)**2\n", + "I_chaud = lambda T: (T-21)**2\n", + "n_froid = np.linspace(17,19,100)\n", + "n_chaud = np.linspace(21,25,100)\n", + "plt.title(\"Approximation de l'inconfort en fonction de la température\")\n", + "plt.plot(n_froid,I_froid(n_froid),\"--b\")\n", + "plt.plot(n_chaud,I_chaud(n_chaud),\"--b\",label=\"Courbe approximée\")\n", + "plt.plot([17,17.5,18,18.25,18.4,18.75,21.25,22,23,24,24.5,25],[12,6,3,1.5,1,0,0,0.75,4,8,12,16],\"-r\",label=\"Tangentes\")\n", + "plt.plot([17,18,18.5,21.5,23,25],[I_froid(17),I_froid(18),I_froid(18.5),I_chaud(21.5),I_chaud(23),I_chaud(25)],\".k\",label=\"Points de tangence\")\n", + "plt.grid()\n", + "plt.legend()\n", + "plt.text(T_min-0.25,-0.75,\"$T_{min}$\")\n", + "plt.text(T_max-0.25,-0.75,\"$T_{max}$\")\n", + "plt.xlabel(\"$T_i$ [°C]\",size=16)\n", + "plt.ylabel(\"$I_i$ [/]\",size=16)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "53c22b28", + "metadata": {}, + "source": [ + "##### Résolution" + ] + }, + { + "cell_type": "code", + "execution_count": 388, + "id": "07ebe9e4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "19152.656735088283" + ] + }, + "execution_count": 388, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f1 = lambda T: 12-12*(T-17)\n", + "f2 = lambda T: 3-6*(T-18)\n", + "f3 = lambda T: 0.75-3*(T-18.5)\n", + "f4 = lambda T: 0.25+(T-21.5)\n", + "f5 = lambda T: 4+4*(T-23)\n", + "f6 = lambda T: 16+8*(T-25)\n", + "\n", + "# On retourne à l'intervalle 13050\n", + "intervalle_initial = 13050\n", + "heure_initiale = 22.5\n", + "T_ext = data[intervalle_initial:intervalle_initial+n]\n", + "objectif = cp.Minimize(cp.sum(I_i))\n", + "contraintes = [c.T@(p_n_i+p_r_i) <= budget, T_i[0] == T_initial, T_i[1:n+1] == T_i[0:n]+deltaT_i, (p_n_i+p_r_i) <= p_max, 0 <= p_n_i, 0 <= p_r_i,\n", + "\t\t\tdeltaT_i == -(1-eta)*(T_i[0:n]-T_ext)+(cp.multiply(p_n_i,COP_normal(T_ext)))*0.25/(V*Cx)-p_r_i*COP_reverse*0.25/(V*Cx),\n", + "\t\t\tI_i >= f1(T_i[0:n]), I_i >= f2(T_i[0:n]), I_i >= f3(T_i[0:n]), I_i >= f4(T_i[0:n]), I_i >= f5(T_i[0:n]), I_i >= f6(T_i[0:n]), I_i >= 0]\n", + "probleme = cp.Problem(objectif, contraintes)\n", + "probleme.solve(solver=cp.SCIPY, scipy_options={\"method\":\"highs\"}, verbose=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 389, + "id": "5c5a6125", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAAG3CAYAAACwiTIxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wU1doH8N9usi29bSrpgdBbgNA7hCodAlcpInAF5SoIio1i4WLviqLAtaCioAiCgkgHkVCUFiAQIJDeezbZ5/0j74zZ7GyySTbZhDzf+8nnytQzZ8qeeeYUGRERGGOMMcYYY4wxxhhrhuTWTgBjjDHGGGOMMcYYY9bCwTHGGGOMMcYYY4wx1mxxcIwxxhhjjDHGGGOMNVscHGOMMcYYY4wxxhhjzRYHxxhjjDHGGGOMMcZYs8XBMcYYY4wxxhhjjDHWbHFwjDHGGGOMMcYYY4w1WxwcY4wxxhhjjDHGGGPNFgfHGGOMMcYYY4wxxlizZWvtBDDGGGOMMcYYYw3t5s2b2LhxI/z9/TF37lxrJ4cxZkUcHGOMMcYYY4wx1qyUlpZixowZOHfuHI4cOWLt5DDGrKzWzSoLCgrwzjvvYPjw4fDx8YFKpYKjoyPatm2L2bNnY8eOHSgrK7NkWi1q06ZNkMlkWLVqlbWTUmcHDhyATCbD7Nmz63U/MpkMQUFB9bqP+hQfHw+ZTIaBAwc2yP6aen7Vt1WrVkEmk2HTpk3WToqR2bNnQyaT4cCBAw2yv8GDB6NFixYoLi4WpwnX671+DcXExGD48OFwcXGBTCaDTCZDfHy8tZPVIIKCgiCTyRrdtiytPq/j/Px8fP7553j00UcRGRkJlUpl9m/77t27MWzYMLi4uMDOzg4dOnTAK6+8Ap1OJ7l8bGws3nzzTUyfPh2hoaFmXa9CWcPUX3R0tNE6N2/exLvvvosRI0bA29sbCoUCHh4eGDFiBHbs2GFu1kj64YcfMGLECGi1WqjVavj7+2PChAmSL4XCNWXq7/Llyyb3k5eXh9WrV6Njx45wcHCAs7Mz2rdvj0WLFiEvL89g2YEDB1a5H5lMBrncsLiamZmJFStWYOjQoQgMDISdnR3s7OzQrl07LF++HGlpaZLpqm5fe/bsMXlMmzZtQo8ePeDg4AA3NzeMGjUKx44dM7l8cXEx1q1bh65du8LBwQEqlQrBwcGYN28erl+/LrmOXq/H+vXr0atXLzg5OUGpVKJFixaYMWMGzp49a7R8cnIyPv30U0yYMAEtWrSAUqmEi4sLBgwYgM2bN4OITKbvzz//xNSpU+Hr6wuFQgEXFxf069cPGzdulFxv06ZNiI6ORps2beDm5galUglfX19MnjwZR48eNbmfxqCxlDcaSzoaC1NlLeE+rfxsrY/fuVWrVuHEiRP48ssv0blzZ4tuu6JDhw5h3rx56Nq1K7y8vKBUKuHm5oZBgwbh888/r/JerUpNn0sAcPToUYwaNQpubm5wcHBAjx498L///a/KdRISEjBnzhz4+vpCrVajVatWWLlyJYqKikyuU1hYiOeffx6tWrWCWq2Gr68vHnzwQdy5c4ePiY+p2mOqze9bYmIiNBoNFi5cWGU6qkS1cOTIEfLx8SEApFarqV+/fjRt2jQaP348dejQgQAQAGrbtm1tNt8gNm7cSABo5cqV1k5Knf3+++8EgGbNmlWv+wFAgYGB9bqP+nTjxg0CQAMGDKjztszJ86aeX3U1YMAAAkA3btyQnL9y5UoCQBs3bmzQdJlj1qxZBIB+//33et/Xzp07CQC9//77BtOF6/VevoZycnLI19eXZDIZDRo0iGbOnEmzZs2i1NTUettnY8rTwMBAquXPcL1uy9LqM8/PnDkjljkq/lX32/7f//6XAJBcLqdevXrRuHHjyNPTkwDQ0KFDqaSkxGid//znP5L7MvWMI/qnrNGpUyeaNWuW0d8HH3xgtE6fPn0IAKlUKhowYABNmzaNunfvLu7v8ccfr2k2UVlZGT344IMEgOzt7SkqKoqmTZtGvXr1IqVSSS+88ILROsI1JZXuWbNm0d27dyX3df36dQoODiYAFBISQpMnT6axY8dSq1atCADdvn3bYPm1a9ea3Ef79u0JAPXv399gnb///psAkJubm1gGHTVqlHgOfX196fr160ZpE36XJk2aJLm/v/76S/KYhHOv0Who3LhxFBUVRba2tmRjY0Pbt283Wr6wsJB69uxJAMjFxYVGjRpFEydOpKCgIAJAjo6OdOrUKYN19Ho9TZgwQdzP8OHDacqUKdSmTRsCQAqFgnbt2mWwzr/+9S8CQLa2ttSzZ0+aNm0a9e3bl+RyOQGgyZMnU2lpqVH6vvvuO7KxsSEA1LVrV5o6dSoNGjSIbG1tCQDNmDHDaJ2IiAiytbWlLl260NixY2nKlCnUsWNHAkAymYw+/PBDybyzlLqUdRtLecPa6aiuXGZp1f0umSprmUqnpX/nfv/9d5LL5bRu3TqLbdOUpUuXEgBq1aoVRUVFUXR0NPXr10+8D6dPn17jbdb0uUT0z70vk8lowIABNGnSJHJxcSEAtHTpUsl1rl69Sh4eHgSA2rdvT1OnTqWQkBACQH369KGioiKjdSo+A318fGjq1KnUo0cPAkBarZbi4uL4mPiYqjym2v6+LV68mGxtbSk2NlYyHdWp8RMmJiaGVCoVAaBly5ZRdna20TK3bt2ixx57jNRqda0S1RA4OFZzjemlsjYaOjh26dIlunbtWp331VRVVwhLTU2lS5cuUVZWVsMmzAwNGRzr2LEjabVaKi4uNpjeHIJjv/32GwGgBx54oMH22Zjy9Nq1a3Tp0qVGty1Lq888v3btGs2dO5c++ugjiomJoTVr1lT7237y5EmSyWSkUChoz5494vTs7GwaNGgQAaCXX37ZaL0NGzbQk08+Sd999x3Fx8dTeHi42cGxmpQ1pk2bRu+++y7l5OQYTN+5c6cYvPjll1/M3h7RPy/lY8eOpfT0dIN5GRkZdOXKFaN1avMiWlRUROHh4WRjY0MfffSR0fy///6b8vPzzd6eUEj/5JNPDKZnZWXRqVOnqKyszGB6YWEhPfDAA2IArLLaBAf27t1LAMjd3d0gn44dO0ZKpZJcXFwoMzPTYJ23336bAFD37t0NfuNKS0vpkUcekQz4/fjjjwSAgoKC6M6dOwbz1q1bJ86raPHixfTSSy9RSkqKwfSTJ0+Sk5MTAaD169cbzNPpdGIQ8csvvzSYd/HiRXJzcyMAtH//foN5J06cMLomhXTb2NiQWq2u1w8bHByru8YWHLt79y5dunTJ6JlgKp2W/p375JNPjD5M1pcLFy4Y3ddE5QENocLJTz/9ZPb2avNcSk9PF58L33//vTg9KSmJwsLCTJZ7hQ82ixcvFqfpdDoxmC/1+/bMM88QAOrVqxfl5uaK019//XWT72J8THxMFdXm942IKCEhgeRyOU2dOtVonjlqVOopKysTv2BJfWWsrPJXscaEg2M115heKmujoYNjzV1DF8IsqaGCY0eOHCEA9MgjjxjNaw7Bsc2bNzf4c/hez9PGqCHzfO3atdVeU3PnziUANG/ePKN5sbGxJJPJyMPDQ/KLZEX1FRyryvz58wkAzZ492+x1bt++TUqlkgICAqigoMDs9WoTHBOCOMuWLavRelKuXLlCQHkLhZp8RLl9+zYBIFdXV6N5tfldGjlyJAGgN99802je4sWLCQC99tprBtMnTZpEAGjLli1G62RkZIhf3CsSapasXbvWaB29Xk/Ozs4EgJKTk81K98svv0wAaODAgQbThVp34eHhkusJx1ST2jRDhgwhAPTjjz+avU5NcXCs7hpbcMyUplx+rI0XXniBgJrVCq7Nc0l4Po8bN85onW3bthEAGjNmjMH0P/74gwCQp6enUc2jpKQkUigU5OrqSjqdTpxeXFwsPq9Onz5ttC+hxmnlOAEfEx+TuUz9vgmGDBlCCoWCkpKSzN6moEZ9jv3888+4dOkSAgICsGLFimqXj4iIMJom9D1SUlKCNWvWoHXr1lCpVBg/fjwAoKioCJ9++inGjRuHkJAQaDQauLi4oH///vj6668l91Oxzfru3bvRt29fODg4wNXVFRMnTqyyXwwAuHXrFmbMmAGtVguNRoNu3brhp59+Mrn8pUuXMHv2bPj7+0OlUsHLywvR0dG4cOGC5PI///wzhg0bBj8/P6hUKvj6+qJv375YvXp1lemq7MKFCxg/fjxcXV3h6OiIfv36Vdk/BgAQEbZs2YLBgwfD1dUVarUabdq0wapVq1BQUFCj/Ve1/ejoaLRq1Qr29vZwdHREjx498MEHH0Cv19doe6mpqXjqqafQtm1bsZ+SVq1aYebMmTh58qTR8hcvXsS//vUv+Pj4QKlUws/PDzNnzkRsbKzZ+6yuD4jKfRzMnj0bgwYNAgBs3rzZoL+Siv3cVNXPjnBNCOckPDwcTz31FLKysqpM399//4377rsPrq6usLe3x4ABA6pt3y0lPT0dy5YtQ8uWLaFWq+Hm5oYRI0bg119/lVy+4n27cuVKhIaGQq1WIyQkBM8//7xBW3ahr6yDBw8CAIKDgw3ySOq4KqrY18Q333yD7t27w87ODn5+fli+fDlKSkoAAHFxcZg+fTo8PT1hZ2eHQYMG4a+//jJKe1ZWFt59911ERUUhMDAQKpUK7u7uGDFiBPbu3VvjvCsoKMDatWvRpUsXODg4wMHBAT179sTmzZtrvK0NGzYAAKZPn272OhX7GMzIyMDDDz8s9vvYvn17fPbZZybXvX37NhYvXoxWrVpBo9HAzc0N3bp1w+rVq5GTk2N0nC+88ALat28PjUYDZ2fnKp/DFe+TDRs2oGPHjtBoNPD29saCBQsMrm3hGpk1axYAYPXq1eL1UbnvxM8//xx9+/aFk5MT7Ozs0LFjR6xdu1ay/4SKvwW//PILBg0aJPZl9tZbb4npu3nzpsE1aU4/hBXzPSUlBXPnzoW3tzfs7e3Rt29fg/vwo48+Eo/f398fq1atknwWSvWfUrFvxMLCQjz11FPidRsWFoZ169ZJ9rNQ3bby8/OxZMkS+Pv7Q6PRoGvXrga/c1u3bkVkZCTs7e3h5eWFxYsXo7Cw0Gg/Z8+exfLlyxEREQGtVguVSoWQkBAsXLgQd+/erTYfG4OYmBgAkDzvrVq1gq+vL9LS0hplP0qdOnUCgBrl9ebNm1FSUoKHHnoIGo2mvpIGAPjkk08AAI8++midt/XFF18AAMaOHQtnZ2ez11MoFAAApVJZ5zQUFhZi//79AIDJkycbzRemVS4zqlSqarft7u5u9jrCs8rGxsbsvDB1rZiTNqn0VaW2eX779m088sgjYpnCzc0NY8aMMSrXmFvuMscff/yBqKgouLi4wMnJCcOGDcOJEyeMlquub2JT/WIBwI4dO9CrVy/Y2dnB3d0dkyZNwpUrV6pM119//YWxY8fCxcUFjo6O6N+/P/bu3Vtlv8LmlvHNLZeZUl2fvZXLc0Kab968CQAG+6pYLq5p/66m+hw7f/487r//foSEhECtVkOr1aJz58547LHHkJiYaLR8Td/j6ltN75/aPpd27dplcp3Ro0dDrVZj3759BuUrYZ2xY8caPTu8vLzQr18/ZGZmGvRbefToUWRnZyM0NBRdunQxK318THxMlY+pKtWVhWbMmAGdTle7/h1rEklbuHAhAabbupoDAPn7+9PIkSPJ3t6eRo0aRVOmTKF///vfRFTeFA0o7y9i0KBBNG3aNBowYAApFAqTX1+FWh4LFy4kmUxG3bt3p+joaGrbti0BIGdnZzp79qzBOsLX3FmzZpGnpyeFhoaK/W8A5f2QSDVb2L59u9istHPnzjR58mSKjIwkmUxGdnZ2dPDgQYPl33vvPQJANjY21L9/f5o+fToNGzaMWrRoUaOvKX/++Sc5ODgQUN6OODo6miIiIkgmk4nnpfLXtLKyMpo+fToBIAcHBxo4cCBNmDCB/P39CQD16NGjRl+RIfH1v7CwUKxaKfT7MXToULKzs6vxF76cnByxnxJ/f38aP348TZ48mXr06EEKhcLo3O/bt480Gg0BoC5dulB0dDR17txZPN5Dhw4ZLG+q5lh1X/Iqf/n65JNPKCoqigBQaGioQX8lFdtZS+UX0T/RbltbWxoyZAhNmzZNvB5atWplFOUW0rdo0SKys7OjDh060LRp06hTp07iV/W///672vwVJCQkiG3QAwICaNq0aTR48GCx34M33njDaB1h2TFjxpBGo6ExY8bQxIkTxS8OQ4YMEWtZpKam0qxZs8jLy4sA475dqst34YvhY489Rra2tjR06FCaMGGC2I5+5syZdOXKFfLw8KDWrVvTtGnTxL4O3dzcjPJv9+7dBJQ3Rxk2bJh4n8tkMpLJZPTpp58aHa+pmmPJycnilxRvb28aNWoUjRw5UswHqRpgVdFqtaTRaAy+5AhM1RwTvp6PGzeOWrVqRb6+vjRlyhQaNGiQeA4rN0EiIjp06JDYtj8oKIimTJlCY8aMEasznzlzRlw2JyeHIiIiCCjvc2Dy5Mk0cuRI8dlXscq2QLhPli1bRkqlkoYPH04TJkwQm+/069eP9Ho9Ef1zjQhVwCv2x1Qx7UItGbVaTaNGjaLJkyeL10GvXr2MmmII523evHkGvwXdu3enAwcOiPPt7e0NrkmpmhqVCfl+3333UUhICAUGBtK0adMoMjKSAJCdnR2dP3+eFi9eTBqNhkaNGkVjxowhR0dHAkBPP/20yTyTOu+9evWivn37kpubG02cOJGioqJIrVYTAHrmmWdqvK3IyEjy9PSkyZMn08CBA0kul5ONjQ3t3buX3njjDfF5NGHCBHJ3dydAut+hadOmka2tLXXt2pXGjx9P48ePF/tR8vHxkWw2YupZWB/MqTnWsmVLAkA///yz5HzhHn/nnXeq3FdNao6NGTOGnnjiCZo/fz49//zzdODAAXMOx4hQu2jmzJlmrzN48GACQPv27aO7d+/Sq6++SgsWLKDly5fT7t27xfuyMuGaeuWVV2jBggW0ePFiWr9+vVETB8GtW7cIALVo0YKIymvGLl++nBYsWED//e9/6erVqzU61tDQ0BrXRiopKaF///vfBIAefPBBo/nC78uzzz5LDz/8MC1atIjefvttunnzpuT2hD7ttFqt5Py8vDwCjGupbdq0iYCqm1VWvkYPHDggPp9NNausSZnq3XffJcC4+WZpaamYt6aaVbq6uho1vzVl3759pFQqydXV1agpTVWOHTtGrq6uhP+vxTZx4kTq16+f2G/N119/LS5rbrnLFKG8MW/ePFIqldS2bVuKjo6mbt26EQBSKpVGZf7qan2aqt304YcfElDeD1v//v1p2rRpFBgYSM7OznT//fdLlnuOHTsmlps7duwo/m7J5XJ69NFH61zGN7dcZkp1LS8ql+cuXbpEs2bNInt7ezHtwl/Fd0hL9Dl26tQp8bexY8eONHXqVBozZoz4Dlh52zV9j6tvt27dEn9Dzd13bZ9LQln1woULkusJ98O5c+fEaePGjSPAuF9cwRNPPEEA6O233xanvfnmmwSApkyZIrmO0NfuhAkT+Jj4mEweU1VM/b4J4uLixHePmqpRcEx4kfniiy9qvCNxhyjvUDYsLIwSEhKM5qelpdHevXuNCmvXr1+noKAgksvlRg9L4eEKgD7++GNxul6vpyeffFJ8AFYk/OgB5cG+iv1WCBdL5Qy9ceMG2dvbk4ODA+3du9dg3u7du0mhUJC/v79B30EBAQEkk8nozz//NFher9eb3WRLr9eLD/nnn3/eYN77778vHkflH7hXXnmFgPIqh4mJieL04uJisVnJk08+aVYaiKRfcHQ6HW3fvt2o8+KUlBTxQjf3Yf/ZZ5+JL5+V+xFJSUkxCADl5eWJP/LvvfeewbJvvPGGWEAvLCwUp1sqOEZU+w75T548SXK5nBwcHOjEiRPi9KKiIpoyZYpYaJFKX+WHGhHRY489RkDN+mwaM2aM+OJb8Vo9fPgw2dnZkY2NjUGgRDgWIU8rds6YkpIidphcuXptbTvkF9ZzcHAwuG8SExPJy8uLZDIZtWnThp566inxOaHX68V+ZirfI9evX6fjx48b7f/06dPk4uJCTk5OBu3siUwX2EaNGkUA6D//+Y9BteWkpCTxet+9e7fk8VYmfAjo3bu35PzqgmMAKDo62iAd27dvJ6A8kFlReno6abVaAkCvvvqq0f117Ngxg6Y6wsvboEGDDPqYuXTpkhjsqtw3hnCfeHt70+XLl8XpqampYgDut99+M1inqpeP7777joDyDyUV+zTIysqivn37is/uiir+FlR8saqotoGaivl+//33GzzzhGu5bdu25Ovra9DX4IULF0ipVJKdnZ3RdVZVQEt4VlXs1/PPP/8kGxubWm1r8ODBlJeXJ84T8j4sLIxcXV0N7rU7d+6I57lyZ6z79+83CkCXlZXR6tWrCQDNmTPHKO9M5bmQ5pr8Vfe7aU5wrHfv3gRAsgPxis3XqvsQWJPgmNTfgAEDalTlPzMzU7yPK/bZUR1vb28CyoN9wrFV/Bs4cKBkUMPU+bGzs5P8qLBnzx4Cyl/KhY92Ff9sbW2NmlqYcuzYMQLKP7xJDY5Q0YMPPkizZs2i++67j/z8/Ago73w4LS3NaFnh96Xyn0KhoDVr1hgtL/QD1qVLF5P7Fz46VHxWlpaWUnR0NAHlHfKPHj2aJk2aREFBQaTRaGjZsmWSzXaXLVtGQHmTy6ioKLFDfoVCQbNnzzb7g2ZJSYnYDcrrr79uNP/IkSNiurt27UrTpk0TO+Tv2LGjZBMbwWeffUazZs2iadOmib97zs7OBv33VSc7O5t8fHzIxsbG6J3izz//JFdXV3JwcDAIxFqiWSVQ/nGh4jvGBx98QEB5cL9i/tYmOBYfH09qtdqoP8OSkhKxc+nK5Z6ysjJxsIqXXnrJYB8bNmywaBm/ts0VaxocEzREh/wzZ84kwLgZF1F5maXiwCG1eY8jIqPnhTl/pvL42LFjNGvWLLr//vtp8ODBpFQqSS6X04svvmgynyqrzXMpOztbTJtUf+FEROPHjycAtGPHDnFaly5dCDD9keKtt94iALRkyRJx2uOPP06A6WaiZ8+eFZ89fEx8TKaOyZTqft8EHh4epFKpDGIB5qhRcKx169YEwOQPoFBAqfh3+PBhwx3+f+Zs3bq1RgklKv9yJBTwKhIerlIvmSUlJWKtnIppEX70goODjR6COp2OXF1dSaFQGMwTRmZ49913JdMntLPdtm2bOE2j0Uj2e1ET+/fvJ6B81CepwpRQc6HiD6dOpyMPDw+yt7eXLHwXFBSQt7c3ubq6Gr0omwLU7KVS6LCv4o1YFeHL6FtvvVXtskIgrVevXpLzhVovFQtdjSE4JvyIr1ixwmj55ORk0mg0JJfL6datW0bp69Onj9E6aWlpNTovQiTdwcFB8qvwkiVLCAA99NBDRscCGAafBULNrNDQUIPpdQ2OPfvss0brCA/ykJAQoxemc+fOVVl4kyJ0RFn5YSxVYBO+lnTv3l3ynjl9+jQB5cFdc3zzzTcESAcTiKoPjjk5OUm+/AnByor5LtxbI0aMqDZdeXl54nUo1fHtO++8Q0D5iH4VCfeJVK211157TfIlo6qXj/79+xMg3dnmuXPnSCaTkYODg8GPnnDeRo8ebfL4avocE1TM94yMDIN5WVlZJJPJCABt2LDBaF2hM9TKLwBVBbTkcrlBkFEgBLdruq3Ko/aUlZWJtfCqutdq0jeOn58fubu7G003ledLly41KjNU91ddZ8zmBMeeeuopAkA9e/Y0mrd161bxeTd//vwq92VOcGzPnj20atUqOnPmDGVnZ1NSUhLt2LFDLE9169at2r7NBNOmTRPTbaq2lxShloStrS3169ePTp8+TTk5ObRv3z6xtvbkyZON1nv00Udp27ZtdPPmTSooKKDz58/TkiVLxNGmfvjhB4Plt2zZIu5HLpfTqlWr6Pbt25SYmEjr1q0TBxPYuXNntWl++OGHCSivMV0docas8Ddw4ECT5+S5556jzz//nOLi4qigoIBiY2PppZdeEmuhVy5/fPnllyZ/fwVCQK5yba/S0lJavny50Utz165dqwwkvfXWW2JeCX9hYWFGtbyqInwYDg4ONjkAwrlz58Ra5MKfUqmkpUuXVtnHmxB4Ef7c3NxqFKwl+ucjtKkAtPCRs2JNdksExwIDAyVragvl6M8//1ycVpvg2PPPP0+AdM3OtLQ0sXZYxeeqUFZu2bKlZNlCqJhgiTL+vRgcE/o/qtxCSEpt3uOEdNb0z9TgFJ9//rnB/WNjY0Mvvvii5EiCptTmuXTnzh1xn1L3ANE/owNWfNYINa0rBxMFwrt5xT48582bR4B0LXei8kEIhGuej4mPydQxmWLO7xvRP8/Oqj72SLGFBW3evBllZWUG0wYOHIi+ffsaTJPJZBg7dmyV2zpy5AgOHDiAO3fuoKioCEQkthu/evWq5DrR0dFG0xQKBSZPnoy33noLhw8fNkrLwIEDjdp429raIjg4GKdPn0Z6ejp8fHwAQOyPaeLEiZL779evH9555x2cPHkSEyZMAFDe79qRI0cwd+5cLFmyBO3atavyuKUcPnwYQHk7XRsbG6P506dPxx9//GEw7fTp00hLS8OwYcPg5eVltI5Go0FERAR27dqFq1evIjw8vMbpqujs2bP49ddfcfPmTRQUFICIkJubC8D0+apM6KPu1VdfhZeXF0aPHg1HR0fJZYU8+de//iU5//7770dMTAwOHz5schlrqCrdnp6eGD58OH788UccPXrU6HoePny40Tru7u5wc3OT7FNBitDWfMSIEXBzczOa/8ADD+CNN94Q01mZ1D02YsQIuLq6Ii4uDomJieL9UldSxxsSEgKg/L4V+mioPE8qL8rKyvDbb7/h2LFjSExMRHFxMYB/rk1zrlHh/h8/fjzkcuPuGoU+yKT6xpOSkpICAHB1dTVr+coiIiIk+4Rp1aoVzp8/j8TERLFvj3379gEAFixYUO12Y2JiUFhYiG7duqF169ZG8x944AEsXrwYR48ehV6vN8oLqfPWqlUrANLnRopOpxP7gJG6Vzp27IiOHTvi3LlzOHv2LHr27Gkw/7777jNrP7XRrVs3o3Pm7OwMNzc3pKenV3ndmnv8ABAYGCj5XK5pXgLl/bQI6wnkcjkCAwORlpZW4zSnp6djx44dOH/+PLKyssTffZ1Oh/T0dGRkZEg+Xyp77bXXzD4GS1q4cCHef/99nDhxAjNnzsRzzz0HrVaLX3/9FQ8//DBsbW1RWloqeZ/XVFRUFKKiosR/Ozk5YezYsRg0aBAiIiJw6tQpfPvtt9X2O7hu3Tp88803cHNzw5dffmlWP0ECob87V1dX7N69G/b29gCAIUOGYMeOHejYsSO+++47XLlyxeA6eeeddwy2065dO7z++uto3bo15s+fjyeffBLjxo0z2k9paSkefvhhrFy5Upy3fPlypKWl4dVXX8XLL7+M0aNHm0yvTqfDt99+C6D8eVOd0tJSAOXX6tGjR7FixQp06NAB3333nUHeA8CaNWsM/t2qVSs8/fTT6NatG6KiorBq1SrMnz+/zn2zZWZmYsKECfjzzz/x9ttvY9KkSbCzs8OhQ4fw6KOPYtSoUfjqq68wbdo0cZ3i4mLMnDkT33//PZ555hnMmTMH7u7uOHXqFBYvXox//etfuHPnDpYtW1blvr/++mu88sorUKvV+Oqrr2BnZ2e0zJYtWzBnzhz07NkTW7ZsQbt27XD37l289tpreP311/H777/j2LFjkv2TbdiwARs2bEBeXh5iY2PxyiuvYNKkSZg3bx4+/vhjs/LHnPI0ALN/T801adIk2Noav/oI5ejDhw/j/vvvr/X2hbKTVFnJ3d0dw4cPxw8//GAwXejbcNKkSZLPnGnTphn1f9jQZfzGLCIiArt378aiRYvw4osvom/fvpLnGKjdexyA2vVbZML999+P+++/HyUlJYiPj8f//vc/rFmzBj/99BN2795d6zIhY82BOb9vAqEcmpqaWqN91Cg4JryIpaWlSc4XCigA8O9//xvr16+XXM7T09Nkh6DZ2dmYOHGi2NmbFCHoUllgYKDkdOEFUarTthYtWkiuIwRlhJdoAGKnm35+fibTBhjmz/vvv4/x48fjs88+w2effQYvLy8MGDAAEydONBnsqkxId3XHV5GQ1r1791ZbiE5LS6v1D2dJSQlmz56NLVu2mFzG1PmqbMiQIXj88cfx1ltvYfr06bC1tUXXrl0xbNgwPPjgg+LLGvBPnpjq8F6YfufOHfMOpIHUJd1VXasZGRn1vn9hIAgpgYGByMzMxN27dy0WHJO6zxwcHKqdV/GeBYCEhASMGTMG586dM7kvc65R4Z565pln8Mwzz5hcztzOJLOzswHAZJ5WpybPrtu3bwMAQkNDq91uddeIi4sLnJ2dkZ2djczMTKMAnVS6pNJUlfT0dJSUlMDDw0N8ka8sKCgI586dk7xWAwICzNpPbZh6/js4OCA9Pb1G12ZVanJ+q1NVmk3NN5XmLVu2YP78+cjLyzO5v9zcXLOCY9bi7++Pbdu2YcqUKfj888/x+eefi/O6d++OLl264OOPP67XlxQHBwcsXrwYjzzyCH755Zcqg2NffPEFVqxYAXt7e+zatcvgt9DcfWVmZmLKlClG91P79u3RvXt3nDx5EocOHTIKokqZO3cunn32WcTGxiI+Pl58VgjXDADMmTPHaL05c+bg1VdfxR9//IGioiKo1WrJ7e/evRvp6elo2bIlIiMjzT5OHx8fTJ48Gd27d0eHDh0we/ZsXLt2zeQzpKLhw4ejW7duOHXqFP744w+x43HhmKoawCg/Px+A4bP88ccfx8GDB/Hmm29i8eLF4vRx48bBz88PPXr0wNKlSzFx4kTxQ8/atWvx7bff4j//+Y/BgE2DBg3Crl270LZtW6xatQpz5syBh4eHZFr279+P2bNnQy6XY8uWLUYfDoDyj0GzZs2Cp6cndu7cKR5jy5YtsX79ety9exc7d+7EZ599hocfftjkcTs4OCAiIgLffPMNioqK8MknnyAqKgqTJk0yuY5A+D3t06dPlcuZet+ordq8J9REbcrrwgcIf39/yXWkfs8aqozfFCxbtkysUDFo0CA4ODigV69eGD16NGbPnm0wgEVt3uPqi1KpRKtWrfDiiy/Czc0NS5cuxfPPP49333232nVr81yq+HwuKCiAk5NTteuYs6+GWoePqfkdU2Xm/L5VJOxHarC7qtQoONapUyccPXoUZ86cqVNtHFMFIgB48sknsX//fgwYMACrV69G+/bt4eLiAhsbG/z666+IioqSHKmrtmryZVj4Kjrr/0dYM6ViYa5jx464ePEi9uzZg59//hkHDhzAt99+i2+//Ra9evXCgQMHLDKikqm0hoWFVVv4qMmIRJW98cYb2LJlCzp06IBXXnkFXbt2haurKxQKBa5cuYLw8PAana833ngDCxYswI8//oh9+/bh6NGjOHnyJF555RVs2bLFrEIXgBp9Va9OTUfcrIuq0m2JWgx12X9Dq+p4a5IXDz30EM6dO4dJkyZh+fLlCA8Ph6OjI+RyOT7++GMsWLDArGtUuA769u1rVpCpOkKBzdzgcWUNcT2YYu3rtLo0VPUbU1fVHZ+ljt+S+WipNN+8eVMcMe2tt97C6NGj4efnJ9ay6d27N44fP272M/+JJ56o8UvIU089JVmjsaaGDh2K69ev4+uvv8b58+dhY2OD3r17Y9KkSWJgpzY1vWuiZcuWAKquBbhz507MmTMHCoUC27Ztq7YwKEX4eFHVR5GTJ0+KtVmrI5fLERoaipSUFIMaqhUDAlL7EqaVlZUhIyMDvr6+ktsXRqmsbQ2ewMBA9OvXDz///DP++OMPDB482Kz1WrZsiVOnThmcDyEwkZCQILlOfn4+srKyDD4elZWViR8MpUbm6tatG4KDg3H9+nVcv35dDFwIQVqpdQICAhAZGYn9+/cjJibGqEYcAPz5558YN24cSkpK8Omnn4qjwFf29ddfQ6fTYcSIEQYvLYKpU6di586dOHToUJXBsYruv/9+7NixAz/++KNZ5TTh93Ty5MlVBi8tca/Xl4YsG5rad32X8WuaHmtwcnLC/v37cfToUfz00084cOAA9u/fj71792Lt2rU4fPiw+KytzXscAMmRQqvz2muvmQxiV/bAAw9g6dKl+PHHH80KjtXmueTk5CR+2ExISEDbtm2N1hO2V/FZHhAQgDNnzpjcl6l1qkpfbdbhY2p+x1SRub9vFQmVEFxcXKpdtqIaBcdGjhyJDz74AFu3bsW6devMqvVUU9u3b4eNjQ127NhhFFm8fv16lesKQwabmm6qIGauFi1aIC4uDq+//nqNfmzUajXGjx8vnsgLFy5gxowZOH78ODZs2ICFCxdWub5QE6e646ucVqC8YGHJ6sCVbd++HQDEavkVVXe+TAkPD8fy5cuxfPlyFBUV4b333sOyZcvw8MMPi4Uu4VyayhNzvw4B/wydLFUToqysDElJSbU5DEm+vr64ceMGbt68KflwqEm6a7t/oHb5lpmZidzcXMmo/q1btwy231jk5+dj79698PLywjfffGP0zKrJNSrcU+PHj8fSpUvrnDZPT08AMLvWX134+/vj8uXLiIuLQ4cOHapctrprJDs7G1lZWdBoNPVWs8bd3R1KpRJpaWnIz8+XfHmq73uFGfv5559RUlKCJ554Av/5z3+M5tf0mf/dd9+ZvM5MmT17tsVemF1dXSVf/o8fPw65XI7+/ftbZD+mZGZmAoDJ4MDBgwcxZcoUEBG++uoryeav5ujSpQvOnj0r7q8y4RkkFSgxRSrtrVu3hlqtRlFRETIzM6HVaiX3U9W+cnJyxCHg69K8TXgprUlzCqljCg8Ph0qlQmpqKu7cuWP0vDl9+jSA8g+hgpSUFJSUlACAQa2VioTpFc+J8HJQk3UEFy9exMiRI5GXl4c333xTsuaeJfZjSk3zu0WLFoiNjcVTTz0ldqnREGrynlBV2RD4p0Z2RT4+PoiNjTVZxpPav1DGl9qeqekNVcYX1CYvGpJMJkPfvn3FrnNSUlLw2GOPYcuWLXjmmWfEZtq1fY/bvHlzjdO0atUqs4Njbm5ukMvlZt8/tXkuAeWVXA4dOoTTp08bXZ86nQ7nz5+HWq02qEHcqVMn/Pjjj+I2K5PaV6dOnQzmmbMOHxMfU+VjEtTk960i4TesclmkOjX6ND1q1Ci0adMGt27dwtq1a2u0I3NlZmbCyclJssqd8HAzRWp+aWkpvv/+ewAw6m+spoYNGwbgn4BQbbVr1w6LFi0CAJw/f77a5YW+F77//nvJrzNff/210bTu3bvD2dkZBw8erNeXb+HCk2oCVN35ModarcYTTzwBHx8fpKamil+2hTwx1ZxT+PIsLFcVoWBy5coVo3m///47dDqd0XShoFCxKbE5qkp3amoqfvnlF8hksmq/BNaWcA/s2bNHspppdfkmdU5//fVXZGRkICQkxKBJZW3zyJKys7Oh1+vh4+NjFBjT6XQ1upctdf8LhB+l2NhYi2yvKkOHDgUAs/qDiYiIgEajQUxMjGRfbMI10qdPn3qrJaZQKMQaMlLPt/Pnz+PcuXNwcHBA586da7xta16TTVlVz/tDhw4hOTm5RtuLj48HlQ8MZPaf0NytvuzatQvXr1/HiBEjTDZzshShbNK1a1ejeadPn8Z9992H4uJibNiwwexa01KEPvgOHjxoNC8vL08szHbp0sWs7V24cAGxsbGws7MzCFSqVCqxRtOBAweM1hP2HxISIlnGA8oDpkVFRejTp0+Nm48KysrKxP41za3lm5qaKvYXVfF8aDQasebZ1q1bJdMLwKAfXTc3N/H379SpU0br5OTkiM/9il/Jvb29Ta5TVlaGM2fOADCulRcfH4/hw4cjPT0dq1atwmOPPVblsVa1H6D8C73UfqoinFtz87s2v6eWKFNs27bNqG9k4J/fmYrvCVWVDa9cuSJ+FKxIKDtJlZUyMjLEPq8qEsp727dvl6x1K7Wt2pbxa5uHHh4esLW1xY0bN4zW1el0ks+Wuuyvrjw9PbFq1SoAhu9ZtS3H1fR3iohqdP8cPnwYer3e7PunNs8lAGJfj8L8inbu3ImioiIMHTrUoPa9sM5PP/1k1M1CcnIyDh8+DFdXV4P3lj59+sDZ2RlxcXE4e/asWenjY+JjqnxMQM1/3yq6fPkyVCoV2rRpY/Y6AKoYQsSEU6dOiSMfLVu2THJEm7S0NBo4cKDkyCWoZqSwdu3aEQD6+uuvDaYLI9dAYqQaYbQTAEbDiz/99NMEgDp27GgwvTaj0Fy9epU0Gg05OztLjsxTVFREW7dupdu3bxMRUX5+Pr399ttGQ6SXlZWJo5e9/PLLJvOi4vLCyFarV682mPfRRx+ZzJeXXnpJHF0mLi7OaLsJCQn0v//9r9r9C6TO3ejRowkA/fe//zWYvnXrVnEEKXNHD9y+fTsdP37caPqpU6dILpeTg4ODOHpoXl4eeXl5ESRGs3v77bcJAPn5+RmMZGdqtJ1r164RAHJ1dTU439evXxeHiq18qwjb6tatm8njkcqvP/74g+RyOTk5OdGff/4pTi8uLhZHIps0aZLBOrUZTbMqwjmbOXOmwYiPx44dI3t7e7KxsaEzZ84YHQsA8vf3N8ij1NRU6tixIwHGw+kK96WpkcmqG61SajSl6u7bynmu0+nI2dmZbG1t6ciRI+L00tJScTQ+qe2ZGkFp2LBhBIAWLlwoORzx2bNnaffu3ZJpk+Lp6UkajUZy9JbqRqs0NWKXVNrT09PFkQnffPNNo5Hujh8/TsnJyeK/Fy1aRABo2LBhlJeXJ06PjY0lb29vAoxH+KzqOjSV5qrOpzBqYIsWLQyeXzk5OeI1UnmkM1PnrXI6bW1tjZ7L1aku36s6/pqM5GXJUcGq21ZN7zXhnHTr1s3gukhISDB4VlbeXnW/+5ZkzmiVROW/K5Xvg6NHj5JWqyW1Wi05Umhl5oxW+fLLLxuNWlZSUkKrVq0iAKTRaCghIcFg/uXLl0mr1RJgPDp3VQYPHkzh4eH0xx9/GEwvLS0Vz8/7779vMF0Yrap9+/YG+bFr1y767bffjPZx7tw5cVuLFy82mn/06FHxvq04Qur169fFkRFfeeUVk8cwaNAgAkAfffRRlce6ZcsW+uuvv4ymp6en04MPPkgAqEOHDgbHdPToUdq+fbvR6KA3btwQR7WSGm1YGE3Q3d2drly5Ik4/duwYqVQqcnFxMXqe3HfffQSAOnfuTHfv3hWnFxYWiqNyVR7tSxgpr3LeVRz1svJoi8nJyeIoZaZGfqwsJiZGvFc/+OADg3nHjx8ne3t7QqVRzy5evEjffPON0ejuer2etmzZQhqNhmQyGZ08edKsNGRmZpKnpycpFApav3690SiNOp2O9uzZQ3///bc4zZxylynCcxMAPffccwbz1q9fTwDIy8vLYOSz3NxcsrOzI1tbWzp16pQ4PTU1lfr16yf5vLt+/TqpVCpSKBQG+VdSUiKOVl75+V1WViaew8plaeE5bKkyfnXlsqoIx1xxRFedTkePPvqo5HER/fMbc/78ecltWmK0yg8//JCuX79utG1hRNThw4eL02r6HmdJr7zyitFI10REJ0+epLCwMAJAr732msG8hIQECg8Pp/DwcKP1avNcSk9PJycnJwJgcPzJycliGqTKT8Lz8T//+Y84TafT0cSJE03+3gqjwffu3dugvPD666+bLJfwMfExVVSb3zeB8G7fr1+/Gq1HVB7drrHDhw+LL0gqlYr69+9P0dHRNH78eOrWrRspFAoCQK1btzb4YSOqvpD8xRdfiA/Zfv360fTp06lt27Ykl8vFl1lTwbGHH36YZDIZ9ejRg6ZPny4G2pycnIyG8axNcIyI6IcffhCHYg4LC6OxY8dSdHQ09evXTyxQCIGFzMxMAkAKhYJ69uxJ0dHRNHHiRPL39ycAFBQURGlpaeZkOZ04cULcfocOHWj69OnUvXt3kslktHDhQsl8KSsrowceeICA8uG5IyMjxTS0a9eOZDIZderUyaz9E0mfu4MHD4pBsIiICJo+fTp169aNANATTzxR5YtZZcIQy35+fjRmzBiaMWMGDRw4UNx+5eDLvn37xOHXhX136dKFAJCDgwMdOnTIYPmqXhSFQouzszONHTuWhgwZQvb29jRlyhSTL71CUKh79+40e/Zsmjt3Lv34449V5hfRPwUaW1tbGjp0KEVHR4vXRMuWLY2G5bZ0cCwhIYGCg4PF9EVHR9OQIUNM5rNwLAEBATRmzBiys7OjsWPH0sSJE8nFxYUA0KBBg4wCPN9//714/02ePJnmzp1Lc+fOrfa4LBkcI/onv21sbGjYsGE0bdo0CgoKIo1GIwaBzA2OJScni9eYi4sLDRw4kGbMmEGjR48Wz2HFH6XqzJ49mwAYBO4ElgyOCes5OjoSUD788dSpU2ns2LHij1LFgGhOTg5FREQQAPL09KQpU6bQqFGjSK1Wm3wptnRwjIho/vz5YgBh9OjRNGXKFDFo0LNnT6MhnM0JjgkF+eDgYPrXv/5Fc+fOrfJlvbpjEDSH4FhxcbH4u+rt7U2TJk2i0aNHk52dHfXu3Zt69+4tub3qfvfravz48RQZGUmRkZHifejn5ydOGz9+vNE6gYGB1KJFCxoxYoT4uyWTyUij0Zh8cYyJiRG3GRkZKd4PnTt3Fqd98sknBusI5aQ+ffpQdHQ0jRo1inx9fQkAqdVqyRe0zp07EwDSarU0a9Ysyb+1a9dKHpOp6//MmTNiwbRTp040adIkMVjl7u5uFGgSrrPAwEC67777KDo6mnr06EG2trYEgAYOHEgFBQWS+fT8888TALKzs6Nhw4bRiBEjxGfPyJEjjYJTgtu3b5NcLielUin5ElmRcK+HhITQuHHjaPr06dS/f39ycHAQz//FixcN1hGuaW9vbxo1ahTNmDGD+vTpI57Hdu3aGXwkqEgon9jZ2dG4ceNo5MiRZGtrSzY2NrR9+3aj5a9duyZ+wHN0dKThw4fTuHHjxHPv5uZmVD5OS0sTA64qlYoGDRpkcJ40Go1RwHL8+PFiukxdK1IvFUL5TDjuKVOmUJ8+fUgulxMAmj9/vsHywvPP2dmZBg8eTDNmzKBRo0ZRUFAQASC5XE5vvvlmleessuPHj4sfbfz9/WnkyJE0Y8YMGjx4sFi2qJy31ZW7TBGu53nz5pFCoaB27dqJ5WihnC71YUu4ltVqNUVFRdGIESPI1dWVevfuTb169ZJ83r333ntingwcOJCio6MpKCiInJ2dxcBo5ef3sWPHxHeLTp060fTp06lHjx4kk8nEcsq8efMM1qlNGb+6cllV9u7dK14fvXr1ogkTJlBAQAB5eHiI92Pl4xJesL28vCg6Oprmzp1LTz75pDjfEsGxTp06EQBq27YtTZo0iaZNmyZOU6vVRuWrmrzHWVLF8zRt2jSaMGGCmE4ANHXqVKNytPAbbqpsUdPnEhHRd999R3K5nGQyGQ0aNIgmT54s3m9LliyRXOfKlSvk7u4uvoNOmzZNfC717t2bioqKjNYpLCykyMhIAkA+Pj40depU8d9arVYyoMvHxMdUUW1/34iINmzYQIDxBwdz1Co4RvRPraghQ4aQl5cXKRQKcnBwoPDwcPrXv/5F27dvl6wNYU4hedeuXdSzZ09ydHQkFxcXGjp0KB04cMDky0nFh+tPP/1EvXr1Ijs7O3J2dqZx48bRhQsXjPZR2+AYUXmhZ+HChdSyZUtSq9Xk6OhI4eHhFB0dTd9++634ZU2n09H7779PEydOpNDQULKzsyMXFxfq2LEjrV69mtLT06vMh8r++usvGjt2LDk7O5O9vT316tWLdu7cWe1L248//kijR48Wv9J5enpSREQELV++nGJiYszev6lzd/z4cRo8eDC5urqSo6Mj9e7dm77//vtqX8wqO3PmDC1dupS6d+9Onp6epFKpKDAwkMaOHUv79u2TXOf8+fM0ffp08Rr08fGh+++/X/Krf1XpKS4upqeeeor8/f1JqVRSaGgovfjii1RaWmrypffq1as0fvx4cnd3FwsMFa+nqq71nTt30pAhQ8jZ2ZmUSiWFhYXR8uXLJV8ILB0cIyovhC9dupRCQ0NJqVSSi4sLDR8+nH755RfJ5YVjKSoqoqeffpqCgoJIqVRSYGAgPfPMMyZfkt58801q27atWNu0YjobKjhGRLR582bq0qUL2dnZkbu7O40bN47OnTtncntVBVkKCwvpnXfeod69e4vnz9/fnwYMGECvvvpqjb44CrUsFi5caDTP0sExovKv2v/+97/F8+fm5kYRERG0Zs0aysnJMVg2Ly+PVq9eLZ4/R0dH6tu3L3311VeS+62P4BgR0f/+9z/q3bs3OTg4kFqtpnbt2tFLL70kec2ZExzLy8ujRx55hPz9/cUXfXOeURwcK5eRkUEPP/wwBQUFkUqlopCQEHryyScpPz/f5PbqOzgmHLupP6l9r127liIjI8nNzU18ls2fP99kQZDon2ugqr/K+fX888/TsGHDKCAggDQaDanVagoLC6MFCxaYrJ1W3fGYOqdVBceIyu//mTNnkre3NykUCmrRogU99NBDFB8fb7TssWPH6MEHH6QOHTqQu7s72drakpubGw0cOJA++eQTkwEuwffff0/9+vUjR0dH0mg01LlzZ3rzzTcly4WCdevWEQCaMGFCldsmKv9Iu3DhQurUqRN5eHiQra0tubi4UM+ePemll16SbNVw8eJFevjhh6lr166k1WrJ1taWnJ2dqWfPnvT666+b/B0TbNy4kSIiIsSy3IgRI+jo0aMml09KSqLHH3+cWrduTWq1mlQqFYWFhdGiRYtM/k7k5OTQypUrqWPHjmRvb08KhYICAgJo1qxZRsE+on/u4Zpe/0RE27Zto+HDh4vn19XVlQYNGiT5jE9JSaE1a9bQ4MGDqUWLFqRSqUij0VDLli3pwQcfrFFZsqLExERavnw5tWvXjuzs7MjOzo5CQ0Np3LhxtGnTJsrNzTVYvrpylykVn5vHjh2jIUOGkKOjIzk4ONCQIUNMnke9Xk+vvvoqhYWFiffM0qVLq3zeEZW3hIiMjCSNRkOurq40btw4unTpUpXlubNnz9KYMWPIycmJ7O3tqU+fPrR7926x0sBTTz0lmcaalvGrKpdVZ+fOndS9e3dSqVTk5uZGU6dOpRs3bpg8Lp1OR88++yyFhoaKFScqXo+WCI7t2LGDHnzwQWrXrh25uLiQnZ0dtWrVih566CGTz1hz3+Ms6d1336WJEydSSEgI2dvbk1KpJD8/Pxo3bpzJYEJ1wTGimj+XiIiOHDlCI0aMEPOrW7dutGnTpirXuXXrFs2ePZu8vb3F95bnnnvOoIVOZQUFBfTcc8+J7xre3t40e/bsasvJfEx8TER1+30bPHgwKRQKowon5pAREaGJmz17NjZv3ozff/+93vsjYaw5kslkCAwMFDtBZ5bTpUsXJCQkICEhASqVytrJYYwxxlgj8e9//xvr16/H119/jWnTplk7OYwx1qglJCQgMDAQkydPxjfffFPj9eunN2XGGGNmeemll5CWloZPPvnE2klhjDHGWAPLyMiQ/Pj4zTffYMOGDXBxccGYMWMaPmGMMdbEvPrqq5DL5VizZk2t1re1cHoYY4zVwKhRozBo0CD897//xbx587j2GGOMMdaMXLlyBb169ULHjh3FUVovXbqE2NhY2NjYYP369bC3t7dyKhljrHFLTEzExx9/jHnz5iE8PLxW2+DgGGOMWdn+/futnQTGGGOMWUFISAgWLVqE/fv34/fff0d+fj48PDwwceJEPPHEE+jVq5e1k8gYY42ej48PCgsL67SNe6LPMcYYY4wxxhhjjDHGaoP7HGOMMcYYY4wxxhhjzRYHxxhjjDHGGGOMMcZYs8XBMcYYY4wxxhhjjDHWbHFwjDHGGGOMMcYYY4w1WxwcY4wxxhhjjDHGGGPNFgfHGGOMMcYYY4wxxlizxcExxhhjjDHGGGOMMdZscXCMMcYYY4wxxhhjjDVbHBxjjDHGGGOMMcYYY80WB8cYY4wxxhhjjDHGWLPFwTHGGGOMMcYYY4wx1mxxcIwxxhhjjDHGGGOMNVscHGOMMcYYY4wxxhhjzRYHxxhjjDHGGGOMMcZYs8XBMcYYY4wxxhhjjDHWbHFwjDHGGGOMMcYYY4w1WxwcY4wxxhhjjDHGGGPNFgfHGGOMMcYYY4wxxlizxcExxhhjjDHGGGOMMdZscXCMMcYYY4wxxhhjjDVbHBxjjDHGGGOMMcYYY80WB8cYY4wxxhhjjDHGWLPFwTHGGsihQ4ewZs0aZGdnWzspDSo7Oxtr1qzBsWPHrJ2UOtHpdPjvf/+Ln376ydpJuad9+eWXWL9+vbWTwRhjjDHGGGtGODjGWAO4efMmxo8fD0dHRzg7O1s7OQ3K2dkZdnZ2mDBhAhITE2u07qZNmyCTyRAfH29ymfj4eMhkMmzatKluCa3GU089hQ0bNqBnz55mr2NO+hsTmUyGVatWWWx7AwcORPv27c1e/uTJk3j00UexatUq7Nq1q0b7WrVqFWQyWU2T2CScPHkSSqUSN2/eNJpXUlJS5+3rdDr4+/vjgw8+qPO2GGOMsYquXr2K4cOHw9nZGTKZDD/88IO1k8QYY5I4OMYaPZlMZtbfgQMHrJ1USTqdDtOmTcPs2bPx+OOP18s+Pvjgg3oPDtXFE088gSlTpmD69OkoKyur07YGDhyI2bNnWyRdBQUFWLVqVbXXzo8//ogvvvgCe/bsgVartci+maGSkhLMmTMHH3zwAb744gs8/PDDRrUszT1fjdnLL79c4xeDZ555BtOnT0dgYKA4raioCDNmzIC9vT28vLzw7bffSq4bFxeHBQsWICQkBGq1Gk5OTujTpw/efvttFBYWAgAUCgWWLFmCl156CUVFRbU+NsYYY/VL+Oh26tQpayfFbLNmzcLff/+Nl156CZ9//jm6detmke0eO3YMq1atQlZWlkW2xxhjttZOAGPV+fzzzw3+/b///Q979+41mt6mTZuGTJbZLly4gOjoaPznP/+pt3188MEH8PDwsFjQqD688847ePPNNxEbG4u2bdtabLuBgYEoLCyEQqGo8boFBQVYvXo1gPKgmynx8fHYvXs3wsLCarT9Bx54ANHR0VCpVDVOW3MTGxuLxx57DNHR0QCAdevW4eLFi+jVq5e4TFXn69lnn8VTTz3VYOmtrZdffhmTJ0/G+PHjzVr+7Nmz2Ldvn1Gz5Ndffx1///03tmzZgps3b+Khhx5Cz549ERAQIC6za9cuTJkyBSqVCjNnzkT79u1RUlKCI0eOYNmyZbhw4QI+/vhjAMCcOXPw1FNP4auvvsKDDz5oseNljDHWfBUWFuL48eN45pln8Mgjj1h028eOHcPq1asxe/ZsuLi4WHTbjLHmiYNjrNG7//77Df594sQJ7N2712h6Y9W5c2d07tzZ7OWJCEVFRdBoNPWXKCukQy6XY+nSpRbZVkUymQxqtdri262opoHN/Px82Nvbw8bGBjY2NvWUKtNKS0uh1+uhVCobfN+11aFDB3To0EH89/Tp02u0vq2tLWxt772ftI0bNyIgIMCoOe/x48fx4osvYty4cQCAI0eO4M8//xSDYzdu3EB0dDQCAwOxf/9++Pj4iOsuWrQI165dM2i66uLiguHDh2PTpk0cHGOMMWYRqampAGDR4JVQxmKMMUvjZpXsnqDX6/HWW2+hXbt2UKvV8PLywoIFC5CZmWmwXFBQEMaMGYMDBw6gW7du0Gg06NChg9hMa9u2bejQoQPUajUiIiJw5swZg/Vnz54NBwcHXL9+HVFRUbC3t4evry/WrFkDIqpTmn755RcxTUKH5Bs3bsTgwYPh6ekJlUqFtm3b4sMPPzRa/8KFCzh48KDYxFSoVWOqHyapvrCqSkdWVhYee+wx+Pv7Q6VSISwsDOvWrYNer6/23Pz4448YPXo0fH19oVKpEBoaihdeeKHOzSsFUn2OCefpzp07GD9+PBwcHKDVavHEE0+I+42PjxebSK5evVrMu4p9bl2+fBmTJ0+Gm5sb1Go1unXrhh07dhjsX8jLgwcPYuHChfD09ESLFi0M5lXuc2z37t3o168f7O3t4ejoiNGjR+PChQsGywwcOFCyNtvs2bMRFBRkdPyvvfYa3nrrLYSGhkKlUuHixYsm86y4uBiPP/44tFotHB0dcd999yEhIaHafQlq2r9XTEwMevfuDY1Gg+DgYHz00UcG80tKSvD8888jIiICzs7OsLe3R79+/fD7778bHGdV50sqTTKZDI888gi2bt2Ktm3bQqPRoFevXvj7778BAOvXr0dYWBjUajUGDhwo2TfcH3/8gREjRoh95w0YMABHjx6VzI9r166JX7CdnZ0xZ84cFBQUGKQnPz8fmzdvFtNfXW3PH374AYMHDzY6tpCQEHz88ceIjY3F3r17cejQIYOaja+88gry8vLw6aefGgTGBGFhYUZB32HDhuHIkSPIyMioMk2MMcYaB3PKOwK9Xo+3335bLOdqtVqMGDHCoIlmaWkpXnjhBbEsERQUhKeffhrFxcUG2xLKjEeOHEGPHj2gVqsREhKC//3vf+Iyq1atErsDWLZsGWQymUGZ4syZMxg5ciScnJzg4OCAIUOG4MSJEwb7MVXGWrVqFZYtWwYACA4OFn9Tm0ofr4yxxune+8zOmqUFCxZg06ZNmDNnDhYvXowbN27gvffew5kzZ3D06FGDJnfXrl3DjBkzsGDBAtx///147bXXMHbsWHz00Ud4+umnsXDhQgDA2rVrMXXqVMTGxkIu/yeOXFZWhhEjRqBnz5545ZVXsGfPHqxcuRKlpaVYs2ZNrdIUGxuL6dOnY8GCBZg3bx7Cw8MBAB9++CHatWuH++67D7a2tvjpp5+wcOFC6PV6LFq0CADw1ltv4dFHH4WDgwOeeeYZAICXl1et8lEqHQUFBRgwYADu3LmDBQsWICAgAMeOHcOKFSuQmJiIt956q8ptbtq0CQ4ODliyZAkcHBywf/9+PP/888jJycGrr75aq3Sao6ysDFFRUYiMjMRrr72Gffv24fXXX0doaCgefvhhaLVafPjhh3j44YcxYcIETJw4EQDQsWNHAOXNYfv06QM/Pz889dRTsLe3x7fffovx48fj+++/x4QJEwz2t3DhQmi1Wjz//PPIz883ma7PP/8cs2bNQlRUFNatW4eCggJ8+OGH6Nu3L86cOSMZjDLHxo0bUVRUhPnz50OlUsHNzc3ksg899BC++OILzJgxA71798b+/fsxevToWu23OpmZmRg1ahSmTp2K6dOn49tvv8XDDz8MpVIp1lDKycnBhg0bMH36dMybNw+5ubn49NNPERUVhZMnT6Jz587Vni9TDh8+jB07doj3y9q1azFmzBgsX74cH3zwARYuXIjMzEy88sorePDBB7F//35x3f3792PkyJGIiIjAypUrIZfLxYD14cOH0aNHD4N9TZ06FcHBwVi7di1Onz6NDRs2wNPTE+vWrQNQfu4feugh9OjRA/PnzwcAhIaGmkz7nTt3cOvWLXTt2tVo3ooVKzBo0CC0bt0aQPmAEZ06dRLn//TTTwgJCUHv3r2rzJ+KIiIiQEQ4duwYxowZY/Z6jDHGrKe68o5g7ty52LRpE0aOHImHHnoIpaWlOHz4ME6cOCH2A/bQQw9h8+bNmDx5MpYuXYo//vgDa9euxaVLl7B9+3aD/V67dg2TJ0/G3LlzMWvWLHz22WeYPXs2IiIi0K5dO0ycOBEuLi54/PHHMX36dIwaNQoODg4AystY/fr1g5OTE5YvXw6FQoH169dj4MCBOHjwICIjIw32VbmMNXLkSFy5cgVbtmzBm2++CQ8PDwDgfmEZY3VDjDUxixYtooqX7uHDhwkAffnllwbL7dmzx2h6YGAgAaBjx46J03755RcCQBqNhm7evClOX79+PQGg33//XZw2a9YsAkCPPvqoOE2v19Po0aNJqVRSampqrdO0Z88eo2MtKCgwmhYVFUUhISEG09q1a0cDBgwwWnblypUkdZtv3LiRANCNGzeqTccLL7xA9vb2dOXKFYPpTz31FNnY2NCtW7eMtl/dMSxYsIDs7OyoqKioynWl0lnZjRs3CABt3LhRnCacpzVr1hgs26VLF4qIiBD/nZqaSgBo5cqVRtsdMmQIdejQwSCNer2eevfuTS1btjRKY9++fam0tLTK9Ofm5pKLiwvNmzfPYLmkpCRydnY2mD5gwADJczpr1iwKDAw0On4nJydKSUkxWr6ys2fPEgBauHChwfQZM2YY5UXlfQlMXVeVDRgwgADQ66+/Lk4rLi6mzp07k6enJ5WUlBARUWlpKRUXFxusm5mZSV5eXvTggw+K06o6X1JpAkAqlcrg+hHua29vb8rJyRGnr1ixwuBc6fV6atmyJUVFRZFerxeXKygooODgYBo2bJjRviumlYhowoQJ5O7ubjDN3t6eZs2aJZFbxvbt20cA6KeffpKcX1xcTKdOnaL4+HiD6dnZ2QSAxo0bZ9Z+BHfv3iUAtG7duhqtxxhjrGEI5Yo///yTiMwv7+zfv58A0OLFi422KfzGCeWDhx56yGD+E088QQBo//794jShzHjo0CFxWkpKCqlUKlq6dKk4TSijvPrqqwbbHD9+PCmVSoqLixOn3b17lxwdHal///5GxytVxnr11VerLSMyxlhNcLNK1uRt3boVzs7OGDZsGNLS0sS/iIgIODg4GDTNAoC2bdsadPItfJ0aPHiwQWfWwvTr168b7bNip6JC062SkhLs27evVmkKDg5GVFSU0X4q9veVnZ2NtLQ0DBgwANevXzcayc8SpNKxdetW9OvXD66urgbHMnToUJSVleHQoUNVbrPiMeTm5iItLQ39+vVDQUEBLl++bPFjqOjf//63wb/79esneT4ry8jIwP79+zF16lQxzWlpaUhPT0dUVBSuXr2KO3fuGKwzb968avsX27t3L7KysjB9+nSDvLSxsUFkZKTRdVETkyZNMuuL6c8//wwAWLx4scH0xx57rNb7roqtrS0WLFgg/lupVGLBggVISUlBTEwMAMDGxkbsH02v1yMjIwOlpaXo1q0bTp8+Xaf9DxkyxKA2nnBfT5o0CY6OjkbThevj7NmzuHr1KmbMmIH09HTxXOXn52PIkCE4dOiQUbNiqestPT0dOTk5tUp7eno6AMDV1VVyvlKpREREhMEolgDE/VU8PnMI+0lLS6tpUhljjFlRdeWd77//HjKZDCtXrjRaV2i2L5QPlixZYjBf6C+2Yj+VQHl5ul+/fuK/tVotwsPDqy1nlZWV4ddff8X48eMREhIiTvfx8cGMGTNw5MgRo99Nc8pYjDFWV9yskjV5V69eRXZ2Njw9PSXnp6SkGPy7YgAMAJydnQEA/v7+ktMr9xEml8sNfswBoFWrVgAg9nVQ0zQFBwdLLnf06FGsXLkSx48fN+i7CCgPlglptBSpdFy9ehV//fWXycBL5WOp7MKFC3j22Wexf/9+o8JOfQT4BEJ/GhW5uroanU8p165dAxHhueeew3PPPSe5TEpKCvz8/MR/mzqHFV29ehVAeSBWipOTU7XbMMWc/QPAzZs3IZfLjZrzCU15Lc3X19eo49yK94vQ0fzmzZvx+uuv4/Lly9DpdOKy5h6XKbW934VzNWvWLJPbzs7ONghcVd6XMC8zM7NO55Yq9WdYHWFfubm5tdpPTfqTY4wxZl3mlHfi4uLg6+tbZZcLQvmg8sjc3t7ecHFxwc2bNw2mV/7Nk9qvlNTUVBQUFEiWO9q0aQO9Xo/bt2+jXbt24vS6lgUYY8wcHBxjTZ5er4enpye+/PJLyfmVCwymvjyZml7TF9PapElqRMi4uDgMGTIErVu3xhtvvAF/f38olUr8/PPPePPNN83qDN/US66pzvCl0qHX6zFs2DAsX75cch0h0CElKysLAwYMgJOTE9asWYPQ0FCo1WqcPn0aTz75pFnHUFt1+cIopOuJJ56QrNEHwKjwaM6onsJ2P//8c3h7exvNrzjaokwmk7z2anLu6qqm109tffHFF5g9ezbGjx+PZcuWwdPTEzY2Nli7di3i4uLqtO3a3u/CuXr11VdNjjYr9J1i7jZryt3dHYBxgL46Tk5O8PX1xfnz52u0nrAfoe8WxhhjjZ+la1SZ+4HE0r95VbH2CO6MseaBg2OsyQsNDcW+ffvQp0+fBvnx1Ov1uH79ukFQ6MqVKwAgNt+yRJp++uknFBcXY8eOHQZf56Sa3pkqyAg1V7KysgyG0a789a8qoaGhyMvLw9ChQ81eR3DgwAGkp6dj27Zt6N+/vzj9xo0bNd5WfTCVb0LNQIVCUavjNkWoreXp6Vntdl1dXSWbJtTk3EkJDAyEXq9HXFycwVfb2NhYyTRkZWXVKQ137941Gna98v3y3XffISQkBNu2bTM4J5WbfzRkjSbhXDk5OVn0GqjJMQid7dfmfhkzZgw+/vhjHD9+3KAZeVWE/bRp06bG+2OMMdZ4hYaG4pdffkFGRobJ2mNC+eDq1asGvwPJycnIysoyasJfW1qtFnZ2dpLljsuXL0MulxvV7pbCtZwZY5bGfY6xJm/q1KkoKyvDCy+8YDSvtLRU8uW+rt577z3xv4kI7733HhQKBYYMGWKxNAlf5Cp+gcvOzsbGjRuNlrW3t5fcpvCCX7FfsPz8fGzevLna/QumTp2K48eP45dffjGal5WVhdLS0hodQ0lJCT744AOz91+f7OzsAMAo7zw9PTFw4ECsX78eiYmJRuulpqbWan9RUVFwcnLCyy+/bNB0UGq7oaGhuHz5ssG0c+fO4ejRo7Xat2DkyJEAgHfeecdgutSoo6GhocjOzsZff/0lTktMTDQasaoqpaWlWL9+vfjvkpISrF+/HlqtFhEREQCkr5M//vgDx48fN9iWqfNVHyIiIhAaGorXXnsNeXl5RvNrew2Yulel+Pn5wd/fH6dOnarxfpYvXw57e3s89NBDSE5ONpofFxeHt99+22BaTEwMZDKZ2cE0xhhjTcOkSZNARFi9erXRPOG3d9SoUQCMywNvvPEGAFhsVGsbGxsMHz4cP/74o9gdCVAehPvqq6/Qt29fs7oiED66NUSZgDHWPHDNMdbkDRgwAAsWLMDatWtx9uxZDB8+HAqFAlevXsXWrVvx9ttvY/LkyRbbn1qtxp49ezBr1ixERkZi9+7d2LVrF55++mmxuaQl0jR8+HAolUqMHTsWCxYsQF5eHj755BN4enoaBWwiIiLw4Ycf4sUXX0RYWBg8PT0xePBgDB8+HAEBAZg7dy6WLVsGGxsbfPbZZ9Bqtbh165ZZx7ts2TLs2LEDY8aMEYfozs/Px99//43vvvsO8fHxJpth9e7dG66urpg1axYWL14MmUyGzz//vF6q3NeGRqNB27Zt8c0336BVq1Zwc3ND+/bt0b59e7z//vvo27cvOnTogHnz5iEkJATJyck4fvw4EhIScO7cuRrvz8nJCR9++CEeeOABdO3aFdHR0eK52LVrF/r06SMGXh988EG88cYbiIqKwty5c5GSkoKPPvoI7dq1q3UH7wDQuXNnTJ8+HR988AGys7PRu3dv/Pbbb7h27ZrRstHR0XjyyScxYcIELF68GAUFBfjwww/RqlUrszvK9/X1xbp16xAfH49WrVrhm2++wdmzZ/Hxxx9DoVAAKK/ltG3bNkyYMAGjR4/GjRs38NFHH6Ft27YGgamqzpelyeVybNiwASNHjkS7du0wZ84c+Pn54c6dO/j999/h5OSEn376qcbbjYiIwL59+/DGG2/A19cXwcHBRkPWVzRu3Dhs374dRFSjr+ShoaH46quvMG3aNLRp0wYzZ85E+/btUVJSgmPHjmHr1q2YPXu2wTp79+5Fnz59xOacjDHG7g2DBg3CAw88gHfeeQdXr17FiBEjoNfrcfjwYQwaNAiPPPIIOnXqhFmzZuHjjz8Wu8U4efIkNm/ejPHjx2PQoEEWS8+LL76IvXv3om/fvli4cCFsbW2xfv16FBcX45VXXjFrG8IHtmeeeQbR0dFQKBQYO3asUT+njDFmtoYfIJOxulm0aBFJXboff/wxRUREkEajIUdHR+rQoQMtX76c7t69Ky4TGBhIo0ePNloXAC1atMhgmtTw07NmzSJ7e3uKi4uj4cOHk52dHXl5edHKlSuprKzMomkiItqxYwd17NiR1Go1BQUF0bp16+izzz4zGro6KSmJRo8eTY6OjgSABgwYIM6LiYmhyMhIUiqVFBAQQG+88YY4NHbFbVSVjtzcXFqxYgWFhYWRUqkkDw8P6t27N7322mtUUlIiuY7g6NGj1LNnT9JoNOTr60vLly+nX375hQDQ77//XuW6UumsTDhPGzduFKcJ56mylStXGl07x44do4iICFIqlQSAVq5cKc6Li4ujmTNnkre3NykUCvLz86MxY8bQd999Z5RGYVh1c9L/+++/U1RUFDk7O5NarabQ0FCaPXs2nTp1ymC5L774gkJCQkipVFLnzp3pl19+oVmzZlFgYKDR8VceJr0qhYWFtHjxYnJ3dyd7e3saO3Ys3b592+j4iYh+/fVXat++PSmVSgoPD6cvvvhCMh+lDBgwgNq1a0enTp2iXr16kVqtpsDAQHrvvfcMltPr9fTyyy9TYGAgqVQq6tKlC+3cudPoWIlMny+pNJl7XxOVnxMAtHXrVoPpZ86coYkTJ5K7uzupVCoKDAykqVOn0m+//SYuI+w7NTXVYF2p83/58mXq378/aTQaAkCzZs2qMg9Pnz5NAOjw4cNVLmfKlStXaN68eRQUFERKpZIcHR2pT58+9O6771JRUZG4XFZWFimVStqwYUOt9sMYY6z+VS5z1KS8U1paSq+++iq1bt2alEolabVaGjlyJMXExIjL6HQ6Wr16NQUHB5NCoSB/f39asWKFwe8Fkeky44ABAwzKoFWVUU6fPk1RUVHk4OBAdnZ2NGjQIDp27FiVx1vZCy+8QH5+fiSXy6stLzLGWHVkRI2kCgdjTcDs2bPx3XffSTazYoyx+jBkyBD4+vri888/r7d9vPXWW3jllVcQFxfHHR8zxhhjjLFmh/scY4wxxhqxl19+Gd98802dB2MwRafT4Y033sCzzz7LgTHGGGOMMdYscZ9jjDHGWCMWGRmJkpKSetu+QqEwuw9CxhhjjDHG7kVcc4wxxhhjjDHGGGOMNVvc5xhjjDHGGGOMMcYYa7a45hhjjDHGGGOMMcYYa7Y4OMYYY4wxxhhjjDHGmi3ukL+e6PV63L17F46OjpDJZNZODmOMMcasgIiQm5sLX19fyOVN/5skl28YY4wxBtx7ZRwOjtWTu3fvwt/f39rJYIwxxlgjcPv2bbRo0cLayagzLt8wxhhjrKJ7pYzTpINja9euxbZt23D58mVoNBr07t0b69atQ3h4uLhMUVERli5diq+//hrFxcWIiorCBx98AC8vL5PbJSKsXLkSn3zyCbKystCnTx98+OGHaNmypdlpc3R0BFB+oTg5OdX+ICXo9XqkpqZCq9XeExFaS+F8kcb5Io3zRRrnizTOF2OcJ9Iq50tOTg78/f3FckFTV5/lG4CvK1M4X4xxnkjjfJHG+SKN80Ua54u0e72M06SDYwcPHsSiRYvQvXt3lJaW4umnn8bw4cNx8eJF2NvbAwAef/xx7Nq1C1u3boWzszMeeeQRTJw4EUePHjW53VdeeQXvvPMONm/ejODgYDz33HOIiorCxYsXoVarzUqb0NTAycmpXoJjRUVFcHJy4pu1As4XaZwv0jhfpHG+SON8McZ5Is1UvtwrTRDrs3wD8HVlCueLMc4TaZwv0jhfpHG+SON8kXavl3GadHBsz549Bv/etGkTPD09ERMTg/79+yM7OxuffvopvvrqKwwePBgAsHHjRrRp0wYnTpxAz549jbZJRHjrrbfw7LPPYty4cQCA//3vf/Dy8sIPP/yA6Ojo+j8wxhhjjDHGGGOMMdYgmnRwrLLs7GwAgJubGwAgJiYGOp0OQ4cOFZdp3bo1AgICcPz4ccng2I0bN5CUlGSwjrOzMyIjI3H8+HGTwbHi4mIUFxeL/87JyQFQHl3V6/V1P7gK0mLTkHY3DR4eHhbdblOn1+tBRBbP76aO80Ua54s0zhdpnC/GOE+kVc4Xzh/GGGOMscbvngmO6fV6PPbYY+jTpw/at28PAEhKSoJSqYSLi4vBsl5eXkhKSpLcjjC9cp9kVa0DlPd/tnr1aqPpqampKCoqqsmhVOv68evIvJsJ51BnKNQKi267KdPr9cjOzgYRcfXXCjhfpHG+SON8kcb5YozzRFrlfMnNzbV2khhjjDHGWDXumeDYokWLcP78eRw5csQq+1+xYgWWLFki/lvonE6r1Vq8Tw5ZpAwXfr4A22xbeAZ4WnTbTZler4dMJuOOEyvhfJHG+SKN80Ua54sxzhNplfPF3L5KLSEoKAg3b940mr5w4UK8//77GDhwIA4ePGgwb8GCBfjoo48aKonMDDEfxwAAIuZHWDkljDHGWPNxTwTHHnnkEezcuROHDh0yGELU29sbJSUlyMrKMqg9lpycDG9vb8ltCdOTk5Ph4+NjsE7nzp1NpkGlUkGlUhlNl8vlFn9pcG/pDhulDdIvp8Onk0/1KzQjMpmsXvK8qeN8kcb5Io3zRRrnizHOE2kV86Uh8+bPP/9EWVmZ+O/z589j2LBhmDJlijht3rx5WLNmjfhvOzu7Bksfq54QGGOMMcZYw2rSpVkiwiOPPILt27dj//79CA4ONpgfEREBhUKB3377TZwWGxuLW7duoVevXpLbDA4Ohre3t8E6OTk5+OOPP0yu09DktnI4hzijKLMIeUl51k4OY4wxxhoBrVYLb29v8W/nzp0IDQ3FgAEDxGXs7OwMlqmPESdZ7XBgjDHGGLOeJh0cW7RoEb744gt89dVXcHR0RFJSEpKSklBYWAigvCP9uXPnYsmSJfj9998RExODOXPmoFevXgad8bdu3Rrbt28HUP6197HHHsOLL76IHTt24O+//8bMmTPh6+uL8ePHW+MwJbm2dAUApF5MtXJKGGOMMdbYlJSU4IsvvsCDDz5oMMT6l19+CQ8PD7Rv3x4rVqxAQUGBFVPJGGOMMdY4NOlmlR9++CEAYODAgQbTN27ciNmzZwMA3nzzTcjlckyaNAnFxcWIiorCBx98YLB8bGysONIlACxfvhz5+fmYP38+srKy0LdvX+zZs6dB+w2pjspFBQcfB2Rez4R/H3/Yqpr0qWSMMcaYBf3www/IysoSy0MAMGPGDAQGBsLX1xd//fUXnnzyScTGxmLbtm0mt9OQo3EL221uo6Ce3nAaXR/qCgIZTK+YB80xX6rDeSKN80Ua54s0zhdpnC/S7vURuZt0RIWIql1GrVbj/fffx/vvv2/2dmQyGdasWWPQJ0dj5B7ujvzkfGTGZULbVmvt5DDGGGOskfj0008xcuRI+Pr6itPmz58v/neHDh3g4+ODIUOGIC4uDqGhoZLbacjRuIHmOQpqkbIIKSkpKFIa5mdKSor4380xX6rDeSKN80Ua54s0zhdpnC/S7vURuZt0cKy5cwl2QcKxBKRfSefgGGOMMcYAADdv3sS+ffuqrBEGAJGRkQCAa9eumQyONeRo3EDzHAU1oSQBnp6eSChJMJju6fnPiOTNMV+qw3kijfNFGueLNM4XaZwv0qw5IndD4OBYE2ajsIFLsAsyrmagKKsIapd76+JkjDHGWM1t3LgRnp6eGD16dJXLnT17FgAMRueurCFH4xY0l1FQYz6OQcT8CMhQfrwyyAzmVz7+5pIvNcF5Io3zRRrnizTOF2mcL9KsNSJ3Q7i3jqYZcm/lDgBIv5Ju5ZQwxhhjzNr0ej02btyIWbNmwdb2n2+gcXFxeOGFFxATE4P4+Hjs2LEDM2fORP/+/dGxY0crprh54pEpGWOMscaFg2NNnKOvI5QOSqRfTTerDzbGGGOM3bv27duHW7du4cEHHzSYrlQqsW/fPgwfPhytW7fG0qVLMWnSJPz0009WSiljjDHGWOPBzSqbOJlMBreWbkg6k4Tcu7lw8rN8/x+MMcbYvay0qBS26nujSDR8+HDJj2X+/v44ePCgFVLEKuNaY4wxxljjwzXH7gHctJIxxhirHV2BDhe2XsCdk3esnRTWDHBgjDHGGGucODh2D1A7q2HvZY+sG1ko05VZOzmMMcZYkxF/IB6lhaWw87CzdlIYY4wxxpiVcHDsHuHeyh36Uj0yr2daOymMMcZYk5B6KRU5CTlwD3eHa4irtZPDGGOMMcashINj9wi3UDfIbGTctJIxxhgzQ0leCRJOJEBhr4B/L39rJ4cxxhhjjFkRB8fuETZKG7gEuiAvMQ/FucXWTg5jjDHWqMUfjIdep0fQgCDYKG2snRx2j6ttX2PcRxljjDHWMDg4dg8ROubPuJZh5ZQwxhhjjVfqpVTk3smFR2sPOLXgUZ4ZY4wxxpo7Do7dQ5xaOMFWbYuMqxwcY4wxxqRUbE7ZomcLayeHMcYYY4w1Ahwcu4fI5DK4hrqiKKsIBWkF1k4OY4yxJq5MV4a8pDzoCnXWTorFcHNKxhhjjDFWma21E8Asyy3MDakXUpFxLYOHpWeMMVYrOQk5SL+Sjqz4LOhL9QAAhb0Cjj6O8OrkBTv3pvn7ws0pWUOL+TgGEfMjrJ0MxhhjjFWDg2P3GAcvB6icVMi4lgG/SD/IZDJrJ4kxxlgToS/T49aRW0iPLR/52N7LHs7+zijOLUZBagEyrmUg41oGXENd4d3F28qprRluTskaGnemzxhjjDUdHBy7B7mFuSHxdCJy7+bCyY+/jDPGGKteSV4J4vbGoSC1AE7+TgjoGwCVo8pgmYK0Atw9dReZcZnIuJYBuVYO1+GuUDmoTGy18RCaU4YOC+XmlIwxxhhjzAD3OXYPcmvpBgDcMT9jjDGzFOcU4/IPl1GQWgDvLt4IGxFmFBgDADsPO4SNCEP4uHA4+joiKy4LF7+9iNSLqSAiK6TcPNyckjHGGGOMVYWDY/cgtbMadlo7ZN7IFPuKYYwxxqToCnW4+vNV6Ap0CB4cDL/u1TfJd/ByQMvRLeE/0B9yhRy3jtxC3C9xKC0qbaBUm4+bUzJr4CaVjDHGWNPCwbF7lHtLd+h1emTdzLJ2UhhjjDVSZSVluLb7GopzihHQLwBuYW41Wt/R3xFtp7aFeyt3ZN/KxqVtl5Cfkl9Pqa0dHp2SNTQOjDHGGGNNDwfH7lGuoa6AjJtWMsYYk0Z6wvV911GQVgDfbr7QttHWajs2ChsEDQxC4IBA6Ap1iN0Ri+S/ky2c2trh5pSMMcYYY8wcHBy7Ryk0Cjj5OSEnIadRNnNhjDFmXXdO3kFOQg48WnvAp6tPnbfnEe6BNhPaQOmoRMLxBMT9GoeykjILpLR2CjMLkXCcm1MyxhhjjLHqcXDsHubW0g2kJ2Rez7R2UhhjjDUi6VfTkfxXMhy8HRDQN8Bi29W4adBmQhu4hroiKz4Ll7ZdQkFagcW2b66ykjLE/RoHfZkeIUNCuDklY4wxxhirUpMPjh06dAhjx46Fr68vZDIZfvjhB4P5MplM8u/VV181uc1Vq1YZLd+6det6PhLLcwlygdxWjvSr6dZOCmOMsUYiPzUfNw/dhMJegZBhIZDJq+58v6ZslDYIGRKCgL4BKMkrweUfLiP1YqpF91Gd+IPxKM4uRoueLeDg7dCg+2aMMcYE3AchY01Hkw+O5efno1OnTnj//fcl5ycmJhr8ffbZZ5DJZJg0aVKV223Xrp3BekeOHKmP5NcrG4UNXIJckJ+cj+KcYmsnh7FGh/QEfRmP6MqaD12BDnG/xgEAQoeHQqFR1Nu+tG21aD2+NRT2Ctw6cgs39t9Ama7+m1km/5WMrBtZcA1xhVcHr3rfH2OC+nwJPr3hdL1tmzFmeTEfx4jPBA6QMdY02Fo7AXU1cuRIjBw50uR8b29vg3//+OOPGDRoEEJCQqrcrq2trdG6TZFbSzdkXMtAxrUMi/Qpw1hTl5ech+S/kuET4YM7R+4gqSAJre9rjaKsIthqbOHo42jtJDJWL4QO+HX5OgQNCoK91r7e92nnYYe2k9oi/kA8Mq5loDCjEKHDQ6FyUtXL/vKS8pDwRwLULmoEDgisl30wxhhjtRHzcQwi5kdYOxmMMROafHCsJpKTk7Fr1y5s3ry52mWvXr0KX19fqNVq9OrVC2vXrkVAgOl+WYqLi1Fc/E/trJycHACAXq+HXm/Zmil6vR5EZNZ2HXwcYKO2QeKZROSn5hvM82jjAQdvB9w+dhtlxeVf8+UKOfx7+zfJ/llqki+CnDs5SLuYVuUyLiEucAt1q2vyrKZivhRmFCLxdCJAxsu5tXSDS5BLg6evod06egsFKQVIv5aOvLw8ODg44MK3F8T5zkHOkMll8OroBXvP+g8eNDa1uY+ag3shX24duYXcu7nw7OgJ11DXOh+LuXkis5UheGgwks4m4e7Ju7j4/UWEDAuBo69lA9G6Ah2u/XoNMpkMQUOCILORWeV8Vc6XpnzNMMYYqxkOgDHWdDWr4NjmzZvh6OiIiRMnVrlcZGQkNm3ahPDwcCQmJmL16tXo168fzp8/D0dH6cL82rVrsXr1aqPpqampKCoqskj6BXq9HtnZ2SAiyOXVt4x16uyEhIMJyP47W5xGREi+lQy31m5I/DPRYPn8knxoO2stmuaGUNN80ZfqEbcjDroCHWQy6T53iAh3Yu+g5cSWkNs2zVbIFfMl6UQSsuKyjI6XiJBwIQEhY0OgdFRaKaX1ryizCElxSbD3tkdxdjGKdEXwCPVA5uVMMUCcez4XRIS7sXcRMiYEtppm9Zis8X3UXDT1fMm5mYOEPxJg720PRZACKSkpdd5mTfNE7iuHczdn3D16F6e/OQ2fSB+4hLnUOR1Aea24m3tvoiClAH79/JCry0VuSq5Ftl1TlfMlN9c66WCMMdY4cQCNscapWb31ffbZZ/jXv/4FtVpd5XIVm2l27NgRkZGRCAwMxLfffou5c+dKrrNixQosWbJE/HdOTg78/f2h1Wrh5ORkmQP4f3q9HjKZDFqt1ryXNE8gqH2QwaRbR24h7WIaSm6WwNnFGR0f6Ai5Qo6L315E6d1SeAzxgNymab0A1jRf0q+mQ2OjQdjwMJP90qScT0HCsQTY5trCI9zD0kluEBXzJa0wDdoWWrSb1s5gmdzEXFz96SqKrhahxYgWVkpp/UvPSoeToxOCewfDOdAZqamp5dfLUMPrJSMuA/G/xaPgUgHCRoRZKbXWUePnSzPRlPOlOLcYiRcS4ap1RdsJbaGws0w/Y7XJE09PT/gG++La7mvIO58HB4UDfLr5mPxAYQ7SE24evAnbQluE9gqFfw//Wm/LEirnS3VlDsYYY80PB8gYa3yaTXDs8OHDiI2NxTfffFPjdV1cXNCqVStcu3bN5DIqlQoqlXEfKnK5vF5epGQyWZ227dHKA+mX01FaUArXEFco1OUvS57tPJFwIgG5CblwDXa1ZJIbRE3yJT8pHzK5DO5h7iaX17bWIjEmEWkX0+DZxtPSyW0wMpkMunwddPk6eLTxMDpeZz9nuLdyR8a1DOTczoFLoIt1ElrPirOKIZPLYO9hD7lcbvJ68WjpgdyEXGRczUDapTR4tmu657426vp8uVc1xXwhPeHm7zehL9UjbGQYVA6W7eurNnli726PtpPaIu6XOCSfS0ZJXgmCBgTVqnYu6QnxB+KReT0TLkEuCOgdYPHRN2ujYr40peuF1U5DveRe23MNnjOb1+8RY4wx1lCaTYnt008/RUREBDp16lTjdfPy8hAXFwcfn3unQ3sHbwex+Zxb2D/9abmGlgfEMq5lWCVdDSkvMQ8qJxWU9qabEdoobeDe0h2F6YXIS85rwNRZXl5SefpNdTjfomcLyBVy3D52G/rSe7OPnMKMQsht5WZ1Bh7QJwBKRyUSTiSgMLOwAVLHmOUlnk5Efko+vDp5wdnf2drJESk0CrQa0wouwS7IjMvElV1XoCvQ1WgbZboyxO2NQ+b1TLiGuCJ0eGijCIwxxhhrfmozIiWPYslY49Lkg2N5eXk4e/Yszp49CwC4ceMGzp49i1u3bonL5OTkYOvWrXjooYcktzFkyBC899574r+feOIJHDx4EPHx8Th27BgmTJgAGxsbTJ8+vV6PpaH5dPGBo58jnAP+eWFS2ivh6OuI7JvZKCsps2Lq6ldJXgmKc4rN6hBa2668/7XUC6n1nax6lZ9cPiCDvZd0J/MKOwV8I3xRkluCpHNJDZm0BlOYUQi1q9qsJlw2ShsEDw4G6Qk3frsBfdm9GTBk966CtAIknkmExl0Dv+5+1k6OEbmtHCFDQ+DVyQv5yfm4sPUCMuLM+zCTl5yHS99fQvbNbLi1dEPw4GAOjDGr4JdbxlhdngP8DGGs8WjywbFTp06hS5cu6NKlCwBgyZIl6NKlC55//nlxma+//hpEZDK4FRcXh7S0f0YsTEhIwPTp0xEeHo6pU6fC3d0dJ06cgFbb9Dqpr4pHaw+0Gt3K6IXCLcwNpCdkXs+0UsrqX25ieQfJ5gTHNK4aOPo6IvN6Zo1rNjQm+Sn5sNXYQuVoutaUZ3tPqF3VSDqbhOKcYpPLNUWlRaXQFeigcdOYvY6DlwN8I3xRmFGIOyfv1GPqGLMsobmhTCZD0MCgRhs4kslkaBHZAiHDQiCTyXDjtxuI2xtnsqZucW4xEk4kIHZHLEryS+Df279RHx9jjDHGGGsamnxwbODAgSAio79NmzaJy8yfPx8FBQVwdpZuUhIfH49Vq1aJ//76669x9+5dFBcXIyEhAV9//TVCQ0Pr+UgaD9cQV8jksnu6aWXu3fLgmIOPg1nLe7b3BOkJaZfTql+4EdKX6lGYXggHr6qPVyaXIaBvAKiMcPvY7QZKXcMQmkZqXM0PjgGAd2dvOHg7IOXvFOQk5NRH0hizuMQziSjMKIR3F2/YudtZOznVcg12RdspbeES7IKsG1mI/TEWf2/5G7eO3ELCiQTc+fMOruy8gvNbziP5r2TYuduh7aS28GzvWafO/O81q1atgkwmM/hr3bq1OL+oqAiLFi2Cu7s7HBwcMGnSJCQnJ1sxxYyZJtSo4Zo1rDHj65Oxe0ez6ZCfmc9GaQPnQGdk3chCSX5JlX1yNVXm9DdWkXOAM5QOSqReTIV3Z+8mV0uhML0QIMDeU7pJZUWOPo5wC3NDxrUMZN3Mumc65y/M+P/gWA1qjgHlAcOgQUG49P0lxB+IR9vJbWGr5kcna7wK0guQdCYJGjcNfLo0nb4yFRoFQoeFoiCtABnXMpARl4HUi/80Z5fZyOAa4gr3Vu5wauHU5J7DDaVdu3bYt2+f+G9b23+eV48//jh27dqFrVu3wtnZGY888ggmTpyIo0ePWiOpTR6/FNeNkH8R8yPEQQ3u9Tw1dXwVj51HMGw6LHW98siVjDUO/IbHJLmFuSHrRhYy4zLh1dHL2smxKF2BDsU5xXBv5W72OjK5DNq2Wtw5eQdZ8VlwDWlaI3kWppYHhkz1N1ZZi54tkHUzC7eP3oaTn1OtRpFrbIoyiwAAald1jddVOaoQ0DcAN/bfQPyBeISNCLN08hizCKE5JRE12eaGdh52sPOwg1+kH0oLS6Ev04PKCAo7BWyUNtZOXqNna2sLb29vo+nZ2dn49NNP8dVXX2Hw4MEAgI0bN6JNmzY4ceIEevbs2dBJZc3UvR4AqysOkjVPHCBjzPo4OMYkOQc4w0Zpg4xrGfdccEwYtdHcJpUCj9YeuHvqLlLOpzTJ4JhcLoe91rzgmMJOAb/ufrh97DYSTyfCr0fj68y7pgozCmGjtKl1TUi3MDdk38pGxrUMpFxIgWc7TwunkLG6SzqbhML0Qvh09YGdR+NvTlkVmUwGhZ3C2slocq5evQpfX1+o1Wr06tULa9euRUBAAGJiYqDT6TB06FBx2datWyMgIADHjx83GRwrLi5GcfE/fVDm5JQ3L9fr9dDrLT9QiV6vBxHVy7Yt6fSG0wb/1uv1IJD4//UxT/jvpur0htPo+lDXWudBZU3tWpE6doHUsZ/6+JS4Xk00lXxpaJbMl7pey1VdBw2NrxdpnC/SKufLvZY/HBxjkuQ2crgEuyA9Nh1FWUVQu9S8tk1jJXbG71N9Z/wV2apt4RbmhvQr6ShIL2gS/fgIClML4e7rXqMaYNp2WqRfSUfyX8lwC3OrcXPExqYws7DOxxDQNwB5yXlIOJ4ABy+HJh98YNL0pXrkJOSgMKMQhRmFKC0qBeRATl4OykLK4B7m3iifiYUZhUg8nVjenLJr02lOySwnMjISmzZtQnh4OBITE7F69Wr069cP58+fR1JSEpRKJVxcXAzW8fLyQlKS6RGK165di9WrVxtNT01NRVFRkaUPAXq9HtnZ2SAiyOWNt9ZykdLw2FNSUlCkLBL/vz7m6RQ6pKSkNOp8qUpd86CypnCtXNtzDfj/b3JSxyeobt61PdfMrrXeFPLFGiyZL5a+1ysu09D4epHG+SKtcr7k5uZaO0kWxcExZpJ7S3ekx6Yj/Wo6/Lo3/ZpDgrykPCjsFFA5mR610RQhYJR6IRWB/QPrIXWWV5xTjNLi0mo7469MJpMhoF8ALv9wGTcP30T4feFNtuNrXYEOZcVldQ6O2ShtEDI0BLE/xuL6vutoM7ENN/O6hxARMq5m4M6fd6DL/2dkWhuVDcpKypCTlQNkAEmnk6Bx18At1A0ebTxgq7L+T2nF5pSBAwKbZHNKVncjR44U/7tjx46IjIxEYGAgvv32W2g0tXv+rVixAkuWLBH/nZOTA39/f2i1Wjg5OdU5zZXp9XrIZDJotdpG/UKSUJJg8G9PT08klCSI/2/pebdLygfJubPzDiIeajpNryrWmqprHlTW2K+V0xtOQ41/PqRIHV9N5iXsSDCrFlljzxdrsWS+WPper7hMQ+PrRRrni7TK+aJWN76PxXVh/RI9a7QcfBygsFMg41rGPRMcKyspQ2F6Ya2bRdpr7WHvaV+eJ5F+jeKluDp5yeXNSM3tb6wie609PNt5IuV8CtJj0+HR2sPSyWsQQmf8telvrDJ7rT1a9GyB28du4+bhmwgZElLnbTLrK84pRtzeOBSmF8JWbQu/SD84+jpC46qB3FYOvV6P5KRkaEo1yLqRhawbWbhz8g6SzibBs70nvDp6WTVQmnQuCQVpBfDu7G1282l273NxcUGrVq1w7do1DBs2DCUlJcjKyjKoPZacnCzZR5lApVJBpTL+mCSXy+vthUEmk9Xr9i1BBsMAtFwuhwwy8f/rY57wv8acL5UJx2SJPJDcfiO+VkwdixRz553ZcMasfqkac75YU13ypWJfcJa+1ysuYw18vUjjfJFWMV/utby5t46GWZRMJoNbmBtKckvEfrqaOrG/Me+a1aKqSNtOC32pHumx6ZZKVr3KT84HULvgGAD4dvOFwk6BhD8SoCvUVb9CI1SY+f8jVbpapmmoZ3tPuAS5IDMu02A0PdY0FecUI/anWBRmFMKrkxfaR7eHd6fyIFPFpsgyuQxOLZwQNCAInWZ2QtCgINhqbJF4OhF/f/U3Ui6kgEi6H5H6VJhZiMSYRKhd1fCJ4OaU7B95eXmIi4uDj48PIiIioFAo8Ntvv4nzY2NjcevWLfTq1cuKqWT3qubc8X5zPnZWN3ztMGY9HBxjVRJGdEyLTbNySiyjtp3xV+Qa4gpbtS1SL6Za5UW4pvJT8mGrtoXKsebNSIHypoT+vf1RVlyGhBPS1cAbO6HmmCX7TQsaGASloxK3j99GQVqBxbbLGlZxbjGu7LwCXYEOwYOC0SKyhVk1wGRyGdxbuqPdlHYIGhgEuUKO20dv49K2Sw36McFgdMoBQZDb8M96c/bEE0/g4MGDiI+Px7FjxzBhwgTY2Nhg+vTpcHZ2xty5c7FkyRL8/vvviImJwZw5c9CrVy8eqZJZXHN+wW/Ox36vauhzytcQY9bBpWhWJY2bBnZaO2TGZaJMV2bt5NRZXlIebJQ2dQqSyG3k8GjjgeKcYuTczrFg6ixPX6pHYXohNNq6BYVcQ1zhHOCMjKsZyL3b9DpeLMosgq3GFrZqyzWDFfofAwHX911HWUnTvz+am9KiUlz56QpK8koQNDAIbmFuNd6GTC6Deyt3tJvaDt6dvVGUWYTYHbG48fsN6Arqv6Zl8l/JKEgtgFdHL9h7cnPK5i4hIQHTp09HeHg4pk6dCnd3d5w4cQJarRYA8Oabb2LMmDGYNGkS+vfvD29vb2zbts3KqW5a+KWVseaF73nGmg8OjrFqeYR7QF+qR9aNLGsnpU70ZXrkp+TD3su+zh3La9toARmQcqHhR5WpifyUfIAAO23dR1X07+MPua0cNw/fhL6s6QzbS0TlI1VaqEllRUL/Y8U5xbh5+KbFt8/qV/zBeJTklSCwfyDcW7rXaVs2Chv49fBD2ylt4eTvhIyrGbiw9QJyEuovgJ6fko+7p+5C7aKGbzffetsPazq+/vpr3L17F8XFxUhISMDXX3+N0NBQcb5arcb777+PjIwM5OfnY9u2bVX2N8Yap8b+st7Y08cYY4xJ4eAYq5ZrqCtkNrIm37QyPyUfpCc4+jjWeVtKByVcglyQczsHxTnFFkhd/chPKe9vrK41xwBA5aiCT1cfFGcXI+lsUp2311BK8kqg1+kt2qSyIoP+xy5x/2NNRcr5FGTfzIZbSzeLDjShdlaj5ciWCBlWXqvw6u6r9XK/lBaVIm5vHGRyGUKGhnBzSsZYo9CcA2PN+djvRdY+n9beP2PNEZemWbVsVbZwCXJBXmJeow4EVccSnfFX5NmufLjlxlx7LC85DzK5DGo3ywyz69XRC2pXNZLOJKEou8gi26xvRZnl6ayv4BgABA4ILO9/7NhtFKRz/2ONXWFGIRJOJEDlpEJA34B62YdrsCtaT2gNtYsad07eKW96a6Gm6USE679dhy5fh4C+AfV6bTPGGGtcOGjCGGP1g4NjzCwe4eU1K9KvNI0RGqXkJeZBZiOzSBNDAHD0dYTaVY302HToSxtnM8OC1AKo3dQGI+7VhUwuQ2C/QJCecOvwLYtss74JnfGrXS0TIJRiq7JFyJAK/Y/dA/3z3asqdmAfPDgYNorqO9+vLbWzGq3Ht4ZriCsyr2fiyk9XLDLia2JMInLv5MKjjYc4aApjjDHr4YDVvaMxncvGlBbGmgMOjjGzOPo5QmGvQPqV9CYxQmNlpCfkJefB3tPeos2PPNt5oqykDOlXG1/QUFegg65ABzsPywQDBQ7eDvBo7YHcu7nIuJZh0W3XB3Gkynroc6wie097+EX6oTi7uMkEDpujxDOJKEgrgHdn7wbpwN5GUT5wg09XHxSkFeDyD5frVOsy/Wo6Ek8nws7DDv69/S2YUsYYqz1+iWf3Ar6OGWveODjGzCKTlY/IVpJXgtw7TW+0wsKMQuh1eos1qRS4tXSDjdIGqRcaX19T+anl/Y1ZqqZcRX49/GCrtsXt47dRWlxq8e1bUlFWERT2Ctgo66+GkMCrgxdcglyQcS2D+x9rhArSCpB0JgkaNw18Ixq2A3vfbr4I7B+IkrwSxP4YK/YHWBOpl1IR/3s8lA5KhAzjfsYYY6wx4IAKY4zdG7hkzcwmNN9pik0r85L/v78xL8sGx2wUNnBv5Y7CjELkJjauoGFBannfV/Zay9eOsVXbokXPFigtLMWdk3csvn1LISIUZRVB7VJ/TSorCxwQCKUD9z/W2AjNKQEgaFAQZPK6jVhbGx6tPRAWFQZ9qR5Xdl5B1s0ss9YjItw9dRe3Dt+CykmF8PvCoXJU1W9iGWMGOABiWkPlDZ8DVl9iPo5ptNdXY00XY/ciDo4xs6md1XDwdkDmjcxGX1uosvzk8loa9l6WDxRp22oBlI9+15gUpBWUd8ZfT31tubdyh6OvI9IupYnBx8ZGl6+DvlRf700qK7JV2SJkKPc/1tgk/5WMwoxCeHfxhp275WtTmss5wBmtxrSC3FaOuF/jkHqx6hqGpUWluLb7mtiUMvy+cCgdlA2UWsYYY1XhwAVjjN07ODjGasQ93B1URk2ir6mK8lPyoXZRw1Zla/Ftq13UcPJ3QlZ8FopzG89onvmp+dC4a+q16VVA3wDI5DIkHE+ot33URWHm/3fG34A1xwDuf6yxKc4tRuLpRKicVfDu7G3t5MDe0x7h48prf906cgvxB+IlB/XIT8nHpe2XkJOQA4/WHggfFw6FncIKKWaseeMAiGmcN6wpayrXb1NJJ2NNHQfHWI24hZb3sZV2Kc3aSTGbrlCH4pzieu1826uDF0CNp/ZYSX4JSgtL66VJZUVqFzW0bbXIT8lH5vXMet1XbRRllXd83tDBMaD8mnAOdEbGtQykXW4698u96NaRW9CX6hHYL7DR9NMljGTp5O+E9CvpuLD1Am4euonUi6lIOpuEi99fxOUfLkOXr0Ng/0AE9m88aWeMWR+/LDPGGGOWxSVtViNyWzncWrqhMKOw0Talq6w+m1QKnFo4Qe2qRtrlNJSVWL8ZndDfmKVHqpTi09UHNkobJPyRAH2Zce0XayrK/P/gWD01La1O0MAgKB2UuHX0ljhqJmtYmdczkXM7B24t3eDo62jt5BiwVdsibEQY/CL9QGWEtMtpuHXkFu6cvIOSvBJ4tPZA6wmt4dHaw9pJZYwxI809QNfcj7+pOr3hNJ87xpgkDo6xGtO2Ke9jq6nUHquvzvgr8+rgBb1Oj7RY6+dLfY5UWZmt2hbenb1RkltSbf9JDa0oqwg2KhsoNNZpilax/7G4X+OgK9RZJR3NVVlJGW4fuw0blQ1a9Gxh7eRIkslk8O7kjY73d0TH+zsibGQYWo5qiU4PdEJg/0Cr9o/GGGONTWMJajSWdDDznd5wGtf2XLN2MhhjjZjlO2Bi9zyNmwb2XvbIiMtAi14t6qUfL0vKT86HXCGv99pDbmFuuHPyDlLOp8CzvSdksoYfDU9QkFoAmY0MGlcNCFTv+/Ns74nUi6lIPJ0I91bujeaaaOiRKqXYe9rDv48/bh2+hWu7r6HV2FawUdhYNU3Nxd2Yu9AVlDdLtFaAtCYUdgo42zlbOxmMsQo4CMJY01H5fo2YH8H3MGPMbE2+5tihQ4cwduxY+Pr6QiaT4YcffjCYP3v2bMhkMoO/ESNGVLvd999/H0FBQVCr1YiMjMTJkyfr6QiaJm0bbXnH/Fcbd8f8pCcUpBXA3tO+3oNVcls5tG21KMktQdaNrHrdV3UK0gpg524HmbxhAnRyWzn8evihrLgMSWeSGmSf1SktKkVpUanVg2NA+f3iE+GDgrQCxP0S1yia3t7rCjMLkXI+Bfae9nAPd7d2chhjzOL4pZ81JcL1GvNxjNGfJbbdHO6H5nCMjFlTkw+O5efno1OnTnj//fdNLjNixAgkJiaKf1u2bKlym9988w2WLFmClStX4vTp0+jUqROioqKQktI4OltvDFxDXGGjtEHqpcbVjK6ygvQC6Ev19d6kUqBtp4XcVo7EM4kNsj8pxbnFKC0qbZAmlRW5hrrCzsMOKedTUJxj/VE7hc74Na4aK6eknG+EL7TttMi9m4vLP15uFHl0L0s4ngAQ4N/b36q1OBlj7F7EL+nW1VTy39wAWMXAmTnbsmRgralpjsfMWENpHG2f6mDkyJEYOXJklcuoVCp4e3ubvc033ngD8+bNw5w5cwAAH330EXbt2oXPPvsMTz31VJ3Se6+Q28rh3sodKedTkJeUBwfvhgk+1ZTYGX89jlRZkUKjgEdrD6ScT0H2rWw4BzR8EymhM/76HqmyMplMhhY9W+DKziu48+cdhAwJadD9V1aYWd4BfmOoOSYI6BMAlaMKCScScPmHywgaFARn/9pfI7oCHWyUNpDbNvnvHBaVFZ+FnIQcuLdyb7B7nzF27+GXUGmcL8wctb1OpNaLmB9R1+Qwxli1mnxwzBwHDhyAp6cnXF1dMXjwYLz44otwd5duZlNSUoKYmBisWLFCnCaXyzF06FAcP37c5D6Ki4tRXPxPTZCcnBwAgF6vh15v2RH89Ho9iMji260p99buSP4rGcnnk2Hnaf1Oo6XyJTcpF6QnaLSaBssvbQctUs6n4M6pO3Bs0fCj4+Wl5IH0BLWbWrz+Gup6sfe2h5O/EzKuZkDbTmvVwERhRiFIT1A6KSWP3Vr3kba9FgpHBeL3x+Pqrquw97KHd1dvOLVwqraGU1lJGfKS8pB7NxfZt7JRnFUMyACVkwoaNw3stHZwauEEjbum1rWlGsvzpbb0ZXrcOnYLMhsZfLr5WOw4mnq+1AfOE2mV84XzhzHW3HAAlTHWFN3zwbERI0Zg4sSJCA4ORlxcHJ5++mmMHDkSx48fh42NcafYaWlpKCsrg5eXl8F0Ly8vXL582eR+1q5di9WrVxtNT01NRVFRUd0PpAK9Xo/s7GwQEeRy69YYKbUrxa1zt6AKVcFWY93LSSpfEq8mQmYjQ0Z2w/aNJveSI+lKEpRnlXDwbdhadYlxiSgoKEBOSQ5yU3Ib/HpRhiiReyEXF365gKCooHrfnylJ8UkoKChAVmEWZEXGgSKr3kcaQDtQi7S/05AUl4TEa4mQ28ihdFJC6aSEwkEBG6UNZDIZSvJKoMvXQZenQ3H2PwF4W40tHHwdoNfpkZ2VjdSEf5o4y23Kj4eIYKu2hZ23Hey97WHvbQ+FfdUd0zem50ttpJ1PQ9qdNHh19UJmXiaQZ5ntNvV8qQ+cJ9Iq50tubq61k8QYs5CYj2O4FhNjjN2j7vngWHR0tPjfHTp0QMeOHREaGooDBw5gyJAhFtvPihUrsGTJEvHfOTk58Pf3h1arhZOTk8X2A5QXvGUyGbRardVfSBS9Fbix7wZk6TJ4dvW0aloq54uuQAe1TA23MDd4ejZs2lwGueBC8gWU3CiBtpO2Qfs8SipLgn2APby8ywO8DX69eALUg5B2MQ2KfAVcg13rf58SkikZ9v72RoFuQWO4j/yC/VCSV4LUi6koTC9EUVYRSjJKoMvQQQeduJyN3AYaRw00QRo4eDvAwccBGjfD2mH6Uj3yU/KRczsHhRmFgKy8qWtxTjGKUouQl5qHvL/zYKO2gcZNI64DAjTuGth72sPe0x5KZ6XV86W2SvJLcDf+LrQttAjvHy4GCS2hMVwvjQ3nibTK+aJWN56m3Yyx2uPaUNXj4GHD4HxmrH7c88GxykJCQuDh4YFr165JBsc8PDxgY2OD5ORkg+nJyclV9lumUqmgUqmMpsvl8np5aZDJZPW27ZpwC3HDHcc7SL+cDt+uvg02OqIpFfOlMK0QMrkMjj6ODZ5Paic1PDt4IuXvFGTHZ8Mt1K1B9ltaVIqyojK4BLoYHHNDXy9+3f2QGZeJxD8T4Rbs1uDXRZmuDKUFpdWe+8ZwH6md1PDv6S/+W1+qh65Ah7KSsvJmoQ5K2Gpsqw2wypVyOLdwhnML4z7MdAU65N7NRW5ibnkQLqO8NqtcIQcIyLiSgYwr5bUrbTW2kGvlcOnlAo1z4xjMwFyJpxJBekJAnwDYKiz/89YYrpfGhvNEWsV84bxhjDUHHDxsWBwgY8zyml1wLCEhAenp6fDx8ZGcr1QqERERgd9++w3jx48HUP4V+LfffsMjjzzSgCltGmRyGbRttbj7511kxWfBNcQ6tYSk5CWXt6dqqJEqK/Pp4oP02HTc/fMuXINdGyRAVJBe3hm/nbt1+4BTaBTw7uyNu3/eRerFVHi2b9iae0Lzw8bUGb+55LZyqJyMA+11obBTwC3MDW5h0kFaXYEO+Sn5yEvKQ/q1dKT+nYri+GK4hrrCN8JXrGnWmOUl5yHjagac/J2sMhAGY4wx1pA4OMIYY5bV5D9n5uXl4ezZszh79iwA4MaNGzh79ixu3bqFvLw8LFu2DCdOnEB8fDx+++03jBs3DmFhYYiKihK3MWTIELz33nviv5csWYJPPvkEmzdvxqVLl/Dwww8jPz9fHL2SGfJo7QGZXIaU8ynWToqB/JR8yBVyqF2tEyCxVdvCq5MXinOKGyxvCtPLR2hsDMEMrw5eUNgrkHg6EaXFpQ2676Ks8ppRGlfr50NToLBTwCXIBS16tkD76e0RMDgATgFOyLqRhYvfXcTNQzfLm2A2UkSE20dvQyaXwb+Xf/UrMMYYa7K4hlLjw+eEMXYvaPLBsVOnTqFLly7o0qULgPLAVpcuXfD888/DxsYGf/31F+677z60atUKc+fORUREBA4fPmzQBDIuLg5paWniv6dNm4bXXnsNzz//PDp37oyzZ89iz549Jvsuau4UmvJaKXlJeWLNJWsjIhSkFsBea9+g/X1V5tXBCyonFe78eUcM2NQnIf817tYPCslt5fDr4YfSolIknEho0H0XZpYHCZtizTFrk8lkcPBzQNiIMLSZ2AaOvo5Iu5yGS9suNZr7u7L02HQUpBXAs70nn3PGWJ3xi7605pwvzfnYq8N5wxi7VzT5ZpUDBw4EEZmc/8svv1S7jfj4eKNpjzzyCDejrAFtOy3Sr6Qj5XwKggYEWTs5KMoqgr5UDzsP6zYvlNvKETQoCLE7YnFj/w20Ht+6XptXFqYXlvdRpWoct7Z7S3dkXM1Aemw63ELd4NTCsoNTmFKUVQTIAJWzZZsnNjd2HnZoObolUv5OwZ2Td3B5+2W06NmiwZvJVqWspAx3/rwDW40tfLpKN5dnjDHGGLvXcNNaxiyrydccY42DvbZ8pLuMaxkoLWrYJnRSClLLa7jYe9pbOSXlfZ55d/JGQVoBEk8n1tt+SE8oyipqFLXGKgroFwC5Qo74A/ENdm0UZRZB5aiy6GiFzZVMJoNXRy+EjwuH0kGJ28du4/pv1xtNM8u7MXdRWlgKvx5+sFHaWDs5jDF2T2rOtYOa87Gzxq8pXJ8xH8eI6WwK6WXNF785MovxbO8JKiOkXkq1dlKQn5oPAFavOSbw7eYLjbsGiWcSkZuYWy/7KMwsBOnJ6p3xV6ZyVCGgbwB0BTrEH4iv9/2RnlCcU2y1vubuVfZae7SZ1AYuQS7IjMvE5R8vozi32KppKswoRMr5FNh72sO9lbtV08IYY6zh8At248DngVXH1DXC1w5rjDg4xizGNcQVSgclUs6nWL1WSUFqAWxUNhYf9a+2ZHIZggcHQ24rR9wvcSjMKLT4PhpTZ/yVubd0h1tLN2TfykbSuaR63VdxTjFIT9z3VD2wUdggZFgIfLv5ojC9EJe3X0bu3foJ9prj1pFbAAEBfQOs2rcgY4xZE79kMmvg645Vp7prhK8h1thwcIxZjExe3vyqtLAU6VfSrZYO0hMK0ss7429MNK4ahA4Phb5Uj6u7r6Ikr8Si229MnfFLCegbALWLGnf+uIOMaxn1th8eqbJ+yWQy+HT1QWhUKPRlelzZdQXJfyU3eDoyrmUgLykP2rbaRlNDlDFrW7t2Lbp37w5HR0d4enpi/PjxiI2NNVhm4MCBkMlkBn///ve/rZRixho3fnlnrH7xPcYaEw6OMYtyD3eHjcoGyX8lVzlQQn0qzCgElRHstI3vhdnJzwlBA4Ogy9fh6u6r0BXoLLbtwvRCyG3ljaa2XGU2Chu0HNUSCnsF4g/EI/t2dr3sRwiOcc2x+uUS6II2E9pA7axGwokEXP/tOsp0ZQ2y77KSMiSc+L/27js8qmprA/g7KZNJn/QCIQESeg8QQhGUKCICCiqCXkBULEFFLAgqyNUrtstFFMEKKiqgAioqvQlSAwlFICEkBIQUSiohhVnfH/nmmMmc0DKp5/355MFz9p4ze685M1lZc8opOBgcENwtuEaek6g+2Lx5M2JjY7Fjxw6sXbsWJSUluO2221BQUGDR79FHH8WZM2eUn3feeaeWRkz1Af94JaLrcb2fGfyMobqCxTGyKXtHe/i39UdRbhGyU7JrZQwXz/7/xfjr2JFjZt7h3mjcozEuXbiEIyuOKMWcqio8XwhnH+c6fXqZ3k2PFoNawF5vj+Nrj1fLKXmFF8pOL2VxrPoZjAa0uqsVjE3//zpkK47gUo5t9ucrOR13GiUXS9Coe6M6c2dWorpg1apVGDt2LNq2bYuOHTti4cKFSEtLQ1yc5R8eLi4uCAwMVH48PGrmTsJ1Hf9Ao/K4P1B9wv2VqOr4VwXZnF9bP6QnpCM9Ph1ezbxq/PkLMv//Yvx18Mgxs4AOAbB3skfaH2k48tMRNL+1OdyD3W94e8UFxSi9VFor8b5eBqMB4beHI/HXRCT9noRm/ZvBGGa0ybYLLxSiIKMAji6OvHNhDbHX26P5rc2RHp+Ov3f/jcPLDqPpzU1t9ppWVJBZ8M9F+FvyIvxEV5KTU3aErre3t8X6b775BosWLUJgYCAGDx6MV199FS4u6r8zi4qKUFT0z803cnNzAQAmkwkmk+2vL2oymSAi1bLtqxGUPW/5f63GVott5v8q61Md9n62V/X51FxLm83jU437SlXmWZNtqv2rMS57P9uLLo90qVMxuJa2iu+h2n4/V8c893yyB10e6aLapzLVsb/caHzqktr8XVSXVYxLQ4sPi2Nkc47OjvBt6Yusv7KQczIHniGeNfr8F89ehKOLI/Su+hp93uvl29IXelc9ktcmI3FlIoxhxrK7Wt7ABfXr8sX41bj6u6Ll4JZI+j0JyWuTEdonFL6tfG9oW5dLLuNC8gWcPXoWBRllhVHeubDmBXYKhIufC1LWpyB5TTICOwUiuFuwTY9kNJWakLopFTqdDqF9Q+v0UZJEtc1kMmHixIno1asX2rVrp6wfNWoUQkNDERwcjP3792Py5Mk4evQoli1bprqdmTNnYsaMGVbrs7KycOmS7Y8UNZlMyMnJgYjAzq5mT3C4pL+EzMxMi3/Lq+22EseySzHooLPq8+dXfyL89vAqx6Ciysak5lrabB2f6txXqjLPmmyrqLrfQ5W9HuXHVBfbBGLxHqrt93N1zVNtn7gSW+4vx1YdQ/jt4TccH/Pj64La/F1Ul1WMS15e7d2YqzqwOEbVIrBTIM4eOYvTe07XaHHMdNmES+cvwTO0ZgtyN8qjsQda390af+/6G9mp2chOzYZHiAe8w71hDDVe89FP5rtf1tWL8atx8XVBq6GtkPhrIk5sOYHzyefRqFsjuPpf/XRYMQnyTufhXNI5ZKdkw1Rqgp2DHXxa+MC3lS/cAt1qYAZUkUcjD7Qe1hrJa5ORHp+Oi2cvomn/pjY79fH0ntO4lH0Jjbo34g0XiK4iNjYWBw8exNatWy3Wjx8/Xvn/9u3bIygoCP3790dycjKaN29utZ0pU6Zg0qRJynJubi5CQkLg5+dXLadjmkwm6HQ6+Pn51egfJHs/2wsDDPD398ep4lPKv+XVZtvJ4pMAAEOxwaI4Vv5x/v7+VQuCisrGpOZa2mwdn+rcV6oyz5psq6i630OVvR7lx1QX28xHKpnfQ3XpvW7LeV7v54Ct9hdbfobWBbX1u6iuqxgXg6FhXcaGxTGqFno3Pfza+CHzYCayT2TDGGqskectulAEMUmdvd6YGoPRgOa3NcfFsxdxOu40ctJykHsyFzp7HZy9nWEwGmAwGuDk4QRHZ0c4ODvA0dkR9k72ypEz5uus1Zcjx8ycPJzQamgrnNp5CuePnceRFUfgFuQG92B3uPq7wuBpgJ2jHezs7XAp+xIKsgpQkFmA3FO5KC0sBVB2FJpPCx94h3vzVMo6QO+mR8shLXFy20mcPXIWR386ivCB4XByr9qNIvLT85GxPwOu/q4I6BBgo9ESNUwTJkzAypUrsWXLFjRu3PiKfaOiogAAx44dUy2OOTk5wcnJ+v1rZ2dXbX8w6HS6at2+6nP+f8HJzs4OOuiUf8ur7bby/1XsY/5/W6tsTGqupc3m8anGfaUq86zJNjXVHZe6FoNrbSv/Hqrt93N1zXPfZ/sQOT5StV9lqrq/xH0SZ9PP0LqiNn4X1Qfl49LQYsPiGFWbwE6ByDqchdO7T8OziWeNnAJlPr2wLl9vrDIuvi4IHxCO0kuluJByAdkp2Sg8X4iLWRcrfYyjqyOcvZxx8exFOHk6wd6x/hWHHF0c0fTmpgjqHITTcaeRnZqN/DP5V3yMwWiAf1t/eId719m7c2qZnb0dQm8KhcHLgFPbT+HIiiNoMajFDRdvSy+VImVDCnT2OoT1C4POjqdTEqkRETz11FNYvnw5Nm3ahKZNm171MfHx8QCAoKCgah4dUf0Q90ncdRcXtIBxqT9q8rWqjhsBcF+j2sLiGFUbRxdH+Lf1R8b+DGSnZNfIxeIvnSs7f70+HTlWkYPBAX6t/eDX2g8AcLn4Mi5lX0JRXhFKL5WitLAUpZdKUVJYguK8YuSdyYNclnpzKmllDEYDmvVvBjEJLp67iILMApQUlOByyWWYSk3Qu+nh6u8KVz9XOBj40VUfBLQPgN5Nj5T1KTi2+hha3936ul87MQmOrzuO4vzisoIb70JKVKnY2Fh8++23+Omnn+Du7o709HQAgKenJ5ydnZGcnIxvv/0Wd9xxB3x8fLB//348++yzuOmmm9ChQ4daHj3VNVq8+50W53wtGBeqaSyQUW3gX5hUrQI7BSLrryyc3nMaxjBjtR/xUXiuEG5ubg2qeGKvty8rClVyLS4RQXF+MRxdHGt4ZNVDZ6eDq59rvS5w0j+8mnqhtFcp0v5IQ8qGFITfHn5dnwOndpxC3uk8+LX1u+GbNhBpxbx58wAA/fr1s1i/YMECjB07Fnq9HuvWrcPs2bNRUFCAkJAQDB8+HK+88kotjJaIiOozFk2poWk4FQSqkxwMDgjoGIAzcWeQdTgL/m2r7yKLl0suoyi7CAGh2roekU6nq/L1nIiqk19rP1w8exFnD5/F37v+RuMeV74GktnZo2eReTATbkFuCIkOqeZREtV/InLF9pCQEGzevLmGRlN/8A88a4xJ/VHdR9hwX6ifuF8QXb+GdQU1qpMCOwbC0dURp/ecRuml0mp7HvNF6V1869/1xogaupCeIXANcEXG/gxk/ZV11f7ZqdlI+yMNejc9mt/anNcZIyKiasU/9qmhqa7rgdUUviepprE4RtXOzsEOjaMa43LRZZyOO11tz2O+cH1lpx8SUe2xs7dD89uaw8nTCWlb03Au8ZxqPxHB6bjTSF6TDHu9PZoPaN6gTpMmorqlIf3x1ZDmcq2OrTpW20No0LS4T1HlamN/4D5INYnFMaoR3uHecA1wRdZfWSi8UFgtz2EujvHIMaK6ydHZES0GtYDeXY/Uzak4l3jO4jSwi2cvInl1Ms7EnYGLrwtaD2sNFx++n4mIqHrxD3CiK+N7hLSAxTGqMSE9QwABTm0/VS3bL8gqgN5DD3u9fbVsn4iqTu+mR4tBLeDo4ojUTalI+CoBx9cfx5GfjuDwssPIScuBd7g3Wg5pCb2bvraHS0RERFSvVbWwxcIYaQXPVaEa4+rnCp8WPjiXeA7Zqdkwhhlttu3LxZdRnFsMZ19nm22TiKqHk4cTWg1thbNHziInLQcXki9AZ6+DT0sf+Lf159GfRERERDZ0IxfoZ1GMtIZHjlGNatS9Eez19jj550lcLrlss+2aL8Zv8DbYbJtEVH30bnoEdw1G62Gt0XF0R3T8V0eE9Q1jYYyIqAr4x+z1Y8ysMSYNU31+Xevz2Kn+YHGMapSjiyMadW+E4vxinN5ju4vzXzzH4hhRfeVgcODp0ERU4/jHljWtxURr8yWK+yTuivv91dqJGjKeVkk1zre1L84lnkPmwUz4RPjY5EgR5cgxLxbHiIiIiIiIKmM+zXLvZ3txSX8Jp4pPQQddbQ+LqFbV+yPHtmzZgsGDByM4OBg6nQ4rVqxQ2kpKSjB58mS0b98erq6uCA4OxujRo3H69JWPWHrttdeg0+ksflq1alXNM9EOnU6H0JtCodPpcGLLCYhJrv6gq7h49iL07nrYO/HoEyIiIqLrxaNFiIhIy+p9caygoAAdO3bE3LlzrdouXryIvXv34tVXX8XevXuxbNkyHD16FEOGDLnqdtu2bYszZ84oP1u3bq2O4WuWs7czAjoE4OLZi8jYn1GlbZlKTbiUfYnXKiIiIqJrwkIQkTW+L4hIy+r9aZUDBw7EwIEDVds8PT2xdu1ai3UffvghunfvjrS0NDRp0qTS7To4OCAwMNCmYyVLQZFByD6RjdN7TsOjsccNF7cKzxcCAt6pkoiIiIjoBrAwRvXBjdx1k+ha1fvi2PXKycmBTqeD0Wi8Yr+kpCQEBwfDYDAgOjoaM2fOvGIxraioCEVFRcpybm4uAMBkMsFkMtlk7GYmkwkiYvPt1jgdENo3FEdXHMXx9cfRalgr2Nlf/8GM+Zn5EJPA2dsZRVJU/+NiYw1mf7ExxkUd46KOcbHGmKirGBfGh6ju4R/YRPUX379UXTRVHLt06RImT56MkSNHwsPDo9J+UVFRWLhwIVq2bIkzZ85gxowZ6NOnDw4ePAh3d3fVx8ycORMzZsywWp+VlYVLly7ZbA5AWaKdk5MDEYGdXb0/MxZOzZyQuS8TpatLEdj1+o/WO510Grl5ucg35aMgu6DBxMVWGtr+YiuMizrGRR3jYo0xUVcxLnl5ebU9JCIqh0dIWWNMiGpexfcdC361TzPFsZKSEtx3330QEcybN++KfcufptmhQwdERUUhNDQUS5cuxcMPP6z6mClTpmDSpEnKcm5uLkJCQuDn53fFQtyNMJlM0Ol08PPzaxB/kPjd7Af7PHsUnCqAvq0exlDjdT3+3OVz8A7wRnBoMLKyshpMXGyloe0vtsK4qGNc1DEu1hgTdRXjYjDwLspUs27kqAoWR4iIagY/b+suTRTHzIWxEydOYMOGDdddrDIajWjRogWOHTtWaR8nJyc4OTlZrbezs6uWPxp0Ol21bbs2NL+1OQ4vO4y0zWlwHeYKJw/rWKoRk6AouwgejT1gZ2fX4OJiK4yLOsZFHeOijnGxxpioKx8Xxoao+vE0qxvHP9SpPqqP7/lrGbP5/Vjf5tZQNPiMzVwYS0pKwrp16+Dj43Pd28jPz0dycjKCgoKqYYQEAHo3PZre0hSXiy8jeW0yLpdcvqbHFZ4vhJiEd6okIiIiugFaKo5oaa5EVHfws6d+qPfFsfz8fMTHxyM+Ph4AkJKSgvj4eKSlpaGkpAT33HMP9uzZg2+++QaXL19Geno60tPTUVxcrGyjf//++PDDD5Xl559/Hps3b0Zqair+/PNP3H333bC3t8fIkSNrenqa4tHYA8HdglF4rhDH1x6HmOSqj7l49iIAsDhGRERE9P/4h5j28DUnrakv+/yNjDPuk7h6M7+GpN4Xx/bs2YPOnTujc+fOAIBJkyahc+fOmDZtGv7++2/8/PPPOHXqFDp16oSgoCDl588//1S2kZycjLNnzyrLp06dwsiRI9GyZUvcd9998PHxwY4dO+Dn51fj89OaoM5B8G3li9xTuUjdnAqRKxfIWBwjIiKia8U/NrSLrz0R1TR+7tQv9f6aY/369btiAeVqxRUASE1NtVhevHhxVYdFVdCkdxOUFJbgfNJ5ODo7onGPxpX2vXj2IhwMDtC76WEymWpwlERERERUV9THaxDVJsaLqO7j+7Rm1fsjx6jh0dnp0Kx/M7gFuiFjfwbStqapFjlFBIXnC+Hs41wLoyQiIqK6jN/YExFRbbDlaZH8XVZzWByjOsnOwQ7hA8Ph3sgdWX9lIWVDitU1yC5lX4Kp1MRTKomIiOiq+AeGNa3ERCvzJNIivr/JVlgcozrL3tEe4beHw9jUiAvJF5D4ayJKLpYo7bzeGBERERFRGRYJiIhuXL2/5hg1bHb2dmgW0wwn/zyJrENZOLzsMJr2bwr3IHcWx4iIiDSusmKA+RotWi8WXCk+DTE25jmZ59dQ53klez/bi0v6S/Af7W9xvaLyceA1jIhsr/znT3Vtn+/d6sXiGNV5Op0OTXo1gVuAG05sOYHElYkI6hyEgswC2DnawcnDqbaHSERERERUJ2mtQEjaVN3Fqas9L9V/PK2S6g3vcG+0HtYazt7OOLP3DAoyCuDi6wKdTlfbQyMiIiIiIqJaVpPFqtoojLEYV31YHKN6xWA0oPXdrREUGQSdnQ4ejT1qe0hERERERERUR9REAak2i1QskFUPFseo3tHZ6RAcGYxOYzshsFNgbQ+HiIiIiIiI6pDqKCDFfRJXZwpTdWUcDQmLY1Rv2TnY8ZRKIiKi6zR37lyEhYXBYDAgKioKu3btqu0hXTf+UUBERFdjq98VdakoVl5dHFN9xuIYERERkUYsWbIEkyZNwvTp07F371507NgRAwYMQGZmZm0P7ZrxjwEiIroeN/p7Y+9ne/k7R0N4t0oiIiIijZg1axYeffRRPPTQQwCA+fPn49dff8UXX3yBl156qZZHR0REVD0qFrnK39WyYptA0HhI4xoZly3EfRJX43fpbIhYHKsmIgIAyM3Ntfm2TSYT8vLyYDAYYGfHg//MGBd1jIs6xkUd46KOcbHGmKirGBdzHmDOC2pTcXEx4uLiMGXKFGWdnZ0dYmJisH37dtXHFBUVoaioSFnOyckBAGRnZ8NkMtl8jCaTCbm5udDr9Vb7VfyX8RbL2dnZyCvMU91OVdvU+tR2W9HlIpQUl0AHnVWf6ohBdbTZOj75hfnX/biamGdNt5XvIxAUXS6q8f21JuZZlTZzXMzvodp+P9dGDCprq47PlvoQ103vb0KnMZ2sfrcAZftLbm4u8grzLOJyPTGojrarxcA8l05jOqlup6oq/o6uSzmOLeikocykjjl16hRCQkJqexhERERUB5w8eRKNG9fut9CnT59Go0aN8OeffyI6OlpZ/+KLL2Lz5s3YuXOn1WNee+01zJgxoyaHSURERPVIXchxbIFHjlWT4OBgnDx5Eu7u7ja/aHxubi5CQkJw8uRJeHh42HTb9Rnjoo5xUce4qGNc1DEu1hgTdRXjIiLIy8tDcHBwbQ/thkyZMgWTJk1Slk0mE86fPw8fH59quSkO9yt1jIs1xkQd46KOcVHHuKhjXNQ1tBynIhbHqomdnV21V089PDz4ZlXBuKhjXNQxLuoYF3WMizXGRF35uHh6etbyaMr4+vrC3t4eGRkZFuszMjIQGBio+hgnJyc4OTlZrDMajdU1RAX3K3WMizXGRB3joo5xUce4qGNc1NXFHMcWeJEQIiIiIg3Q6/WIjIzE+vXrlXUmkwnr16+3OM2SiIiISGt45BgRERGRRkyaNAljxoxB165d0b17d8yePRsFBQXK3SuJiIiItIjFsXrIyckJ06dPtzrNQesYF3WMizrGRR3joo5xscaYqKvrcRkxYgSysrIwbdo0pKeno1OnTli1ahUCAgJqe2gA6n78agvjYo0xUce4qGNc1DEu6hgXdQ09LrxbJRERERERERERaRavOUZERERERERERJrF4hgREREREREREWkWi2NERERERERERKRZLI4REREREREREZFmsThWD82dOxdhYWEwGAyIiorCrl27antI1WbLli0YPHgwgoODodPpsGLFCot2EcG0adMQFBQEZ2dnxMTEICkpyaLP+fPn8cADD8DDwwNGoxEPP/ww8vPza3AWtjdz5kx069YN7u7u8Pf3x1133YWjR49a9Ll06RJiY2Ph4+MDNzc3DB8+HBkZGRZ90tLSMGjQILi4uMDf3x8vvPACSktLa3IqNjVv3jx06NABHh4e8PDwQHR0NH7//XelXYsxqeitt96CTqfDxIkTlXVajMtrr70GnU5n8dOqVSulXYsxMfv777/x4IMPwsfHB87Ozmjfvj327NmjtGvxczcsLMxqf9HpdIiNjQWg7f3FlrSU3wDMcdQwv1HH/ObaMMcpwxyncsxxrDHHKUeoXlm8eLHo9Xr54osv5NChQ/Loo4+K0WiUjIyM2h5atfjtt9/k5ZdflmXLlgkAWb58uUX7W2+9JZ6enrJixQpJSEiQIUOGSNOmTaWwsFDpc/vtt0vHjh1lx44d8scff0h4eLiMHDmyhmdiWwMGDJAFCxbIwYMHJT4+Xu644w5p0qSJ5OfnK30ef/xxCQkJkfXr18uePXukR48e0rNnT6W9tLRU2rVrJzExMbJv3z757bffxNfXV6ZMmVIbU7KJn3/+WX799VdJTEyUo0ePytSpU8XR0VEOHjwoItqMSXm7du2SsLAw6dChgzzzzDPKei3GZfr06dK2bVs5c+aM8pOVlaW0azEmIiLnz5+X0NBQGTt2rOzcuVOOHz8uq1evlmPHjil9tPi5m5mZabGvrF27VgDIxo0bRUS7+4staS2/EWGOo4b5jTrmN1fHHOcfzHHUMcdRxxznHyyO1TPdu3eX2NhYZfny5csSHBwsM2fOrMVR1YyKiaPJZJLAwEB59913lXXZ2dni5OQk3333nYiI/PXXXwJAdu/erfT5/fffRafTyd9//11jY69umZmZAkA2b94sImVxcHR0lO+//17pc/jwYQEg27dvF5GypNzOzk7S09OVPvPmzRMPDw8pKiqq2QlUIy8vL/nss880H5O8vDyJiIiQtWvXSt++fZXEUatxmT59unTs2FG1TasxERGZPHmy9O7du9J2fu6WeeaZZ6R58+ZiMpk0vb/YkpbzGxHmOJVhflM55jf/YI5jiTmOOuY410bLOQ5Pq6xHiouLERcXh5iYGGWdnZ0dYmJisH379locWe1ISUlBenq6RTw8PT0RFRWlxGP79u0wGo3o2rWr0icmJgZ2dnbYuXNnjY+5uuTk5AAAvL29AQBxcXEoKSmxiE2rVq3QpEkTi9i0b98eAQEBSp8BAwYgNzcXhw4dqsHRV4/Lly9j8eLFKCgoQHR0tOZjEhsbi0GDBlnMH9D2vpKUlITg4GA0a9YMDzzwANLS0gBoOyY///wzunbtinvvvRf+/v7o3LkzPv30U6Wdn7tlv4sXLVqEcePGQafTaXp/sRXmN9b4XivD/MYa8xtrzHGsMcexxhzn6rSe47A4Vo+cPXsWly9fttjxACAgIADp6em1NKraY57zleKRnp4Of39/i3YHBwd4e3s3mJiZTCZMnDgRvXr1Qrt27QCUzVuv18NoNFr0rRgbtdiZ2+qrAwcOwM3NDU5OTnj88cexfPlytGnTRtMxWbx4Mfbu3YuZM2datWk1LlFRUVi4cCFWrVqFefPmISUlBX369EFeXp5mYwIAx48fx7x58xAREYHVq1fjiSeewNNPP40vv/wSAD93AWDFihXIzs7G2LFjAWj3PWRLzG+s8b3G/KYi5jfqmONYY46jjjnO1Wk9x3Go7QEQUdXExsbi4MGD2Lp1a20PpU5o2bIl4uPjkZOTgx9++AFjxozB5s2ba3tYtebkyZN45plnsHbtWhgMhtoeTp0xcOBA5f87dOiAqKgohIaGYunSpXB2dq7FkdUuk8mErl274s033wQAdO7cGQcPHsT8+fMxZsyYWh5d3fD5559j4MCBCA4Oru2hEDVozG8sMb+xxhxHHXMcdcxxrk7rOQ6PHKtHfH19YW9vb3V3iIyMDAQGBtbSqGqPec5XikdgYCAyMzMt2ktLS3H+/PkGEbMJEyZg5cqV2LhxIxo3bqysDwwMRHFxMbKzsy36V4yNWuzMbfWVXq9HeHg4IiMjMXPmTHTs2BHvv/++ZmMSFxeHzMxMdOnSBQ4ODnBwcMDmzZsxZ84cODg4ICAgQJNxqchoNKJFixY4duyYZvcVAAgKCkKbNm0s1rVu3Vo5HUPrn7snTpzAunXr8MgjjyjrtLy/2ArzG2taf68xv7HG/MYac5xrwxynDHOcK2OOw+JYvaLX6xEZGYn169cr60wmE9avX4/o6OhaHFntaNq0KQIDAy3ikZubi507dyrxiI6ORnZ2NuLi4pQ+GzZsgMlkQlRUVI2P2VZEBBMmTMDy5cuxYcMGNG3a1KI9MjISjo6OFrE5evQo0tLSLGJz4MABiw/4tWvXwsPDw+oXR31mMplQVFSk2Zj0798fBw4cQHx8vPLTtWtXPPDAA8r/azEuFeXn5yM5ORlBQUGa3VcAoFevXjh69KjFusTERISGhgLQ9ucuACxYsAD+/v4YNGiQsk7L+4utML+xptX3GvOba6f1/AZgjnOtmOOUYY5zZcxxAN6tsp5ZvHixODk5ycKFC+Wvv/6S8ePHi9FotLg7REOSl5cn+/btk3379gkAmTVrluzbt09OnDghImW32zUajfLTTz/J/v37ZejQoaq32+3cubPs3LlTtm7dKhEREfX6drsiIk888YR4enrKpk2bLG69e/HiRaXP448/Lk2aNJENGzbInj17JDo6WqKjo5V28213b7vtNomPj5dVq1aJn59fvbztrtlLL70kmzdvlpSUFNm/f7+89NJLotPpZM2aNSKizZioKX8nJxFtxuW5556TTZs2SUpKimzbtk1iYmLE19dXMjMzRUSbMRER2bVrlzg4OMh//vMfSUpKkm+++UZcXFxk0aJFSh+tfu5evnxZmjRpIpMnT7Zq0+r+Yktay29EmOOoYX6jjvnNtWOOwxynMsxxKsccpwyLY/XQBx98IE2aNBG9Xi/du3eXHTt21PaQqs3GjRsFgNXPmDFjRKTslruvvvqqBAQEiJOTk/Tv31+OHj1qsY1z587JyJEjxc3NTTw8POShhx6SvLy8WpiN7ajFBIAsWLBA6VNYWChPPvmkeHl5iYuLi9x9991y5swZi+2kpqbKwIEDxdnZWXx9feW5556TkpKSGp6N7YwbN05CQ0NFr9eLn5+f9O/fX0kcRbQZEzUVE0ctxmXEiBESFBQker1eGjVqJCNGjJBjx44p7VqMidkvv/wi7dq1EycnJ2nVqpV88sknFu1a/dxdvXq1ALCaq4i29xdb0lJ+I8IcRw3zG3XMb64dcxzmOFfCHEcdc5wyOhGRmjpKjYiIiIiIiIiIqC7hNceIiIiIiIiIiEizWBwjIiIiIiIiIiLNYnGMiIiIiIiIiIg0i8UxIiIiIiIiIiLSLBbHiIiIiIiIiIhIs1gcIyIiIiIiIiIizWJxjIiIiIiIiIiINIvFMSKq93r06IH33nuv1p5/0aJFCAwMrLS9ZcuW+PTTT2twRLZ3zz33YOLEicpy165dMXv27FobDxERkRYwx6l+zHGICGBxjIjqOZPJhAMHDqBjx461NoaEhAR06tQJQFlCtWjRIov2LVu2YOzYsde1PTs7O+Tk5NhwlFUTHx+vzLG0tBSHDh1SlomIiMj2mOPUDOY4RASwOEZE9VxiYiIuXryIDh06XPNjSkpKbDqG8omjmoCAADg6Ol7z9nbt2oXw8HB4enpWaVy2mmdeXh6OHz+uzPHIkSO4dOlSrSbrREREDR1znMoxxyEiW2NxjIiqLDk5GTqdDitXrkT//v3h4uKCli1bYufOnRb9li9fjm7dusHFxQXh4eFYsGCBRXtYWBjefvttPPDAA3B3d0doaCjWrFmDkydPYtiwYXB3d0erVq2wb98+5THx8fEICAjAxo0b0bp1a7i7u2PYsGG4cOGC0mfs2LEYNWoUXn75ZQQGBiIyMhIAcPHiRUydOhWNGzeGq6srbrrpJhw8ePCqc73zzjvh4uKCFi1aYPPmzVdMHBcuXIiwsDBl+dVXX0VMTAzmzp2LiIgIuLq64u6770ZRUREAYPTo0Rg/fjySkpKg0+mg0+lw5MgRAMChQ4dw5513ws3NDf7+/pgwYYLyOADo168fJk2ahCeffBLe3t4YPnw4unfvjldeecViTCdPnoSzszO2bdsGAFi/fj1iYmLg6+sLV1dX9OnTBwcOHFD6JyQkwMHBAW3atFFi3qRJE3h5eSl9fvnlF3Tt2hUGgwHNmjXDxx9/bPGcH3/8Mdq3bw8XFxf4+Pjg9ttvh8lkumKsiYiIahtzHOY4zHGINEKIiKroxx9/FJ1OJzfffLNs3LhREhMTJSYmRvr166f0+eSTT8TT01MWLlwox48fl4ULF4qdnZ1s2bJFREQuXLggACQiIkKWLl0qSUlJMmDAAImIiJB+/frJr7/+KkeOHJFevXrJkCFDlO1OnjxZXF1dZdiwYXLo0CHZvHmzNGrUSGJjY5U+nTp1End3d5kyZYocOXJEEhMTpbCwULp16ybDhw+X3bt3S2JioowbN07Cw8PFZDKpzjMjI0MaNWok48ePl8OHD8vatWslIiJCAMjhw4dFRCQyMlK+/vpr5TETJ06UoUOHKsuDBw8WT09PefbZZ+XQoUOyYcMGcXV1lYULF4qIyPnz56VHjx4yZcoUOXPmjJw5c0ZMJpNs27ZNPD09Zfbs2ZKUlCRbtmyR8PBwef3115Vte3l5ibe3t/z3v/+VpKQkOX78uIwbN07uvvtui3k89NBDFjFctGiRLF++XBITE2X//v0yePBg6d69u9L+wQcfSIcOHZTl5557zuLx7733noSGhsoPP/wgx48fl8WLF4vBYFBe20WLFknjxo1l5cqVkpqaKrt375Y5c+aoxpiIiKguYY7DHIc5DpE2sDhGRFU2bdo08fLykszMTGXdnDlzpG3btiJSlnA5OzvL0qVLLR7Xs2dPefHFF0VEZNOmTQJANmzYoLR/9tlnotPp5ODBg8q6t956yyKpGTBggHTq1EkuX76srPvPf/6jPHdxcbHo9XqLRNLcp2/fvhZJ4tmzZwWAnDhxQnWe48aNk5tuusli3fPPPy8uLi4Wz19ev379ZNq0acpykyZN5IEHHrDo06VLF3n33XeVZaPRKL/88ouyXFpaKq1atZIvvvjC4nHvvfee3HzzzSIikpqaKgAstiMiMmvWLGnZsqWyfOjQIdHr9XLo0CHV8YqIrF69Wjw9PZXlhx9+WEaPHq0s9+/fX5lTSkqKuLq6ypEjRyy2ceedd8qMGTNERORf//qXjBo1qtLnIyIiqquY4zDHYY5DpA08rZKIqiwhIQFDhw6Fn5+fsi4lJQXh4eEAgGXLlsFoNGL48OEWj9Pr9coh8wkJCWjevDluvvlmpT0tLQ3du3dH27ZtLdY1bdpUWY6Pj8fTTz8NO7t/Ps68vLyUw9kPHz6M4uJiPP300xbP/dlnn2H79u1wd3eHm5sb3NzcEBoaCgBwcHCwmuOlS5fw3XffWdzNCAAcHR3Rvn17i+evGBvz6QjZ2dlIS0vDo48+atEnNTVViVVKSgqys7MtrnWxbds2HDlyBBMmTFDG6ubmhqlTpypjTUhIgF6vx2OPPWax7fbt2yM5ORnFxcUAgKlTp+LBBx9UTh8oKSnBRx99hJ49eyIoKAhubm4YMmQIGjdubBHj8uNJSEhQlr/66itcvHgRkZGRFmP7/ffflbHdcccdWLp0KXr16oX3338fZ86cUY0VERFRXcMchzkOcxwibbD+dCQiuk4JCQmYMmWKxbr4+HjcdNNNAMquI9GmTRuL5MpkMuHIkSN48MEHlf5RUVFW2+jRo4fVujvvvBMAkJ6ejoyMDKtrYezYsQOdO3dW+gcFBaFFixZKe25uLlJSUvD7778rCVt5wcHBVuuOHj2KwsJCdOnSxWL93r17K70WR1paGi5cuKAkWQkJCbC3t0f37t0t+pw/f17ZRnx8PLy9vRESEmIx5w4dOuDHH3+0eg53d3elT2RkpLJs1q5dO5SWliIpKQm5ublYs2YNEhMTlfbx48dj69atmDZtGtq2bQsPDw9MmjRJ2U7FuzadOnUKZ8+etRjvI488ghdffNFqbP7+/gCA+++/H7169cKKFSvwzTffYMqUKVi/fj2io6NV40ZERFRXMMfpZNUfYI7DHIeo4WFxjIiqJCcnB6mpqUqiZmb+thMoS24KCwst2r/77jvk5eXhrrvuAlCWVI0cOdJqG8OGDVOWRQT79+/Hyy+/rLQDwOXLl5U+p0+fxpIlS7By5UpluxXHZm9vD51OBwcHB9XEUY056S0/j4MHD2LNmjX46KOPVB+TkJAADw8P5VvghIQEtGzZEs7Ozkqfffv2wWg0Khe0Vbtlu6OjI86fP4/mzZtDp9NV+lwV5wkAgYGB8PX1xV9//YUPPvgATz31lPKNaXFxMb7++mssW7YMQ4YMAVAWv82bNysXuDXftal8olh+To6Ojrh48eJV4xgSEoKnnnoKEyZMQFhYGPbu3cvEkYiI6jTmOMxxmOMQaQdPqySiKtm/fz8cHBzQvn17Zd2JEydw4cIFJdkYOHAgduzYga+//hqpqan46quvEBsbizlz5sDHx8fqmzsAuHDhAtLS0iy+xTx27Bjy8/Otkpjp06cjOTkZO3bswK233ophw4YhJiZG6VMxoXJ1dUXfvn3x7LPPYtOmTUhNTcXWrVvx0ksvITU1VXWeERER8PPzw9SpU5GYmIiNGzfi3nvvhYhU+q2q+dtQc7KnltxVPJzfZDIhKysLycnJSE9PBwD0798fWVlZmDBhAg4fPoyjR4/ip59+wrRp0yy2o5Y4AmXfrM6aNQsHDx60+Pbb0dERHh4e+OWXX3D8+HGsWrUKw4cPR25ursW30o0bN4a3t7fqnO644w4sWbIE8+fPx/Hjx5GQkIDPP/8cX375JYCyUzvmzZuHAwcOIDk5Ge+88w4uXLiAAQMGqI6ViIiormCOwxyHOQ6RhtTuJc+Iqg8AmT59em0Po07r27ev9O3bt0rb+OCDD5QLw44ZM0ZCQ0Nl+fLlYjQaLfrNnz9fmjVrJgaDQSIjI2X58uVK24EDBwSAZGVlKes2btwoTk5OUlJSoqz7/vvvxdfXV1keMWKExMbGyuTJk8XDw0P8/Pxk2rRpFo/x8fGR77//3mrcp0+fllGjRklAQIAYDAYJDw+Xxx9/3OKxFa1evVoiIiJEr9dLly5d5M033xQ7OzspKChQ7T98+HCZMGGCshwZGWl1MdmhQ4fKM888oyynpaVJVFSU6PV6i7n+/vvv0q1bN3F1dRUvLy+Jjo6Wb7/9VkREcnNzRafTye7du1XH8dRTTwkAeeedd6zafvrpJwkNDRVnZ2eJiYmRb7/91uK1eO655+TOO++sdE4iZRfEjYiIECcnJwkICJBBgwYpY5k/f760b99eXFxcxGg0Sv/+/eXPP/9UHjt9+nThr6Kru573al5envj5+cmiRYts9vxnz54VFxcX+fXXX222TSK6Psxrrs4WeU153bt3F0dHR4t1zHHKMMdRz3HGjRvHvKYGvP3229KyZctKbxZxIyZPnmxxQwzSHr5zqU5YsGCBAFB+nJycJCIiQmJjYyU9Pf2Gtskk8upsnUSai2NE14rFsWtzPe/VN954Q5o1ayalpaUiUpZAApC9e/da9DOZTGI0GgWAHD9+3KKtsLBQ9Hq9jBw5Uln39NNPS5cuXao2ESKNYF5TO5jXUG1jXlP9cnJyxNvbW7nDaWlpqbi7u8uQIUOs+s6aNUsAWNyR1OzVV18VAHL06FERETlz5ow4OTnJTz/9VL0ToDqL1xyjOuXf//43mjZtikuXLmHr1q2YN28efvvtNxw8eBAuLi7Xta3CwkLVO/IQETVUJSUleP/99/Hss8/C3t4eANC7d28AwNatWy1OSzl06BCys7Ph4OCAbdu2Wdwhbffu3SguLlYeCwCPP/445syZgw0bNuCWW26poRkR1W/Ma4iIbOuLL75AaWmpch0/e3t79OjRA3/++adV323btil5jlqbv7+/ckOLwMBADB06FO+9955ynTrSFl5zjOqUgQMH4sEHH8QjjzyChQsXYuLEiUhJScFPP/103dsyGAxMIonI5kTE6uLLdcXKlSuRlZWF++67T1nXtWtXGAwGbN261aLvtm3b4OPjg/79+1u1mZfLF8dat26Ndu3aYeHChdU3AaIGhnkNEdlaQUFBbQ/BSk2OacGCBRgyZAgMBoOyrnfv3jh79iwOHz5s0Xfbtm247777LK5zB5TdqXTnzp3o1auXRf/77rsPW7duxfHjx6t3ElQnsThGdZr56ISUlBQAQL9+/dCvXz+rfmPHjlXuhGOm0+nw2muvKct5eXmYOHEiwsLC4OTkBH9/f9x6663Yu3ev0icpKQnDhw9HYGAgDAYDGjdujPvvvx85OTlKnwULFuCWW26Bv78/nJyc0KZNG8ybN89qTGFhYbjzzjuxdetWdO/eHQaDAc2aNcNXX31l1Tc7OxvPPvusMrbGjRtj9OjROHv2rNKnqKgI06dPR3h4OJycnBASEoIXX3wRRUVF1xTLTz75BM2bN4ezszO6d++OP/74Q7VfVZ+novfeew89e/aEj48PnJ2dERkZiR9++OGaHtuvXz+0a9cOcXFx6NmzJ5ydndG0aVPMnz/fqm9mZiYefvhhBAQEwGAwoGPHjsoFU81SU1Oh0+nw3nvvYe7cuWjWrBlcXFxw22234eTJkxARvP7662jcuDGcnZ0xdOhQnD9/3mIb5td1zZo16NSpEwwGA9q0aYNly5ZZjSk7OxsTJ05ESEgInJycEB4ejrfffhsmk+ma5v/777+jT58+cHV1hbu7OwYNGoRDhw5Z9Bk7dizc3Nzw999/46677oKbmxv8/Pzw/PPPW9zhqjLm+WzatAldu3aFs7Mz2rdvj02bNgEAli1bhvbt28NgMCAyMhL79u2z2saGDRuUcRqNRgwdOtQqOQHKCi7dunWDwWBA8+bN8fHHH1c6rkWLFiEyMhLOzs7w9vbG/fffj5MnT151Pq+99hp0Oh2OHTuGsWPHwmg0wtPTEw899BAuXrxo0be0tBSvv/46mjdvDicnJ4SFhWHq1KlW+7o5RqtXr1Zi9PHHH2PTpk3Q6XRYunQpZsyYgUaNGsHd3R333HMPcnJyUFRUhIkTJ8Lf3x9ubm546KGHrLZ9rZ8n12rFihUICwtD8+bNlXV6vR7dunWz+tZ027ZtiI6ORq9evVTbjEYj2rVrZ7H+1ltvxS+//AIRueExEmkZ8xrmNcxrmNfcSF7z119/YdSoUfDy8rL44upq250wYQLc3NysciAAGDlyJAIDAy3iej2vUXJyMu644w64u7vjgQceAHBtnzlViUdKSgr279+v3JTCzByT8vnM8ePHkZ6ejgkTJsBgMFi0xcfHo6CgwCKWAJTt3sgXGNQA1O5ZnURlzNfmqHixzffff18AyPz580Wk8mtJqF0TAhWuzTFq1CjR6/UyadIk+eyzz+Ttt9+WwYMHKxetLioqkqZNm0pwcLC88cYb8tlnn8mMGTOkW7dukpqaqmynW7duMnbsWPnf//4nH3zwgdx2220CQD788EOL5w8NDZWWLVtKQECATJ06VT788EPp0qWL6HQ6OXjwoNIvLy9P2rVrJ/b29vLoo4/KvHnz5PXXX5du3brJvn37RETk8uXLctttt4mLi4tMnDhRPv74Y5kwYYI4ODjI0KFDrxrfzz77TABIz549Zc6cOTJx4kQxGo3SrFkzi3hW9XnUXofGjRvLk08+KR9++KHMmjVLunfvLgBk5cqVV91e3759JTg4WPz9/WXChAkyZ84c6d27twCQzz//XOl38eJFad26tTg6Osqzzz4rc+bMkT59+ggAmT17ttIvJSVFAEinTp2kTZs2MmvWLHnllVdEr9dLjx49ZOrUqUqMnn76adHpdPLQQw9ZjCk0NFRatGghRqNRXnrpJZk1a5a0b99e7OzsZM2aNUq/goIC6dChg/j4+MjUqVNl/vz5Mnr0aNHpdBYXp63MV199JTqdTm6//Xb54IMP5O2335awsDAxGo2SkpJiEXODwSBt27aVcePGybx582T48OECQD766KOrPo95Pw0KCpLXXntN/ve//0mjRo3Ezc1NFi1aJE2aNJG33npL3nrrLfH09JTw8HCLi5+uXbtWHBwcpEWLFvLOO+/IjBkzxNfXV7y8vCzGuX//fnF2dpYmTZrIzJkz5fXXX5eAgADp0KGD1bU53njjDdHpdDJixAj56KOPlG2GhYXJhQsXrjgf87U+OnfuLMOGDZOPPvpIHnnkEQEgL774okXfMWPGCAC55557ZO7cuTJ69GgBIHfddZdVjMLDw8XLy0teeuklmT9/vmzcuFE2btyo7E/R0dEW+839998vo0aNkoEDB8rcuXPlX//6lwCQGTNmWGz7Wj9PrvU6OuHh4TJs2DCr9VOmTBEAFq9Js2bN5M0335R169aJTqdTYmsymcTLy0sGDhxotZ1FixYJADlw4MBVx0KkZcxrmNeoYV7DvOZG85o2bdrI0KFD5aOPPpK5c+de83a3bNkiAGTp0qUW2y0oKBBXV1eJjY29odfIyclJmjdvLmPGjJH58+fLV199dc2fOVWJhzkP2b9/v9V8HBwcZMyYMRbzcXV1lZKSEundu7c8++yzStvs2bMFgOzcudPqOcLDw2X48OFXHAc1TCyOUZ1gTiLXrVsnWVlZcvLkSVm8eLH4+PiIs7OznDp1SkSqlkR6enpa/AKoaN++fQJA9a4/5V28eNFq3YABA6RZs2YW60JDQwWAbNmyRVmXmZkpTk5O8txzzynrpk2bJgBk2bJlVts1mUwiIvL111+LnZ2d/PHHHxbt8+fPFwCybdu2SsdbXFws/v7+0qlTJykqKlLWf/LJJwLAIp5VeR4R9dehYryKi4ulXbt2csstt1xxWyJlrzcA+e9//6usKyoqkk6dOom/v78UFxeLyD+/4Mrfna+4uFiio6PFzc1NcnNzReSfJNLPz0+ys7OVvubCQceOHS3u5DRy5EjR6/Vy6dIlZZ35df3xxx+VdTk5ORIUFCSdO3dW1r3++uvi6uoqiYmJFnN66aWXxN7eXtLS0iqdd15enhiNRnn00Uct1qenp4unp6fFenOB59///rdF386dO0tkZGSlz1FxPuXvILl69WoBIM7OznLixAll/ccffywAZOPGjco682tx7tw5ZV1CQoLY2dlZXPz0rrvuEoPBYLG9v/76S+zt7S2SyNTUVLG3t5f//Oc/FuM8cOCAODg4WK2vyJxEjhs3zmL93XffLT4+PspyfHy8AJBHHnnEot/zzz8vAGTDhg1WMVq1apVFX3NxrF27dsq+KFK23+h0OqviUnR09FXfHyLqnyfXUhwrKSkRnU5n8fli9uuvvwoA+frrr0Wk7KKzAGTz5s2Sl5cn9vb2yp0oDx48KABUY/3nn38KAFmyZMkVx0KkdcxrmNeoYV7DvMbsevOa8jfIuZ7tmkwmadSokVWxZ+nSpRbv5xt5jV566SWLvtfymVPVeLzyyisCQPLy8qzaunXrJs2bN1eWH3vsMbn55ptFROTFF1+Ubt26KW333HOPuLi4qN7B9bbbbpPWrVtfcRzUMPG0SqpTYmJi4Ofnh5CQENx///1wc3PD8uXL0ahRoypv22g0YufOnTh9+rRqu6enJwBg9erVqocemzk7Oyv/n5OTg7Nnz6Jv3744fvy41SHDbdq0QZ8+fZRlPz8/tGzZ0uI89h9//BEdO3bE3XffbfVcOp0OAPD999+jdevWaNWqFc6ePav8mE/P2LhxY6Xj3bNnDzIzM/H4449Dr9cr68eOHavM2awqz1OZ8vG6cOECcnJy0KdPH4vTPq7EwcEBjz32mLKs1+vx2GOPITMzE3FxcQCA3377DYGBgcqFOQHA0dERTz/9NPLz87F582aLbd57770Wc4+KigIAPPjggxbXc4mKikJxcTH+/vtvi8cHBwdbvF4eHh4YPXo09u3bp1zP4Pvvv0efPn3g5eVlEcuYmBhcvnwZW7ZsqXTOa9euRXZ2NkaOHGnxWHt7e0RFRam+Do8//rjFcp8+fa75eglt2rRBdHS0VTxuueUWNGnSxGq9ebtnzpxBfHw8xo4dC29vb6Vfhw4dcOutt+K3334DAFy+fBmrV6/GXXfdZbG91q1bY8CAARZjWbZsGUwmE+677z6LuQcGBiIiIuKa90G1eJw7dw65ubkAoIxt0qRJFv2ee+45AMCvv/5qsb5p06ZWYzUbPXo0HB0dleWoqCiICMaNG2fRLyoqCidPnkRpaamy7no+T67m/PnzEBF4eXlZtfXs2RN2dnbKtcS2bdsGR0dHdOvWDW5ubujQoYNyuoH534qnGgBQtl3+1CgiqhzzGkvMa5jXMK+xTV5zrdvV6XS499578dtvvyE/P195/JIlS9CoUSPld/2NvEZPPPGExfK1fOZUNR7nzp2Dg4MD3NzcrNp69+5tcW2xbdu2oWfPngCAXr16Yd++fcq4tm3bhqioKNXrOJr3cdIeXtWT6pS5c+eiRYsWcHBwQEBAAFq2bAk7O9vUcN955x2MGTMGISEhiIyMxB133IHRo0ejWbNmAMr++J00aRJmzZqFb775Bn369MGQIUPw4IMPWiQc27Ztw/Tp07F9+3arD/6cnByLvuV/YZp5eXnhwoULynJycjKGDx9+xbEnJSXh8OHD8PPzU23PzMys9LEnTpwAAERERFisd3R0VOZui+epzMqVK/HGG28gPj7e4voe5gT5aoKDg+Hq6mqxznxXmdTUVPTo0QMnTpxARESE1b7SunVrAP/EwKzi62J+zUJCQlTXl3+9ACA8PNxq/OXHFBgYiKSkJOzfv/+GYpmUlAQAld4R0MPDw2LZYDBYPU/F/exKbjQe5ri2bNnSaputW7fG6tWrUVBQgLy8PBQWFlrtg+bHmpNNoGzuIqLaF4BFEep65mQu6ly4cAEeHh44ceIE7OzsEB4ebtEvMDAQRqPRap8pfyfHqz3XleJnMpmQk5MDHx8fANf3eXKtROV6YEajEW3btrUogHXu3Fn5I69nz54WbXq9Ht27d69029f6/iXSOuY16pjXMK8pj3nN1VXMQ65nuyNGjMDs2bPx888/Y9SoUcjPz8dvv/2Gxx57THndr/c1cnBwQOPGja3GeLXPHFvFQ03v3r3xv//9D9u2bUP//v1x6NAhvPPOOwDK8pzS0lLs2rULoaGhOHPmDB555BHV7YgI8xyNYnGM6pTu3buja9eulbbrdDrVP/yu5QKd9913H/r06YPly5djzZo1ePfdd/H2229j2bJlGDhwIADgv//9L8aOHYuffvoJa9aswdNPP42ZM2dix44daNy4MZKTk9G/f3+0atUKs2bNQkhICPR6PX777Tf873//s7ogqb29vepY1OZwJSaTCe3bt8esWbNU2yv+sr9Rtn6eP/74A0OGDMFNN92Ejz76CEFBQXB0dMSCBQvw7bff2mLIN6Sy18VWrxdQFstbb70VL774omq7Oems7LEA8PXXXyMwMNCqveK3XJWN+1rVRDyulclkgk6nw++//676/GrfFKq51rFfa/JT/kiBa32uq43hej9Prsbb2xs6na7SPx569+6N+fPnIzs72+LbVKAsafziiy9QUlKCrVu3IjIy0uIuUGbmbfv6+l7X2Ii0inmNOuY1tsW8xlJDzGsq5iHXs90ePXogLCwMS5cuxahRo/DLL7+gsLAQI0aMsNgecO2vkZOTk2qh/2qfOVWNh4+PD0pLS5GXlwd3d3eLNvNRcFu3boWLiwsAKEcQ+vr6IiIiAlu3blUu/K92hDxQluswz9EmFseoXvHy8lI9pLriN2iVCQoKwpNPPoknn3wSmZmZ6NKlC/7zn/8oSSQAtG/fHu3bt8crr7yCP//8E7169cL8+fPxxhtv4JdffkFRURF+/vlni2+lbuSwfLPmzZvj4MGDV+2TkJCA/v37X/c3GaGhoQDKvqkp/21QSUkJUlJS0LFjR5s8j5off/wRBoMBq1evhpOTk7J+wYIF17yN06dPo6CgwOJb1sTERABQ7uQVGhqK/fv3w2QyWfyiPnLkiNJuS8eOHbP6VqnimJo3b478/Hyru+lcC/OdBv39/W/o8TXFHNejR49atR05cgS+vr5wdXWFwWCAs7Oz8q1keRUf27x5c4gImjZtesVEu6pCQ0NhMpmQlJSkfBMPABkZGcjOzrb5PqPG1p8nDg4OaN68uXIXvIp69+6NefPmYd26ddi3bx9eeOEFpa1nz54oLCzEr7/+iuPHj1d61Id52+VjRkQ3jnkN8xqAeU1dUZ/ymuvd7n333Yf3338fubm5WLJkCcLCwtCjRw+L7QG2eY2u9JlT1Xi0atUKQFk+0qFDB4s2f39/pQDm6uqKNm3awGg0Ku3mo+RPnToFe3t7i1Nvy6v4OULawWuOUb3SvHlzHDlyBFlZWcq6hIQEi1vzqrl8+bLVdTP8/f0RHBysHBKfm5trcS0goOzD3c7OTulj/oaj/DdMOTk515UUVTR8+HAkJCRg+fLlVm3m57nvvvvw999/49NPP7XqU1hYiIKCgkq337VrV/j5+WH+/PkoLi5W1i9cuBDZ2dkWfavyPGrs7e2h0+ksvgFPTU3FihUrrnkbpaWlFrfGLi4uxscffww/Pz9ERkYCAO644w6kp6djyZIlFo/74IMP4Obmhr59+17XuK/m9OnTFq9Xbm4uvvrqK3Tq1En5tu2+++7D9u3bsXr1aqvHZ2dnW+1r5Q0YMAAeHh548803UVJSYtVefv+vTUFBQejUqRO+/PJLi33p4MGDWLNmDe644w4AZfvBgAEDsGLFCqSlpSn9Dh8+bBWfYcOGwd7eHjNmzLD6JldEcO7cOZuM3Ty22bNnW6w3H10waNAgmzzPlVTH50l0dDT27Nmj2mb+hnTWrFkoKSmxOHIsLCwMQUFByukHlX2bGhcXB09PT7Rt2/aGx0hE/2Bew7yGeQ3zmhtxvdsdMWIEioqK8OWXX2LVqlW47777LNpt8Rpdy2dOVeNhLmhdKdeJj4/HmjVrLPIcoKw4tn37dvzxxx/o0KGD1ZFnQNnnX3JystVjSRt45BjVK+PGjcOsWbMwYMAAPPzww8jMzMT8+fPRtm1b5ULbavLy8tC4cWPcc8896NixI9zc3LBu3Trs3r0b//3vfwEAGzZswIQJE3DvvfeiRYsWKC0txddffw17e3vlKIrbbrsNer0egwcPxmOPPYb8/Hx8+umn8Pf3x5kzZ25oTi+88AJ++OEH3HvvvRg3bhwiIyNx/vx5/Pzzz5g/fz46duyIf/3rX1i6dCkef/xxbNy4Eb169cLly5dx5MgRLF26FKtXr670tA1HR0e88cYbeOyxx3DLLbdgxIgRSElJwYIFC6yuzVGV51EzaNAgzJo1C7fffjtGjRqFzMxMzJ07F+Hh4di/f/81bSM4OBhvv/02UlNT0aJFCyxZsgTx8fH45JNPlOsSjB8/Hh9//DHGjh2LuLg4hIWF4YcffsC2bdswe/Zs1V9+VdGiRQs8/PDD2L17NwICAvDFF18gIyPD4o+JF154AT///DPuvPNOjB07FpGRkSgoKMCBAwfwww8/IDU1tdJDtj08PDBv3jz861//QpcuXXD//ffDz88PaWlp+PXXX9GrVy98+OGHNp3TjXr33XcxcOBAREdH4+GHH0ZhYSE++OADeHp64rXXXlP6zZgxA6tWrUKfPn3w5JNPKkl+27ZtLfaF5s2b44033sCUKVOQmpqKu+66C+7u7khJScHy5csxfvx4PP/881Ued8eOHTFmzBh88sknyM7ORt++fbFr1y58+eWXuOuuu3DzzTdX+Tmupjo+T4YOHYqvv/4aiYmJVt/INmnSBCEhIdi+fTvCwsIQHBxs0d6zZ0/8+OOP0Ol06NWrl+r2165di8GDB/NaHEQ2wryGeQ3zGuY1N5LXXO92u3TpgvDwcLz88ssoKiqyOKUSsM1rdC2fOVWNR7NmzdCuXTusW7fO6sZHQFlxbMGCBdi9ezdiY2Mt2nr27ImcnBzk5OTgqaeeUt3+unXrICIYOnToFedKDVQ13gmT6JqZb3m+e/fuq/ZdtGiRNGvWTPR6vXTq1ElWr1591VueFxUVyQsvvCAdO3YUd3d3cXV1lY4dO8pHH32k9D9+/LiMGzdOmjdvLgaDQby9veXmm2+WdevWWWz3559/lg4dOojBYJCwsDB5++235YsvvhAAkpKSovQLDQ2VQYMGWY1f7bbt586dkwkTJkijRo1Er9dL48aNZcyYMXL27FmlT3Fxsbz99tvStm1bcXJyEi8vL4mMjJQZM2ZITk7OVeP20UcfSdOmTcXJyUm6du0qW7ZsUR1LVZ5H7XX4/PPPJSIiQpycnKRVq1ayYMEC5bbUV9O3b19p27at7NmzR6Kjo8VgMEhoaKh8+OGHVn0zMjLkoYceEl9fX9Hr9dK+fXtZsGCBRR/zLc/fffddi/UbN25UvfW02n5pfl1Xr14tHTp0UOaldtvqvLw8mTJlioSHh4terxdfX1/p2bOnvPfee8rt2q9k48aNMmDAAPH09BSDwSDNmzeXsWPHyp49e5Q+Y8aMEVdXV6vHXmuMK9tPAUhsbKzFusrit27dOunVq5c4OzuLh4eHDB48WP766y+rbW7evFkiIyNFr9dLs2bNZP78+ZWO88cff5TevXuLq6uruLq6SqtWrSQ2NlaOHj16xfmYt5eVlWWx3vxaln+PlpSUyIwZM6Rp06bi6OgoISEhMmXKFItb3F8pRtez31Q2tmv9PFF7r6opKioSX19fef3111XbR44cKQBk1KhRVm2zZs0SAJXevvzw4cMCwOozkYisMa9hXqOGeQ3zGlvlNTey3ZdfflkASHh4eKXPV5XX6Fo/c6oSD5GyfMXNzU0uXrxo1Xb06FEBIAAkMTHRos1kMonRaBQAsmTJEtVtjxgxQnr37n3VMVDDpBOpxisQEhFVQb9+/XD27NmrXrukJoWFhaFdu3ZYuXJlbQ+FSNXrr7+OBQsWICkpqcoXNS5v4sSJ2LJlC+Li4njkGBHRDWBeQ1R1OTk5aNasGd555x08/PDDNttueno6mjZtisWLF/PIMY3iNceIiIgakGeffRb5+flYvHixzbZ57tw5fPbZZ3jjjTdYGCMiIqJa4+npiRdffBHvvvvudd/Z+0pmz56N9u3bszCmYbzmGBERUQPi5uaGzMxMm27Tx8cH+fn5Nt0mERER0Y2YPHkyJk+ebNNtvvXWWzbdHtU/PHKMiIiIiIiIiIg0i9ccIyIiIiIiIiIizeKRY0REREREREREpFksjhERERERERERkWaxOEZERERERERERJpVr+5WuWXLFrz77ruIi4vDmTNnsHz5ctx1111Ku4hg+vTp+PTTT5GdnY1evXph3rx5iIiIUPqcP38eTz31FH755RfY2dlh+PDheP/99+Hm5qb02b9/P2JjY7F79274+fnhqaeewosvvnhdYzWZTDh9+jTc3d1523siIiKNEhHk5eUhODgYdnaVfydZX3Ic5jdEREQEXHuOU29IPfLbb7/Jyy+/LMuWLRMAsnz5cov2t956Szw9PWXFihWSkJAgQ4YMkaZNm0phYaHS5/bbb5eOHTvKjh075I8//pDw8HAZOXKk0p6TkyMBAQHywAMPyMGDB+W7774TZ2dn+fjjj69rrCdPnhQA/OEPf/jDH/7whz9y8uTJBpHjML/hD3/4wx/+8Ic/5X+uluPUF/X2bpU6nc7iW1URQXBwMJ577jk8//zzAICcnBwEBARg4cKFuP/++3H48GG0adMGu3fvRteuXQEAq1atwh133IFTp04hODgY8+bNw8svv4z09HTo9XoAwEsvvYQVK1bgyJEj1zy+nJwcGI1GnDx5Eh4eHjadu8lkQlZWFvz8/BpGhdZGGBd1jIs6xkUd46KOcVHHuKgrH5f8/HyEhIQgOzsbnp6e1/T4upzjVGd+A3CfqgzjYo0xUce4qGNc1DEu6hgXdRXjkpube905Tl1Wr06rvJKUlBSkp6cjJiZGWefp6YmoqChs374d999/P7Zv3w6j0agkjQAQExMDOzs77Ny5E3fffTe2b9+Om266SUkaAWDAgAF4++23ceHCBXh5eak+f1FREYqKipTlvLw8AICbm5vF6Qy2YDKZUFhYCDc3N75Zy2Fc1DEu6hgXdYyLOsZFHeOirnxczKpyCmJt5jg1md8A3Kcqw7hYY0zUMS7qGBd1jIs6xkVdxbiYTCYAVctx6pIGUxxLT08HAAQEBFisDwgIUNrS09Ph7+9v0e7g4ABvb2+LPk2bNrXahrmtsuLYzJkzMWPGDKv1WVlZuHTp0g3MqHImkwk5OTkQkSq/WY+tOobw28NtNLKad2zVMQBA+O3hSFqVhBLHEhwrOQYd/nmDht8ervSrqD7PXY3aPAUC3yhfHFtdFpeGNmc15eNgfv3L7wfht4fb9H3UkDAu6hgXdYyLuvJxKSgoqPL2ajPHqcn8BuA+VRnGxRpjoo5xUce4qGNc1DEu6irGxfyFWUPRYIpjtW3KlCmYNGmSsmw+xNDPz69aTqvU6XQ2OczzVPEpq2S6PjlVfAoA4O/vj5PFJwEAhmKDRXHM399f6VdRfZ67GrV5CgRGoxH5xfnQQdfg5qymfBzMr3/5/cDf39+m76OGhHFRx7ioY1zUlY9Lfn5+bQ+nSmoyvwG4T1WGcbHGmKhjXNQxLuoYF3WMi7qKcTEYDLU9JJtqMMWxwMBAAEBGRgaCgoKU9RkZGejUqZPSJzMz0+JxpaWlOH/+vPL4wMBAZGRkWPQxL5v7qHFycoKTk5PVejs7u2p5Q+l0OptsWwddvX7Dm4tgdnZ20FX4z8zcpqY+z11NZfPU6f6JS0Obsxq117/8fmCOga3eRw0N46KOcVHHuKizZVxqM8ep6fwG4D5VGcbFGmOijnFRx7ioY1zUMS7qyselocWmwcymadOmCAwMxPr165V1ubm52LlzJ6KjowEA0dHRyM7ORlxcnNJnw4YNMJlMiIqKUvps2bIFJSUlSp+1a9eiZcuWlZ5SSURERFRdmOMQERERVa96VRzLz89HfHw84uPjAZRdoDY+Ph5paWnQ6XSYOHEi3njjDfz88884cOAARo8ejeDgYOVuT61bt8btt9+ORx99FLt27cK2bdswYcIE3H///QgODgYAjBo1Cnq9Hg8//DAOHTqEJUuW4P3337c4pYCIiIjIlpjjEBEREdWeenVa5Z49e3DzzTcry+ZkbsyYMVi4cCFefPFFFBQUYPz48cjOzkbv3r2xatUqi3Nhv/nmG0yYMAH9+/eHnZ0dhg8fjjlz5ijtnp6eWLNmDWJjYxEZGQlfX19MmzYN48ePr7mJEhERkaYwxyEiIiKqPfWqONavXz+ISKXtOp0O//73v/Hvf/+70j7e3t749ttvr/g8HTp0wB9//HHD4yQiIiK6HsxxiIiIiGpPvTqtkoiIiIiIiIiIyJZYHCMiIiIiIiIiIs1icYyIiIiIiIiIiDSLxTEiIiIiIiIiItIsFseIiIiIiIiIiEizWBwjIiIiIiIiIiLNYnGMiIiIiIiIiIg0i8UxIiIiIiIiIiLSLBbHiIiIiIiIiIhIs1gcIyIiIiIiIiIizWJxjIiIiIiIiIiINIvFMSIiIiIiIiIi0iwWx4iIiIiIiIiISLNYHCMiIiIiIiIiIs1icYyIiIiIiIiIiDSLxTEiIiIiIiIiItIsFseIiIiIiIiIiEizWBwjIiIiIiIiIiLNYnGMiIiIiIiIiIg0i8UxIiIiIiIiIiLSLBbHiIiIiIiIiIhIs1gcIyIiIiIiIiIizWJxjIiIiIiIiIiINIvFMSIiIiIiIiIi0iwWx4iIiIiIiIiISLNYHCMiIiIiIiIiIs1icYyIiIiIiIiIiDSLxTEiIiIiIiIiItIsFseIiIiIiIiIiEizWBwjIiIiIiIiIiLNYnGMiIiIiIiIiIg0i8UxIiIiIiIiIiLSLBbHiIiIiIiIiIhIs1gcIyIiIiIiIiIizWJxjIiIiIiIiIiINIvFMSIiIiIiIiIi0iwWx4iIiIiIiIiISLNYHCMiIiIiIiIiIs1icYyIiIiIiIiIiDSLxTEiIiIiIiIiItIsFseIiIiIiIiIiEizWBwjIiIiIiIiIiLNYnGMiIiIiIiIiIg0i8UxIiIiIiIiIiLSLBbHiIiIiIiIiIhIs1gcIyIiIiIiIiIizWJxjIiIiIiIiIiINKvBFcdee+016HQ6i59WrVop7ZcuXUJsbCx8fHzg5uaG4cOHIyMjw2IbaWlpGDRoEFxcXODv748XXngBpaWlNT0VIiIiIgDMb4iIiIiqk0NtD6A6tG3bFuvWrVOWHRz+meazzz6LX3/9Fd9//z08PT0xYcIEDBs2DNu2bQMAXL58GYMGDUJgYCD+/PNPnDlzBqNHj4ajoyPefPPNGp8LEREREcD8hoiIiKi6NMjimIODAwIDA63W5+Tk4PPPP8e3336LW265BQCwYMECtG7dGjt27ECPHj2wZs0a/PXXX1i3bh0CAgLQqVMnvP7665g8eTJee+016PX6mp6OzcV9EgcAiBwfabW+4joiIiKqG5jfEBEREVWPBlkcS0pKQnBwMAwGA6KjozFz5kw0adIEcXFxKCkpQUxMjNK3VatWaNKkCbZv344ePXpg+/btaN++PQICApQ+AwYMwBNPPIFDhw6hc+fOqs9ZVFSEoqIiZTk3NxcAYDKZYDKZbDo/k8kEEbnh7Qrkn+2gbDt7P9urrKtPKs7F/F955jY19W2+V6M2T4FARCxi1dCVj0P5/bx8DKr6PmqoGBd1jIs6xkVd+bjYMjYNPb8xb5f7lDXGxRpjoo5xUce4qGNc1DEu6irGpaHFp8EVx6KiorBw4UK0bNkSZ86cwYwZM9CnTx8cPHgQ6enp0Ov1MBqNFo8JCAhAeno6ACA9Pd0icTS3m9sqM3PmTMyYMcNqfVZWFi5dulTFWVkymUzIycmBiMDO7tovG3ds1bGy//n/L4czMzNxSX9J+de8rj4pP+5L+ksocSwBAOigU/qUn19F9W2+V6M2T4EgOzsbl/SXoIOuwc1ZTfk4VLaf3+j7qKFjXNQxLuoYF3Xl41JQUGCTbWohvwG4T1WGcbHGmKhjXNQxLuoYF3WMi7qKccnLy6vtIdlUgyuODRw4UPn/Dh06ICoqCqGhoVi6dCmcnZ2r7XmnTJmCSZMmKcu5ubkICQmBn58fPDw8bPpcJpMJOp0Ofn5+1/VmPVV8ymLZ398fp4pPKf+a19Un5cd9svgkAMBQbLAojpWfX0X1bb5XozZPgcBoNCK/OB866BrcnNWUj0Nl+/mNvo8aOsZFHeOijnFRVz4u+fn5NtmmFvIbgPtUZRgXa4yJOsZFHeOijnFRx7ioqxgXg8FQ20OyqQZXHKvIaDSiRYsWOHbsGG699VYUFxcjOzvb4tvVjIwM5RoegYGB2LVrl8U2zHd7UrvOh5mTkxOcnJys1tvZ2VXLG0qn0133tssXjICysemgU/41r6tPyo9bV+E/s/Lzq6i+zfdqKpunTvdPXBranNWovf5q+3ny6mQEjA7QREyux418vmgB46KOcVFX3XFpqPkNwH2qMoyLNcZEHeOijnFRx7ioY1zUlY9LQ4tNw5qNivz8fCQnJyMoKAiRkZFwdHTE+vXrlfajR48iLS0N0dHRAIDo6GgcOHDA4tSztWvXwsPDA23atKnx8RMRERFVxPyGiIiIyHYa3JFjzz//PAYPHozQ0FCcPn0a06dPh729PUaOHAlPT088/PDDmDRpEry9veHh4YGnnnoK0dHR6NGjBwDgtttuQ5s2bfCvf/0L77zzDtLT0/HKK68gNjZW9ZtTIiIiourG/IaIiIio+jS44tipU6cwcuRInDt3Dn5+fujduzd27NgBPz8/AMD//vc/2NnZYfjw4SgqKsKAAQPw0UcfKY+3t7fHypUr8cQTTyA6Ohqurq4YM2YM/v3vf9fWlIiIiEjjmN8QERERVZ8GVxxbvHjxFdsNBgPmzp2LuXPnVtonNDQUv/32m62HRkRERHRDmN8QERERVZ8Gf80xIiIiIiIiIiKiyrA4RkREREREREREmsXiGBERERERERERaRaLY0REREREREREpFksjhERERERERERkWaxOEZERERERERERJrF4hgREYC4T+JqewhERERERERUC1gcI1JhLpSwYEJERERERETUsLE4RkREREREREREmsXiGBERERERERERaRaLY0REREREREREpFkOtT0AorqC1xcjIiIiIiIi0h4eOUZERERERERERJrFI8dI83jEGBEREREREZF28cgxIiIiIiIiIiLSLBbHiIiIiIiIiIhIs1gcIyIiIiIiIiIizWJxjEiD4j6JU37My0RERERERERaxOIYERERERERERFpFotjRERERERERESkWSyOEWkMT6EkIiIiIiIi+geLY0REREREREREpFksjhERERERERERkWaxOEZERERERERERJrF4hgREREREREREWkWi2NERERERERERKRZLI4REZUT90kc7+hJRERERESkISyOERERERERERGRZrE4RkREREREREREmsXiGBERERERERERaRaLY0REREREREREpFksjhERERERERERkWaxOEZERERERERERJrF4hgREREREREREWkWi2NkIe6TuNoeAhERERERERFRjWFxjIiIiIiIiIiINIvFMSIiIiIiIiIi0iwWx4iIiIiIiIiISLNYHCMiIiIiIiIiIs1icYyIiIiIiIiIiDSLxTEiIiIiIiIiItIsFseIiIiIiIiIiEizWBwjIiIiIiIiIiLNYnGMiIiIiIiIiIg0i8UxIiIiIiIiIiLSLBbHiIiIiIiIiIhIs1gcIyIiIiIiIiIizWJx7Armzp2LsLAwGAwGREVFYdeuXbU9JCIiIqIqYX5DREREZInFsUosWbIEkyZNwvTp07F371507NgRAwYMQGZmZm0PjYiIiOiGML8hIiIissbiWCVmzZqFRx99FA899BDatGmD+fPnw8XFBV988UVtD42IiIjohjC/ISIiIrLmUNsDqIuKi4sRFxeHKVOmKOvs7OwQExOD7du3qz6mqKgIRUVFynJubi4AwGQywWQy2XR8JpMJInLd2xWI9XYgyr/l19cX5nGb52D+r7yK87vetvoYj4rrRKzjYlYf53k1Fffnivu5+X1Zft5qfbToRj9fGjrGRR3joq58XOpSbOp6fmPeLvcpa4yLNcZEHeOijnFRx7ioY1zUVYxLQ4uPTkTU/2LWsNOnT6NRo0b4888/ER0drax/8cUXsXnzZuzcudPqMa+99hpmzJhhtT4xMRHu7u42HZ/JZEJOTg48PT1hZ8eD/8wYF3WMizrGRR3joo5xUce4qCsfl4KCArRo0QI5OTnw8PCo1XHV9fwG4D5VGcbFGmOijnFRx7ioY1zUMS7qKsYlLy+vzuQ4tsAjx2xkypQpmDRpkrKcm5uLkJAQ+Pn52XxHMZlM0Ol08PPz45u1HMZFHeOijnFRx7ioY1zUMS7qysclPz+/todTJTWZ3wDcpyrDuFhjTNQxLuoYF3WMizrGRV3FuBgMhtoekk2xOKbC19cX9vb2yMjIsFifkZGBwMBA1cc4OTnBycnJar2dnV21vKF0Ol21bbs+Y1zUMS7qGBd1jIs6xkUd46KuLsalPuQ3QN2MXV3AuFhjTNQxLuoYF3WMizrGRV35uDS02LA4pkKv1yMyMhLr16/HXXfdBaCsSrp+/XpMmDDhmrZhPlvVfG0OWzKZTMjLy4PBYGhwO2RVMC7qGBd1jIs6xkUd46KOcVFXPi7mI8fqwlUs6np+Yx4P9ylrjIs1xkQd46KOcVHHuKhjXNRVjIs5F6gLOY4tsDhWiUmTJmHMmDHo2rUrunfvjtmzZ6OgoAAPPfTQNT0+Ly8PABASElKdwyQiIqJ6IC8vD56enrU9DOY3REREZFN1JcepKhbHKjFixAhkZWVh2rRpSE9PR6dOnbBq1SoEBARc0+ODg4Nx8uRJuLu7Q6fT2XRs5ut9nDx5skFc+M5WGBd1jIs6xkUd46KOcVHHuKgrHxd3d3fk5eUhODi4tocFoG7nNwD3qcowLtYYE3WMizrGRR3joo5xUVcxLiJSp3KcquLdKuuh3NxceHp6Npi7QtgK46KOcVHHuKhjXNQxLuoYF3WMy41j7NQxLtYYE3WMizrGRR3joo5xUdfQ48ITaImIiIiIiIiISLNYHCMiIiIiIiIiIs1icawecnJywvTp01Vvra5ljIs6xkUd46KOcVHHuKhjXNQxLjeOsVPHuFhjTNQxLuoYF3WMizrGRV1DjwuvOUZERERERERERJrFI8eIiIiIiIiIiEizWBwjIiIiIiIiIiLNYnGMiIiIiIiIiIg0i8UxIiIiIiIiIiLSLBbH6qG5c+ciLCwMBoMBUVFR2LVrV20PqVpt2bIFgwcPRnBwMHQ6HVasWGHRLiKYNm0agoKC4OzsjJiYGCQlJVn0OX/+PB544AF4eHjAaDTi4YcfRn5+fg3OwrZmzpyJbt26wd3dHf7+/rjrrrtw9OhRiz6XLl1CbGwsfHx84ObmhuHDhyMjI8OiT1paGgYNGgQXFxf4+/vjhRdeQGlpaU1OxabmzZuHDh06wMPDAx4eHoiOjsbvv/+utGsxJmreeust6HQ6TJw4UVmnxdi89tpr0Ol0Fj+tWrVS2rUYE7O///4bDz74IHx8fODs7Iz27dtjz549SrsWP3fDwsKs9hedTofY2FgA2t5fbIX5zQqLdi2+z5jfqGN+c22Y35RhflM55jfWmN+UI1SvLF68WPR6vXzxxRdy6NAhefTRR8VoNEpGRkZtD63a/Pbbb/Lyyy/LsmXLBIAsX77cov2tt94ST09PWbFihSQkJMiQIUOkadOmUlhYqPS5/fbbpWPHjrJjxw75448/JDw8XEaOHFnDM7GdAQMGyIIFC+TgwYMSHx8vd9xxhzRp0kTy8/OVPo8//riEhITI+vXrZc+ePdKjRw/p2bOn0l5aWirt2rWTmJgY2bdvn/z222/i6+srU6ZMqY0p2cTPP/8sv/76qyQmJsrRo0dl6tSp4ujoKAcPHhQRbcakol27dklYWJh06NBBnnnmGWW9FmMzffp0adu2rZw5c0b5ycrKUtq1GBMRkfPnz0toaKiMHTtWdu7cKcePH5fVq1fLsWPHlD5a/NzNzMy02FfWrl0rAGTjxo0iot39xVaY3zC/EWF+UxnmN1fH/OYfzG/UMb9Rx/zmHyyO1TPdu3eX2NhYZfny5csSHBwsM2fOrMVR1ZyKyaPJZJLAwEB59913lXXZ2dni5OQk3333nYiI/PXXXwJAdu/erfT5/fffRafTyd9//11jY69OmZmZAkA2b94sImUxcHR0lO+//17pc/jwYQEg27dvF5GypNzOzk7S09OVPvPmzRMPDw8pKiqq2QlUIy8vL/nss88YExHJy8uTiIgIWbt2rfTt21dJHrUam+nTp0vHjh1V27QaExGRyZMnS+/evStt5+dumWeeeUaaN28uJpNJ0/uLrTC/YX6jhvlN5Zjf/IP5jSXmN+qY31wbLec3PK2yHikuLkZcXBxiYmKUdXZ2doiJicH27dtrcWS1JyUlBenp6RYx8fT0RFRUlBKT7du3w2g0omvXrkqfmJgY2NnZYefOnTU+5uqQk5MDAPD29gYAxMXFoaSkxCIurVq1QpMmTSzi0r59ewQEBCh9BgwYgNzcXBw6dKgGR189Ll++jMWLF6OgoADR0dGMCYDY2FgMGjTIIgaAtveXpKQkBAcHo1mzZnjggQeQlpYGQNsx+fnnn9G1a1fce++98Pf3R+fOnfHpp58q7fzcLft9vGjRIowbNw46nU7T+4stML+xxvdZGeY31pjfWGN+Y435jTXmN1en9fyGxbF65OzZs7h8+bLFjgcAAQEBSE9Pr6VR1S7zvK8Uk/T0dPj7+1u0Ozg4wNvbu0HEzWQyYeLEiejVqxfatWsHoGzOer0eRqPRom/FuKjFzdxWXx04cABubm5wcnLC448/juXLl6NNmzaajgkALF68GHv37sXMmTOt2rQam6ioKCxcuBCrVq3CvHnzkJKSgj59+iAvL0+zMQGA48ePY968eYiIiMDq1avxxBNP4Omnn8aXX34JgJ+7ALBixQpkZ2dj7NixALT7HrIV5jfW+D5jflMR8xt1zG+sMb9Rx/zm6rSe3zjU9gCIqGpiY2Nx8OBBbN26tbaHUie0bNkS8fHxyMnJwQ8//IAxY8Zg8+bNtT2sWnXy5Ek888wzWLt2LQwGQ20Pp84YOHCg8v8dOnRAVFQUQkNDsXTpUjg7O9fiyGqXyWRC165d8eabbwIAOnfujIMHD2L+/PkYM2ZMLY+ubvj8888xcOBABAcH1/ZQiBos5jeWmN9YY36jjvmNOuY3V6f1/IZHjtUjvr6+sLe3t7o7REZGBgIDA2tpVLXLPO8rxSQwMBCZmZkW7aWlpTh//ny9j9uECROwcuVKbNy4EY0bN1bWBwYGori4GNnZ2Rb9K8ZFLW7mtvpKr9cjPDwckZGRmDlzJjp27Ij3339f0zGJi4tDZmYmunTpAgcHBzg4OGDz5s2YM2cOHBwcEBAQoNnYlGc0GtGiRQscO3ZM0/tLUFAQ2rRpY7GudevWyikZWv/cPXHiBNatW4dHHnlEWafl/cUWmN9Y0/r7jPmNNeY31pjfXBvmN2WY31wZ8xsWx+oVvV6PyMhIrF+/XllnMpmwfv16REdH1+LIak/Tpk0RGBhoEZPc3Fzs3LlTiUl0dDSys7MRFxen9NmwYQNMJhOioqJqfMy2ICKYMGECli9fjg0bNqBp06YW7ZGRkXB0dLSIy9GjR5GWlmYRlwMHDlh8wK9duxYeHh5WvzjqM5PJhKKiIk3HpH///jhw4ADi4+OVn65du+KBBx5Q/l+rsSkvPz8fycnJCAoK0vT+0qtXLxw9etRiXWJiIkJDQwFo93PXbMGCBfD398egQYOUdVreX2yB+Y01rb7PmN9cO+Y3zG+uFfObMsxvroz5DcC7VdYzixcvFicnJ1m4cKH89ddfMn78eDEajRZ3h2ho8vLyZN++fbJv3z4BILNmzZJ9+/bJiRMnRKTslrtGo1F++ukn2b9/vwwdOlT1lrudO3eWnTt3ytatWyUiIqJe33L3iSeeEE9PT9m0aZPFrXcvXryo9Hn88celSZMmsmHDBtmzZ49ER0dLdHS00m6+7e5tt90m8fHxsmrVKvHz86uXt901e+mll2Tz5s2SkpIi+/fvl5deekl0Op2sWbNGRLQZk8qUv5uTiDZj89xzz8mmTZskJSVFtm3bJjExMeLr6yuZmZkios2YiIjs2rVLHBwc5D//+Y8kJSXJN998Iy4uLrJo0SKljxY/d0XK7qDYpEkTmTx5slWbVvcXW2F+w/xGhPlNZZjfXDvmN8xvKsP8pnLMb8qwOFYPffDBB9KkSRPR6/XSvXt32bFjR20PqVpt3LhRAFj9jBkzRkTKbrv76quvSkBAgDg5OUn//v3l6NGjFts4d+6cjBw5Utzc3MTDw0MeeughycvLq4XZ2IZaPADIggULlD6FhYXy5JNPipeXl7i4uMjdd98tZ86csdhOamqqDBw4UJydncXX11eee+45KSkpqeHZ2M64ceMkNDRU9Hq9+Pn5Sf/+/ZXEUUSbMalMxeRRi7EZMWKEBAUFiV6vl0aNGsmIESPk2LFjSrsWY2L2yy+/SLt27cTJyUlatWoln3zyiUW7Fj93RURWr14tAKzmKqLt/cVWmN8wv2F+o475zbVjfsP85kqY36hjflNGJyJSU0epERERERERERER1SW85hgREREREREREWkWi2NERERERERERKRZLI4REREREREREZFmsThGRERERERERESaxeIYERERERERERFpFotjRERERERERESkWSyOERERERERERGRZrE4RkT1Xo8ePfDee+/V2vMvWrQIgYGBlba3bNkSn376aQ2OyPbuueceTJw4UVnu2rUrZs+eXWvjISIi0gLmONWPOQ4RASyOEVE9ZzKZcODAAXTs2LHWxpCQkIBOnToBKEuoFi1aZNG+ZcsWjB079rq2Z2dnh5ycHBuOsmri4+OVOZaWluLQoUPKMhEREdkec5yawRyHiAAWx4ionktMTMTFixfRoUOHa35MSUmJTcdQPnFUExAQAEdHx2ve3q5duxAeHg5PT88qjctW88zLy8Px48eVOR45cgSXLl2q1WSdiIiooWOOUznmOERkayyOEVGVJScnQ6fTYeXKlejfvz9cXFzQsmVL7Ny506Lf8uXL0a1bN7i4uCA8PBwLFiywaA8LC8Pbb7+NBx54AO7u7ggNDcWaNWtw8uRJDBs2DO7u7mjVqhX27dunPCY+Ph4BAQHYuHEjWrduDXd3dwwbNgwXLlxQ+owdOxajRo3Cyy+/jMDAQERGRgIALl68iKlTp6Jx48ZwdXXFTTfdhIMHD151rnfeeSdcXFzQokULbN68+YqJ48KFCxEWFqYsv/rqq4iJicHcuXMREREBV1dX3H333SgqKgIAjB49GuPHj0dSUhJ0Oh10Oh2OHDkCADh06BDuvPNOuLm5wd/fHxMmTFAeBwD9+vXDpEmT8OSTT8Lb2xvDhw9H9+7d8corr1iM6eTJk3B2dsa2bdsAAOvXr0dMTAx8fX3h6uqKPn364MCBA0r/hIQEODg4oE2bNkrMmzRpAi8vL6XPL7/8gq5du8JgMKBZs2b4+OOPLZ7z448/Rvv27eHi4gIfHx/cfvvtMJlMV4w1ERFRbWOOwxyHOQ6RRggRURX9+OOPotPp5Oabb5aNGzdKYmKixMTESL9+/ZQ+n3zyiXh6esrChQvl+PHjsnDhQrGzs5MtW7aIiMiFCxcEgERERMjSpUslKSlJBgwYIBEREdKvXz/59ddf5ciRI9KrVy8ZMmSIst3JkyeLq6urDBs2TA4dOiSbN2+WRo0aSWxsrNKnU6dO4u7uLlOmTJEjR45IYmKiFBYWSrdu3WT48OGye/duSUxMlHHjxkl4eLiYTCbVeWZkZEijRo1k/PjxcvjwYVm7dq1EREQIADl8+LCIiERGRsrXX3+tPGbixIkydOhQZXnw4MHi6ekpzz77rBw6dEg2bNggrq6usnDhQhEROX/+vPTo0UOmTJkiZ86ckTNnzojJZJJt27aJp6enzJ49W5KSkmTLli0SHh4ur7/+urJtLy8v8fb2lv/+97+SlJQkx48fl3Hjxsndd99tMY+HHnrIIoaLFi2S5cuXS2Jiouzfv18GDx4s3bt3V9o/+OAD6dChg7L83HPPWTz+vffek9DQUPnhhx/k+PHjsnjxYjEYDMpru2jRImncuLGsXLlSUlNTZffu3TJnzhzVGBMREdUlzHGY4zDHIdIGFseIqMqmTZsmXl5ekpmZqaybM2eOtG3bVkTKEi5nZ2dZunSpxeN69uwpL774ooiIbNq0SQDIhg0blPbPPvtMdDqdHDx4UFn31ltvWSQ1AwYMkE6dOsnly5eVdf/5z3+U5y4uLha9Xm+RSJr79O3b1yJJPHv2rACQEydOqM5z3LhxctNNN1mse/7558XFxcXi+cvr16+fTJs2TVlu0qSJPPDAAxZ9unTpIu+++66ybDQa5ZdfflGWS0tLpVWrVvLFF19YPO69996Tm2++WUREUlNTBYDFdkREZs2aJS1btlSWDx06JHq9Xg4dOqQ6XhGR1atXi6enp7L88MMPy+jRo5Xl/v37K3NKSUkRV1dXOXLkiMU27rzzTpkxY4aIiPzrX/+SUaNGVfp8REREdRVzHOY4zHGItIGnVRJRlSUkJGDo0KHw8/NT1qWkpCA8PBwAsGzZFejTegAABspJREFUMhiNRgwfPtzicXq9XjlkPiEhAc2bN8fNN9+stKelpaF79+5o27atxbqmTZsqy/Hx8Xj66adhZ/fPx5mXl5dyOPvhw4dRXFyMp59+2uK5P/vsM2zfvh3u7u5wc3ODm5sbQkNDAQAODg5Wc7x06RK+++47i7sZAYCjoyPat29v8fwVY2M+HSE7OxtpaWl49NFHLfqkpqYqsUpJSUF2drbFtS62bduGI0eOYMKECcpY3dzcMHXqVGWsCQkJ0Ov1eOyxxyy23b59eyQnJ6O4uBgAMHXqVDz44IPK6QMlJSX46KOP0LNnTwQFBcHNzQ1DhgxB48aNLWJcfjwJCQnK8ldffYWLFy8iMjLSYmy///67MrY77rgDS5cuRa9evfD+++/jzJkzqrEiIiKqa5jjMMdhjkOkDdafjkRE1ykhIQFTpkyxWBcfH4+bbroJQNl1JNq0aWORXJlMJhw5cgQPPvig0j8qKspqGz169LBad+eddwIA0tPTkZGRYXUtjB07dqBz585K/6CgILRo0UJpz83NRUpKCn7//XclYSsvODjYat3Ro0dRWFiILl26WKzfu3dvpdfiSEtLw4ULF5QkKyEhAfb29ujevbtFn/PnzyvbiI+Ph7e3N0JCQizm3KFDB/z4449Wz+Hu7q70iYyMVJbN2rVrh9LSUiQlJSE3Nxdr1qxBYmKi0j5+/Hhs3boV06ZNQ9u2beHh4YFJkyYp26l416ZTp07h7NmzFuN95JFH8OKLL1qNzd/fHwBw//33o1evXlixYgW++eYbTJkyBevXr0d0dLRq3IiIiOoK5jidrPoDzHGY4xA1PCyOEVGV5OTkIDU1VUnUzMzfdgJlyU1hYaFF+3fffYe8vDzcddddAMqSqpEjR1ptY9iwYcqyiGD//v14+eWXlXYAuHz5stLn9OnTWLJkCVauXKlst+LY7O3todPp4ODgoJo4qjEnveXncfDgQaxZswYfffSR6mMSEhLg4eGhfAuckJCAli1bwtnZWemzb98+GI1G5YK2ardsd3R0xPnz59G8eXPodLpKn6viPAEgMDAQvr6++Ouvv/DBBx/gqaeeUr4xLS4uxtdff41ly5ZhyJAhAMrit3nzZuUCt+a7NpVPFMvPydHRERcvXrxqHENCQvDUU09hwoQJCAsLw969e5k4EhFRncYchzkOcxwi7eBplURUJfv374eDgwPat2+vrDtx4gQuXLigJBsDBw7Ejh078PXXXyM1NRVfffUVYmNjMWfOHPj4+Fh9cwcAFy5cQFpamsW3mMeOHUN+fr5VEjN9+nQkJydjx44duPXWWzFs2DDExMQofSomVK6urujbty+effZZbNq0Campqdi6dSteeuklpKamqs4zIiICfn5+mDp1KhITE7Fx40bce++9EJFKv1U1fxtqTvbUkruKh/ObTCZkZWUhOTkZ6enpAID+/fsjKysLEyZMwOHDh3H06FH89NNPmDZtmsV21BJHoOyb1VmzZuHgwYMW3347OjrCw8MDv/zyC44fP45Vq1Zh+PDhyM3NtfhWunHjxvD29lad0x133IElS5Zg/vz5OH78OBISEvD555/jyy+/BFB2ase8efNw4MABJCcn45133sGFCxcwYMAA1bESERHVFcxxmOMwxyHSkNq95BkR1XcffPCBcmFYs+XLl4vRaLRYN3/+fGnWrJkYDAaJjIyU5cuXK20HDhwQAJKVlaWs27hxozg5OUlJSYmy7vvvvxdfX19lecSIERIbGyuTJ08WDw8P8fPzk2nTplk8xsfHR77//nurcZ8+fVpGjRolAQEBYjAYJDw8XB5//HGLx1a0evVqiYiIEL1eL126dJE333xT7OzspKCgQLX/8OHDZcKECcpyZGSk1cVkhw4dKs8884yynJaWJlFRUaLX6y3m+vvvv0u3bt3E1dVVvLy8JDo6Wr799lsREcnNzRWdTie7d+9WHcdTTz0lAOSdd96xavvpp58kNDRUnJ2dJSYmRr799luL1+K5556TO++8s9I5iZRdEDciIkKcnJwkICBABg0apIxl/vz50r59e3FxcRGj0Sj9+/eXP//8U3WcREREdQlzHOY4zHGItEMnIlKbxTkiIiIiIiIiIqLawtMqiYiIiIiIiIhIs1gcIyIiIiIiIiIizWJxjIiIiIiIiIiINIvFMSIiIiIiIiIi0iwWx4iIiIiIiIiISLNYHCMiIiIiIiIiIs1icYyIiIiIiIiIiDSLxTEiIiIiIiIiItIsFseIiIiIiIiIiEizWBwjIiIiIiIiIiLNYnGMiIiIiIiIiIg0i8UxIiIiIiIiIiLSrP8DKQbI1FO2o58AAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 1400x400 with 4 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig1, axs1 = plt.subplots(2, 2, figsize=(14, 4))\n", + "\n", + "fig1.subplots_adjust(wspace=0.1, hspace=0.5)\n", + "\n", + "axs1[0,0].plot(np.arange(n+1), T_i.value, color='purple', linewidth=1.2, alpha=0.4)\n", + "axs1[0,0].set_title(\"Température à l'intérieur du bâtiment (°C)\")\n", + "axs1[0,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[0,1].bar(np.arange(n), I_i.value, color='purple',alpha=0.4)\n", + "axs1[0,1].set_title(\"Inconfort\")\n", + "axs1[0,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[0,1].grid('on', alpha=0.3)\n", + "\n", + "\n", + "axs1[1,0].bar(np.arange(n), p_n_i.value, color='purple', alpha=0.4)\n", + "axs1[1,0].set_title(\"Puissance de la pompe en mode normal (W)\")\n", + "axs1[1,0].set_ylim(-30,1030)\n", + "axs1[1,0].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,0].grid('on', alpha=0.3)\n", + "\n", + "axs1[1,1].bar(np.arange(n), p_r_i.value, color='purple',linewidth=1.2,alpha=0.4)\n", + "axs1[1,1].set_title(\"Puissance de la pompe en mode reverse (W)\")\n", + "axs1[1,1].set_ylim(-30,1030)\n", + "axs1[1,1].set_xlabel(\"nombre d'intervalles\", fontstyle='italic')\n", + "axs1[1,1].grid('on', alpha=0.3)\n", + "\n", + "title1 = fig1.suptitle(\"Graphes de la solution optimale (Inconfort minimal={} et budget utilisé={})\".format(objectif.value, c.T @ (p_n_i.value + p_r_i.value)),y=1.05)\n", + "title1.set_fontsize(15)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "32b36538", + "metadata": {}, + "source": [ + "Comme on peut s'y attendre, l'inconfort est beaucoup plus grand (le budget alloué est toujours de 3$) : il est de 19152, alors qu'il était de 6681 précédemment. Un inconfort quadratique est en effet plus pénalisant qu'un inconfort linéaire. Tandis que pour le cas linéaire, le graphe de l'inconfort présentait un pic à une valeur de 25, le pic est ici à 75. Une autre différence que l'on peut constater est que dans le cas linéaire, on observait 3 intervalles durant lesquels la pompe chauffait. A présent, il y en a un supplémentaire au début de la période simulée. Cela se produit parce que dans le cas linéaire, la température de la pièce descendait jusqu'à atteindre 10°C, mais aller si bas dans le cas quadratique ferait considérablement augmenter l'inconfort total. Il a donc fallu chauffer légèrement la pièce pour s'écarter un peu moins de la zone confortable. Le minimum de température est maintenant de 12°C environ." + ] + }, + { + "cell_type": "markdown", + "id": "2be891ab", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 2.4</b> :<br> \n", + " Pour terminez cette partie, résolvez encore une fois ce nouveau modèle, mais cette fois de façon exacte, en utilisant un solveur quadratique. Comparez avec la solution approchée obtenue précédemment (allure de la solution, temps de calcul).\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "bdd3bf32", + "metadata": {}, + "source": [ + "### Solveur utilisé" + ] + }, + { + "cell_type": "markdown", + "id": "0c5b5691", + "metadata": {}, + "source": [ + "$\\color{red}COMPLETER$" + ] + }, + { + "cell_type": "markdown", + "id": "7f47806b", + "metadata": {}, + "source": [ + "**Tâche 3** : on voudrait à présent mieux comprendre le compromis qui existe entre le budget alloué et l'inconfort total qui en résulte. Proposez un **graphique représentant au mieux cette relation entre budget et inconfort**, où on fera varier le budget entre entre zéro et le coût minimal identifié lors de la tâche 1 (ce budget sera indiqué en pourcentage, de 0 à 100%). Ceci nécessitera la résolution de plusieurs problèmes, et il sera judicieux d'utiliser la fonctionnalité _warm start_ du solver pour accélérer les calculs.\n", + "\n", + "<div class=\"alert alert-block alert-warning\"><b>A mentionner</b> :<br> \n", + "- graphique demandé + temps de calcul (total et moyenne par problème) + bref commentaire (maximum 4 lignes)<br>\n", + "- à nouveau pour les deux périodes mentionnées lors des tâches 1 et 2\n", + "</div>\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "eb40a4fa", + "metadata": {}, + "source": [ + "### Création de la fonction $resoudre(budget\\_autorise)$" + ] + }, + { + "cell_type": "markdown", + "id": "e9b4e1d8", + "metadata": {}, + "source": [ + "Mettons la résolution de la tâche 2 sous la forme d'une unique fonction qui prend comme paramètre le budget que l'on veut allouer à la régulation de température (ainsi que le volume de la pièce que l'on va changer pour obtenir un graphe supplémentaire, et l'heure et l'intervalle initiaux)." + ] + }, + { + "cell_type": "code", + "execution_count": 397, + "id": "4f3518c7", + "metadata": {}, + "outputs": [], + "source": [ + "def resoudre(budget_autorise, volume, intervalle, heure, print_dual = False):\n", + "\n", + "\tT_initial = 20 # [°C]\n", + "\tT_final = 20 # [°C]\n", + "\tT_min = 19 # [°C]\n", + "\tT_max = 21 # [°C]\n", + "\tp_max = 1000 # [W]\n", + "\teta = 0.99 # Isolation du bâtiment [/]\n", + "\tCx = 1000/(0.4*360) # Capacité calorifique du bâtiment [Wh/(°C*m^3)]\n", + "\tV = volume # Volume du bâtiment [m^3]\n", + "\tcout_heures_creuses = 0.00018 # [$/(Wh*h)]\n", + "\tcout_heures_pleines = 0.00026 # [$/(Wh*h)]\n", + "\tbudget = budget_autorise # [$]\n", + "\n", + "\theure_initiale = heure # Compris dans l'intervalle [0,24[ [h]\n", + "\tintervalle_initial = intervalle\n", + "\tn = 672 # Nombre de périodes/intervalles\n", + "\tdata = np.load(\"info.npy\")\n", + "\tT_ext = data[intervalle_initial:intervalle_initial+n]\n", + "\n", + "\tI_i = cp.Variable(n)\n", + "\n", + "\tCOP_normal = lambda f: 3+10*abs(np.tanh(f/100))*np.tanh(f/100)\n", + "\tCOP_reverse = 3.2\n", + "\n", + "\tT_i = cp.Variable(n+1)\n", + "\tdeltaT_i = cp.Variable(n)\n", + "\n", + "\tc = np.zeros(n)\n", + "\tfor i in range(n):\n", + "\t\tc[i]= cout_heures_creuses*0.25 if 0 <= (heure_initiale+(i+1)*0.25)%24 <= 7 or 22 < (heure_initiale+(i+1)*0.25)%24 <= 24 else cout_heures_pleines*0.25\n", + "\n", + "\tp_n_i = cp.Variable(n) # Normal\n", + "\tp_r_i = cp.Variable(n) # Reverse\n", + "\n", + "\tf_froid = lambda T: -3*T+3*T_min\n", + "\tf_chaud = lambda T: T-T_max\n", + "\n", + "\tobjectif = cp.Minimize(cp.sum(I_i))\n", + "\tcontraintes = [c.T@(p_n_i+p_r_i) <= budget, T_i[0] == T_initial, T_i[1:n+1] == T_i[0:n]+deltaT_i, (p_n_i+p_r_i) <= p_max, 0 <= p_n_i, 0 <= p_r_i,\n", + "\t\t\t\tdeltaT_i == -(1-eta)*(T_i[0:n]-T_ext)+(cp.multiply(p_n_i,COP_normal(T_ext)))*0.25/(V*Cx)-p_r_i*COP_reverse*0.25/(V*Cx),\n", + "\t\t\t\tI_i >= f_froid(T_i[0:n]), I_i >= f_chaud(T_i[0:n]), I_i >= 0]\n", + "\tprobleme = cp.Problem(objectif, contraintes)\n", + "\tprobleme.solve(solver=cp.SCIPY, scipy_options={\"method\":\"highs\"})\n", + "\n", + "\tif (print_dual): print(\"Valeur duale de la contrainte de budget =\",contraintes[0].dual_value)\n", + "\treturn objectif.value" + ] + }, + { + "cell_type": "markdown", + "id": "5771ea0c", + "metadata": {}, + "source": [ + "### Calcul de l'inconfort pour des fractions du budget minimal requis" + ] + }, + { + "cell_type": "markdown", + "id": "2e0ae6ba", + "metadata": {}, + "source": [ + "Nous pouvons maintenant résoudre le même problème de la tâche 2 plusieurs fois, mais avec des budgets différents. En partant du budget minimal identifié dans la tâche 1, nous allons évaluer l'inconfort résultant lorsque nous n'utilisons qu'une fraction de ce budget minimal." + ] + }, + { + "cell_type": "markdown", + "id": "caedf962", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 3.1</b> :<br> \n", + " Fournissez le graphique et les commentaires demandé ci-dessus\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "0b194fe0", + "metadata": {}, + "source": [ + "### Intervalle 13050" + ] + }, + { + "cell_type": "code", + "execution_count": 391, + "id": "e0a8c553", + "metadata": {}, + "outputs": [], + "source": [ + "cout_minimal_obtenu_a_la_tache_1 = 8.182333695034458\n", + "pourcentage_budget = np.linspace(0, cout_minimal_obtenu_a_la_tache_1, 100)\n", + "inconfort_minimal = []\n", + "\n", + "for budget in pourcentage_budget:\n", + " inconfort = resoudre(budget, 360, 13050, 22.5)\n", + " inconfort_minimal.append(inconfort)" + ] + }, + { + "cell_type": "code", + "execution_count": 392, + "id": "85a5e73a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHVCAYAAAAabkpzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAACb8klEQVR4nOzdeXwTZf4H8M8kaY6mzdE2PZOWsy3IKXIUPECFWtAVj+WQVRQEEZVVFFe8AEXRn+KxXrjKou6iIIg3CAviRQE5BYFyH+lBW9ocvZI0mef3R8jQkLSkR5Ie3/frxUvzzDOTb76ZJN/OPPMMxxhjIIQQQghp50ThDoAQQgghJBSo6CGEEEJIh0BFDyGEEEI6BCp6CCGEENIhUNFDCCGEkA6Bih5CCCGEdAhU9BBCCCGkQ6CihxBCCCEdAhU9hBBCCOkQqOghHc4333yDa6+9FlqtFiKRCBzH4eGHHw53WO1SeXk5Zs2aha5du0Imk4HjOHAcB7PZHO7Qguqjjz4Cx3Ho1KlTuENpcT/99JPwPoba3XffDY7jcPfdd4f8uQM1fPhwcByH+fPnhzsU4ock3AGQ4Jk/fz4WLFgAAKC7jbh98cUXuP322wEAYrEYcXFxEIlEUKlUIY3D84V49913t8sfRgBwuVy47rrrsHfvXgBAVFQUtFotAEAkapt/b506dQofffQRANCPGmlTPvroI5w6dQrDhw/H8OHDwx1O2FDRQzqUV155BQBw22234ZNPPkFkZGRY4vAUo8OHD2+3Rc///vc/7N27FxEREfjxxx9x5ZVXhjukZjt16pTw3jVU9KjVamRkZCAlJSVEkRHSsI8++gg///wzAFDRQ0hHsX//fgDuIyzhKng6Ck+u+/Tp0y4Knsa45ZZbcMstt4Q7DELIRdrmMWZCmqi6uhqA+1QLCS7KNSGktaGip4O6eDDisWPHMGXKFBgMBshkMuj1ekybNg0FBQUNbsfhcODDDz/EDTfcgISEBMhkMiQlJSErKwvPPfccTp486Xe9PXv24K677kJaWhrkcjm0Wi2GDh2KN954A3a73e86Fw8O3bVrF8aNG4ekpCTIZDJ06dIFs2fPhslk8lrv1KlTPgMvR4wYIbT5G5DZEvFt3rwZY8eORVJSEsRiMe6++25hIGZ9cTTlVBfP81i+fDlGjx6NhIQESKVS6HQ6jBo1Cp999lm947k6deoEjuPw0UcfweFw4JVXXkHfvn2hVCqhVqtx7bXX4ocffmh0PJ7X6Dn98/PPP3u9xotPC9lsNrzxxhsYOnQotFot5HI50tLScNdddwnjgYIZ//bt23HPPfegW7duiIyMhEqlQs+ePTFlyhSsX7/e6/lGjBghPK77mi4eXBvIQObjx4/j/vvvR/fu3aFQKKBSqXD55Zfjueeeg9Vq9btOS31uLyUvLw+TJk1CYmIi5HI5unTpgoceegjFxcUNrhfIQOOWGuTNGMOSJUswaNAgqFQqqFQqXHnllfj000/rXafuPlOfS70Gl8uFt956C5dffjmUSiViYmIwfPhwrF69OqC4q6qqMG/ePPTo0QMKhQLx8fEYPXo0Nm3aFHCM33//PW677TakpKRAJpNBq9Xi6quvxnvvvQeHw+HV15Nvz6mtBQsW+Oy7p06dCij2doGRdmvevHkMAPP3Nm/evFlY9uOPP7KoqCgGgEVHRzOJRCIsS05OZvn5+X63f+LECdarVy+hL8dxTKvVssjISKHt73//u896r732GuM4TuijVqtZRESE8LhPnz6ssLDQZ71ly5YxACwtLY0tX75cWEetVjORSCSsf9lll7GKigphvTNnzrCEhASWkJAg9NFqtUJbQkJCi8f3xhtvCNvwrD958mQ2a9asBuO44oorLvW2eikrK2NXX321sD3P89V9/Je//IXZ7XafddPS0hgA9tZbb7HBgwczACwiIkLYFzzv6dKlSxsVk+c1KpVKYZt1X+Mrr7wi9M3Pz/fahyIiIrziF4lE7J///Kff52lu/E6nk82aNcsrV0qlkmm1Wq/3zuOKK65gWq1W6Fv3NSUkJLBZs2YJfevuC/6sXLmSyWQyYVvR0dFejw0GAzt48KDPei3xub2UdevWecUSFRXF5HI5A8CSkpLYv//973q/VyZPnswAsMmTJ9e7/UvlpiF1tz9+/HhhH6n7ngFg99xzD+N53md9zz6zbNmygJ7jYjabjWVnZ3vtnxqNRnjuf/zjH+yaa65hANi8efN81i8uLmY9e/b02t81Go2wr7733nsNxlhdXc1uv/12r31WpVJ5vfYhQ4aw8vJyYZ0VK1awhIQE4TtMqVT67LtnzpwJJP3tAhU97VigRY9Wq2V/+ctf2KFDhxhjjNntdrZy5UoWHR3NALA777zTZ32LxcK6d+8urP+vf/2Lmc1mYfnx48fZ4sWL2Wuvvea13rfffis8780338xOnDghPOcnn3wiPOfQoUOZ0+n0WtfzZRkZGclkMhm79957hQ9rVVUVe/vtt4UP9jPPPOM3J57n3rx5s9/lLRGfXC5nYrGY3X333UJ8TqeTHTt2LOA4AuF0OoUv2H79+rFvv/2WVVVVMcYYq6ysZB9//DGLj49nANjDDz/ss77ny1Wr1bKUlBT21VdfMYfDwRhjLC8vjw0ZMkT40av73gbKs/9dc8019cbvKVbUajX773//KxRnx48fZzfeeKPwY7B27doWj//xxx8X3ocpU6aww4cPC8vMZjP76quv2Pjx473Wqfu5aUhDP+y7du0S9tNhw4axffv2McYYc7lc7JtvvmFJSUkMAOvatatX8X7x8zflc3spRqORqVQqobjfvn27ENu6deuYXq8XfqTDWfSo1WrGcRx7/vnnmcViYYwxVlJSwh588EEhtjfffNNn/eYWPY888oiwTy5cuFB47uLiYnb//fd7/dHhr+i54YYbGACmUCjY0qVLmc1mY4y5/zAbP348k0qlwh+N/mL829/+xgCwLl26sOXLlwvPX1NTw77++mvWpUsXBoCNHTvWZ92GirGOhIqedizQomfEiBHM5XL59PnnP/8pfEBra2u9lj399NMMAJPJZGz37t0Bx9SjRw8GgF111VU+RQNjjH3zzTdCXKtWrfJa5vmybOhLdfbs2QwA69atm9/llyo2Wiq+W2+91e/2A40jEJ988gkDwDIzM+stSnbu3Mk4jmNSqZQVFxd7LfP8AMhkMuGHs66SkhLhL/z//ve/jY7vUkXPihUrhDysX7/eZ3ltba1QFPXq1ctneXPiP3z4sHB08PHHHw/4NbVE0eP54evWrZtQpNa1e/du4ahN3aNiFz9/Uz63l+L54Y6NjfXZXxhjbP/+/V5HPS8WqqKnoT9sPIVBTEwMq6mp8VrWnKKnoKBAeF/qe+6JEycK8V1cXPz666/Csv/85z8+67pcLjZixAihz8Ux/vLLLwwAi4+Pr/fIjNFoFI6w7tmzx2sZFT1uNKaH4Mknn/Q7b8rNN98MAKipqcHRo0e9lv373/8GANx7773o379/QM+zb98+HDp0CADw9NNPQywW+/S56aabMGjQIADAZ599Vu+2nn76ab/tnpiPHTsmDKQNVEvGN3fu3EY9d1MsXboUAHD//fdDrVb77TNgwABcdtllcDgc2Lx5s98+t99+OzIzM33adTodsrKyALhz09JWrlwJAMjKysKoUaN8lkskEsybNw8A8OeffwpXg12sKfF//PHH4HkesbGxwiXooWA2m4VxQnPmzPF7BWH//v1x6623Amh4H2vK57YhjDHhPZkxYwbi4+N9+vTq1UuY5yqcFAoFHnvsMb/Lnn32WQDuiTH/97//tdhzrl69Gk6ns8Hnbmgag1WrVgFwj9mZNGmSz3KRSFTv9xpw4fM+adIkGAwGv330er0w7qzueDRyARU9BIMHD/bbnpycLPx/eXm58P+nT59GYWEhAHcREKidO3cCcP+YXXPNNfX2GzlypFf/i8XExKBbt26XjPniAc2hik+hUODyyy9v1HM3lsvlwrZt2wC4v2gTExPr/Xf48GEA7vfNn/ref+BCPuu+/y3Fk7/rr7++3j4jRowQis/68t2U+HNzcwG430u5XB540M20e/duYWB5Q6/bs4/t27cPtbW1fvs09nN7KSdPnhT6X3vttfX2a2hZqFxxxRX1TijavXt36PV6APXvM03h2VZDz52enl7v3Ey7d+8GAFx99dX1zmY9bNgwSCT+Z5LZsmULAHfx09DnfePGjQDq/7x3dDRPD0F0dLTf9rofvrpfvGfPnhX+Py0tLeDnKSkpAQDExcVBJpPV28/zheXpH2i8QP0xhzK+2NjYoM84XF5eLlxFFmhxV9+Rr0Dy2dhcBsKTv4Ym8JPL5YiLi0NxcXGz9oeL4/fsw43Zf1tC3dfQ0Ov27GNOpxPl5eVISEjw6dPYz21LxxZOl5r0MSUlBfn5+fXuM00RyP4KuPPj7+q50tJSAN5F6cVkMhni4uK8vmM9PH9oWq3Weq/uq6uxR7o7Cip6SKOF4547bYm/02ItzeVyCf+/bt063HDDDUF/zvaE9mESLk3d9zyf+ffeew8zZsxoyZA6FDq9RRotMTFR+P/GHEL1jBE4d+5cvXPdAEB+fr5X/1Bp7fHVFRsbK/xF31YPY3vy58mnPzabDWVlZV79W4JnHw517uq+hoZet2eZRCJBTExM0OMCvGNraJ6fhpZ59kmbzVZvH4vF0oToAo+h7vKL95nmxOfZVqDPfTGdTgfgwhEbf+x2O86dO+d3Wbj22faGih7SaKmpqcIh3m+//Tbg9a644goA7kP2nomy/PGckx44cGAzomy8UMbn+WvPM76jsSIiIoQB1Y15D1oTT749k7L589NPP8HpdAJo2f1h6NChANz3B2voB/BidU9bNuW9u/zyy4VtNPS6PftY3759ERER0ejnaYrOnTsLBVZ9g94B4Mcff6x3meeGskajsd4+27dvb2KEF+zcuROVlZV+lx07dkwoGj37WKDx8Txf7zggz7Yaeu6jR4/WW8x6xvk19N2yZcsWYX+/2LBhwwAA3333Xb3rN8Sz3zX1O6e9oKKHNMnUqVMBAB9++CH27NkT0Dp9+vRBz549AQALFy70OkXjsXbtWuFLceLEiS0UbWBCGZ9nIKTZbG7yNqZPny7EtHbt2gb7BmMgcnNNmDABALB161Zs2LDBZ7nT6cRzzz0HwH3VUK9evVrsue+++26IxWKUlZUJV4gFou4A1qa8dxqNBtnZ2QDcN7/1N+7ijz/+wBdffAEgtJ8BjuMwbtw4AMCSJUv8HnE4ePBggzMP9+3bFwCwY8cOv4XFoUOHsGbNmmbHWlNTg1dffdXvsoULFwJwX/DgGRB+cXxffvml3x//jz/+uN6i5bbbboNYLG7wuT37qz+eq95OnTrld9ZoxhhefPHFetf3fN7//PNPvPfee/X2A9yzPl88M3NLfOe0C2G8XJ4EWaDz9DTE0+fi+WSsVqvP5ISeibIYY+zYsWNswYIFPvOM1J38b+zYscLkfw6Hg/33v/8VJkZraPK/hub3OHnypLD9kydPBvx6QhWfx7BhwxgAdtttt/mdqyUQTqeTXX/99QwAk0ql7Pnnn2cFBQXC8srKSvbjjz+ymTNnes0s7NHcidoupbGTEy5fvlyYXPDEiRPsL3/5i/BeNDQ5YVPjf+KJJ4TtT506lR05ckRYZrFY2IoVK3wmeauqqmJSqZQBYP/3f//nd9ZfxgKfnPDKK6/0mpzw+++/Z8nJyQwBTE7YkEvt5/U5ffq0MLlhv3792I4dOxhjjPE8z9avX89SU1MbnJzQbDYLs0QPGTKE5eXlMcbcn5+vvvqKJScns5iYmGbP0+OZhf3FF19kVquVMcZYaWmp1wzbr7/+us/6GzduFJbfe++97Ny5c4wx9/v92muvMalUKsTnb5/xbP/i5y4pKWEPPPCAEBvqmQ9n5MiRDHBPsLps2TJhckKj0cgmTpx4yckJ77nnHobzkyM+/PDD7Pjx48Iym83Gtm7dyubMmcNiY2OZ0Wj0Wvepp54S5odq6mzd7QEVPe1YMIsextyz5tadUl0kErGYmJhG34ZCo9EIPyQAWO/evb1+vD1CUfQEOz6P//znP8L2IiIiWEpKCktLS2PDhg275Lp1WSwWYeZizz+VSuU1NT4AJpFIfNYNd9HDmPs2FJdddpkQp1Qq9fpRFYlEfmfWbYn4nU6n8EPl+RcVFVXvbSg8pk6dKvSPjIxkqampLC0tjT366KNCn0vtCytWrPDap1QqlTCRIhDYbSga0tSihzHGvvvuO59bZCgUCgZc+jYUjDH24Ycfeu170dHRwmsdMmQIe/vtt5td9NS9DYVYLPa5DcVdd93ld+JGxhi78847vd5zjUYjTFT50EMPNbjP1NTUCH9o+HvuS92GoqioiGVmZnp99j37u0gkYv/6179YamoqA8A+++wzn/Xtdju79957/e6zdW/FA8CnsDly5Iiwj4lEIpaQkMDS0tJYWlqaT4HUntHpLdJkXbp0wZ49e/Duu+9i+PDh0Gq1qKiogEajQVZWFp5//nk88sgjPus98sgj2LlzJ/72t7/BYDCguroaCoUCQ4YMweuvv44dO3Y0eFlnsIUivr/97W/4z3/+gyuvvBKRkZEoKirC6dOnGxzc6o9KpcK3336LtWvXYvz48UhNTYXdbkd1dTVSUlIwatQoLFq0SJirp7VJSUnBzp078dprr2HIkCFQKBSorq6GwWDAnXfeiV27dmHWrFlBeW6xWIy3334bv/32GyZNmoTU1FTU1taCMYaePXti6tSpwmmmut555x3Mnz8fvXv3BgCcOXMGp0+frncAqj/jx4/HgQMHcN9996Fr166w2+2QSCTo168fFixYgD///BM9evRosdfaGGPGjMHu3bsxYcIExMfHw+FwICEhAQ8++CD27NmDzp07N7j+1KlT8f333+Paa6+FSqWC0+lEeno6XnrpJfz8889QKpUtEudnn32Gd999F/3794fT6YRSqURWVhY++eQTfPzxx/VOG/HRRx/hzTffRL9+/aBQKMDzPIYNG4bPP/8c//znPxt8TrlcjnXr1gnrS6VSMMZw1VVX4fPPP8dLL73U4PqJiYnYsWMHnnnmGWRkZEAkEkEikWD06NH48ccfMW3aNGEgtUaj8VlfKpXigw8+QG5uLu6++2507doVLpcLlZWViI+Px/Dhw/Hss89i3759PpfWd+/eHZs3b8Zf/vIX6HQ6lJWV4fTp0zh9+nS944jaI46xDj6qiRBCCGkFjh49ivT0dADuYrq+mZdJ09GRHkIIIaQVWLRoEQCgZ8+eVPAECRU9hBBCSAjk5eXh3nvvxS+//IKKigqv9nvuuQfLli0DADzxxBPhCrHdo9NbhBBCSAjs3bvX6wbNarUatbW1XlMXzJo1C2+++WY4wusQqOghhBBCQqCiogL/+te/sHHjRhw+fBglJSVwOp2Ij49HVlYWpk+fjuuuuy7cYbZrVPQQQgghpEOgMT2EEEII6RDoLut18DyPwsJCREdH012YCSGEkDaCMYaKigokJyfXO0cTQEWPl8LCQrpMkBBCCGmjjEYj9Hp9vcup6KkjOjoagDtpdW8s2Fg8z6O0tBQ6na7BipM0H+U6dCjXoUO5Dh3KdegEM9dWqxUGg0H4Ha8PFT11eE5pqVSqZhc9NpsNKpWKPkRBRrkOHcp16FCuQ4dyHTqhyPWlhqbQO0wIIYSQDoGKHkIIIYR0CFT0EEIIIaRDoDE9YcLzPBwOR7jDaPN4nkdtbS1sNhudjw8yynXoUK5Dh3IdOs3JdUREBMRicbNjoKInDBwOB06ePAme58MdSpvHGAPP86ioqKC5lYKMch06lOvQoVyHTnNzrdFokJiY2Kz3iYqeEGOMoaioCGKxGAaDgf6yaCbGGJxOJyQSCX1hBRnlOnQo16FDuQ6dpuaaMYbq6mqUlJQAAJKSkpocAxU9IeZ0OlFdXY3k5GRERkaGO5w2j76wQodyHTqU69ChXIdOc3KtUCgAACUlJYiPj2/yqS46zBBiLpcLACCVSsMcCSGEENJ2eA4U1NbWNnkbdKQnTJr9FwVjQFkZUFkJREUBsbEA/ZVCCCGknWqJI3F0pKetMZuBN98EuncHdDqgc2f3f7t3d7ebzeGOkBBCCGmVqOhpS9avB/R64JFHgBMnvJedOOFu1+vd/dqQjz76CBqNJtxhNMrw4cPx8MMPB9z/1KlT4DgOe/fuDVpM7V2nTp3wxhtvhDsMH1999RW6desGsVjcqH0i3Bq7DxPSHlDR01asXw+MGQPU1LhPbTHmvdzTVlPj7tfChc/dd98NjuOEf7Gxsbjhhhuwb9++Fn2elhLsImPNmjV4/vnnA+5vMBhQVFSEXr16BSWejmDHjh2YPn16uMPwcd999+H222+H0Whs1D5xsfZYGC9fvhx9+/ZFZGQkkpKSMGXKFJSVlTW4zqxZszBgwADIZDL069fPb5/169djyJAhiI6Ohk6nw2233YZTp04Jy9esWYORI0dCp9NBpVIhKysL6y/6TnzvvffQp08fqNVqxMbGYujQoVi3bp1Xn/vuuw9du3aFQqGATqfDzTffjLy8PGF5WVkZbrjhBiQnJ0Mmk8FgMODBBx+E1Wr12o7dbsdTTz2FtLQ0yGQydOrUCf/+97+F5bW1tXjuuefQtWtXyOVy9O3bFz/88IPXNubPn+/1HcxxHDIzM7362Gw2PPDAA4iNjUVUVBRuu+02FBcXNzpejy1btkAikdT7PgDASy+9BI7jfAro4cOH+8Q7Y8YMrz47duzAddddB41GA61Wi+zsbPzxxx/1PldLoKInBGpMNTjz2xk4bc6mbcBsBm67zV3UXGpuH55397vtthY/1XXDDTegqKgIRUVF2LRpEyQSCW688cYWfY62IiYm5pJ3861LLBYjMTEREgkNo7uU+gYp6nS6VnfFY2VlJUpKSpCdnY3k5ORG7RN1tceJSrds2YK77roLU6dOxYEDB7Bq1Sr8/vvvmDZt2iXXnTJlCsaPH+932cmTJ3HzzTfj2muvxd69e7F+/XqcO3cOt956q9Dnl19+wciRI7F27Vrs2rULI0aMwE033YQ9e/YIffR6PV566SXs3LkTW7duxYgRI3DzzTfjwIEDQp8BAwZg2bJlOHToENavXw/GGEaNGiVckCISiXDzzTfjm2++wZEjR/DRRx9h48aNPj/u48aNw6ZNm7B06VIcPnwYn332GTIyMoTlTz/9NN5//3289dZbOHjwIGbMmIFbbrnFK14AuOyyy4Tv4KKiIvz2229eyx955BF8++23WLVqFX7++WcUFhZ65SXQeAHAbDbjrrvuwnXXXVfv+7Rjxw68//776NOnj9/l06ZN84r3//7v/4RllZWVuOGGG5Camort27fjt99+Q3R0NLKzs5s1UPmSGBFYLBYGgFkslmZtx+VysaKiIuZyuViNqYYdWXuE5X2Tx078eIJVWCrYwYMHWU1NTeAbfOMNxjjOcywnsH8cx9ibbzbrddQ1efJkdvPNN3u1/frrrwwAKykpYYwxtnnzZgaAmUwmoc+ePXsYAHby5EmhbdmyZcxgMDCFQsHGjh3LXn31VaZWq722/fzzzzOdTseioqLY1KlT2T/+8Q/Wt29frz4ffPABy8zMZDKZjGVkZLB33nlHWAbA698111zj93V5Yv7hhx9Yv379mFwuZyNGjGDFxcVs7dq1LDMzk0VHR7OJEyeyqqoqYb1rrrmG/f3vfxcep6WlsRdeeIHdc889LCoqihkMBvb+++8Ly0+ePMkAsD179jTredPS0tjrr7/u9Rr69u3L5s2b5/XalyxZwsaMGcMUCgXLzMxkubm57OjRo+yaa65hkZGRLCsrix07dsxvTurG+9lnn7GsrCwmk8nYZZddxjZu3Mh4nhf6/fTTT2zgwIFMKpWyxMRE9o9//IPV1tY2Ot53332X3XTTTSwyMtJrWV0XbwsA++CDD9jYsWOZQqFg3bp1Y19//bXXOn/++ScbM2YMi46OZlFRUezKK68UXrfL5WILFixgKSkpTCqVsr59+7J169b55OCLL75gw4cPZwqFgvXp04fl5uYyxi68h3X/bd68mTHG2OrVq1nPnj2ZVCplaWlp7NVXX/V5Lc899xy78847WXR0NJs8ebLPtq6++mqvXHt4nnfjxo1swIABTKFQsKysLJaXlyf08fd5/fvf/+71Obh4H25pr7zyCuvSpYtX2z//+U+WkpIS0Prz5s3z+cwzxtiqVauYRCJhLpdLaPvmm28Yx3HM4XDUu72ePXuyBQsW+LTzPM8cDgfjeZ5ptVr24Ycf1ruNP/74gwFo8LPz5ptvMr1eLzxet24dU6vVrKysrN51kpKS2Ntvv+3Vduutt7JJkyYJj+vLh4fZbGYRERFs1apVQtuhQ4cYALZ169aA4/UYP348e/rpp+t93oqKCta9e3f2v//9z+++5K+tbq537NjBALAzZ84Iy/ft28cAsKNHj/qNtaampt7fz0B/v+lIT5CJpWKII9zzCTgqHTi75yzYxaemGsIY8NZbTXvyf/7T9zRYC6msrMR///tfdOvWDbGxsQGvt337dkydOhUPPvgg9u7dixEjRmDhwoVefZYvX44XXngBL7/8Mnbt2oXU1FS89957Pn2effZZLFy4EPv27cMLL7yAZ555Bh9//DEA4PfffwcAbNy4EUVFRVizZk2Dcc2fPx9vv/02cnNzYTQaMW7cOLzxxhv49NNP8f3332PDhg146xLvw+LFi3HFFVdgz549mDlzJu6//34cPnw46M/rz/PPP4+77roLe/fuRWZmJu644w7cd999mDt3Lnbu3AnGGB588MFLbmfOnDl49NFHsWfPHgwZMgS33HKLcHqioKAAo0ePxsCBA/HHH3/gvffew9KlS33ez0DMnz8ft9xyC/bv348pU6YEvN6CBQswbtw47Nu3D6NHj8akSZNQXl4uxHf11VdDJpPhxx9/xK5duzBlyhQ4ne4jrm+++SYWL16MV199Ffv27UN2djb+8pe/4OjRo17P8dRTT+Gxxx7D3r17kZ6ejokTJ8LpdGLo0KHC+/vFF1+gqKgIQ4cOxa5duzBu3DhMmDAB+/fvx/z58/HMM8/go48+8truq6++ir59+2LPnj145plnvPbZwsJCfP755w2+9qeeegqLFy/Gzp07IZFIGpW3QPz666+Iiopq8N/y5cvrXT8rKwtGoxFr164FYwzFxcVYvXo1Ro8e3ay4BgwYAJFIhGXLlsHlcsFiseA///kPrr/+ekRERPhdxzMLcExMjN/lLpcLK1asQFVVFbKysvz2qaqqwrJly9C5c2cYDAa/fQoLC7FmzRpcc801Qts333yDK664Av/3f/+HlJQUpKen47HHHkNNTY3Qx263Qy6Xe21LoVD4HMk5evQokpOT0aVLF0yaNAlnzpwRlu3atQu1tbW4/vrrhbbMzEykpqZi69atAccLAMuWLcOJEycwb948v+sBwAMPPIAxY8Z4Pd/Fli9fjri4OPTq1Qtz585FdXW1sCwjIwOxsbFYunQpHA4HampqsHTpUvTo0QOdOnWqd5vN1mBJ1MEE40gPY4w5qhzs+P+Os7xv8tjBtQfZvt37WHVVdWAbKy1t3BGei/+dO9es1+IxefJkJhaLmVKpZEqlkgFgSUlJbNeuXUKfQI70TJw4kY0ePdpr2+PHj/c60jN48GD2wAMPePUZNmyY118bXbt2ZZ9++qnXXw7PP/88y8rKYoz5HlmpT92/mj0WLVrEALDjx48Lbffddx/Lzs4WHvs70vO3v/1NeMzzPIuPj2fvvfee33ia+ryBHjl5+umnhcdbt25lANjSpUuFts8++4zJ5fJ68+KJ96WXXhLaHA4H0+v1QtuTTz7JMjIyvI5GvPPOOywqKkrY9wON9+GHH643lvpe+8Wvs7KykgEQjtbMnTuXde7cud6//pOTk9kLL7zg1TZw4EA2c+ZMrxzU/cv/wIEDDAA7dOgQY4wxk8nkdYSHMcbuuOMONnLkSK/tzpkzh/Xs2dPrtYwdO9arT919pO5+fTF/+87333/PAAh/AbfEkZ7q6mp29OjRBv9ZrdZ612eMsc8//5xFRUUxiUTCALCbbrqpwaMxdTV0ZOOnn35i8fHxTCwWMwAsKyvL63vnYi+//DLTarWsuLjYq33fvn1MqVQysVjM1Go1+/77733Wfeedd4TvvIyMDL9HeSZMmMAUCoXwGuseicjOzmYymYyNGTOGbd++nX3//fcsLS2N3X333UKfiRMnsp49e7IjR44wl8vFNmzYwBQKBZNKpUKftWvXss8//5z98ccf7IcffmBZWVksNTVVeA+WL1/u1d9j4MCB7PHHHw843iNHjrD4+Hh2+PBhxpj/9+Gzzz5jvXr1Etbzty+9//777IcffmD79u1j//3vf1lKSgq75ZZbvPbr/fv3s65duzKRSMREIhHLyMhgp06d8nkNHnSkp42IiIyAYagBEQr3XyGMZ6itqQXjAzgKU1nZvCevqGje+nWMGDECe/fuxd69e/H7778jOzsbOTk5OH36dMDbOHToEAYPHuzVdvFfVocPH8agQYO82uo+rqqqwvHjxzF16lRER0dDq9UiOjoaCxcuxPHjx5vwyuB1TjohIQGRkZHo0qWLV5tnCvRAtsFxHBITExu1TlOfN5DtAkDv3r292mw2W70DGD3qvjcSiQSXX365MJDz0KFDyMrK8po7Y9iwYaisrER+fn6j4r3iiisa1d+j7utUKpVQqVRCvvbu3YurrrrK71//VqsVhYWFGDZsmFf7sGHDcOjQoXqfwzP9fUPvyaFDh/xu9+jRo8JYEKDpr7mpcTWWQqFAt27dGvzX0BimgwcP4u9//zueffZZ7Nq1Cz/88ANOnTrld/xIY5w9exbTpk3D5MmTsWPHDvz888+QSqW4/fbb/R5F//TTT7FgwQJ8/vnniI+P91qWkZGBPXv2YMuWLZgxYwYmT56MgwcPevWZNGkS9uzZg59//hnp6ekYN24cbDabV5/XX38du3fvxtdff43jx49j9uzZwjKe58FxHJYvX45BgwZh9OjReO211/Dxxx8LR3vefPNNdO/eHZmZmZBKpXjwwQdxzz33eN2mKCcnB3/961/Rp08fZGdnY+3atTCbzZc8IuhPffG6XC7ccccdWLBgAdLT0/2uazQa8fe//x3Lly/3OTpV1/Tp05GdnY3evXtj0qRJ+OSTT/Dll18K39E1NTWYOnUqhg0bhm3btmHLli3o1asXxowZ43UUrKXRqMoQ8RQ+p7adQi1qwVwMjioHpEopOFEDEy5FRTXviZs4sNIfpVKJbt26CY8//PBDqNVqfPDBB1i4cKHwAa37xROMAWmV5wvBDz74AIMGDfKa1rypU5PX/WHkOM7nh5LjuEveILa56wTyvCKRyOeL3V+OL95ufW3BvultoPEqlcombb+hfHmmrW+uYOWtqa/Zo6G4As17Q3799Vfk5OQ02Of999/HpEmT/C5btGgRhg0bhjlz5gBwF2lKpRJXXXUVFi5c2OT7J73zzjtQq9Veg2L/+9//wmAwYPv27RgyZIjQvmLFCtx7771YtWqV39MwUqkU3bp1g9PpxKBBg7Bz5068+eabeP/994U+arUaarUa3bt3x5AhQ6DVavHll19i4sSJQp/ExEQkJiYiMzMTMTExuOqqq/DMM88gKSkJSUlJSElJgVqtFvr36NEDjDHk5+eje/fu0Ol0+Oqrr2Cz2VBWVobk5GQ88cQTXn8AXUyj0SA9PR3Hjh0TYnA4HDCbzV5TgBQXFyMxMdFr3friVSgU2LlzJ/bs2SOc/uZ5HowxSCQSbNiwAVarFSUlJbj88suF7blcLvzyyy94++23Ybfb/X4Pe/7YPX78ODIyMvDpp5/i1KlT2Lp1q/Db8emnn0Kr1eLrr7/GhAkT6n3tzUFFTwhFREYgsX+icGllQIVPbCzQtat7Hp7GjM/hOKBLF6Cec9gtgeM4iEQioSrX6XQAgKKiImi1WgDwufy2R48e2L59u1fbtm3bvB5nZGRgx44duOuuu4S2HTt2CP+fkJCA5ORknDhxAnfccYffe7l4bvNR9y/r9kCn06GoqEh4bLVacfLkyaA937Zt23D11VcDcN83bs+ePXjggQcAuN/LL774AowxIfdbtmxBdHQ09Hp9WOKtq0+fPvj4449RW1vrUxypVCokJydjy5YtXuMZtmzZ4nOUsbF69OiBLVu2eLVt2bIF6enpDRblLbnP6nQ6/Pnnn15te/furXfMiz9XXHHFJS+f9xxF9Ke6utrnakXP6/d3RCZQ1dXVPjdq9my3bjH62WefYcqUKVixYgXGjBkT0LZ5nofdbq93OWMMjLEG+3hi8PQZNmwYVq1ahcrKSkSd/yP2yJEjEIlEwufEQy6XIyUlBbW1tfjiiy8wbty4ep+nsrISx48fx5133gnAPdYpIiICmzZtwm233QbAfdT8zJkz9Y5TujjehIQE7N+/32v5u+++ix9//BGrV69G586dwfO8T5977rkHmZmZ+Mc//lHvPu7ZlzwFmOd9rPu97XkczD/GqOgJsQhFBMRSsVDkXLLw4TjgoYfcEw821qxZLXprCrvdjrNnzwIATCYT3n77bVRWVuKmm24CAHTr1g0GgwHz58/HCy+8gCNHjmDx4sUXhTQLw4YNw6uvvoqbb74Z69ev95mP4qGHHsK0adNwxRVXYOjQoVi5ciX27dvn9VfPggULMGvWLKhUKlx//fVwuVzYtWsXTCYTZs+ejfj4eCgUCvzwww/Q6/WQy+Vef2m1Vddeey0++ugj3HTTTdBoNHj22WebfHQrEO+88w66d++OHj164LXXXoPJZBIGzM6cORNvvPEGHnroITz44IM4fPgw5s2bh9mzZws/SqGOt64HH3wQb731FiZMmIC5c+dCrVZj27ZtGDRoEDIyMjBnzhzMmzcPXbt2Rb9+/bBs2TLs3bu3wcG5gXj00UcxcOBAPP/88xg/fjy2bt2Kt99+G++++26D69XdZ1NSUiCRSBp1kUBd1157LV555RV88sknyMrKwn//+1/8+eef6N+/f8Db8JzeaqqbbroJ06ZNw3vvvYfs7GwUFRXh4YcfxqBBg5CcnAwA+PLLLzF37lyvuW+OHTuGyspKnD17FjU1NcKPZc+ePSGVSjFmzBi8/vrreO655zBx4kRUVFTgySefRFpamvD6Pv30U0yePBlvvvkmBg8eLHxvKRQK4Xtg7ty5yMnJgcFggMlkwueff46ffvpJmM/nxIkTWLlyJUaNGgWdTof8/Hy89NJLUCgUwmDstWvXori4GAMHDkRUVBQOHDiAOXPmYNiwYcJg3DvuuAPPP/887rnnHixYsADnzp3DnDlzMGXKFOFo5Pbt21FQUIB+/fqhoKAA8+fPB8/zePzxx4W8PPbYY7jpppuQlpaGwsJCzJs3D2KxWDjipFarMXXqVMyePRsxMTFQqVR46KGHkJWVJRz9CiTei+cSi4+Ph1wu92q/uI9SqURsbKzQfvz4cXz66acYPXo0YmNjsW/fPjzyyCO4+uqrhdOyI0eOxJw5c/DAAw/goYceAs/zeOmllyCRSDBixIjAd7TGanDETwcTrIHMdXkGYlVVVrEaSw2rMbn/2aw2xrt8By0yxhgzmRhTKhkTiQIbvCwSufs3MLCvsS6+pDY6OpoNHDiQrV692qvfb7/9xnr37s3kcjm76qqr2KpVq3wuWV+6dCnT6/VMoVCwm266ye8l68899xyLi4tjUVFRbMqUKWzWrFlsyJAhXn2WL1/O+vXrx6RSKdNqtezqq69ma9asEZZ/8MEHzGAwMJFIdMlL1usOgly2bJlPPBcP5vM3kLmhAbv1DWRu7PNaLBY2fvx4plKpmMFgYB999JHfgcFffvml8NjfoG5/z1+XZ51PP/2UDRo0iEmlUtazZ0+2YcOGRl2y3pR46+NvIPPF66nVarZs2TLh8R9//MFGjRrFIiMjWXR0NLvqqquEgeIul4vNnz+fpaSksIiIiHovWa+bt4sHLvsbyMzYhUvWIyIiWGpqKnvllVcafC0edffZS12yfqmpIZ599lmWkJDA1Go1e+SRR9iDDz4Y0kvWGXNfot6zZ0+mUChYUlISmzRpEsvPzxeWL1u2jF38M3TNNdf4XL5/8Wv77LPPWP/+/ZlSqWQ6nY795S9/EQaXN7SNyZMnC32mTJnC0tLSmFQqZTqdjl133XVsw4YNwvKCggKWk5PD4uPjWUREBNPr9eyOO+7wmhrgxx9/ZFlZWUytVjO5XM66d+/O/vGPf/h8rg4dOsSuv/56plAomF6vZ7Nnz2bV1RcuZvnpp59Yjx49mEwmY7GxsezOO+9kBQUFXtsYP348S0pKYlKplKWkpLDx48f7DKquqalhM2fOZFqtlkVGRrJbbrmFFRUVNTreui51qbwn33X3pTNnzrCrr76axcTEMJlMxrp168bmzJnDzGaz10DmDRs2sGHDhjG1Ws20Wi279tprG7y8viUGMnOMBema5jbIarVCrVbDYrFApVI1eTs8z6OkpATx8fE+h2FtNhtOnjyJzp07QxohhaPKAZw/kseJufqP+HhmZL7UBIUikfvoztq1wKhRTX4Nrc3IkSORmJiI//znP17tjDG/p7dI85w6dQqdO3fGnj17hNlYKdehQ7kOHcp16DQ313V/Py8eRB3o7zed3gojkVgEqfJC4dPgqa7sbOD7790zLXvmOqhbr3p2IIUCWLOmTRc81dXVWLJkCbKzsyEWi/HZZ59h48aN+N///hfu0AghhLRhdMl6mHkKH8874Sl8/F7Onp0N5OcDb7zhHqRcV5cu7vaCgjZd8ADuAdJr167F1VdfjQEDBuDbb7/FF1980eAkWIQQQsil0JGeVqBRR3w0GvcA5YceAsrL3fPwREe7r9JqJ4dmFQoFNm7cGO4wOrROnTo16wobQghpjajoaSUaVfgA7gInNtb9jxBCCCGXRKe3wsTfX9GNOtVFCCGEdCAtcfSZip4Q88xR4nA4/C6nwocQQgjx5blhaWMm2bwYnd4KMYlEgsjISJSWliIiIsLnknYPXsyj1lErXM5ud9gRoYho+JYVHRBdbho6lOvQoVyHDuU6dJqaa8YYqqurUVJSAo1G06wJTqnoCTGO45CUlISTJ09e8kadjGdw2p3uabUAcCIOYpmYPph1MMbA87zPdOak5VGuQ4dyHTqU69Bpbq41Go3PfcQaq9FFz7Fjx/Dqq69i27Zt+PPPP5GZmel1jxer1YrXXnsNa9euxZEjRyCTyTBo0CC8+OKLXnd5BgCLxYLZs2fjyy+/RG1tLbKzs/HWW2/53IguNzcXjz76KPbu3Yv4+HjMnDkTjz/+uFfSGGN4+eWX8e6776K0tBT9+vXD66+/7nXzudZCKpWie/fu9Z7iqstR5cDZPWfhqnXfj0caJUViv0SII0IzlX9rx/M8ysrKEBsbW+9RM9IyKNehQ7kOHcp16DQn1xERES1yC5tGFz0HDhzA999/j8GDB4PneZ8bg505cwbvv/8+pk6dioULF8Jms+HVV1/FkCFDsHPnTvTo0UPoO378eBw4cABLliyBXC7HU089hZycHOzcuVO4Ud2xY8eQnZ2NkSNHYuHChdi3bx+eeOIJiMViPPbYY8K2Xn75ZcybNw8vvfQS+vTpg3feeQejRo3C3r17G7xTbbiIRCKfGSX9kcvlkA+Rw5hrhNPuhNPsxLk956DP0lPhA/eHKCIiAnK5nL6wgoxyHTqU69ChXIdOq8h1gzep8KPu/aQmT57MLrvsMq/llZWVrKqqyqutoqKCxcTEsAcffFBoy83NZQDY+vXrhba8vDzGcRxbuXKl0DZ9+nSWlpbG7Ha70DZ37lym0WiYzWZjjLnvx6FSqdjcuXOFPna7naWlpbH7778/4NcWintvNZW9ws6OrT/G8r7JY3nf5LFTP59iToezxbbfVgUj18Q/ynXoUK5Dh3IdOsHMdaC/340utS5VnSmVSkRGRnq1RUVFoVu3bigsLBTa1q1bB41Gg5EjRwptGRkZ6NevH9auXevVb+zYsZBKpULbhAkTYDabsXXrVgDu019WqxXjxo0T+kilUtx6661e22rLpFFSGIYaIJG5j4DZLDYYc41wOVxhjowQQghpG0JyfMlsNuPPP//0OrWVl5eHjIwMn8FMPXr0QF5eHgCgqqoKRqMRmZmZXn0yMzPBcZzQz/Pfi/v16NEDZ86cQU1NTYu/pnC4uPCxW+0wbqXChxBCCAlESK7e8gw6njFjhtBmMpmg0Wh8+mq1WpSXlwNwF0sAfPpJpVJERkYK/UwmE2Qymc8YGa1WC8YYTCYTFAqFz3PZ7XbY7XbhsdVqBQC/Y5Uag+d5YZR6S5NESpAyJMV9lMfugs1sw5ktZ9xjfKQdb4xPMHNNvFGuQ4dyHTqU69AJZq4D3WbQi55ly5bhgw8+wEcffQS9Xh/sp2uURYsWYcGCBT7tpaWlsNlsTd4uz/OwWCxgjAVtsJa8uxzFO4vdl7Rb3IVfwhUJHa7wCUWuiRvlOnQo16FDuQ6dYOa6oqIioH5BLXrWrVuH6dOn45lnnsHkyZO9lmm1WhiNRp91TCYTYmJiAFw4wmOxWLz6OBwOVFdXC/20Wi3sdjtsNpvX0R6TyQSO46DVav3GN3fuXMyePVt4bLVaYTAYoNPpoFKpGv+Cz+N5HhzHQafTBfVDpNPpkL81H06bEwDgOO7ocEd8QpVrQrkOJcp16FCuQyeYuQ7kamggiEXPtm3bcPvtt2Py5Ml47rnnfJZnZmZi48aNYIx5jevJy8sT5vNRKpUwGAzCmB2Pw4cPgzEmjOHx/Pfw4cPo27ev17ZSU1P9ntoCAJlMBplM5tMuEoma/YZwHNci22mIXCVH6pWp7svZbU44Kh0o2F4AQ5ahQxU+ocg1caNchw7lOnQo16ETrFwHur2gvMMHDx7EmDFjcO2112LJkiV+++Tk5MBkMmHTpk1C25EjR7Bnzx6MHj3aq9/XX3+N2tpaoW3lypXQaDQYOnQoAGDo0KFQqVRYtWqV0Ke2thZr1qzx2lZ7JFWeH9wsrzO4+fycPoQQQgi5oNFHeqqrq4XLwE+fPg2r1YrVq1cDAK655howxpCdnQ2FQoFHHnkEO3fuFNZVqVTo2bMnACArKwvZ2dmYMmUKFi9eLExO2KdPH9x6663COnPmzMHy5csxceJEzJw5E/v378crr7yCF154QbiMXS6XY+7cuZg/fz50Oh169+6Nd999F2VlZV4TGLZXnsLHc8THXmFH/tZ86LP0wpVehBBCSEfX6F/EkpIS/PWvf/Vq8zzevHkzACA/Px8AcN1113n1u+aaa/DTTz8Jj1euXInZs2dj+vTpcDqdGDVqFN566y1hNmYA6NatGzZs2IDZs2dj9OjR0Ol0WLBgAR599FGvbf/jH/8AYwyvvvqqcBuK9evXt8rZmIOBCh9CCCGkYRxjjIU7iNbCarVCrVbDYrE0eyBzSUkJ4uPjQ36O2FHlQP7WfNTWuE8HSqOkMGRdOP3V3oQz1x0N5Tp0KNehQ7kOnWDmOtDfb3qH2xnPEZ8IRQQAwFHpgHGrUbjCixBCCOmoqOhphyIiI3wLn1wqfAghhHRsVPS0UxGRETAMMyAi8nzhU0WFDyGEkI6Nip52LEJx/ohPncLnzJYzwngfQgghpCOhoqed8xQ+UqX78v7a6loYc42orabChxBCSMdCRU8HQIUPIYQQQkVPhyGRS9yFT9T5wqemFme2nIGjyhHmyAghhJDQoKKnA/EUPrJo9/3GnDYnjLlGKnwIIYR0CFT0dDASmQT6LL134bPFCEclFT6EEELaNyp6OiCJ7PwRH9X5wsfuPuJjr7CHOTJCCCEkeKjo6aDEUjEMWQbI1XIAdQofKxU+hBBC2icqejowsVQMfZYeco278HE5XDBupcKHEEJI+0RFTwcnjhBDP0QPhVYB4Hzhk2uEzWILc2SEEEJIy6Kih1wofGLOFz61LuRvzYfNTIUPIYSQ9oOKHgIAEElE0A/2LnyMW42oMdWEOTJCCCGkZVDRQwQiiQj6IXpExkUCAHgnj/xt+agpp8KHEEJI20dFD/EiEouQMigFSp0SwIXCp7qsOsyREUIIIc1DRQ/xIRKLkDwwGcr484WPi0fB9gJUlVaFOTJCCCGk6ajoIX6JxCKkDExBVEIUgPOFz+8FqCqhwocQQkjbREUPqRcn4pB8RTKiEt2FD+MZCnYUoLK4MsyREUIIIY1HRQ9pECfikDwgGdHJ0QDchU/hzkJUnqXChxBCSNtCRQ+5JE7EIenyJKhSVAAuFD4VhRVhjowQQggJHBU9JCAcxyGxfyJU+vOFD2Mo2l0Ea4E1zJERQgghgaGihwSM4zgk9kuEOlUN4ELhYzFawhwZIYQQcmlU9JBG4TgOCX0SoEnTCG1n956F5QwVPoQQQlo3KnpIo3kKH21nrdB29o+zMJ8yhy8oQggh5BKo6CFNFt8rHjFdY4THxfuLYTphCmNEhBBCSP2o6CHNouupQ2z3WOFxyYESlB8vD2NEhBBCiH9U9JBmi8uMQ2z6hcKn9GApyo6WhTEiQgghxBcVPaRFxGXEIS4zTnh8Lu8czh0+F8aICCGEEG9U9JAWE9s9FrqeOuFx2ZEylB4qDWNEhBBCyAVU9JAWFdM1BvGXxQuPy4+Vo+RASRgjIoQQQtyo6CEtTttFi4Q+CcJj0wkTivcXgzEWxqgIIYR0dFT0kKDQpGmQ2C9ReGw+ZUbxPip8CCGEhA8VPSRo1AY1ki5PAsdxAADLGQvO7j1LhQ8hhJCwoKKHBJUqRYWkARcKH2u+FUW7i8B4KnwIIYSEFhU9JOiik6KRfEUyOJG78KkorEDhrkIqfAghhIQUFT0kJKISo5AyMEUofCrPVqJgRwF4Fx/myAghhHQUVPSQkFHGK6EfrIdI7N7tqkqqULijkAofQgghIUFFDwmpyLhIpAxOgUhyvvAprULB9gLwTip8CCGEBFeji55jx45hxowZ6NevHyQSCXr16uW339KlS5Geng65XI6+ffviu+++8+ljsVgwdepUxMTEIDo6GrfffjuKiop8+uXm5iIrKwsKhQJpaWl4+eWXfa4AYozhpZdeQmpqKhQKBbKysrBt27bGvjwSApGxkdAP0QuFT3VZNfK35cNV6wpzZIQQQtqzRhc9Bw4cwPfff49u3bqhZ8+efvusWLEC06ZNw/jx47Fu3TpkZWXhlltu8SlCxo8fjw0bNmDJkiVYvnw5Dh8+jJycHDidTqHPsWPHkJ2djaSkJHz33Xd4+OGH8eyzz2Lx4sVe23r55Zcxb948PPLII/juu++QlJSEUaNG4cSJE419iSQEFFoFDFkGiCPEAIAaUw0VPoQQQoKLNZLL5RL+f/Lkyeyyyy7z6ZOens4mTpzo1ZaVlcVycnKEx7m5uQwAW79+vdCWl5fHOI5jK1euFNqmT5/O0tLSmN1uF9rmzp3LNBoNs9lsjDHGampqmEqlYnPnzhX62O12lpaWxu6///6AX5vFYmEAmMViCXgdf1wuFysqKvLKFfHPZrGxoz8cZXnf5LG8b/LYyZ9OMqfdGfD6lOvQoVyHDuU6dCjXoRPMXAf6+93oIz0iUcOrnDhxAkeOHMG4ceO82idMmIBNmzbBbrcDANatWweNRoORI0cKfTIyMtCvXz+sXbtWaFu3bh3Gjh0LqVTqtS2z2YytW7cCcJ/+slqtXs8plUpx6623em2LtD4ylQyGoQZIZBIAgN1qhzHXCKfdeYk1CSGEkMaRtPQG8/LyAACZmZle7T169IDD4cDJkyeRmZmJvLw8ZGRkCJPW1e3n2UZVVRWMRqPPtjIzM8FxHPLy8jB8+PAGn/PMmTOoqamBQqHwidVutwtFGABYrVYAAM/z4PmmD6zleR6MsWZtoyOJUEYgZUgK8rfmw2lzwmax4fSvp93FkLzhXZRyHTqU69ChXIcO5Tp0gpnrQLfZ4kWPyWQCAGg0Gq92rVYLACgvLxf6XdzH08/Tx2w2+92WVCpFZGSk17ZkMhnkcrnPthhjMJlMfoueRYsWYcGCBT7tpaWlsNlsDb/QBvA8D4vFAsbYJY+MkQtk3WUw7zTDaXMCFsD0vQmJVyRCoqh/N6Vchw7lOnQo16FDuQ6dYOa6oqIioH4tXvS0JXPnzsXs2bOFx1arFQaDATqdDiqVqsnb5XkeHMdBp9PRh6iR4hPikZ+bj9rqWgCA7agN+iw9pEqp3/6U69ChXIcO5Tp0KNehE8xcX3zQoz4tXvR4juhYLBYkJl64y7bnCFBMTIzQz2g0+qxvMpmEPp4jPBaLxauPw+FAdXW117bsdjtsNpvXCzeZTOA4TojpYjKZDDKZzKddJBI1+w3hOK5FttPRyJQypF2VBmOuEY4qB1x2Fwq2FcCQZYA0yn/hQ7kOHcp16FCuQ4dyHTrBynWg22vxd9gzrsYzzsYjLy8PUqkUXbp0EfodPnzYZ76dvLw8YRtKpRIGg8FnW571PP08/z18+LDPtjzz9pC2QyKXwDDMAFm0uyB12pww5hphr7BfYk1CCCGkfi1e9HTp0gXp6elYtWqVV/vKlStx3XXXCVdh5eTkwGQyYdOmTUKfI0eOYM+ePRg9erTQlpOTg6+//hq1tbVe29JoNBg6dCgAYOjQoVCpVF7PWVtbizVr1nhti7QdEpkEhqEGyFTnCx/7+cLHSoUPIYSQpmn06a3q6mrhMvDTp0/DarVi9erVAIBrrrkGOp0O8+fPx6RJk9C1a1eMGDECK1euxPbt2/HLL78I28nKykJ2djamTJmCxYsXQy6X46mnnkKfPn1w6623Cv3mzJmD5cuXY+LEiZg5cyb279+PV155BS+88IJQQMnlcsydOxfz58+HTqdD79698e6776KsrAyPPfZYsxJEwkcsFcMw1ID8bfmwmW1wOVww5hqhH6KHXBPY+VtCCCFE0NgJgE6ePMkA+P23efNmod+HH37IunXrxqRSKevduzf79ttvfbZlNpvZlClTmEajYVFRUezWW29lBQUFPv22bNnCBg8ezGQyGdPr9WzRokWM53mvPjzPsxdffJHp9Xomk8nY4MGDWW5ubqNeG01O2Do5HU52+tfTwgSGR9YeYdXl1YwxynUoUa5Dh3IdOpTr0GkNkxNyjF00qKYDs1qtUKvVsFgszb56q6SkBPHx8TQwroXwTh4FvxeguqwaACCSiJAyKAVyrZxyHSK0X4cO5Tp0KNehE8xcB/r7Te8waRNEEhFSBqdAqVMCOF8EbS9AVWlVmCMjhBDSVlDRQ9oMkdh9dEcZf77wcfEo/L0QNedqwhwZIYSQtoCKHtKmcCIOKQNTEJUYBQBgPEPJ3hJUnq0Mc2SEEEJaOyp6SJvDiTgkD0hGdHI0AHfhU7izEBWFgU1DTgghpGPq0LehIG0XJ+KQdHkSGBjMFjPAgKLdRWA8g0rf9EHohBBC2i860kPaLI7jkNgvEdEp54/4MIaiPUWwnLFcYk1CCCEdERU9pE3jOA4xPWOg7qQW2s7+cRbmU+bwBUUIIaRVoqKHtHkcxyGhdwK0XS7cWLZ4fzFMJ0xhjIoQQkhrQ0UPaTfiL4tHTLcY4XHJgRKUHysPY0SEEEJaEyp6SLui66FDXEac8Lj0UCnOHT4XxogIIYS0FlT0kHYnNj0Wuh464XHZkTKUHioNY0SEEEJaAyp6SLsU0y0G8ZfFC4/Lj5Wj5EBJGCMihBASblT0kHZL20WLhD4JwmPTCROK9xeD7rFLCCEdExU9pF3TpGmQ2C9ReGw+ZUbxPip8CCGkI6Kih7R7aoMaSZcngeM4AIDljAVn95ylwocQQjoYKnpIh6BKUSFpwIXCx1pgFW5bQQghpGOgood0GNFJ0UgemAxO5C58KgorULirkAofQgjpIKjoIR1KVEIUUgamCIVP5dlKFOwoAO/iwxwZIYSQYKOih3Q4yngl9IP1EIndu39VSRUKfqfChxBC2jsqekiHFBkXCf0QPUQS90eg+lw18rflg3dS4UMIIe0VFT2kw1LEKKAfooc4QgwAqCmvQf62fLhqXWGOjBBCSDBQ0UM6NIVWAX1WncLHVIP8rflwOajwIYSQ9oaKHtLhydVyGIYaIJa6Cx+bxQbjViOcdmeYIyOEENKSqOghBIBMJUPqsFRI5BIAgN1qhzHXCKeNCh9CCGkvqOgh5DxplBSGoQZEKCIAAI5KB4y5RtTW1IY5MkIIIS2Bih5C6pAqzxc+kecLnyoHjFuMqK2mwocQQto6KnoIuUhEZARSh6VCqpQCAGpranFmyxk4qhxhjowQQkhzUNFDiB8SuQSGoQbIomUAAKfNCeMWI+wV9jBHRgghpKmo6CGkHkLhozpf+NidMOYaYbdS4UMIIW0RFT2ENEAsFcMw1AC5Rg4AcDlcMOYaYTPbwhwZIYSQxqKih5BLEEeIoR+ihyJGAQBw1bpg3GpETXlNmCMjhBDSGFT0EBIAcYQY+sF6RMZGAgB4J4/8bfmoLqsOc2SEEEICRUUPIQESSURIGZwCpU4JAOBd7sKnqrQqzJERQggJBBU9hDSCSCxCyqAURCVEAQAYz1DwewEqiyvDHBkhhJBLoaKHkEbiRBySr0hGdFI0AHfhU7ijEBVFFWGOjBBCSEOo6CGkCTgRh6QBSVClqAAAjDEU7SqCtcAa5sgIIYTUh4oeQpqI4zgk9k+E2qAGcL7w2V0EyxlLmCMjhBDiDxU9hDQDx3FI6JsATZpGaDv7x1mYT5nDFhMhhBD/qOghpJk4jkNCnwRou2iFtuL9xTCdMIUxKkIIIRcLWtHzzTffYPDgwYiOjkZSUhLGjRuHEydO+PRbunQp0tPTIZfL0bdvX3z33Xc+fSwWC6ZOnYqYmBhER0fj9ttvR1FRkU+/3NxcZGVlQaFQIC0tDS+//DIYY0F5fYRcLP6yeMR0ixEelxwoQdnRsjBGRAghpK6gFD0//fQTbrnlFvTs2RNffvkl3njjDfzxxx8YNWoUamouzGK7YsUKTJs2DePHj8e6deuQlZWFW265Bdu2bfPa3vjx47FhwwYsWbIEy5cvx+HDh5GTkwOn0yn0OXbsGLKzs5GUlITvvvsODz/8MJ599lksXrw4GC+REL90PXSIy4gTHp/LO4dzh8+FMSJCCCECFgT33Xcf69y5M+N5Xmj78ccfGQD2yy+/CG3p6els4sSJXutmZWWxnJwc4XFubi4DwNavXy+05eXlMY7j2MqVK4W26dOns7S0NGa324W2uXPnMo1Gw2w2W0BxWywWBoBZLJbAX6wfLpeLFRUVMZfL1aztkEtrrbkuO1rG8r7JE/6VHCgJd0jN1lpz3R5RrkOHch06wcx1oL/fQTnSU1tbi+joaHAcJ7Sp1ReucAGAEydO4MiRIxg3bpzXuhMmTMCmTZtgt7vvZL1u3TpoNBqMHDlS6JORkYF+/fph7dq1Qtu6deswduxYSKVSr22ZzWZs3bq15V8kIQ2I6RaD+F7xwuPy4+Uo+bOETrcSQkgYBaXoufvuu3Hw4EG8++67sFgsOHHiBJ588kn0798fw4YNAwDk5eUBADIzM73W7dGjBxwOB06ePCn0y8jI8CqgPP0826iqqoLRaPTZVmZmJjiOE/oREkrazlok9EkQHptOmlC8r5gKH0IICRNJMDZ61VVX4csvv8Qdd9yBBx54AADQr18//PDDDxCLxQAAk8l9ZYtGo/FaV6t1XwFTXl4u9Lu4j6efp4/ZbPa7LalUisjISKHfxex2u3BECQCsVvfEcjzPg+f5AF+tL57nwRhr1jZIYFp7rlUGFcABZ/eeBRhgPmWGy+lCYr9En0K+tWvtuW5PKNehQ7kOnWDmOtBtBqXoyc3NxZ133olp06bhxhtvRFlZGZ5//nmMGTMGv/76KxQKRTCettEWLVqEBQsW+LSXlpbCZrM1ebs8z8NisYAxBpGIZgUIpjaRaykQkRqBc/vPgTEGs8WM8nPliOsdB07UdgqfNpHrdoJyHTqU69AJZq4rKgK7DVBQip5Zs2bh2muv9bpyasiQIUhNTcV//vMfTJ8+XTiiY7FYkJiYKPTzHAGKiXFf+qvVamE0Gn2ew2QyCX08R3gsFu+ZcB0OB6qrq4V+F5s7dy5mz54tPLZarTAYDNDpdFCpVI192QKe58FxHHQ6HX2IgqzN5Doe0MXrULSrCIxngA1wGV1IGpDUZgqfNpPrdoByHTqU69AJZq7lcnlA/YJS9Bw8eBA333yzV5ter0dcXByOHz8O4MJYHs+YHY+8vDxIpVJ06dJF6Ldx40YwxrxOB+Tl5aF3794AAKVSCYPB4DN25/Dhw2CM+Yz18ZDJZJDJZD7tIpGo2W8Ix3Etsh1yaW0l16pkFcQSMQp2FIDxDFUlVSjaVYTkK5IhErfu2D3aSq7bA8p16FCuQydYuQ50e0F5h9PS0rB7926vttOnT+PcuXPo1KkTAKBLly5IT0/HqlWrvPqtXLkS1113nXAVVk5ODkwmEzZt2iT0OXLkCPbs2YPRo0cLbTk5Ofj6669RW1vrtS2NRoOhQ4e29EskpEmU8UroB+uFIqeqpAoFvxeAd9J4AkIICbagHOmZMWMGHn74Yfz973/HTTfdhLKyMixcuBDx8fFel6jPnz8fkyZNQteuXTFixAisXLkS27dvxy+//CL0ycrKQnZ2NqZMmYLFixdDLpfjqaeeQp8+fXDrrbcK/ebMmYPly5dj4sSJmDlzJvbv349XXnkFL7zwgtdl7ISEW2RcJPRD9Mjfng/eyaP6XDXyt+cjZVAKxBHicIdHCCHtVtDG9MhkMrz33ntYunQpoqOjkZWVhVWrViE2NlboN3HiRFRXV+Oll17CSy+9hIyMDHz55ZfIysry2t7KlSsxe/ZsTJ8+HU6nE6NGjcJbb70FieRC+N26dcOGDRswe/ZsjB49GjqdDgsWLMCjjz4ajJdISLMoYhTQD9GjYHsBXLUu1JTXIH9bPvRD9FT4EEJIkHCMJg0RWK1WqNVqWCyWZg9kLikpQXx8PJ0jDrK2nmubxYb8bflwOVwAAJlKBkOWAWJp6yt82nqu2xLKdehQrkMnmLkO9Peb3mFCwkiulsMw1ACJzH3U0m6148yWM3DanJdYkxBCSGNR0UNImMmiZe7CR+4ufByVDhhzjaitqb3EmoQQQhqDih5CWgFplBSpw1IRERkBAHBUOWDcYkRtNRU+hBDSUqjoIaSViIiMgGGoAVKl+2rD2ppanNlyBo5KR5gjI4SQ9oGKHkJakQiFu/CRRbsnzXTanDDmGmG32i+xJiGEkEuhooeQVkYil7gLH9X5wsfuLnxslqbfD44QQggVPYS0SmKpGIahBsg17vvJuGpdyN+ajxpTTZgjI4SQtouKHkJaKXGEGIYsAxQxCgDnC59t+aguqw5zZIQQ0jZR0UNIKyaSiKAfokdkXCQAgHfyyN+Wj6rSqjBHRgghbQ8VPYS0ciKxCCmDUqCMVwIAGM9Q8HsBKs9WhjkyQghpW6joIaQNEIlFSBmYguikaADuwqdwZyEqCivCHBkhhLQdVPQQ0kZwIg5JA5KgSnHfV4YxhqLdRbAYLWGOjBBC2gYqeghpQziOQ2L/RKhT1QDchc/ZvWdhPm0Ob2CEENIGUNFDSBvDcRwS+iRA21krtBXvK4bphCmMURFCSOtHRQ8hbRDHcYjvFY+YbjFCW8mBEpQdLQtjVIQQ0rpR0UNIG6broUNcRpzw+FzeOZzLOxfGiAghpPWiooeQNi42PRa6HjrhcdnRMpQcKAljRIQQ0jpR0UNIOxDTLQbxveKFx6YTJhTvKwZjLIxREUJI60JFDyHthLazFol9E4XH5tNmFP9BhQ8hhHhQ0UNIO6JOVSPp8iRwHAcAsBgtKNpdBMZT4UMIIVT0ENLOqFJUSL4iGZzIXfhUFFagcGchFT6EkA6Pih5C2qGoxCikDEwRCp/K4koU/F4A3sWHOTJCCAkfKnoIaaeU8UroB+shErs/5lWlVcjflg/eSYUPIaRjoqKHkHYsMi4S+iF6iCTuj3pNeQ2MW41w1brCHBkhhIQeFT2EtHOKGAUMQw0QR4gBADazDcZcI5x2Z5gjI4SQ0KKih5AOQK6WwzDUAIlMAgCwW+3uwsdGhQ8hpOOgooeQDkKmksEwzACJ3F34OCodMOYaUVtTG+bICCEkNKjoIaQDkSqlSB2WiojICACAo8oB4xYjHFWOMEdGCCHBR0UPIR1MRGQEUoelQqqUAgBqa2phzDXCXmEPc2SEEBJcVPQQ0gFJ5BIYhhkgU8kAAE6bE8ZcI2wWW5gjI4SQ4KGih5AOSiKTwJBlgFwtBwC4HC7kb81HjakmzJERQkhwUNFDSAcmloqhz9JDEaMAALhqXcjflo/qsuowR0YIIS2Pih5COjhxhBj6IXpExkUCAHgnj4LtBagqrQpzZIQQ0rKo6CGEQCQWIWVQCpTxSgAA7+JR8HsBKs9WhjkyQghpOVT0EEIAnC98BqYgOikaAMB4hsKdhbAWWMMcGSGEtAwqegghAk7EIWlAElR6FQCAMYai3UWwnLGEOTJCCGk+SbgDIIS0LhzHIbFfIkRiEcynzQCAs3+chbPWCSjDGxshhDQHHekhhPjgOA4JfRKg7aIV2kr/LIXlJB3xIYS0XVT0EELqFX9ZPGK7xwqPTUdNOHf4XBgjIoSQpgtq0fPxxx+jf//+kMvliIuLQ05ODmpqLkx89u2336Jv376Qy+VIT0/HsmXLfLbhcDgwZ84cJCYmQqlUYuTIkTh8+LBPv7y8PIwcORJKpRKJiYl4/PHH4XDQ/YQIaa64zDjEZcYJj8uPlKP0YGkYIyKEkKYJWtHzwgsv4KGHHsL48eOxfv16vP/+++jcuTNcLhcA4LfffsMtt9yCrKwsrFu3DuPHj8fUqVOxevVqr+3MmjULH3zwAV588UWsWbMGdrsd1113HSyWC4fZTSYTrr32WjgcDqxZswYvvvgi/vWvf2H27NnBenmEdCix3WOhu0wnPC4/Xo7ifcVgjIUxKkIIaSQWBHl5eUwikbC1a9fW22fUqFFs6NChXm0TJ05kPXr0EB4bjUYmFovZ+++/L7SVlZUxpVLJXn75ZaHtxRdfZEqlkpWVlQlt77//PhOLxaygoCDguC0WCwPALBZLwOv443K5WFFREXO5XM3aDrk0ynXouFwudmTHEXboq0Ms75s8lvdNHivcXch4ng93aO0O7dehQ7kOnWDmOtDf76Ac6Vm2bBk6d+6MnJwcv8vtdjs2b96Mv/71r17tEyZMwKFDh3Dq1CkAwIYNG8DzvFe/mJgYjBo1CmvXrhXa1q1bh+uvvx4xMTFC27hx48DzPDZs2NCCr4yQji1aH43E/ongOA4AYM23omhXERhPR3wIIa1fUIqebdu2oXfv3li4cCHi4+MhlUoxbNgwbN++HQBw/Phx1NbWIjMz02u9Hj16AHCPz/H8Nz4+Hlqt1qefp4+n38Xb0mg0SEpK8upHCGk+lV6FpAFJ4ETuwqeiqAKFOwvBu/gwR0YIIQ0Lyjw9Z8+exa5du7B//368++67iIyMxIsvvohRo0bh6NGjMJlMANyFSV2e4qa8vByAe6zOxX08/Tx9GtPvYna7HXa7XXhstbpnnuV5Hjzf9C9wnufBGGvWNkhgKNehUzfXygQlkgYkoXBHIRjPUFFUAdc2F5IHJkMkoYtCm4v269ChXIdOMHMd6DaDUvTwPI/KykqsXr0affr0AQAMGTIEnTp1wttvv43s7OxgPG2jLVq0CAsWLPBpLy0thc1ma/J2eZ6HxWIBYwwiEf0ABBPlOnT85VraRYrSvaXgXTzMFjPKy8qh66+DOEIc5mjbNtqvQ4dyHTrBzHVFRUVA/YJS9Gi1WsTGxgoFD+Aei9O/f38cOHAAEyZMAACvK7AACEeAPGNztFqtTx9Pv7rjdwLtd7G5c+d6XeFltVphMBig0+mgUqkCeal+8TwPjuOg0+noQxRklOvQ8ZvreCA+MR4F2wvA1/IAAxzHHdAP0UMspcKnqWi/Dh3KdegEM9dyuTygfkEpei677DIcP37c7zKbzYauXbsiIiICeXl5Xkd9PONvPONzMjMzUVxcDJPJ5DWu5+IxPJmZmT5jdywWC4qKinzG+tQlk8kgk8l82kUiUbPfEI7jWmQ75NIo16HjL9fKWCXSrkyDcasRLocLjgoHCrYVQD9ED4mc7nTTVLRfhw7lOnSCletAtxeUd/jGG29EWVkZ9u7dK7SVlZVh9+7dGDBgAGQyGUaMGOEzJ8/KlSvRo0cPdOrUCQAwatQoiEQifPHFF0Ifk8mEDRs2YPTo0UJbTk4ONm7cCLPZLLStWrUKIpEIo0aNCsZLJITUIVPJkDosVShy7BV2GHONqK2pDXNkhBByQVD+DBs7diwGDhyI22+/HS+88AIUCgUWLVoEmUyGmTNnAgCeeeYZDB8+HDNnzsS4ceOwefNmfPrpp1i5cqWwHb1ej3vvvRdz5syBWCxGSkoKXnzxRajVatx3331CvxkzZuCtt97C2LFj8eSTT6KgoABz5szBjBkzkJycHIyXSAi5iDRKitRhqTBuNaK2uhaOKgeMW4zQZ+khVUrDHR4hhATnSI9IJMLatWuRlZWF++67DxMmTIBKpcIvv/yCxMREAMCVV16JNWvW4LfffkN2djY+/fRTfPjhhz5z97z55puYOnUqnnjiCYwdOxYRERHYuHEj1Gq10Eer1WLTpk2QSCQYO3YsnnjiCdx777147bXXgvHyCCH1iIiMQOqwVEij3EVObU0tjFuMsFvtl1iTEEKCj2OM5pH3sFqtUKvVsFgszR7IXFJSgvj4eDpHHGSU69BpTK6ddifyt+ULxY44Qgz9ED3kmsAGG3Z0tF+HDuU6dIKZ60B/v+kdJoS0OIlMAsNQg1DkuGpdMG41oqa85hJrEkJI8FDRQwgJCnGEGIYsAyJjIwEAvJNH/rZ8VJVWhTkyQkhHRUUPISRoRBIRUganQBmvBADwLh4Fvxeg8mxlmCMjhHREVPQQQoJKJBYhZWAKopOiAQCMZyjcWQhrgTXMkRFCOhoqegghQceJOCQNSIJK7x5gyBhD0e4iWM74zqROCCHBQkUPISQkOI5DYr9EaNI0QtvZP87CdMIUvqAIIR0KFT2EkJDhOA4JfRIQ0/XCPfFKDpSg7GhZGKMihHQUVPQQQkJO11OHuIw44fG5vHMoPVQaxogIIR0BFT2EkLCITY+FrqdOeFx+rBzF+4tB86USQoKFih5CSNjEdI1BQp8E4bH5lBln956lwocQEhRU9BBCwkqTpkFS/yRwHAcAsOZbUbSrCIynwocQ0rKo6CGEhJ1Kr0LyFcngRO7Cp6KoAgU7CsC7+DBHRghpT6joIYS0ClGJUUgZlAKR2P21VFVShYLtBeCdVPgQQloGFT2EkFZDqVMiZXAKRBL3V1N1WTWMW41w1brCHBkhpD2goocQ0qpExkbCkGWAOEIMALCZbTDmGuG0O8McGSGkraOihxDS6sg1chiGGSCRSQAAdqsdxi1G1NbUhjkyQkhbRkUPIaRVkkXLYBhmQIQiAgDgqHLAuMUIR5UjzJERQtoqKnoIIa2WVCmFYZgBUqUUAFBbUwvjFiPsFfYwR0YIaYuo6CGEtGoRiggYhhkgi5YBAJx2J4xbjLCZbWGOjBDS1lDRQwhp9SQyCQxDDZBr5AAAV60Lxq1G1JTXhDkyQkhbQkUPIaRNEEvFMGQZEBkbCQDgnTzyt+WjqrQqzJERQtoKKnoIIW2GSCJCyuAUKOOVAADexaPg9wJUFFWEOTJCSFtARQ8hpE0RiUVIGZiC6KRoAADjGYp2FcGabw1zZISQ1o6KHkJIm8OJOCQNSIJKrwIAMMZQtKcI5lPm8AZGCGnVqOghhLRJHMchsV8iNJ00Qlvx/mKUHysPX1CEkFaNih5CSJvFcRwSeicgpluM0FZ6qBTn8s6FMSpCSGtFRQ8hpM3T9dAhLjNOeFx2tAwlf5aAMRbGqAghrQ0VPYSQdiG2eyzie8ULj00nTSj+o5gKH0KIgIoeQki7oe2sRWK/RHAcBwCwGC0o2lUExlPhQwihoocQ0s6oDWokDUgCJ3IXPhVFFSjYUQDexYc5MkJIuFHRQwhpd6KTopEyMAUisfsrrqqkCgXbC8A7qfAhpCOjoocQ0i4p45XQD9FDJHF/zVWXVcO41QiXwxXmyAgh4UJFDyGk3VLEKGDIMkAsFQMAbGYbjLlGOG3OMEdGCAkHKnoIIe2aXCOHYagBErkEAGCvsMOYa0RtdW2YIyOEhBoVPYSQdk8WLYNhqAERiggAgKPKgTNbzsBR6QhzZISQUKKihxDSIUiVUqRemQpplBQA4LQ5cWbLGdit9jBHRggJFSp6CCEdhkQugWGoATKVDADgcrhgzDWixlQT5sgIIaFARQ8hpEORyNyFjyJGAQBw1bqQvzUf1eeqwxwZISTYqOghhHQ44ggx9EP0UOqUAADexSN/ez4qz1aGOTJCSDBR0UMI6ZBEYhFSBqUgKjEKAMB4hsKdhbAWWMMcGSEkWIJe9FRWVkKv14PjOOzcudNr2dKlS5Geng65XI6+ffviu+++81nfYrFg6tSpiImJQXR0NG6//XYUFRX59MvNzUVWVhYUCgXS0tLw8ssv040GCSEN4kQckgckQ5WiAgAwxlC0uwjm0+bwBkYICYqgFz3PP/88nE7ficBWrFiBadOmYfz48Vi3bh2ysrJwyy23YNu2bV79xo8fjw0bNmDJkiVYvnw5Dh8+jJycHK9tHjt2DNnZ2UhKSsJ3332Hhx9+GM8++ywWL14c7JdHCGnjOBGHxP6J0KRphLbifcUoP1YevqAIIcHBgujQoUNMqVSyJUuWMABsx44dwrL09HQ2ceJEr/5ZWVksJydHeJybm8sAsPXr1wtteXl5jOM4tnLlSqFt+vTpLC0tjdntdqFt7ty5TKPRMJvNFnC8FouFAWAWi6VRr/NiLpeLFRUVMZfL1aztkEujXIdOR8h1ycESlvdNnvCv9FBpWOLoCLluLSjXoRPMXAf6+x3UIz0PPfQQZsyYgYyMDK/2EydO4MiRIxg3bpxX+4QJE7Bp0ybY7e55M9atWweNRoORI0cKfTIyMtCvXz+sXbtWaFu3bh3Gjh0LqVTqtS2z2YytW7cG46URQtohXQ8d4jLjhMdlR8tQ8mcJnSonpJ2QBGvDq1evxv79+/HFF19g9+7dXsvy8vIAAJmZmV7tPXr0gMPhwMmTJ5GZmYm8vDxkZGSA4ziffp5tVFVVwWg0+mwrMzMTHMchLy8Pw4cP9xuj3W4XCiwAsFrdAxh5ngfPN/1uzDzPgzHWrG2QwFCuQ6ej5FrbVQtOzKFkfwkAoPx4OWrttUjsl+jzXRQsHSXXrQHlOnSCmetAtxmUoqe6uhqzZ8/Giy++CJVK5bPcZDIBADQajVe7VqsFAJSXlwv9Lu7j6efpYzab/W5LKpUiMjJS6OfPokWLsGDBAp/20tJS2Gy2ete7FJ7nYbFYwBiDSEQXyAUT5Tp0OlSuIwGJQYKyA2VgjMFsMaOstAy6PjpwouAXPh0q12FGuQ6dYOa6oqIioH5BKXoWLlyIhIQE3HPPPcHYfIuZO3cuZs+eLTy2Wq0wGAzQ6XR+i7VA8TwPjuOg0+noQxRklOvQ6Wi5jo+PR3xiPIp2FYHxDLADtadqkTwwGSJxcF9/R8t1OFGuQyeYuZbL5QH1a/Gi5/Tp01i8eDG+/PJLWCwWAO7L1j3/raysFI7oWCwWJCYmCut6jgDFxMQAcB/RMRqNPs9hMpmEPp4jPJ7n8nA4HKiurhb6+SOTySCTyXzaRSJRs98QjuNaZDvk0ijXodPRcq1KVkEcIUbhjkLwLh41ZTUo/L0QKYNSII4QB/W5O1quw4lyHTrBynWg22vxd/jkyZNwOBwYM2YMtFottFotbrrpJgDAiBEjcP311wvjbzzjcjzy8vIglUrRpUsXAO5xOYcPH/YZRJiXlydsQ6lUwmAw+GzLs97FY30IIaQxlDol9EP0QpFTU14DY64RTrvvVByEkNatxYuefv36YfPmzV7/Xn/9dQDAkiVL8O6776JLly5IT0/HqlWrvNZduXIlrrvuOuEqrJycHJhMJmzatEnoc+TIEezZswejR48W2nJycvD111+jtrbWa1sajQZDhw5t6ZdICOlgFDEKGIYaIJG5D47brXYYtxhRW1N7iTUJIa1Ji5/e0mg09V4tNWDAAFx++eUAgPnz52PSpEno2rUrRowYgZUrV2L79u345ZdfhP5ZWVnIzs7GlClTsHjxYsjlcjz11FPo06cPbr31VqHfnDlzsHz5ckycOBEzZ87E/v378corr+CFF17wuoydEEKaSqaSwTDMgPyt+aitqYWjygHjFiP0WXpIlfQ9Q0hbELYTmBMnTsQHH3yATz/9FNnZ2diyZQu+/PJLZGVlefVbuXIlRo4cienTp+OOO+5A9+7dsXbtWkgkF+q1bt26YcOGDcjPz8fo0aPx6quvYsGCBXj00UdD/bIIIe2YVCmFYZhBKHJqa2px5rczsFmafrUnISR0OEazbgmsVivUajUsFkuzr94qKSlBfHw8DYwLMsp16FCuL3Dancjflg+71T3Pl0jivnlpZGxki2yfch06lOvQCWauA/39pneYEEIaSSKTwDDUAEWMAgDAO3nkb8tH5dnKMEdGCGkIFT2EENIE4ggx9EP0iEqIAgAwnqFwZyEsRssl1iSEhAsVPYQQ0kQisQjJVyRDpXcfTmeM4ezesyg/TndoJ6Q1oqKHEEKagRNxSOyXCG1nrdBWerAUJQfoRqWEtDZU9BBCSDNxHIf4XvFed2g3nTDh7J6z7ltYEEJaBSp6CCGkhcR2j0Vi3wt3Y7cWWFHwewF4J93Bm5DWgIoeQghpQepUNZKvSBbuxl5VWkW3rSCklaCihxBCWlhUYhQMWQbhfl02iw1nfjsDR6UjzJER0rFR0UMIIUGgiFHAMMyACEUEAKC2uhZntpxBjakmzJER0nFR0UMIIUEii5Yh9cpUyFQyAIDL4YIx10iTGBISJlT0EEJIEEnkEqQOS0VknPsWFYxnKNhRANNJU5gjI6TjoaKHEEKCTCQRQT9YD1XKhXsClfxZQnP5EBJiVPQQQkgIcCIOif0TEds9VmgznTChaFcReBdd0k5IKFDRQwghIcJxHOIy47zm8qkoqkD+1ny4HK4wR0dI+0dFDyGEhJg6VY2UQSkQSdxfwTWmGpz+9TRd0k5IkFHRQwghYaCMVyJ1WCokcgmA85e0/3YG1eeqwxwZIe0XFT2EEBImMpUMaVelXbikvdaF/G35sJyxhDkyQtonKnoIISSMPJe0RyVEAQAYYyj+oximIya6souQFkZFDyGEhJlIIkLywGRou2iFNsspC4p2FtHNSglpQVT0EEJIK8BxHOIvi0dC7wTAfWEXKs9Wuu/ZVUUDnAlpCVT0EEJIK6LppEHK4AtXdtkr7DjzKw1wJqQlUNFDCCGtjFKnRNKQJEijpAAuDHA2naBbVxDSHFT0EEJIKxQRGYHUq7wHOJccKEHRbprBmZCmoqKHEEJaKc8A55huMUKbtcCKM7/SOB9CmoKKHkIIacU4joOuhw7JVyR7jfM5/ctpVJ6tDHN0hLQtVPQQQkgbEJ0U7Z7IMNo9kSHv5FGwo8B9p3ae5vMhJBBU9BBCSBshjZIi9cpUqFJUQpvphAlntpxBbXVtGCMjpG2goocQQtoQkUSEpMuTEN8rHpzIPaGPzWzD6V9Oo6KoIszREdK6UdFDCCFtkLazFqlXpiIiMgKA+7L2wp2FKN5fTFd3EVIPKnoIIaSNkqvlSLs6DdHJ0UKb+ZQZZ349A7vVHsbICGmdqOghhJA2TBwhRvKAZCT0SRBOd9kr7Dj962mYTtBNSwmpi4oeQghpBzRpGqRdnQaZyn11F+PdkxkWbC+A0+YMc3SEtA5U9BBCSDshi5Yh7ao0xHS9MJlhVWkVTv10CtYCaxgjI6R1oKKHEELaEU7EQddTB/0QPSRyCQD3IOei3UUo3FUIl8MV5ggJCR8qegghpB1S6pTodE0nr0HOFYUVOPXTKVQW00zOpGOioocQQtopsdQ9yDl5QDLEEWIAgNPuRMHvBSjaUwRXLR31IR0LFT2EENLORSdHo9PwTsId2wHAmm/Fqc2n6P5dpEOhoocQQjoAiVyClEEpSOyX6H3UZ0cBCncVwmmnK7xI+0dFDyGEdCBqg9rnqE9FYQVObT4Fi9ESxsgICb6gFD2rVq3CzTffDL1eD6VSiX79+uHf//63zyRZS5cuRXp6OuRyOfr27YvvvvvOZ1sWiwVTp05FTEwMoqOjcfvtt6OoqMinX25uLrKysqBQKJCWloaXX36ZJuUihBA/PEd9ki5PEo76uGpdOLv3LIxbjXBUOcIcISHBEZSi57XXXkNkZCQWL16Mb7/9Fjk5OZg2bRqee+45oc+KFSswbdo0jB8/HuvWrUNWVhZuueUWbNu2zWtb48ePx4YNG7BkyRIsX74chw8fRk5ODpzOC4dijx07huzsbCQlJeG7777Dww8/jGeffRaLFy8OxssjhJB2QZWiQqcRnbzu2l59rhqnfjqFsqNlYDz94UjaF44F4XDIuXPnEBcX59U2ffp0rFy5EiaTCSKRCBkZGRgwYAA+/fRToc/QoUOh0Wiwdu1aAMDWrVsxdOhQrF+/HqNGjQIAHD58GD169MCKFSswbtw4AMB9992H9evX48iRI5BKpQCAJ598Eu+99x7Onj0LmUwWUNxWqxVqtRoWiwUqlerSK9SD53mUlJQgPj4eIhGdQQwmynXoUK5DJxy5riqpQvG+YtTW1Apt0igpEnonIDIuMiQxhAPt16ETzFwH+vsdlHf44oIHAPr37w+r1YqqqiqcOHECR44cEYoWjwkTJmDTpk2w2903ylu3bh00Gg1Gjhwp9MnIyEC/fv2EwsjTb+zYsULB49mW2WzG1q1bW/rlEUJIu6OMV6LTiE6I6RoDjnPfw8tR6YBxqxFFu4voVhakXQhZWfvbb78hJSUF0dHRyMvLAwBkZmZ69enRowccDgdOnjwJAMjLy0NGRobwAazbz7ONqqoqGI1Gn21lZmaC4zihHyGEkIaJxCLoeuqQdnUaFFqF0G4tsOLk5pPuG5jSKS/ShklC8SS//fYbVqxYIYyxMZlMAACNRuPVT6vVAgDKy8uFfhf38fTz9DGbzX63JZVKERkZKfTzx263C0eVAPfhMcB9CI7n+cBenB88z4Mx1qxtkMBQrkOHch064c51RFQEUrJSYDVaUXqwFHwtD5fDheL9xTCdNEHXSwelThmW2FpauHPdkQQz14FuM+hFT35+PsaPH48RI0Zg1qxZwX66Rlm0aBEWLFjg015aWgqbzdbk7fI8D4vFAsYYnSMOMsp16FCuQ6fV5FoOKHspYT5qRkVBhbvNApQUlCAyPhLadC0iIiPCF18LaDW57gCCmeuKioqA+gW16DGbzcjJyUFsbCy++OIL4UV6juhYLBYkJiYK/T1HgGJiYoR+RqPRZ7smk0no4znCY7F4zy/hcDhQXV0t9PNn7ty5mD17tvDYarXCYDBAp9M1eyAzx3HQ6XT0IQoyynXoUK5Dp7XlOkmfBJvZhpI/S2Aznf+D0A5UH6iGprMGMd1jhEvf25rWluv2LJi5lsvlAfULWtFTU1ODG2+8ERaLBVu3boVarRaWecbfeMbseOTl5UEqlaJLly5Cv40bN4Ix5jWuJy8vD7179wYAKJVKGAwGn7E7hw8fBmPMZ6xPXTKZzO+VXSKRqNlvCMdxLbIdcmmU69ChXIdOa8t1ZEwk0q5KQ0VBBUoPlQoDm80nzajIr0Bseiw0nTTgRNwlttT6tLZct2fBynWg2wvKO+x0OjFu3DgcOnQIP/zwA1JSUryWd+nSBenp6Vi1apVX+8qVK3HdddcJV2Hl5OTAZDJh06ZNQp8jR45gz549GD16tNCWk5ODr7/+GrW1tV7b0mg0GDp0aDBeIiGEdDgcx0GlV6HziM6I7R4rFDiuWhdKDpTg1E+nUFFYQRPDklYrKEd6Zs6cie+++w6LFy+G1Wr1mnCwf//+kMlkmD9/PiZNmoSuXbtixIgRWLlyJbZv345ffvlF6JuVlYXs7GxMmTIFixcvhlwux1NPPYU+ffrg1ltvFfrNmTMHy5cvx8SJEzFz5kzs378fr7zyCl544QWvy9gJIYQ0n0giQlxmHNRpapzLOwdrvvsiEEeVA4W7CiFXyxGXGQdlfPsY7Ezaj6BMTtipUyecPn3a77KTJ0+iU6dOANy3oXjppZdw5swZZGRk4MUXX8SNN97o1d9isWD27NlYs2YNnE4nRo0ahbfeegvJycle/XJzczF79mzs3bsXOp0ODzzwAP7xj3/4XO7eEJqcsO2hXIcO5Tp02lqubRYbSg+Uorqs2qs9MjYScZlxUMQo6lkz/Npartuy1jA5YVCKnraKip62h3IdOpTr0Gmrua4qqULpoVLYrXavdmW8EnEZcZBrAhtsGkptNddtUWsoekIyTw8hhJD2TxmvRKQuEpVFlTiXd064cWlVSRWqSqoQlRCF2IxYyNWtr/ghHQMVPYQQQloMx3GITo5GVFIUrEYryo6UCffzqiyuRGVxpbv4SY9tlUd+SPtGRQ8hhJAWx3Ec1KlqqPQqWIwWlB8t9yl+lPFKxKbHet3ygpBgoqKHEEJI0HAiDpo0DdQGNSxnLCg7WibM8eM57aXUnS9+WvGAZ9I+UNFDCCEk6DgRB00nDdSpap8jP1WlVagqrUJkbCRiuse0m/t6kdaHih5CCCEhU/fIjzXfirKjZaitdhc/1WXVqC6rhlwjR2z3WCgTlI2adoSQS6GihxBCSMhxogtjfioKK1B2tAyOSvfVXjazDQU7CiCLliGmWwyik6Pb5O0tSOtDRQ8hhJCw4UTuW1tEp0SjsqgSZUfLhHl+7BV2FO0pwrm8c9B21UKdqoZITHPpkKajoocQQkjYeS51j06ORmVxJcqPlaOmvAYAUFtTi5I/S1B2pAyaThpoO2shlrbNu7qT8KKihxBCSKsSlRCFqIQo1JTXoPxYOSqLKwEALocLZUfKUH6sHOpUNbRdtJAq6f6KJHBU9BBCCGmVFDEKpAxKgd1qR/nxclQUuO/gzngG8ykzLKctiEqMgrarlub6IQGhoocQQkirJlPJkNQ/CXGZcTCdMMFy2gLexYMxhoqiClQUVUARo0BM1xi64os0iIoeQgghbUKEIgLxl8UjNj0W5lNmmE+a4bS7JzqsKa9BQXkBpEopNJ3dl8SLJDTomXijoocQQkibIo4QI7Z7LGK6xsBaYIXpuAn2CvcVX44qh3vQ8+EyqNPU0HbWQiKnnzriRnsCIYSQNokTcVAb1FAb1KgqqYLphAlVpVUAAFetC+XHymE6bkJ0cjQ0nTU07odQ0UMIIaTtU8YroYxXwm61w3TCBGuBFYxnYIzBWmCFtcAKhVYBTWcNopNossOOiooeQggh7YZMJUNiv0TE9YiD+aQZ5tNmuBwuAECNqQY1phqUykuF+4CJImjcT0dCRQ8hhJB2RyKTIC4zDrHpsbDmW2E6aRJmenbanDiXdw5lR8qgTFTCGe0E4sMcMAkJKnoIIYS0W557fKlT1ag+Vw3TSROqiquE+X4q8itgtpjBzjLEdI2hU1/tHBU9hBBCOoTIuEhExkWitrrWPbnhGYtwybvNZEPR7iKUykqhTlVD00lDV321Q/SOEkII6VAiIiOg66lDbEYsLEYLqndXC8ucdifKjrpvdaFMUELTSQOlThnGaElLoqKHEEJIhyQSi6BOVSNZnoxoSTQspy2oLKp0n/piDJVnK1F5ttI94WEnDVQGFcQRdKPTtoyKHkIIIR2eIkYBZZwSTpsT5tPnT33Z3Ke+HFUOlBwowbm8c+45fzppINfIwxwxaQoqegghhJDzJHIJ4jLiENs9FpXFlTCfNKO6zH36i3fxsBgtsBgtkKvl0HTSIDo5mm530YZQ0UMIIYRchBNxiE6KRnRSNOwVdlhOu4sd3skDAGwWG87+cRYlB0qgSlFBnaaGXE1Hf1o7KnoIIYSQBsiiZYjvFY+4HnGoKKiA+ZQZNosNAMA7eZhPuydBlGvkUKeqoUpR0dGfVoqKHkIIISQAnoHP6lQ1bGYbzKfNqCioAO86f/THbIPNbEPpgVJEJ0dDnaqGIobu99WaUNFDCCGENJJcI0eiJhHxl8XDWmCF5bTlwtGfOmN/pFFS99EfvQoSGf3khhu9A4QQQkgTiSQiaNI00KRpYLPYYDljgTXfKoz9cVQ6UHqwFOcOnYMyXgl1qhrKeCXN+hwmVPQQQgghLUCulkPeWw5dTx0qiyphPm1GTXkNALjn/SmuRGVxJcRSMVQpKqgMKhr8HGJU9BBCCCEtSCQWQaVXQaVXwVHlgNVohcV4Yd4fl8MF00kTTCdNkEXLhL5024vgowwTQgghQSJVSt13e8+IRfW5aljOWFB5thKMZwAAe4UdpYdKUXqoFJFxkVClqBCVFEUzPwcJFT2EEEJIkHEcB6VOCaVOCVetC5VFlbAYLcLpLwCoPleN6nPV4PZziEqIQnRyNJQJSojEdPl7S6GihxBCCAkhcYRYuPTdUeVARUEFrPlWOKocAADGM1QUVaCiqAIiichdAKVEQ6mjAdDNRUUPIYQQEiZSpRSx6bGITY+FzWyDNd+KisIKOO3u8T+8k4e1wAprgdVdACVGITopmq4AayIqegghhJBWQK6RQ66RQ3eZDjVlNbAWWFFZVAlXrQvA+QIo3wprvrsAUsYrEZUYBWW8ksYABYiKHkIIIaQV4TgOkXGRiIyLBOvNUFVahYrCClQVV3kVQBWFFagorAAn4hAZG+kugBKUiFBEhPkVtF5U9BBCCCGtFCdyD2qOSogC4xmqz1WjorAClWcvHAFivLswqiqtAva77xWmjFdCmaCEQqtoHafBGAPOnYPYaAREIkCnA7jQx0VFDyGEENIGcCLOXczEK8EYQ01ZjXvCw6JK1NbUCv3sFXbYK+woP14OkUQkHDVS6pSQRklDG7TZDHz8MfDWWxAdPw6dp71rV+Chh4DJkwGNJmThtKvr4PLy8jBy5EgolUokJibi8ccfh8PhCHdYhBBCSIvynAKLvyweXa7vgk7XdEJcZhwUWu8bnPJOHpVnK1HyZwlObj6J4/87jqLdRTCfNsNRGeTfx/XrAb0eeOQR4MQJ72UnTrjb9Xp3vxBpN0d6TCYTrr32WnTv3h1r1qxBQUEBZs+ejerqarz99tvhDo8QQggJGplKBplKhtjusXA5XKgqqXL/K62Cy+ES+jltTuFqMACQyCRQxCgg18qFgdQtMi/Q+vXAmDHu01qM+S73tNXUuPt9/z2Qnd38572EdlP0LFmyBFarFV9++SViYmIAAE6nEzNnzsSTTz6J5OTkMEdICCGEBJ9YKhZubcEYg6PCgarSKlSXVqOmvAa8ixf6Ou1OYU4gwH0ESRothVwjh0wlg1zt/q9I0ohCyGwGbrvNXdjwfMN9ed49xue224D8/KCf6mo3Rc+6detw/fXXCwUPAIwbNw4zZszAhg0bcPfdd4cvOEIIISQMOI4TjgLFdI0B4xlsFhtqympQU+7+5xkQDbhvjGq32mG32r22ExEZAalSCmnUhX8RkRGQyCW+A6U//hiorvZ/hMcfnnf3/+QTYNas5r7kBrWboicvLw9TpkzxatNoNEhKSkJeXl7jNma3u/9dTCQCIiK8+/nD80BtrXdbfX39bdfhqH9n4ThAKm1a39rahqtumSz8faXSCyP6nU7A5Wq4r4fT2fAHrLHbDbRvRIT7/WtsX5fL3b+l+/rb9+qSSACxuGl9PZ8Lu/3C83mIxe7+gWy3bl/G3Ptwa+4b6Oe+JfvWzbdIRN8RdbX0Z9mT67o5asffERwYFJEiKCKVgME9INpR6YDNZEONuQa2Cicc1S6w80dpOJd7u06LA05LFarrbJaJxIBYDLFUjAiZGGIxD5GYQ/wrr0PMGBp1bRZjwJtvAtOnuz+bTfksB6DdFD0mkwkaP4fFtFotysvL/a5jt9thr/NFY7W6z3GyOXPApL4j3FmvXsCDDwqPuUcf9f9mMIbI5GTwzzxzoe/cuUBlpd84WFoaMHfuhb7z5gFlZX77IikJbN68C31feAEoKvLfNzYW7IUXLjz+v/8Dd/q0/75RUWCvvnrh8ZtvgjtyxH9fqRTsn/+88Pi998D9+af/vgDYkiUXHnz4Ibg9e+rv++abF74AP/kE3LZt9fd95RXwSveHln3+Odgvv9Tf94UXgNhY94MvvwT3v//V3/fZZwHP6dDvvwf3/ff1933iCaBTJ/eDjRvBrVlTf9/Zs4H0dPeDn38Gt2JF/X0feADo3dv9YOtWcJ98Un/fadOAAQPcD3btAvfBB/X3vesuYOhQ94P9+8G98079fSdMAIYPdz84cgRYvBjRNhsgl4NddKkpu/VWYNQo94NTp8C99FL92x0zBrjpJveDwkJwzz1Xf9+RI92HvQGgrAzcU0/V3/eaa4CJE90PKirAzZlTf98hQwDP0V+7Hdzf/15/3/79gfvuEx5zDz1Uf99AvyMAsPR0YPbsC33rfkcw5pVr+o6o07eR3xGIjnY/WLkS3M8/++nkzjX/6qvuy6iBDvcdIT3/TwX3dwR/1RDYrXY4f98DydL3wTtccNXywk1SPSquGoPq3oPgtDnBHT8K1dcfQVRrh6Sgnn3oUk6cAJs+Hey22xr9HcFf6jTaee2m6GmKRYsWYcGCBT7tNTU1iPBTjTsrKlBdUiI8jq6pAefnC40xhpqaGlSWlEB0vrqOrq4GV1Pj0xcAXJWVqKqz3aiqKojq6ctXVaGyiX2VlZUQ19OXiUSoqNM3srISkvr6ulzefSsq6u0LANY6fRUVFYi4VN/zX2iX6ltRWgpXVRUsFgvkVitkl+jLzr+nMoulwb6V586BP/+Xw6X6VpWVwRUZCQCQms2QX6rv+Vxcqm91eTmc5/tGmExQBNhXUl6OyAb61phMqA2wr81shuN8X3FZGSJratxXQzIG7qKi5+K+yga2a7dYYD/fV3TuHKIC7MuVlyO6gb4OqxU2T9/Kygb71lZUoMazX9rtUAXaF2iwb6DfEQDgrKz07lvnO4Ix5pVr+o64qG8jviPY+eVyqxVSP309ubaWloI7f7Snw39HlJ1z95XXIkIBiBViiCEG72JgTh78+X9OqRM1qIHL7kJEZSWiHHaIbdX1bjsQtspK2JrwHVFRURHQ9jnGAj3p1rrFx8dj6tSpWLRokVd7SkoK7rzzTrzk5y9Pf0d6DAYDTGfPQqVS+T5JgIeueZ5HaVkZdMnJQtFDp7cC7NvIQ9c8YygtLYVOq4WITm8F9fQWb7e7c63TXdivPej0Vov25XneO9f0HXFBC3+WhVynpEDk2d/pO6LRfZnLBb7aDv5sCWSZXetf5xJ4oxGIj2/0Z9lqtUKr1cJisfj//faE3OTIWpnMzEyfsTsWiwVFRUXIzMz0u45MJoOs7oftPJFCAZFC4WeNi9TXh+fBSaUQiUQXfhwC2Z6HXB6cvn5ea6vu6+cUow+eB8dxEJ3Pd4ttN9h9L/4Ra8m+gZ7fbmxfkQicXO7+fDSU68ZsF2jcZ6Oj9OX5hnNN3xFuLfH59ORaLL6Qa/qOaFJfsToCUCndEw+eOBH4QGbAXUR26QJRSorvTM0BfI4C/f5vN5MT5uTkYOPGjTCbzULbqlWrIBKJMMoz1oAQQgghwcNx7pmWm2LWrKDfmqLdFD0zZsxAdHQ0xo4diw0bNmDZsmWYM2cOZsyYQXP0EEIIIaEyeTIQGel7lWd9RCJ3/7vuCm5caEdFj1arxaZNmyCRSDB27Fg88cQTuPfee/Haa6+FOzRCCCGk49BogC++cB+1uVThIxK5+61ZE5J7cLWbMT0A0KNHD2zcuDHcYRBCCCEdW3a2+9YSt93mnngQ8B7j4zmNpVC4C54QDUNpN0d6CCGEENKKZGe7by3xxhtAly7ey7p0cbcXFISs4AHa2ZEeQgghhLQiGo17gPJDD4E/dw5lp04htlMniOLigj5o2R8qegghhBASXBwHxMbC5XK5Z8cPQ8ED0OktQgghhHQQVPQQQgghpEOgoocQQgghHQIVPYQQQgjpEKjoIYQQQkiHQEUPIYQQQjoEumS9DnZ+tkir1dqs7fA8j4qKCsjl8sDv/E2ahHIdOpTr0KFchw7lOnSCmWvP7za7xJ3dqeipo6KiAgBgMBjCHAkhhBBCGquiogJqtbre5Ry7VFnUgfA8j8LCQkRHR4NrxsRJVqsVBoMBRqMRKpWqBSMkF6Nchw7lOnQo16FDuQ6dYOaaMYaKigokJyc3eBSJjvTUIRKJoNfrW2x7KpWKPkQhQrkOHcp16FCuQ4dyHTrBynVDR3g86AQmIYQQQjoEKnoIIYQQ0iFQ0RMEMpkM8+bNg0wmC3co7R7lOnQo16FDuQ4dynXotIZc00BmQgghhHQIdKSHEEIIIR0CFT2EEEII6RCo6CGEEEJIh0BFTwvKy8vDyJEjoVQqkZiYiMcffxwOhyPcYbVpq1atws033wy9Xg+lUol+/frh3//+t89U40uXLkV6ejrkcjn69u2L7777LkwRtx+VlZXQ6/XgOA47d+70Wkb5bjkff/wx+vfvD7lcjri4OOTk5KCmpkZY/u2336Jv376Qy+VIT0/HsmXLwhht2/XNN99g8ODBiI6ORlJSEsaNG4cTJ0749KN9u3GOHTuGGTNmoF+/fpBIJOjVq5fffoHk1WKxYOrUqYiJiUF0dDRuv/12FBUVtWzAjLSI8vJylpSUxK6++mr2ww8/sKVLlzK1Ws0eeOCBcIfWpg0ZMoRNmDCBrVixgm3atIk98cQTTCQSsfnz5wt9PvvsM8ZxHHv66afZjz/+yO677z4mkUjY1q1bwxh52/f444+zhIQEBoDt2LFDaKd8t5yFCxey6OhotmjRIvbTTz+x1atXs/vvv59VVFQwxhj79ddfmVgsZvfddx/78ccf2dNPP804jmOrVq0Kc+Rty+bNm5lIJGJ33303+9///sdWrFjB0tPTWdeuXVl1dbXQj/btxvvqq6+YXq9nt912G+vduze77LLLfPoEmtfs7Gym1+vZypUr2ddff8169erF+vbty2pra1ssXip6WsiLL77IlEolKysrE9ref/99JhaLWUFBQRgja9tKS0t92qZNm8ZUKhVzuVyMMcbS09PZxIkTvfpkZWWxnJyckMTYHh06dIgplUq2ZMkSn6KH8t0y8vLymEQiYWvXrq23z6hRo9jQoUO92iZOnMh69OgR7PDalfvuu4917tyZ8TwvtP34448MAPvll1+ENtq3G8/zPcwYY5MnT/Zb9ASS19zcXAaArV+/XmjLy8tjHMexlStXtli8dHqrhaxbtw7XX389YmJihLZx48aB53ls2LAhjJG1bXFxcT5t/fv3h9VqRVVVFU6cOIEjR45g3LhxXn0mTJiATZs2wW63hyrUduWhhx7CjBkzkJGR4dVO+W45y5YtQ+fOnZGTk+N3ud1ux+bNm/HXv/7Vq33ChAk4dOgQTp06FYIo24fa2lqfeyp6blnAzp8qp327aS51t/RA87pu3TpoNBqMHDlS6JORkYF+/fph7dq1LRdvi22pg8vLy0NmZqZXm0ajQVJSEvLy8sIUVfv022+/ISUlBdHR0UJuL859jx494HA4cPLkyXCE2KatXr0a+/fvx7PPPuuzjPLdcrZt24bevXtj4cKFiI+Ph1QqxbBhw7B9+3YAwPHjx1FbW+s31wDoe6UR7r77bhw8eBDvvvsuLBYLTpw4gSeffBL9+/fHsGHDANC+HSyB5jUvLw8ZGRk+N/vu0aNHi+7rVPS0EJPJBI1G49Ou1WpRXl4e+oDaqd9++w0rVqzAY489BsCddwA+uddqtQBAuW+k6upqzJ49Gy+++KLfGwJSvlvO2bNnsWHDBnzyySd499138dVXX4HjOIwaNQolJSWU6xZ01VVX4csvv8QTTzwBjUaDrl27ori4GOvWrYNYLAZA+3awBJrXUP2GUtFD2oz8/HyMHz8eI0aMwKxZs8IdTru0cOFCJCQk4J577gl3KO0ez/OorKzE6tWrcfvtt2P06NH45ptvwBjD22+/He7w2pXc3FzceeedmDZtGn788UesWrUKPM9jzJgxXlfKkfaPip4WotVqYbFYfNpNJpPXOB/SNGazGTk5OYiNjcUXX3whnEf2/LVwce49f11Q7gN3+vRpLF68GAsWLIDFYoHZbEZlZSUA9+XrlZWVlO8WpNVqERsbiz59+ghtMTEx6N+/Pw4cOEC5bkGzZs3Ctddei8WLF2PEiBG4/fbb8f3332P37t34z3/+A4C+S4Il0LyG6jeUip4WkpmZ6XPe0WKxoKioyOdcJmmcmpoa3HjjjbBYLFi3bp0wABG4cJ744tzn5eVBKpWiS5cuIY21LTt58iQcDgfGjBkDrVYLrVaLm266CQAwYsQIXH/99ZTvFnTZZZfVu8xms6Fr166IiIjwm2vAd4wEqd/BgwfRr18/rza9Xo+4uDgcP34cAH2XBEugec3MzMThw4d95mDzN162OajoaSE5OTnYuHEjzGaz0LZq1SqIRCKMGjUqfIG1cU6nE+PGjcOhQ4fwww8/ICUlxWt5ly5dkJ6ejlWrVnm1r1y5Etdddx2kUmkow23T+vXrh82bN3v9e/311wEAS5Yswbvvvkv5bkE33ngjysrKsHfvXqGtrKwMu3fvxoABAyCTyTBixAisXr3aa72VK1eiR48e6NSpU2gDbsPS0tKwe/dur7bTp0/j3LlzQh5p3w6OQPOak5MDk8mETZs2CX2OHDmCPXv2YPTo0S0XUItd/N7BeSYnvOaaa9j69evZv//9b6bRaGhywmaaNm0aA8AWL17Mtm7d6vXPZrMxxhj79NNPGcdx7Nlnn2WbN29mM2bMYBKJhOXm5oY5+rZv8+bNPvP0UL5bhsvlYgMHDmRdu3ZlK1asYF9//TUbMmQIi42NZUVFRYyxC5MT3n///Wzz5s3s2WefZRzHsc8//zzM0bctb7zxBgPAZs2aJUxO2KtXL5aQkMDOnTsn9KN9u/GqqqrYqlWr2KpVq9jw4cOZwWAQHpeUlDDGAs9rdnY2MxgM7PPPP2fffPMN6927N01O2JodPHiQXXfddUyhULD4+Hj22GOPMbvdHu6w2rS0tDQGwO+/kydPCv0+/PBD1q1bNyaVSlnv3r3Zt99+G76g2xF/Rc//t3fvQVGVbxzAv4uALKxcFBCwQBJk8YIQZWqlmJc0jMQMyhuMOaIj4aW84og/VMTLhDIWaqNiiKaljnnLSdG8oiW6LPdQDANUqFBhgbg8vz+cPeNhd2ER1GSfzwwz8p73vO9z9j2H8+ye912J+PVuK6WlpTRp0iSysrIiqVRKI0eOpMzMTFGdQ4cOUd++fcnU1JTc3Nxo27ZtzynaF1dDQwMlJCSQl5cXWVhYkIODAwUGBlJ2drZGXT63W6agoEDn3+jTp08L9fR5XcvLy2nq1KlkbW1NMpmMxo0b1+Zf7ishavQAjTHGGGOsHeI5PYwxxhgzCJz0MMYYY8wgcNLDGGOMMYPASQ9jjDHGDAInPYwxxhgzCJz0MMYYY8wgcNLDGGOMMYPASQ9jjDHGDAInPYwxxhgzCJz0MPYfUlFRASMjI+E/+nzeiAgymQwLFy5sszarqqrQoUMHxMTEtFmbujyN+J+31pwjz/P80qfv0NBQSCQSSCQS9OnTp8363rBhg9CuRCJBWVlZm7XNXiyc9DCDcOLECdEfvcd/goODn2ksRITo6GicO3dOY1tGRgaICF5eXs80Jl1u3bqFyspK9O3bt83azMrKQkNDQ5ve1HR5GvE31tR4Pg2tOUee5/ml7ru5sbC1tUVSUhJiY2NF5UVFRfD394elpSV69eqFw4cPa+x74MAB2Nvb4/79+6LyUaNGISkpCYGBga0/EPZCM37eATD2LCgUCgBAfHw8bGxsRNue5g1Rm7y8PERFRUEul2ts69+/P6qqqtCxY8dnGpMumZmZANr2NVIqlQCA3r17t1mbujyN+BtrajyfhtacI8/z/FKPe3NjYWFhgUmTJmmUh4SEoKioCGvWrMGFCxfw0UcfIScnB927dwcAVFdX44svvsDKlSthZWUl2lcul0MulyM/Px8HDx5smwNiLyROephBSE9Ph5WVFcLDwyGRSPTer7q6GmZmZm0ay9WrVwEAr776qsY2IyOjNu+vNTIzM2FsbAxPT882a1OpVMLc3ByvvPJKm7Wpy9OIv7GmxvNpaM058jzPL6VSCTs7O3Tt2rXF+1ZVVSElJQVnzpzB4MGDMWPGDFy8eBEnTpxAWFgYAGD9+vWwsrLCtGnT2jp01o7w4y1mEBQKBXx8fJpMeEaMGIFBgwbh3LlzGDJkCKRSKWbPng0AyM7OxowZM+Dh4QFzc3M4ODhg4sSJKCkp0Wjn6tWrGD9+POzt7WFmZga5XI7o6GgAj95pT5w4EQDg7u4OiUQCa2trUQxvvvmmqL1jx47Bz88PlpaWsLa2xsSJE7XOSRg6dCgGDx6MtLQ0jB49Gp06dUK3bt2wceNGvV6jvXv3wtvbG2ZmZvD19cWVK1eQmZmJnj17wtTUVKhnZ2eH8PBwjf1fe+01+Pv7N9uPUqmEp6cnUlNT4efnBwsLC8jlcuzZs0dUr6X96Bv/zp074eXlBalUCl9fX1y6dAlBQUHo16+fRptnzpzBe++9B2tra3Tu3BljxozBjRs3hO3Njac2I0aMwMCBA3Hp0iXh+N3c3HDs2DEAj8Z7wIABsLCwgLe3t5BUPb5/43NE37HXtm9r49H32lAqlU/8iVt1dTWISPiUVv06q1QqAI8efcXGxmLjxo0wMuLbGtONzw7W7v3777/Izc2FXC5HWVmZ6Ke2tlaol56ejr/++gtjx47FwIEDsWHDBgQFBQEAtm/fjoKCAkyePBnx8fEICgrCDz/8gMmTJ4v6OnjwIAYNGoTMzEzMnz8fcXFxGDRoEC5evAgAWLhwIfr06QN3d3ckJSUhKSkJu3btEsXw+HyL9evXw9/fHzY2Nli3bh0+++wzHDp0SIjrcUqlEuXl5Xj//ffh6+uL9evXw9HREXPnzhUeLegSFxeHjz/+GK6uroiPj8fAgQMxZswYpKamim5UxcXFKCsr00gQ6uvrkZmZqddcEaVSiYqKCgQHB2PYsGGIjY2FRCLBhAkTcPny5SfqR9/4V69ejdDQULi5uSE+Ph4DBgxAQEAA0tLSNG7IiYmJGDZsGBoaGrBy5UosWrQICoUCw4cPR1VVFYDmx1Ob9PR03L9/H8HBwRg6dChiYmLw8OFDTJgwAVu2bEFERAQCAwOxdOlS3LhxA1OnTtXYv/Hx6zv22vZtbTz6XhutSXpsbGzQo0cPxMTEoKCgAMnJybh+/Tr69+8PAFiwYAFGjx6NwYMHP1H7zIAQY+3ctWvXCIDWn8zMTCIiunv3LgEgmUxG2dnZGm1UVlZqlC1dupSMjIyoqqqKiIhyc3PJ3NycAgMDhTK16upq4d/Ozs4UGhqq0Z46hq+//pqIiM6ePUsSiYSWLVsmqvfVV18RALpy5YpQVlxcTADIzs6Obt++LZRnZWURANq5c2eTr4+xsTEtWbJEVD5z5kwCQCtWrBDKjh8/TgDo8uXLoroZGRkEgJKTk3X2Q0RUWlpKAKhz585UUFAglBcWFpKpqSlNnz69xf3oG//Vq1epQ4cOtHjxYlG9Tz/9lADQ6tWrhTKlUkmmpqaiYyciUigUBID2798vlOkaT23UY9y1a1cqLi4WyuPj4wkAyeVyun//vlA+b948kkgkwvnT+Bwh0n/ste3b2niI9Ls21DF+8803Tb4+ISEh5OLionXbqVOnyMbGRrh258yZQ0REFy5cIKlUSrdu3WqybSKiqKgoAkClpaXN1mXtE3/Sw9q99PR0AI8ea/z888+iH/XkU3WdJUuWaJ2Qam5uLvy7vLwcZWVlsLGxQUNDA+rq6gAAy5Ytg5mZGRITEzXmTagnjt6/fx+FhYVaPxFRx6B+N7xq1Sp069YNy5YtE9VTP57IyckRytTv5qOiovDSSy8J5SYmJgAgerzT2KpVq2BlZYXIyEhR+ZAhQ0TxqGM0MjLSWHmlnije3Dv5jIwMAEBkZKQwARUAXn75ZXh4eKCgoKDF/egbf0xMDBwdHfG///1PVO/tt9/WaDM6OhrOzs4ICwsTfTLo5OQEExMT3Lx5E0DT46mNeoyXL18OR0dHoVwmkwEA1q1bB0tLS6HcysoKRkZGwiObxucIoP/Ya9u3tfEA+l0b2vpuqXfeeQeFhYVITU1FYWEh4uLi0NDQgIiICHz++edwcXFBQkIC5HI5PDw8sHnz5ifui7VfPJGZtXsKhQKmpqaYMGECjI21n/LqG4e25ev19fXYuXMnNm3ahJycHOHRBvBoea1MJkNNTQ0OHz6MadOmiW4Sjan/+Gu7ST6+ukWlUuHUqVOYN28eOnToIKpXWVkJQJzIqPcdO3asqK46MfLw8NAaT01NDY4dO4bp06eLbl4AhBvW4zcqhUIBNzc3jbrXr1+HiYlJsyuY1HFqW51jZGQktKtvP/rGX1NTg+PHj2PmzJlCMqBWUVEhOs6amhocPXoUKpUK9vb2Wo+jU6dOAJoez6aOPyAgQFSem5sLqVSKESNGiMrz8vLQo0cPIWZtK6D0Hfum9n3SePS5NtT9SCSSVq/Yk8lkeOONN4Tfd+zYgTt37mDRokU4efIk5s+fj127dgmPSz08PDB06NBW9cnaF056WLuXnp4Od3d3nQmPuo6jo6PWFUVTpkzBvn37EBISgjlz5sDW1hampqaIiIgQ3h3fvHkTKpUKvr6+zcYCQOuk2fT0dDg7O8PKygoKhQJ1dXVak5X8/HwAQK9evUT7Ojg4oFu3bqK6CoUCxsbGorqPu3Hjhs64f/vtN8hkMri6ugplSqVSa+y//vorPDw8NBKKxpRKJZycnDSSCZVKhZycHOHmq28/+safnZ0NlUqltc2bN2/C0tISzs7Owu8qlQorVqzAgAEDtB6Hup2mxlMb9Xnm5OQkKlcoFOjTp4/GUnKFQiFKqB4/Rx4v02fsde3bmnj0uTaAR+Pp6uoqJEFt4cGDB4iMjMT69ethYWGBPXv2YPz48ULyN378eCQnJ3PSw0Q46WHtXnp6Ovz8/Jqto+3GlZWVhd27dyMuLg5z5swRyktKSpCXl4dRo0YBgPAOt7nl8OqbjK2trdZt6huKuh1t36eybds2uLi4iB796EoS0tPT0bNnT53fy6Je/dJYZWUlvv32W/Tu3VuIpaGhAbm5uRpf8Hbv3j2cP39e6+TqxpRKpcYnV8Cjd+w1NTUYN25ci/rRN371+DRe2VNTU4M9e/aIXsuHDx8CADw9PTF8+PAmj6ep8dRVX9s4KRQKjRVptbW1yM3NFR2vrknM+oy9rknMTxqPvteGOsa2/q6k6OhouLq6CqvniouL4ePjI2x3cnLC9evX27RP9uLjOT2sXbtz5w7u3bvX5Mfq9fX1yMrK0vrH/88//wQAuLm5CWW1tbWYNm0a6uvrhZuIevvJkyc12nh8hVhhYaFo3kXjGNTt9ejRA8bGxrhw4YKo3r59+3D27FksXLhQSEbq6+uRnZ2t8+bV1KMXFxcXAEBKSoqofOXKlfj7779FN6r6+nrU1taKEo26ujqEhYWhrq6u2ZsaESEjIwNFRUWiZd+lpaWIjY1FQEAAvL29W9SPvvGr650/f15ULzY2FiUlJaKkp3v37pBIJNi/f7/GMdTV1eGff/4Rftc1ntroOs/KyspQUlKiUZ6dnY3a2lph/BqfI+oyfcZe176tiUffa0MdY1smPXl5edi0aRM2btwoXAddu3YVzXPLzs6Gg4NDm/XJ2gf+pIe1a+qJr00lPb///juqq6u13ji8vb1hbm6O2bNno6CgAFVVVUhKShI+rVDvY2lpidDQUCQmJqKmpgZ+fn54+PAhTp8+DX9/f8yaNQsA4OrqipSUFKxduxZOTk7w9PSEr6+vEIP6xmBhYYGwsDBs3rwZxsbG8PLywuXLl7F9+3ZMnjwZM2fObDb+qqoq5OfnIyQkROex29nZYeTIkUhMTETHjh3h4+ODn376SUgOHr9RmZiYwMvLCwkJCZBKpZBKpfj+++8hlUo16mpz69YtVFRUwNfXF/7+/oiIiIBKpcKmTZtgZGSErVu3trgffeO3tbXFqFGjsHXrVuH1PHnypPCdM4+3aW9vj08++QS7d+/GgwcPMHr0aNTX1yM/Px8HDhzAd999h7feeqvJ8dRG1zipz9HG5Y3nCzU+R5pqs/HYt2RffePR99rQ1ndrzZ07F8HBwcKSdeDR46wPPvgAS5YsAQAcPnwYR44cabM+WTvxvJePMfY0rV27lgBQVlaWzjr79u0jAJSRkaF1+5EjR0gul5OZmRl5eXnRjh07aPny5WRsbKyxdDcyMpLc3d2pY8eO5OjoSB9++CHl5+cLdYqKiujdd98lmUxGACg+Pl4Ug3oJPRGRSqWi8PBwsrW1JalUSv369aOEhARqaGjQK/4rV64QADpy5EiTr1FJSQkFBARQp06dqEuXLhQcHEzJyckEgE6dOiWqm5aWRr6+vmRmZka9e/emrVu30rZt2wgA/fHHH032c+jQIQJA165do1mzZpGVlRVZW1vTlClTRMulW9qPvvHfvXuXxo4dS5aWluTo6EizZ8+mgwcPEgBKTU0VtVldXU0xMTHUq1cvkkql1KVLF3r99dcpKipKtERb13hqo2ucvvzySwJA5eXlovIFCxaQpaWlMN7azhF9x74l++obD5F+14a2vnVpasm62tGjR0kmk2mcM0REq1evJicnJ3J0dKQ1a9ZobOcl60xCRPQMcyzGGPvPCA8Px969e1FSUtLkRHf2bISGhiIlJQVpaWkwNjZu9tut9VVdXY2KigqsXbsW69atQ2lpqd7zsFj7wnN6GGPtXk1NDRq/vzt79iy2bNmCGTNmcMLzH3L79m3Y2dkJjxDbwubNm2FnZ4d169a1WZvsxcSf9DDG2r0ff/wR0dHRGD9+PKytrZGWloYdO3bAx8cHv/zyizBfiD1fWVlZKC4uBvDoO3l0fWVAS92+fRu5ubnC70OGDGn26xVY+8RJD2Os3Tt//jwWLFiArKwsqFQqdO/eHUFBQVi8eDEsLCyed3iMsWeEkx7GGGOMGQSe08MYY4wxg8BJD2OMMcYMAic9jDHGGDMInPQwxhhjzCBw0sMYY4wxg8BJD2OMMcYMAic9jDHGGDMInPQwxhhjzCBw0sMYY4wxg8BJD2OMMcYMAic9jDHGGDMI/wfBjwm1+5362QAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(np.arange(1, 101), inconfort_minimal, color='purple', linewidth=2, alpha = 0.3)\n", + "plt.plot(100, inconfort_minimal[-1], 'or', markersize=10, label=f\"Budget minimum pour inconfort nul = {cout_minimal_obtenu_a_la_tache_1}\")\n", + "plt.title('Inconfort en fonction du budget', fontsize=18)\n", + "plt.grid('on',alpha=0.3)\n", + "plt.xlabel(\"$Fraction$ $du$ $budget$ $minimal$ [%]\", fontsize=12)\n", + "plt.legend(fontsize=10)\n", + "plt.tick_params(axis='both', which='major', labelsize=11)\n", + "plt.axhline(y=0, color='r', linestyle='--', alpha=0.6)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6896fd35", + "metadata": {}, + "source": [ + "### Intervalle 22504" + ] + }, + { + "cell_type": "code", + "execution_count": 393, + "id": "9f664d7f", + "metadata": {}, + "outputs": [], + "source": [ + "cout_minimal_obtenu_a_la_tache_1 = 1.9645635951448925\n", + "pourcentage_budget = np.linspace(0, cout_minimal_obtenu_a_la_tache_1, 100)\n", + "inconfort_minimal = []\n", + "\n", + "for budget in pourcentage_budget:\n", + " inconfort = resoudre(budget, 360, 22504, 0)\n", + " inconfort_minimal.append(inconfort)" + ] + }, + { + "cell_type": "code", + "execution_count": 394, + "id": "f61b216b", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHVCAYAAADfHNDiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMGUlEQVR4nOzdd3gU1foH8O/sbrZk03sPPQnSESEgCiog9sKPYsUKNlTutRcQFbhXsV/lXkVQLwqicG0gSrEhoPQaekklfZNN2Ww5vz/WHbLZTdi03ZTv53nywM6cmXn3zOzsuzPnnJGEEAJEREREbZDC1wEQERER1YeJChEREbVZTFSIiIiozWKiQkRERG0WExUiIiJqs5ioEBERUZvFRIWIiIjaLCYqRERE1GYxUSEiIqI2i4kKtQtff/01LrnkEoSGhkKhUECSJDzyyCO+DqtDKi4uxowZM9C9e3doNBpIkgRJklBaWurr0FrVkiVLIEkSunTp4utQWtxPP/0k70dvmzp1KiRJwtSpU72+bU+NGjUKkiRh9uzZvg6F3FD5OgByNnv2bLzwwgsAAD7dwO7LL7/EhAkTAABKpRIRERFQKBQICgryahyOk9jUqVM75JcZAFitVlx66aXYtWsXACAgIAChoaEAAIWiff6uOXnyJJYsWQIA/CKidmXJkiU4efIkRo0ahVGjRvk6HJ9hokJt3iuvvAIAuPHGG/Hxxx/D39/fJ3E4EshRo0Z12ETlxx9/xK5du+Dn54cNGzbgwgsv9HVIzXby5El53zWUqAQHByMlJQXx8fFeioyoYUuWLMHPP/8MAExUiNqyvXv3ArBfyfBVktJZOOq6X79+HSJJaYzrr78e119/va/DIKI62ue1XOpUKisrAdhvQ1DrYl0TUVvDRKUdqdsg7ujRo7jzzjuRmJgIjUaDhIQE3HPPPcjOzm5wPTU1Nfjggw9w+eWXIzo6GhqNBrGxsUhPT8ecOXNw4sQJt8vt3LkTt912G5KTk6HVahEaGorhw4fjjTfegMlkcrtM3QaK27dvx8SJExEbGwuNRoNu3bph5syZKCkpcVru5MmTLo3/Ro8eLU9z1yiwJeLbuHEjrrvuOsTGxkKpVGLq1KlyY8D64mjKbSCbzYalS5fiiiuuQHR0NNRqNSIjIzF27Fh89tln9bZP6tKlCyRJwpIlS1BTU4NXXnkF/fv3h16vR3BwMC655BJ8//33jY7H8R4dt0Z+/vlnp/dY95ZJdXU13njjDQwfPhyhoaHQarVITk7GbbfdJrdvac34t27dijvuuAM9evSAv78/goKC0Lt3b9x5551Yu3at0/ZGjx4tv679nuo28PSkMe2xY8dw3333oWfPntDpdAgKCsKgQYMwZ84clJWVuV2mpT6355KRkYGbb74ZMTEx0Gq16NatGx566CGcOXOmweU8aezaUg2NhRBYuHAhLrjgAgQFBSEoKAgXXnghPv3003qXqX3M1Odc78FqteLtt9/GoEGDoNfrERYWhlGjRuGLL77wKO6KigrMmjULaWlp0Ol0iIqKwhVXXIH169d7HON3332HG2+8EfHx8dBoNAgNDcVFF12E9957DzU1NU5lHfXtuO3zwgsvuBy7J0+e9Cj2DkFQmzJr1iwBQLjbNRs3bpTnbdiwQQQEBAgAIjAwUKhUKnleXFycyMrKcrv+48ePiz59+shlJUkSoaGhwt/fX5728MMPuyz32muvCUmS5DLBwcHCz89Pft2vXz+Rk5PjstzixYsFAJGcnCyWLl0qLxMcHCwUCoW8/HnnnSfKy8vl5U6fPi2io6NFdHS0XCY0NFSeFh0d3eLxvfHGG/I6HMvffvvtYsaMGQ3Gcf75559rtzopKioSF110kbw+x/Zqv77mmmuEyWRyWTY5OVkAEG+//bYYOnSoACD8/PzkY8GxTxctWtSomBzvUa/Xy+us/R5feeUVuWxWVpbTMeTn5+cUv0KhEG+99Zbb7TQ3fovFImbMmOFUV3q9XoSGhjrtO4fzzz9fhIaGymVrv6fo6GgxY8YMuWztY8Gd5cuXC41GI68rMDDQ6XViYqI4cOCAy3It8bk9lzVr1jjFEhAQILRarQAgYmNjxYcffljveeX2228XAMTtt99e7/rPVTcNqb3+SZMmycdI7X0GQNxxxx3CZrO5LO84ZhYvXuzRNuqqrq4W48aNczo+Q0JC5G0/8cQT4uKLLxYAxKxZs1yWP3PmjOjdu7fT8R4SEiIfq++9916DMVZWVooJEyY4HbNBQUFO733YsGGiuLhYXmbZsmUiOjpaPofp9XqXY/f06dOeVH+HwESljfE0UQkNDRXXXHONOHjwoBBCCJPJJJYvXy4CAwMFAHHrrbe6LG8wGETPnj3l5f/zn/+I0tJSef6xY8fEggULxGuvvea03DfffCNv99prrxXHjx+Xt/nxxx/L2xw+fLiwWCxOyzpOcP7+/kKj0Yi7775b/oBVVFSId955R/4wPvfcc27rxLHtjRs3up3fEvFptVqhVCrF1KlT5fgsFos4evSox3F4wmKxyCfFAQMGiG+++UZUVFQIIYQwGo3io48+ElFRUQKAeOSRR1yWd5wQQ0NDRXx8vPjf//4nampqhBBCZGRkiGHDhslfVLX3raccx9/FF19cb/yOBCM4OFj897//lROqY8eOiauuuko+ga9evbrF43/88cfl/XDnnXeKQ4cOyfNKS0vF//73PzFp0iSnZWp/bhrS0Jfx9u3b5eN0xIgRYs+ePUIIIaxWq/j6669FbGysACC6d+/ulHDX3X5TPrfnkpmZKYKCguSEfOvWrXJsa9asEQkJCfIXqy8TleDgYCFJknjxxReFwWAQQgiRn58vHnzwQTm2N99802X55iYqjz76qHxMvvTSS/K2z5w5I+677z6nHwruEpXLL79cABA6nU4sWrRIVFdXCyHsP6YmTZok1Gq1/EPPXYy33HKLACC6desmli5dKm+/qqpKfPXVV6Jbt24CgLjuuutclm0ogepMmKi0MZ4mKqNHjxZWq9WlzFtvvSV/qMxms9O8Z599VgAQGo1G7Nixw+OY0tLSBAAxcuRIly96IYT4+uuv5bhWrFjhNM9xgmvoRDhz5kwBQPTo0cPt/HMlCC0V3w033OB2/Z7G4YmPP/5YABCpqan1JhLbtm0TkiQJtVotzpw54zTPcdLWaDTyl11t+fn58i/p//73v42O71yJyrJly+R6WLt2rct8s9ksJzJ9+vRxmd+c+A8dOiRfhXv88cc9fk8tkag4vqx69OghJ5a17dixQ746UvvqU93tN+Vzey6OL9vw8HCX40UIIfbu3et0dbEubyUqDf0YcXyZh4WFiaqqKqd5zUlUsrOz5f1S37anTJkix1c3Ifj111/leZ988onLslarVYwePVouUzfGX375RQAQUVFR9V4ByczMlK9k7ty502keExU7tlFpp55++mm341pce+21AICqqiocOXLEad6HH34IALj77rsxcOBAj7azZ88eHDx4EADw7LPPQqlUupS5+uqrccEFFwAAPvvss3rX9eyzz7qd7oj56NGjcmNOT7VkfE899VSjtt0UixYtAgDcd999CA4Odltm8ODBOO+881BTU4ONGze6LTNhwgSkpqa6TI+MjER6ejoAe920tOXLlwMA0tPTMXbsWJf5KpUKs2bNAgDs27dP7kVUV1Pi/+ijj2Cz2RAeHi53N/aG0tJSud3LY4895rbn2cCBA3HDDTcAaPgYa8rntiFCCHmfTJ8+HVFRUS5l+vTpI49D5Es6nQ5///vf3c57/vnnAdgHG/zxxx9bbJtffPEFLBZLg9tuqMv6ihUrANjboNx8880u8xUKRb3nNeDs5/3mm29GYmKi2zIJCQlyO6ra7avoLCYq7dTQoUPdTo+Li5P/X1xcLP//1KlTyMnJAWD/4vbUtm3bANi/gC6++OJ6y40ZM8apfF1hYWHo0aPHOWOu26jWW/HpdDoMGjSoUdtuLKvVii1btgCwnxxjYmLq/Tt06BAA+35zp779D5ytz9r7v6U46u+yyy6rt8zo0aPlhLG++m5K/L///jsA+77UarWeB91MO3bskBs3N/S+HcfYnj17YDab3ZZp7Of2XE6cOCGXv+SSS+ot19A8bzn//PPrHaSxZ8+eSEhIAFD/MdMUjnU1tO1evXrVO3bOjh07AAAXXXRRvaP6jhgxAiqV+5E+Nm3aBMCesDT0eV+3bh2A+j/vnR3HUWmnAgMD3U6v/YGpfbLMy8uT/5+cnOzxdvLz8wEAERER0Gg09ZZznGQc5T2NF6g/Zm/GFx4e3uojrxYXF8u9jzxNyOq7wuRJfTa2Lj3hqL+GBkXTarWIiIjAmTNnmnU81I3fcQw35vhtCbXfQ0Pv23GMWSwWFBcXIzo62qVMYz+3LR2bL51rIL34+HhkZWXVe8w0hSfHK2CvH3e9rgoKCgA4J5J1aTQaREREOJ1jHRw/DsvKyurtFVZbY68odxZMVDoJXzzjoz1xd8uopVmtVvn/a9asweWXX97q2+xIeAyTrzT12HN85t977z1Mnz69JUPqVHjrp5OIiYmR/9+Yy4uOe96FhYX1jkUCAFlZWU7lvaWtx1dbeHi4/Mu5vV7iddSfoz7dqa6uRlFRkVP5luA4hr1dd7XfQ0Pv2zFPpVIhLCys1eMCnGNraByWhuY5jsnq6up6yxgMhiZE53kMtefXPWaaE59jXZ5uu67IyEgAZ6+MuGMymVBYWOh2nq+O2Y6GiUonkZSUJF/+/Oabbzxe7vzzzwdgv5ztGHzIHcc91iFDhjQjysbzZnyOX1WO9gqN5efnJzfqbcw+aEsc9e0Y6Mqdn376CRaLBUDLHg/Dhw8HYH8eUUNfWnXVvqXXlH03aNAgeR0NvW/HMda/f3/4+fk1ejtN0bVrVzkpqq/hNQBs2LCh3nmOh05mZmbWW2br1q1NjPCsbdu2wWg0up139OhROdFzHGOexmez2ept1+JYV0PbPnLkSL0JqKPdWkPnlk2bNsnHe10jRowAAHz77bf1Lt8Qx3HX1HNOR8FEpRO56667AAAffPABdu7c6dEy/fr1Q+/evQEAL730ktPtC4fVq1fLJ7IpU6a0ULSe8WZ8jsZ4paWlTV7HvffeK8e0evXqBsu2RmPY5po8eTIAYPPmzfjhhx9c5lssFsyZMweAvbdJnz59WmzbU6dOhVKpRFFRkdyzyBO1G1E2Zd+FhIRg3LhxAOwPyHTXjmD37t348ssvAXj3MyBJEiZOnAgAWLhwodtf9gcOHGhwBNb+/fsDAP7880+3ycDBgwexcuXKZsdaVVWFV1991e28l156CYC90b2jUXLd+FatWuX2C/ujjz6qN9G48cYboVQqG9y243h1x9Fb6uTJk25HzxVCYO7cufUu7/i879u3D++991695QD76Ld1R6htiXNOh+DDrtHkhqfjqDTEUabueB9lZWUuA745Bh8SQoijR4+KF154wWUciNoDql133XXygGo1NTXiv//9rzzYVEMDqjU0/sKJEyfk9Z84ccLj9+Ot+BxGjBghAIgbb7zR7VganrBYLOKyyy4TAIRarRYvvviiyM7OlucbjUaxYcMGcf/99zuNsOrQ3MGvzqWxA74tXbpUHrDt+PHj4pprrpH3RUMDvjU1/ieffFJe/1133SUOHz4szzMYDGLZsmUuA2dVVFQItVotAIh//vOfbkc/FcLzAd8uvPBCpwHfvvvuOxEXFyfgwYBvDTnXcV6fU6dOyQPGDRgwQPz5559CCCFsNptYu3atSEpKanDAt9LSUnm03GHDhomMjAwhhP3z87///U/ExcWJsLCwZo+j4hiNeu7cuaKsrEwIIURBQYHTSMOvv/66y/Lr1q2T5999992isLBQCGHf36+99ppQq9VyfO6OGcf66247Pz9fPPDAA3JsqGe8kjFjxgjAPmjl4sWL5QHfMjMzxZQpU8454Nsdd9wh8NeAc4888og4duyYPK+6ulps3rxZPPbYYyI8PFxkZmY6LfvMM8/I4/c0ddTijoCJShvTmomKEPbRQ2sPB61QKERYWFijh9APCQmRT/4ARN++fZ2+cB28kai0dnwOn3zyibw+Pz8/ER8fL5KTk8WIESPOuWxtBoNBHsHV8RcUFOQ0rDcAoVKpXJb1daIihH0I/fPOO0+OU61WO30RKhQKtyOMtkT8FotF/nJx/AUEBNQ7hL7DXXfdJZf39/cXSUlJIjk5Wfztb3+Ty5zrWFi2bJnTMRUUFCQPTgd4NoR+Q5qaqAghxLfffusyvL9OpxPAuYfQF0KIDz74wOnYCwwMlN/rsGHDxDvvvNPsRKX2EPpKpdJlCP3bbrvN7WB4Qghx6623Ou3zkJAQefC/hx56qMFjpqqqSv5x4G7b5xpCPzc3V6Smpjp99h3Hu0KhEP/5z39EUlKSACA+++wzl+VNJpO4++673R6ztR8jAsAlGTl8+LB8jCkUChEdHS2Sk5NFcnKyS1LTkfHWTyfTrVs37Ny5E++++y5GjRqF0NBQlJeXIyQkBOnp6XjxxRfx6KOPuiz36KOPYtu2bbjllluQmJiIyspK6HQ6DBs2DK+//jr+/PPPBrvwtTZvxHfLLbfgk08+wYUXXgh/f3/k5ubi1KlTDTawdCcoKAjffPMNVq9ejUmTJiEpKQkmkwmVlZWIj4/H2LFjMW/ePHkslbYmPj4e27Ztw2uvvYZhw4ZBp9OhsrISiYmJuPXWW7F9+3bMmDGjVbatVCrxzjvv4LfffsPNN9+MpKQkmM1mCCHQu3dv3HXXXfItmNr+9a9/Yfbs2ejbty8A4PTp0zh16lS9jSDdmTRpEvbv349p06ahe/fuMJlMUKlUGDBgAF544QXs27cPaWlpLfZeG+PKK6/Ejh07MHnyZERFRaGmpgbR0dF48MEHsXPnTnTt2rXB5e+66y589913uOSSSxAUFASLxYJevXph/vz5+Pnnn6HX61skzs8++wzvvvsuBg4cCIvFAr1ej/T0dHz88cf46KOP6h0iYMmSJXjzzTcxYMAA6HQ62Gw2jBgxAp9//jneeuutBrep1WqxZs0aeXm1Wg0hBEaOHInPP/8c8+fPb3D5mJgY/Pnnn3juueeQkpIChUIBlUqFK664Ahs2bMA999wjN+YNCQlxWV6tVuP999/H77//jqlTp6J79+6wWq0wGo2IiorCqFGj8Pzzz2PPnj0u3ah79uyJjRs34pprrkFkZCSKiopw6tQpnDp1qt52MR2RJEQnb6VDRETUREeOHEGvXr0A2BPg+kagpabjFRUiIqImmjdvHgCgd+/eTFJaCRMVIiKiemRkZODuu+/GL7/8gvLycqfpd9xxBxYvXgwAePLJJ30VYofHWz9ERET12LVrl9NDXIODg2E2m526qc+YMQNvvvmmL8LrFJioEBER1aO8vBz/+c9/sG7dOhw6dAj5+fmwWCyIiopCeno67r33Xlx66aW+DrNDY6JCREREbRbbqBAREVGb1e6fnmyz2ZCTk4PAwEA+XZWIiKidEEKgvLwccXFx9Y6hA3SARCUnJ4ddwoiIiNqpzMxMJCQk1Du/3ScqgYGBAOxvtPbDxxrLZrOhoKAAkZGRDWZ21Hysa+9hXXsP69p7WNfe05p1XVZWhsTERPl7vD7tPlFx3O4JCgpqdqJSXV2NoKAgHvitjHXtPaxr72Fdew/r2nu8UdfnarbBPUxERERtFhMVIiIiarOYqBAREVGb1e7bqLQUq9UKs9mM6upq3vNsZTabjXXtJaxr72Fdew/r2nuaU9d+fn5QKpXNjqHTJypCCOTl5aGkpAQ2mw3l5eUcj6WVCSFY117CuvYe1rX3sK69p7l1HRISgpiYmGbtp06fqOTl5aG0tBRRUVFQq9Xw8/Pjgd/KhBCwWCxQqVSs61bGuvYe1rX3sK69p6l1LYRAZWUl8vPzAQCxsbFNjqFTJypWq1VOUsLCwnjgewlPMt7DuvYe1rX3sK69pzl1rdPpAAD5+fmIiopq8m2gTn1zz2w2AwD8/f19HAkREVHH4/h+dXzfNkWnvqLi0CIZuRBAURFgNAIBAUB4OMBMn4iIOrGW+H7t1FdUWkRpKfDmm0DPnkBkJNC1q/3fnj3t00tLfR0hERFRu8VEpTnWrgUSEoBHHwWOH3eed/y4fXpCgr1cO7JkyRKEhIT4OoxGGTVqFB555BGPy588eRKSJGHXrl2tFlNH16VLF7zxxhu+DsPF//73P/To0QNKpbJRx4SvNfYYJuosmKg01dq1wJVXAlVV9ts+QjjPd0yrqrKXa+FkZerUqZAkSf4LDw/H5Zdfjj179rTodlpKaycGK1euxIsvvuhx+cTEROTm5qJPnz6tEk9n8Oeff+Lee+/1dRgupk2bhgkTJiAzM7NRx0RdHS2Zzc3NxU033YRevXpBoVB4nBStX78ew4cPR2BgIGJiYvDEE0/AYrE4lRFC4NVXX0WvXr2g0WgQHx+Pl19+2e36Nm3aBJVKhQEDBjhNnz17ttM5TZIkpKamuiy/efNmXHrppQgJCUFwcDAuuugiVFVVyfOvueYaJCUlQavVIjY2FrfeeitycnLk+Y79Wvdvy5Ytchmz2Yw5c+age/fu0Gq16N+/P77//vtGx/uf//wHo0aNQlBQECRJQmkDV9hNJhMGDBjQ4DF39OhRBAYGuv0h+cYbbyAlJQU6nQ6JiYl49NFHUV1dLc8vLy/HI488guTkZOh0OgwfPhx//vmn03t+4okn0LdvX+j1esTFxeG2225zqjvA/gOl7vueP39+ve+rJTBRqYfVYoWp3ARhE64zS0uBG2+0JyI2W8Mrstns5W68scVvA11++eXIzc1Fbm4u1q9fD5VKhauuuqpFt9FehIWFnfMJnLUplUrExMRApWIzrXOprxFcZGRkm2uIbjQakZ+fj3HjxiEuLq5Rx0RtNTU1LRyZ75lMJkRGRuLZZ59F//79PVpm9+7duOKKK3D55Zdj586dWL58Ob7++ms8+eSTTuUefvhhfPDBB3j11VeRkZGBr7/+GhdccIHL+kpLS3Hbbbfh0ksvdbu98847Tz6n5ebm4rfffnOav3nzZlx++eUYM2YMNm3ahD/++AMPPvig00Bko0ePxueff45Dhw7hyy+/xLFjxzBhwgSXba1bt85pW4MHD5bnPfvss/j3v/+Nt99+GwcOHMD06dNx/fXXY+fOnY2Kt7KyEpdffjmefvrpemr4rMcffxxxcXH1zjebzZgyZQpGjhzpMu/TTz/Fk08+iVmzZuHgwYNYtGgRli9f7rTdu+++Gz/++CM++eQT7N27F2PHjsVll12G7OxsOdYdO3bgueeew44dO7By5UocOnQI1157rcv25syZ4/S+H3rooXO+v2YR7ZzBYBAAhMFgaPSyVVVV4sCBA6KqqkrYbDZRU1MjbDabMJvMoqqkSlSVVAmT0eS64BtvCCFJjmsmnv1JkhBvvtkC79ju9ttvF9dee63TtF9//VUAEPn5+UIIITZu3CgAiJKSErnMzp07BQBx4sQJedrixYtFYmKi0Ol04rrrrhOvvvqqCA4Odlr3iy++KCIjI0VAQIC46667xBNPPCH69+/vVOb9998XqampQqPRiJSUFPGvf/1LngfA6e+iiy4SNpvN5X05Yv7+++/FgAEDhFarFaNHjxZnzpwRq1evFqmpqSIwMFBMmTJFVFRUyMtdfPHF4uGHH5ZfJycni5dfflnccccdIiAgQCQmJop///vf8vwTJ04IAGLnzp3N2m5ycrJ4/fXXnd5D//79xaxZs5ze+8KFC8WVV14pdDqdSE1NFb///rs4cuSIuPjii4W/v79IT08XR48edamPuvF+9tlnIj09XWg0GnHeeeeJn376yancTz/9JIYMGSLUarWIiYkRjz/+uKisrJTr2tN43333XXH11VcLf39/p3m11V0XAPH++++L6667Tuh0OtGjRw/x1VdfOS2zb98+ceWVV4rAwEAREBAgLrzwQvl9W61W8cILL4j4+HihVqtF//79xZo1a1zq4MsvvxSjRo0SOp1O9OvXT/z+++9CiLP7sPbfxo0bhRBCfPHFF6J3795CrVaL5ORk8eqrr7q8lzlz5ohbb71VBAYGittvv91lXRdffLHbenBs98cffxSDBg0SOp1OpKeni4yMDLmMu8/rww8/7LTOusdwa/J0W0899ZQ4//zznaZ9/fXXQqvVirKyMiGEEAcOHBAqlcrp/dZn0qRJ4tlnnxWzZs1yOX+4m1bX0KFDxbPPPut0vj6Xr776SkiSJGpqaoQQrp99d2JjY8U777zjNO2GG24QN998c6PidXB3Lq7NcY7Zv39/vbE9/vjj4pZbbhGLFy92OT8/8MAD4pJLLnGaNnPmTDFixAghhBCVlZVCqVSKb7/91qnMoEGDxDPPPFNv3H/88YcAII4ePdrgOaQhtb9n6/L0+5tXVNxQqpTAXw2VbWYbrDXWszOFAN5+u2krfust11tELcRoNOK///0vevTogfDwcI+X27p1K+666y48+OCD2LVrF0aPHo2XXnrJqczSpUvx8ssv4x//+Ae2b9+OpKQkvPfeey5lnn/+ebz88ss4ePAg5s6di+eeew4fffQRAOCPP/4AYP8Vk5OTg88//7zBuGbPno133nkHv//+OzIzMzFx4kS88cYb+PTTT/Hdd9/hhx9+wNvn2A8LFizA+eefj507d+L+++/Hfffdh0OHDrX6dt158cUXcdttt2HXrl1ITU3FTTfdhGnTpuGpp57Ctm3bIITAgw8+eM71PPbYY/jb3/6GnTt3Ij09HVdffTWKiooAANnZ2bjiiiswZMgQ7N69G++99x4+/PBDzJ07t9Hxzp49G9dffz327t2LO++80+PlXnjhBUycOBF79uzBFVdcgZtvvhnFxcVyfBdddBE0Gg02bNiA7du3484775RvI7z55ptYsGABXn31VezZswfjxo3DNddcgyNHjjht45lnnsHf//537Nq1C7169cKUKVNgsVgwfPhwef9++eWXyM3NxfDhw7F9+3ZMnDgRkydPxt69ezF79mw899xzWLJkidN6X331VfTv3x87d+7Ec88953TM5ubmYuXKlQ2+92effRb//Oc/8eeff0KlUjWq3jzx66+/IiAgoMG/pUuXtug2TSYTtFqt0zSdTofq6mps374dAPDNN9+gW7du+Pbbb9G1a1d06dIFd999t7zfHRYvXozjx49j1qxZ9W7vyJEjiIuLQ7du3XDzzTfj9OnT8rz8/Hxs3boVUVFRGDFiBBISEjBq1CiXqxi1FRcXY+nSpRg+fDj8/Pyc5l1zzTWIiorChRdeiK+//tqj9113Ww3F66kzZ87gnnvuwSeffFLvFcoNGzZgxYoV+Ne//uV2vuM4dxyzx48fx+rVq3HFFVcAACwWC6xWq0fvqTaDwQBJklxuNc2fPx/h4eEYOHAgXnnlFZdbgS3O47SojWqNKypCCGExWeSrKlWlVcJm/StzLyho3JWUun+FhS3yvm+//XahVCqFXq8Xer1eABCxsbFi+/btchlPrqhMmTJFXHHFFU7rnjRpklPGPnToUPHAAw84lRkxYoTTr4nu3buLTz/91KnMiy++KNLT04UQzr9iGvo15Ih53bp18rR58+YJAOLYsWPytGnTpolx48bJr91dUbnlllvk1zabTURFRYn33nvPJZ7mbNfTKxTPPvus/Hrz5s0CgFi0aJE87bPPPhNardalPhwc8c6fP1+eZjabRUJCgvjHP/4hhBDi6aefFikpKU71+s4774iAgABhsVgaFe8jjzxSbyz1vfe679NoNAoA8lWRp556SnTt2lX+ZVtXXFycePnll52mDRkyRNx///1OdfDBBx/I8x2/QA8ePCiEEKKkpMTpSooQQtx0001izJgxTut97LHHRO/evZ3ey3XXXedUxpNf3kI4X1FxHNffffedACD/imyJKyqVlZXiyJEjDf45rnKci6dXVNauXSsUCoX49NNPhcViEVlZWWLkyJECgPx5nzZtmtBoNGLo0KHil19+ERs3bhQDBgwQo0ePltdz+PBhERUVJQ4dOiSEcH81YvXq1eLzzz8Xu3fvFt9//71IT08XSUlJ8ntyfG7CwsLEokWLxNatW8XDDz8s1Gq1OHz4sNO6Hn/8ceHv7y8AiGHDhonCWufdgoICsWDBArFlyxbxxx9/iCeeeEJIkuR09W/KlCmid+/e4vDhw8JqtYoffvhB6HQ6oVarPY63tvquqNhsNnH55ZeLF198UQjh/pgrLCwUiYmJ4ueffxZCCLdXVIQQ4s033xR+fn5CpVIJAGL69OlO89PT08XFF18ssrOzhcViEZ988olQKBSiV69eLusSwv79OGjQIHHTTTc5na8XLFggNm7cKHbv3i3ee+89ERISIh599FG363Csh1dUWolSrYTC76/qEYC56q/79EZj81ZcXt685WsZPXo0du3ahV27duGPP/7AuHHjMH78eJw6dcrjdRw8eBBDhw51mpaenu70+tChQy73m2u/rqiowLFjx3DXXXc5/bp76aWXcOzYsSa8M6Bfv37y/6Ojo+Hv749u3bo5TXMMzezJOiRJQkxMTKOWaep2PVkvAPTt29dpWnV1NcrKyhpcT+19o1KpcP755+PgwYMA7PsyPT3dadyCESNGwGg0Iisrq1Hxnn/++Y0q71D7fer1egQFBcn1tWvXLowcOdLlly0AlJWVIScnByNGjHCaPmLECPn9uduGY1juhvbJwYMH3a73yJEjsFrPXi1t6ntualyNpdPp0KNHjwb/mtompz5jx47FK6+8gunTp0Oj0aBXr17yr3RHuxCbzQaTyYSPP/4YI0eOxKhRo7Bo0SJs3LgRhw4dgtVqxU033YQXXngBvXr1qndb48ePx//93/+hX79+GDduHFavXo3S0lL56qvtr/aA06ZNwx133IGBAwfi9ddfR0pKCj788EOndT322GPYuXMnfvjhByiVStx2220Qf13NjoiIwMyZMzF06FAMGTIE8+fPxy233IJXXnlFXv7NN99Ez549kZqaCrVajQcffBB33HGHU1uYc8Xribfffhvl5eV46qmn6i1zzz334KabbsJFF11Ub5mffvoJc+fOxbvvviu3L/nuu++cGpN/8sknEEIgPj4eGo0Gb731FqZMmeL2QYNmsxkTJ06EEALvvvuu07yZM2di1KhR6NevH6ZPn44FCxbg7bffhslk8vh9NxYTlQb46fxcbwEFBDRvpS14ItHr9fIJasiQIfjggw9QUVGB999/H8DZE4njAwo0b3TA+hj/St7ef/99OXHatWsX9u3b59SSvjFqf5lJkuTy5SZJknzi8mQdTVnGk+0qFAqn+gXc13Hd9dY37VzxNZen8er1+iatv6H6cgyn3VytVW9Nfc8ODcXlab03xBe3fgD7F1NpaSlOnz6NwsJCuXGlI4GPjY2FSqVySkLS0tIAAKdPn0Z5eTm2bduGBx98ECqVCiqVCnPmzMHu3buhUqmwYcMGt9sNCQlBr169cPToUXk7ANC7d2+ncmlpaS63XCIiItCrVy+MGTMGy5Ytw+rVqxs8Fw0dOlTeDmBvKP6///0PFRUVOHXqFDIyMhAQEOD0o+Vc8Xpiw4YN2Lx5MzQaDVQqFXr06AHAnjTffvvtcplXX31Vrru77roLBoMBKpVKTtCee+453Hrrrbj77rvRt29fXH/99Zg7dy7mzZsnH4Pdu3fHzz//DKPRiMzMTPzxxx8wm80u78mRpJw6dQo//vgjgoKCGnwPQ4cOhcViwcmTJz1+343FLg8NkBQS/Pz9YK6wn1DMVWYoQsMgde9uHyelMe1NJAno1g0IC2ulaO0nR4VCIXfVi4yMBGDvlhgaGgoALt3e0tLSsHXrVqdpdT/QKSkp+PPPP3HbbbfJ02p3a4uOjkZcXByOHz+Om2++2W1sarUaAJx+wXYEkZGRyM3NlV+XlZXhxIkTrba9LVu2yL+sLBYLtm/fLrdtSUtLw5dffgkhhPxFuWnTJgQGBiIhIcEn8dbWr18/fPTRRzCbzS4JTVBQEOLi4rBp0yZcfPHF8vRNmza57T3SGGlpadi0aZPTtE2bNqFXr14NPnukJY/ZyMhI7Nu3z2narl273F5dqs/5559/zq7Sjqt1LU2SJLlHymeffYbExEQMGjQIgP3qlMViwbFjx9C9e3cAwOHDhwEAycnJCAoKwt69e53W9+6772LDhg344osv0LVrV7fbNBqNOHbsGG699VYA9m6xcXFxLu3MDh8+jPHjx9cbu+OLuqFf/Lt27XL70DytVov4+HiYzWZ8+eWXmDhxYr3rqBuvJ9566y2nNoE5OTkYN24cli9fLl/p3rx5s9Mx+NVXX+Ef//gHfv/9d8THxwOw99ipe2XEcWzXTZD1ej30ej1KSkqwdu1a/POf/5TnOZKUI0eOYOPGjQgPD3dZvq5du3ZBoVAgKirK4/fdWExUzkHpp4RVbYWtxvbXLSAL/B58ENLMmY1f2YwZLTqsvslkQl5eHgCgpKQE77zzDoxGI66++moAQI8ePZCYmIjZs2fj5ZdfxuHDh7FgwYI6Ic3AiBEj8Oqrr+Laa6/F2rVrXcYLeOihh3DPPffg/PPPx/Dhw7F8+XLs2bPHKRN/4YUXMGPGDAQHB+Pyyy+HyWTCtm3bUFJSgpkzZyIqKgo6nQ7ff/894uPjoVKpGtXot6265JJLsGTJElx99dUICQnB888/3+QHb3niX//6F3r27Im0tDS8/vrrKCkpkRtt3n///XjjjTfw0EMP4cEHH8ShQ4cwe/ZsPPzww/JJzNvx1vbggw/i7bffxuTJk/HUU08hODgYW7ZswQUXXICUlBQ89thjmDVrFrp3744BAwZg8eLF2LVrV7OvEvztb3/DkCFD8OKLL2LSpEnYvHkz3nnnHZdL2nXVPmYTEhKg1WoRHBzcpBguueQSvPLKK/j444+Rnp6O//73v9i3bx8GDhzo8Toct36aw5HoGI1GFBQUYNeuXVCr1fJVilWrVuGpp55CRkaGvMwrr7yCyy+/HAqFAitXrsT8+fPx+eefy8fNZZddhkGDBuHOO+/EG2+8AZvNhgceeABjxoyRr7LUHa8oKioKWq3Wafrf//53XH311UhOTkZOTg5mzZoFpVKJKVOmALAnS45jpF+/fujTpw+WLl2KjIwMfPHFFwDsnQP+/PNPXHjhhQgNDcWxY8fw3HPPoXv37vJt048++ghqtVqu+5UrV+LDDz/EBx98IMeydetWZGdnY8CAAcjOzsbs2bNhs9nw+OOPexwvAOTl5SEvL0++yrJ3714EBgYiKSkJYWFhSEpKcqqXgL+u2Hfv3l3+ceG4OuWwbds2KBQKp7q7+uqr8dprr2HgwIHy1aHnnnsOV199tbyf1q5dCyEEUlJScPToUTz22GNITU3FHXfcAcCepEyYMAE7duzAt99+C6vViry8PAghEBQUBJVKhc2bN2Pr1q0YPXo0AgMDsXnzZjz66KO45ZZb5B/DraLBFiztQGs1pq3NZrWJKkOV3LjWnFsghF4vhELhWQNahcJevp6uaU1Rt/tkYGCgGDJkiPjiiy+cyv3222+ib9++QqvVipEjR4oVK1a4dE9etGiRSEhIEDqdTlx99dVuuyfPmTNHREREiICAAHHnnXeKGTNmiGHDhjmVWbp0qRgwYIBQq9UiNDRUXHTRRWLlypXy/Pfff18kJiYKhUJxzu7JtRuduWs8VrcxnrvGtA01Gq2vMW1jt2swGMSkSZNEUFCQSExMFEuWLHHbOHXVqlXya3cN5s7VfdGxzKeffiouuOACoVarRe/evcWGDRucyp2re3JT4q2Pu8a0dZcLDg4Wixcvll/v3r1bjB07Vvj7+4vAwEAxcuRIubGy1WoVs2fPFvHx8cLPz6/e7sm1661u41l3jWmFONs92c/PTyQlJYlXXnmlwffiUPuYPVf35OLiYvkc4m4YgOeff15ER0eL4OBg8eijj4oHH3zQ692Ta58zHH/Jycny/MWLF4u6XwujR48WwcHBQqvViqFDh4rVq1e7rDc7O1vccMMNIiAgQERHR4upU6eKoqKieuNw15h20qRJIjY2VqjVahEfHy8mTZrktsv+vHnzREJCgtyt/9dff5Xn7dmzR4wePVqEhYUJjUYjunTpIqZPny6ysrLkMkuWLBFpaWnC399fBAUFiQsuuECsWLHCaRs//fSTSEtLExqNRoSHh4tbb71VZGdnNzreWbNmua3z2p+J2jxpwO3uvGQ2m8Xs2bNF9+7dhVarFYmJieL+++93Op8sX75cdOvWTT43PPDAA6K0tNRl2+7+fvzxR2Gz2cT27dvF0KFD5eMhLS1NzJ07V1RXV9cbb0s0ppWEaKX+sl5SVlaG4OBgGAyGc95Lq6u6uhonTpxA165dodFoGnyUtdVslW8BAYDfpg1QXnsNzjnom0Jhv4qyejUwdmyj4mvLxowZg5iYGHzyySeNXlbwEe2NdvLkSXTt2hU7d+50GdGzIaxr72Fdew/r2nuaW9e1v2frdo/29Pubt348pPRTQmgFLNX2/uLmCy+B9PU3UEz8P6Cy0l6ods7n2KE6HbByZbtOUiorK7Fw4UKMGzcOSqUSn332GdatW4cff/zR16EREVEHx14/jaDSqpy7LF94CcTpTOCNN+wNZWvr1s0+PTu7XScpgP3e8OrVq3HRRRdh8ODB+Oabb/Dll1/isssu83VoRETUwfGKSiP5+fuhxlgDYRUQNgGzWg+/hx6C9NBDQHGxfZyUwEB7754OcklSp9Nh3bp1vg6jU+vSpcs5W98TEXVETFQaSZIk+On9UFNeAwjAZrHBUm2xj7kSHm7/IyIiohbBWz9w7Wd+LgqFAn76s+MfWE1WWGpa+VkHRERE7UxLXAnu1ImKY7ClSkdj2EZQqpRQ6c5ekLJUWmCztO6ookRERO2J4/u1MYMb1tWpb/0olUqEhIQgPz8fQgio1Wr4+fk1qguWWZhhM/818mGJCX56P7fPTqCz2LXQe1jX3sO69h7Wtfc0ta6FEKisrER+fj5CQkKaNbBkp05UACAmJgaA/eFhNpsNCoWicQe+ACw1Fgir/fKWpJCg1Cj54WmAEKJpdU2Nxrr2Hta197Cuvae5dR0SEiJ/zzZVp09UJElCbGwsIiIikJeXh/Dw8EZfEbGarcjdnis/Ydk/wh9RfaL4AaqHzWZDUVFRk+qaGod17T2sa+9hXXtPc+raz8+vRR7R0ehE5euvv8bLL7+MAwcOICAgACNHjsT8+fNdnsC4aNEi/OMf/8Dp06eRkpKCl19+GVdddZVTGYPBgJkzZ2LVqlUwm80YN24c3n77bbcPh2ptSqUSfn5+0Gq1jT/wtUDS+Uk49esp2Cw2VOdVoyKwAhGpEa0TbDtns9maXtfUKKxr72Fdew/r2nvaQl03aqs//fQTrr/+evTu3RurVq3CG2+8gd27d2Ps2LHyE3sBYNmyZbjnnnswadIkrFmzBunp6bj++utdnso7adIk/PDDD1i4cCGWLl2KQ4cOYfz48bBY2l8PGnWAGnGD4+SrKEVHilCWVebjqIiIiNq3Rl1RWbZsGZKTk/Hhhx/KX8hRUVG45JJLsG3bNowcORIAMGvWLEyePBkvvvgiAGD06NHYs2cP5syZg9WrVwOwP7p67dq1WLt2Lcb+NXJrSkoK0tLSsHLlygYfp91W6aP0iOwdifz9+QCAvN158PP3gy5M5+PIiIiI2qdGXVExm80IDAx0anvheOy5o6/08ePHcfjwYZdEY/LkyVi/fj1MJhMAYM2aNQgJCcGYMWPkMikpKRgwYICczLRHod1CEZIcAgAQNoHsP7NhrjQ3vBARERG51agrKlOnTsXHH3+Md999FzfffDOKiorw9NNPY+DAgRgxYgQAICMjAwCQmprqtGxaWhpqampw4sQJpKamIiMjAykpKS4NTtPS0uR1uGMymeRkB7A/fRGw30ezNfQU43Ow2Wxy6+bmiugdAVO5CZWFlbBUW5C5JRNJFyZBoeK9VKBl65oaxrr2Hta197Cuvac169rTdTYqURk5ciRWrVqFm266CQ888AAAYMCAAfj+++/llr0lJSUA7F2SagsNDQUAFBcXy+XqlnGUc5RxZ968eXjhhRdcphcUFKC6uroxb8eJzWaDwWCAEKJFGgwpk5SoyK2wX00xAOXryhE1kD2BgJava6of69p7WNfew7r2ntas6/Lyco/KNSpR+f3333HrrbfinnvuwVVXXYWioiK8+OKLuPLKK/Hrr79Cp2v9thhPPfUUZs6cKb8uKytDYmIiIiMjERQU1OT12mw2SJKEyMjIFtsZ4ePCcfrX0/YB4cyAVCgh6ryoFll3e9YadU3usa69h3XtPaxr72nNutZqtR6Va1SiMmPGDFxyySVYsGCBPG3YsGFISkrCJ598gnvvvVe+cmIwGJwGeXFcaQkLCwNgv3KSmZnpso2SkhK5jDsajQYajcZlukKhaHYlSpLUIutx0AZqkTA0AVmbsyCEgOGkAdogrdyGpTNr6bqm+rGuvYd17T2sa+9prbr2dH2N2uqBAwcwYMAAp2kJCQmIiIjAsWPHAJxtm1K3nUlGRgbUarU83kpqaioOHTrk8sCijIwMl/Yt7Zl/uD+i+0XLr/P35qOysPHPFiIiIuqMGpWoJCcnY8eOHU7TTp06hcLCQnTp0gUA0K1bN/Tq1QsrVqxwKrd8+XJceumlUKvVAIDx48ejpKQE69evl8scPnwYO3fuxBVXXNGU99JmBScFI7Sb/UqTEAI523JQY6zxcVRERERtX6Nu/UyfPh2PPPIIHn74YVx99dUoKirCSy+9hKioKKfuyLNnz8bNN9+M7t27Y/To0Vi+fDm2bt2KX375RS6Tnp6OcePG4c4778SCBQug1WrxzDPPoF+/frjhhhta7h22EZG9I2GuMMN4xgir2YrsP7KRNDIJSr/mDy9MRETUUTW6jYpGo8F7772HRYsWITAwEOnp6VixYgXCw8PlclOmTEFlZSXmz5+P+fPnIyUlBatWrUJ6errT+pYvX46ZM2fi3nvvhcViwdixY/H2229Dpep4jyCSJAmxg2Jx+rfTMJWbUFNRg5xtOUgYmgBJwZ5ARERE7kiibiORdqasrAzBwcEwGAzN7vWTn5+PqKioVm2cZa404/Rvp2Ex2R8TEJwUjJj+zXuyZHvjrbom1rU3sa69h3XtPa1Z155+f3MPe5mfvx/izo+Tr6IYThtQcrzEx1ERERG1TUxUfEAXpkPMgLNXUfL358N4xujDiIiIiNomJio+EhQfhPCeZ9v15O7IhanM1MASREREnQ8TFR8KTwlHYGwgAMBmsSH7j2y57QoRERExUfEpSZIQMzAG2hD7MMLmKjNy/syBsLXr9s1EREQthomKjymUCsQPiYdKa++SXVVShbxdeT6OioiIqG1gotIGqLQqxF8QD4XSvjvKsstQdKTIx1ERERH5HhOVNkIbrEXMwLM9gQozClGe69kjsImIiDoqJiptSGBsICJSI+TXeTvzUF1a7cOIiIiIfIuJShsT3jMcQQn2EfpsVhuy/8yGpZo9gYiIqHNiotIGxfSPgS5MBwCwVFuQ/Uc2bFabj6MiIiLyPiYqbZCkkBA/JB5+/n4AgGpDNfJ25qGdP5aJiIio0ZiotFFKtdLeE0hl30XlueUoOsSeQERE1LkwUWnDNIEaxA2OgyTZH2BYdKQIZVllPo6KiIjIe5iotHH6KD0iz4uUX+ftzkNVcZUPIyIiIvIeJirtQGjXUIQkhwAAhE0g+89smCvNvg2KiIjIC5iotBNRfaLgH+EPALDWWO09gSzsCURERB0bE5V2QlJIiDs/Dmq9GgBgKjchZ3sOewIREVGHxkSlHVH6KRE/NB5KPyUAoCK/AgUHCnwcFRERUethotLOqPVqxA052xOo5HgJSk+V+jYoIiKiVsJEpR3yD/dHdL9o+XX+3nxUFlb6MCIiIqLWwUSlnQpOCkZot1AAgBACOdtyUGOs8XFURERELYuJSjsW2TsSAdEBAACr2d4TyFpj9XFURERELYeJSjsmSRJiB8VCE6QBANRU1CBnWw6EjT2BiIioY2Ci0s4pVArEXxAPlUYFAKgsqsSZvWd8HBUREVHLYKLSAfjp/Ow9gRT2nkCG0waUHC/xcVRERETNx0Slg9CF6hAzIEZ+nb8/H8YzRh9GRERE1HxMVDqQoPgghPcKl1/n7siFqczkw4iIiIiah4lKBxPeKxyBcYEAAJvFhuw/smExWXwcFRERUdMwUelgJElCzIAYaEO0AABzlRk5f7InEBERtU9MVDoghVKB+CHxUGntPYGqSqqQtyvPx1ERERE1HhOVDkqlVSFhaAIUSvsuLssuQ9HhIh9HRURE1DhMVDowTZAGsYNi5deFhwpRll3mw4iIiIgah4lKBxcQE4DI3pHy67xdeagqqfJhRERERJ5jotIJhHUPQ3BSMABA2ARy/syBudLs46iIiIjOjYlKJxHdNxr+Ef4AAIvJguw/smGz2HwcFRERUcOYqHQSkkJC3PlxUOvVAABTuQk523MgBLstExFR28VEpRNR+ikRPzQeSj8lAKAivwIF+wt8HBUREVH9mKh0Mmq92ukBhiUnSlB6stS3QREREdWDiUon5B/uj+h+0fLr/H35qCio8GFERERE7jFR6aSCE4MR1iMMACCEQM62HJjK+QBDIiJqW5iodGIRqREIiAkA8NcDDLfyAYZERNS2MFHpxCRJQuygWGiDnR9gaLOy2zIREbUNTFQ6OYVSgfgLXB9gyG7LRETUFjBRIZcHGJbnlKPoEB9gSEREvsdEhQD89QDDwbGQJHu35aIjRTBkGnwcFRERdXZMVEgWEO38AMMze86gsqjShxEREVFnx0SFnIR2C0VIlxAAZx9gWGOs8W1QRETUaTFRIRdRfaKgj9IDAKxmK7K2ZrHbMhER+QQTFXIhSRLiBsdBE6QBAJgrzfanLbPbMhEReRkTFXJLoVIgYWiC3G25urQauTty2W2ZiIi8iokK1UvutqyyHybGPCMKDvBpy0RE5D1MVKhBmiAN4s6Pk7stlxwvQcmJEh9HRUREnQUTFTonfaTe6WnLBfsLYMwz+jAiIiLqLJiokEeCk4IR3jMcgP1py7k7clFdWu3jqIiIqKNjokIeC08JR1B8EADAZrUh+49smCvNPo6KiIg6MiYq5DFJkhAzIAa6MB0AwGKyIGtrFqxmq48jIyKijoqJCjWKpJAQf0E81AFqAECNsQY523IgbOy2TERELY+JCjWa0k+JhKEJUKqVAIDKwkrk7c7zcVRERNQRMVGhJvHz90P8BfGQFPZuy2VZZSg8VOjjqIiIqKNhokJNpgvVIXZQrPy66HARDJkGH0ZEREQdDRMVapbA2EBEnRclvz6z+wwqCyt9GBEREXUkTFSo2UK7hSK0aygA+xgr2X9mw1Ru8nFURETUETBRoRYReV4kAqIDAAA2iw3ZW7Nhqbb4OCoiImrvmKhQi5AkCbGDY6EN1gIAzFVmZP+RDZvF5uPIiIioPWtSovLRRx9h4MCB0Gq1iIiIwPjx41FVVSXP/+abb9C/f39otVr06tULixcvdllHTU0NHnvsMcTExECv12PMmDE4dOhQ098J+ZxCqUD80Hj46fwAANWGauTuyIUQHGOFiIiaptGJyssvv4yHHnoIkyZNwtq1a/Hvf/8bXbt2hdVqH530t99+w/XXX4/09HSsWbMGkyZNwl133YUvvvjCaT0zZszA+++/j7lz52LlypUwmUy49NJLYTCw10h7ptKoED80Hko/+xgrxjNG5O/L93FURETUXkmiET93Dx06hD59+uDrr7/G+PHj3ZYZN24cjEYjNm3aJE+76aabsGvXLhw4cAAAkJWVhS5duuDdd9/FvffeCwAoLi5GUlISnn/+eTz++OMev4GysjIEBwfDYDAgKCjI4+XqstlsyM/PR1RUFBQK3hFrrsrCSmRtzZJHrI3sHYmw7mEAWNfexLr2Hta197Cuvac169rT7+9GbXXx4sXo2rVrvUmKyWTCxo0b8X//939O0ydPnoyDBw/i5MmTAIAffvgBNpvNqVxYWBjGjh2L1atXNyYkaqP8I/wR0z9Gfl1woADlueU+jIiIiNqjRiUqW7ZsQd++ffHSSy8hKioKarUaI0aMwNatWwEAx44dg9lsRmpqqtNyaWlpAICMjAz536ioKISGhrqUc5Sh9i8oIQgRKRHy69wduagqqWpgCSIiImeqxhTOy8vD9u3bsXfvXrz77rvw9/fH3LlzMXbsWBw5cgQlJSUAgJCQEKflHAlJcXExAKCkpMSljKOco0x9TCYTTKazY3SUlZUBsF+estma3sPEZrNBCNGsdZCr0B6hMBlNKMssg7AJZG3JQvzweNa1l/C49h7Wtfewrr2nNeva03U2KlGx2WwwGo344osv0K9fPwDAsGHD0KVLF7zzzjsYN25c4yNtpHnz5uGFF15wmV5QUIDq6uomr9dms8FgMEAIwXueLUyKkVCdU43qYvv+KV1bCl2KjnXtBTyuvYd17T2sa+9pzbouL/esOUCjEpXQ0FCEh4fLSQpgb1sycOBA7N+/H5MnTwYAl547jistYWFh8nrc9e4pKSmRy9TnqaeewsyZM+XXZWVlSExMRGRkZLMb00qShMjISB74rSBiTAQyN2WiprwGNmGD6aQJkWmRUKqUvg6tQ+Nx7T2sa+9hXXtPa9a1Vqv1qFyjEpXzzjsPx44dczuvuroa3bt3h5+fHzIyMpyurjjanTjarqSmpuLMmTMoKSlxaqeSkZHh0r6lLo1GA41G4zJdoVA0uxIlSWqR9ZArhUaBxPREnP71NMxVZpgMJuTvzkfc+XGQJMnX4XVoPK69h3XtPaxr72mtuvZ0fY3a6lVXXYWioiLs2rVLnlZUVIQdO3Zg8ODB0Gg0GD16tMuYKcuXL0daWhq6dOkCABg7diwUCgW+/PJLuUxJSQl++OEHXHHFFY0JidoRP50f4ofGQ1LaE5PynHIUZhT6OCoiImrLGnVF5brrrsOQIUMwYcIEvPzyy9DpdJg3bx40Gg3uv/9+AMBzzz2HUaNG4f7778fEiROxceNGfPrpp1i+fLm8noSEBNx999147LHHoFQqER8fj7lz5yI4OBjTpk1r2XdIbYo2WIvYwbEoXVcKACg+Wgw/fz+EJIf4NC4iImqbGpWoKBQKrF69Go8++iimTZuGmpoajBw5Er/88gtiYuxjZlx44YVYuXIlnn32WSxatAhJSUn44IMPXMZWefPNNxEQEIAnn3wS5eXlGDFiBNatW4fg4OCWe3fUJgVEByAsNQzWHPtoxvl78+Gn84M+Su/jyIiIqK1p1Mi0bRFHpm1/HHUtFUooPVEKwP6coMQRifJDDall8Lj2Hta197CuvafdjUxL1JIi0iIQGBsIALBZbcj+IxvmKrOPoyIioraEiQr5jCRJiBkYA12oDgBgqbYge2s2rGarjyMjIqK2gokK+ZRCqUD8BfFQ69UAAFO5Cbnbc+WHGRIRUefGRIV8TqlWIn5oPJRq++BvFQUVOLP3jI+jIiKitoCJCrUJar0a8UPiISnsY6wYThtQdKTIx1EREZGvMVGhNkMXpkPswFj5dWFGIcqyynwYERER+RoTFWpTAuMCEZkWKb/O252HyqJKH0ZERES+xESF2pywHmHySLXCJpDzZw5qjDW+DYqIiHyCiQq1SVF9oxAQHQAAsJqtyNqSBYvJ4uOoiIjI25ioUJskSRJiB8XKI9Waq8zI3poNm8Xm48iIiMibmKhQm6VQ2cdY8dP5AQCqDdXI3ZGLdv7UByIiagQmKtSmqbQq+xgrfvYxVoxnjMjfl+/jqIiIyFuYqFCbpwnUIO78OHmMldKTpSg+WuzjqIiIyBuYqFC74B/hj5j+MfLrgoMFKMvmGCtERB0dExVqN4ISghCRGiG/ztvFMVaIiDo6JirUroT3DEdwUjCAs2OsmMpNPo6KiIhaCxMVanei+0VDH6UHYB9jJXtrNizVHGOFiKgjYqJC7Y4kSYgbHOc8xsofHGOFiKgjYqJC7ZK7MVZytuVA2DjGChFRR8JEhdotlVaFhGEJ8hgrFQUVOLP3jI+jIiKilsREhdo1dYAa8RfEy2OsGE4bUHS4yMdRERFRS2GiQu2eLkyH2IGx8uvCQ4UwZBp8GBEREbUUJirUIQTGBSKyd6T8+szuM6goqPBhRERE1BKYqFCHEdY9DKFdQwEAQgjkbMtBtaHax1EREVFzMFGhDiXyvEgExAQAAGwWG7K3ZsNcZfZxVERE1FRMVKhDkSQJsYNioQvVAQAsJguytmTBarb6ODIiImoKJirU4SiU9jFW1Ho1AKDGWIPsP7I5xgoRUTvERIU6JKVaiYRhCVBpVACAquIq5O7MhRBMVoiI2hMmKtRh+fn7If6CeCiU9sO8PKccBQcKfBwVERE1BhMV6tC0IVrEnR8HSbIPCFdyvAQlx0t8HBUREXmKiQp1ePooPaL7Rcuv8/fnozyn3IcRERGRp5ioUKcQnBSM8F7h8uvcnbmoKq7yYUREROQJJirUaUSkRCA4MRgAIGwC2X9kw1Ru8nFURETUECYq1KlE94uGPlIPALCarcjemg1LtcXHURERUX2YqFCnIikkxJ0fB22wFgBgrjIja2sWbBabjyMjIiJ3mKhQp6NQKRA/NB5+/n4AAFOZCTnbcjggHBFRG8REhTollUaFhKEJUPopAQAVBRXI253n46iIiKguJirUaakD1Ii/IB6Swj7GSllWGQozCn0cFRER1cZEhTo1XZgOcYPj5NdFR4pQeqrUdwEREZETJirU6QXEBCCqT5T8On9vPox5Rh9GREREDkxUiACEdg1FWI8wAIAQArk7clFVwgHhiIh8jYkK0V8iUiMQFB8EALBZbcj+Ixs1FTU+joqIqHNjokL0F0mSEDMgBv4R/gAAa40VWVuyYDFxQDgiIl9hokJUi2NAOE2QBgBgrjQje2s2B4QjIvIRJipEdSj9lEgYmgA/nX1AuGpDNQeEIyLyESYqRG6otCrED413GhDuzJ4zPo6KiKjzYaJCVA9NoMZpQDhDpoEDwhEReRkTFaIG6MJ0iB0UK78uOlKEkhMlPoyIiKhzYaJCdA6BsYGI7hstv87fl4+y7DIfRkRE1HkwUSHyQEiXEIT3DJdf5+3KQ0VBhQ8jIiLqHJioEHkoIjUCwUnBAABhE8jZloNqQ7WPoyIi6tiYqBA1QnS/aATEBAAAbBYbsrdy9FoiotbERIWoESRJQuygWOjCdAAAi8liH722mqPXEhG1BiYqRI2kUCoQf0E8NIFnR6/N2pIFq9nq48iIiDoeJipETaD0UyJhWAL8/O2j15rKTcj+Ixs2K4faJyJqSUxUiJpIpVUhYVgCVBoVAKCquIpD7RMRtTAmKkTNoNarET80HgqV/aNUkV+BvF15EILJChFRS2CiQtRM2mCt01D7ZdllyN+X7+OoiIg6BiYqRC3AP9wfcYPjIEn2ZKX0ZCkKD/G5QEREzcVEhaiFBMQEIGZAjPy66HARSo7zuUBERM3BRIWoBQUlBCGqT5T8On9/PgyZBh9GRETUvjFRIWphoV1DEZESIb8+s/sMynPLfRgREVH7xUSFqBWE9wpHaLdQAIAQArk7cvkQQyKiJmCiQtRKIntHIjix1kMM/8xBVXGVj6MiImpfmKgQtRJJkhDdPxqBsYEAAJvVhqytWXziMhFRIzQrUTEajUhISIAkSdi2bZvTvEWLFqFXr17QarXo378/vv32W5flDQYD7rrrLoSFhSEwMBATJkxAbm5uc0IialMcDzHUR+oB2J+4nLUlCzVGPnGZiMgTzUpUXnzxRVgsrk+NXbZsGe655x5MmjQJa9asQXp6Oq6//nps2bLFqdykSZPwww8/YOHChVi6dCkOHTqE8ePHu10nUXslKSTEDYmTn7hsrbEic3MmzJVmH0dGRNT2NTlRycjIwL/+9S+88MILLvNmzZqFyZMn48UXX8To0aOxcOFCDBkyBHPmzJHLbN68GWvXrsWiRYswceJEXHPNNfjiiy+wZ88erFy5sqlhEbVJjicua4O1AABLtQWZmzNhqWZSTkTUkCYnKg899BCmT5+OlJQUp+nHjx/H4cOHMXHiRKfpkydPxvr162EymQAAa9asQUhICMaMGSOXSUlJwYABA7B69eqmhkXUZjmeuKwJ1AAAzJVmZP6eCYuJyQoRUX2alKh88cUX2Lt3L55//nmXeRkZGQCA1NRUp+lpaWmoqanBiRMn5HIpKSnykOO1yznWQdTRKNX2ZEWtVwMAaipqkLUlC1az1ceRERG1TarGLlBZWYmZM2di7ty5CAoKcplfUmIfMjwkJMRpemiofUyJ4uJiuVzdMo5yjjLumEwm+aoMAJSVlQEAbDYbbDZbo95LbTabDUKIZq2DPNPZ61qhViBuaBwyN2XCUmVBdWk1Mn/PRPyweCj9lC26rc5e197EuvYe1rX3tGZde7rORicqL730EqKjo3HHHXc0OqiWMG/ePLftYgoKClBd3fRunzabDQaDAUIIKBTstd2aWNd2mh4alPxRAmuNFTAApYZSRA2KgkLVcnXCuvYe1rX3sK69pzXrurzcsxG7G5WonDp1CgsWLMCqVatgMNifX2I0GuV/jUajfOXEYDAgJubsA9ocV1rCwsIA2K+cZGZmumyjpKRELuPOU089hZkzZ8qvy8rKkJiYiMjISLdXeDxls9kgSRIiIyN54Lcy1vVZEeERyPo9y56sCMB80oz4ofFQKFumXljX3sO69h7Wtfe0Zl1rtVqPyjUqUTlx4gRqampw5ZVXuswbPXo0hg4dik8//RTA2TYoDhkZGVCr1ejWrRsAexuWdevWQQjh1E4lIyMDffv2rTcGjUYDjUbjMl2hUDS7EiVJapH10Lmxru10wTokDk9E1mZ7O5Xqkmrkbc9D/AXxkBTSuVfgAda197CuvYd17T2tVdeerq9RWx0wYAA2btzo9Pf6668DABYuXIh3330X3bp1Q69evbBixQqnZZcvX45LL70UarW9EeH48eNRUlKC9evXy2UOHz6MnTt34oorrmhMWETtmjZYi4RhCfItn4qCCuRsy4GwCR9HRkTke426ohISEoJRo0a5nTd48GAMGjQIADB79mzcfPPN6N69O0aPHo3ly5dj69at+OWXX+Ty6enpGDduHO68804sWLAAWq0WzzzzDPr164cbbrih6e+IqB3ShmiRMDQBWVuyYLPaYDxjRO6OXMQOim2xKytERO1Rq1wzmzJlCt5//318+umnGDduHDZt2oRVq1YhPT3dqdzy5csxZswY3HvvvbjpppvQs2dPrF69GipVo9v4ErV7ujCd0y2f8txy5O7MhRC8skJEnZck2vlZsKysDMHBwTAYDM1uTJufn4+oqCje82xlrOuGVRRUIPuPbPnWT1B8EGIGxriMOeQJ1rX3sK69h3XtPa1Z155+f3MPE7Ux+kg94oecvbJSll2GM7vP8MoKEXVKTFSI2iB9lB5x58fJV1EMmQac2cNkhYg6HyYqRG1UQHSAc7Jy2oD8vflMVoioU2GiQtSGBcQE2Hv+/JWslJ4qRf6+fB9HRUTkPUxUiNq4wLhAp8a0pSdLcWbvGR9HRUTkHUxUiNqBuj1/Sk/yygoRdQ5MVIjaiaD4IMQMqPX8rBMlyN/PZIWIOjYmKkTtSFBCnWTlOJMVIurYmKgQtTPBicFMVoio02CiQtQOBScGI6Y/kxUi6viYqBC1U8FJTFaIqONjokLUjrlNVtgbiIg6ED6mmKidC04KBgDk7c4DYO8NJGwCUX2jfBkWEVGLYKJC1AEEJwUDEuSHF5aeKoXNakNUPyYrRNS+MVEh6iCCE4MhKSTk7cyDEAJlWWWwWWxQxPMOLxG1XzyDEXUgQfFB9gcZKuwj2JbnlKNgTwGEjQ8yJKL2iYkKUQcTEBOA+CHxcrJSmV+J7D+yYbPafBwZEVHjMVEh6oD0UXokDE2ApPwrWSmoRNbmLFjNVh9HRkTUOExUiDoo/wh/JAxLgEJl/5hXlVQh8/dMWEwWH0dGROQ5JipEHZguTIeYITFQapQAAFOZCZmbMmGuMvs4MiIizzBRIerg1IFqJI5IhJ/ODwBQU1GD07+dRo2xxseRERGdGxMVok5ArbcnK2q9GgBgqbbg9KbTqC6t9nFkREQNY6JC1En46fyQOCIR2mAtAMBaY0Xm75moKKjwcWRERPVjokLUiag0KiQOT4R/uD8AwGa1IfuPbJTnlPs4MiIi95ioEHUyCpUCCcMSEBATAAAQNoGc7TkoPVnq28CIiNxgokLUCUkKCXHnxyE4MViedmbvGRQeKvRhVERErpioEHVSkiQhZkAMwnqEydOKDhfhzB77gw2JiNoCJipEnVxkWiSizjv7lOXSU6XI2ZbD5wMRUZvARIWIENotFLGDYuXnAxnzjMjcnMkh94nI55ioEBEA+5OX4y+Ih0L515D7xVUcxZaIfI6JChHJ9JF6JA5PhEqjAgCYyk04/dtpmMpNPo6MiDorJipE5EQbonUZxTZzUyYqiyp9HBkRdUZMVIjIhWPIfW3IX6PYmq3I2pLFgeGIyOuYqBCRWyqNConpidBH6QGcHRiu5HiJjyMjos6EiQoR1UuhUiB+SLzTwHD5+/ORvz+fY60QkVcwUSGiBkkK+8Bw4b3C5Wklx0uQuz2XY60QUatjokJEHolIiUBM/xhIkn2slfLccvtYKzUca4WIWg8TFSLyWHBSsMtYK6d+PYUaY42PIyOijoqJChE1ij5Kj8QRiVBp7WOtmCvNOP3baVQWsvsyEbU8JipE1GjaYC2SLkyCJkgD4Gz3ZUOmwceREVFHw0SFiJrET+eHpBFJZ7svC4G8XXkoOFjAHkFE1GKYqBBRkylUCsRfEI/QrqHytOKjxcjZlgOb1ebDyIioo2CiQkTNIkkSovpEIapPlNwjyJhnROamTFiqLT6OjojaOyYqRNQiQruG2nsEqeynlWpDNU79egrVpdU+joyI2jMmKkTUYvRReiRdmAQ/fz8A9gcant50GmXZZT6OjIjaKyYqRNSiNIEaJI9Mhi5MB8D+jKDcHbkozChkI1siajQmKkTU4pRqJRLTExGcdPYZQUVHiuyNbC1sZEtEnmOiQkStQlJIiOkfg6jznBvZnv7tNMyVZh9HR0TtBRMVImpVod1CET80Hko/JQDAVG7CqV9OcSRbIvIIExUianX6SD2SRiZBHaAGcHYk25LjJT6OjIjaOiYqROQVar0aSRcmISA6AIB9JNv8/fnI3ZkLYWMjWyJyj4kKEXmN0k+JuCFxCO8ZLk8ryyrD6U2nYa5iuxUicsVEhYi8SpIkRKRGIG5wHBTKvwaHK622t1spYrsVInLGRIWIfCIwLtBpcDhrjRVZm9luhYicMVEhIp/RBGmQfFEy9JFnn8Ccvz8fuTty+VBDIgLARIWIfEzpp0T80HjndivZZTj962nUVNT4MDIiaguYqBCRzznarcQPOftQQ8d4K+W55T6Ojoh8iYkKEbUZATEBSB6ZDE2gBgBgs9iQsy0HBQcK2IWZqJNiokJEbYo6wD7eSlB8kDyt+FgxMjdnwlJt8WFkROQLTFSIqM1RqBSIHRSL6L7RkBT25wRVFVfh5M8nUVFQ4ePoiMibmKgQUZsV0iUEicMTodKqAPzVhXlLFgozCiEEbwURdQZMVIioTdOF6tDl4i7QR+nlaUVHipC1OYu3gog6ASYqRNTmKdVKxF8Qj8i0SEiS/VZQZVElbwURdQJMVIioXZAkCWE9wtzeCio4yF5BRB0VExUiald0YfZbQY6nMANA8dFiZP6eCXMlH2xI1NEwUSGidsdxKyjqvKizvYJKquwDxOVwgDiijqRRicqKFStw7bXXIiEhAXq9HgMGDMCHH37o0vp+0aJF6NWrF7RaLfr3749vv/3WZV0GgwF33XUXwsLCEBgYiAkTJiA3N7d574aIOpXQbqFIGlHrwYZmK3K25yBvdx5sFj4riKgjaFSi8tprr8Hf3x8LFizAN998g/Hjx+Oee+7BnDlz5DLLli3DPffcg0mTJmHNmjVIT0/H9ddfjy1btjita9KkSfjhhx+wcOFCLF26FIcOHcL48eNhsbAVPxF5ThuiRfJFyU4DxBlOG3Dql1OoNlT7MDIiagmSaMRgBIWFhYiIiHCadu+992L58uUoKSmBQqFASkoKBg8ejE8//VQuM3z4cISEhGD16tUAgM2bN2P48OFYu3Ytxo4dCwA4dOgQ0tLSsGzZMkycONHjN1BWVobg4GAYDAYEBQWde4F62Gw25OfnIyoqCgoF74i1Jta193S2ujZkGpC/N19+8rKksD9DKLRbqNxbqLV0trr2Jda197RmXXv6/d2ordZNUgBg4MCBKCsrQ0VFBY4fP47Dhw+7JBqTJ0/G+vXrYTKZAABr1qxBSEgIxowZI5dJSUnBgAED5GSGiKixghODkXxxMrQhWgCAsAkUHChA1pYsmKvY0JaoPWp2evTbb78hPj4egYGByMjIAACkpqY6lUlLS0NNTQ1OnDgBAMjIyEBKSorLL5y0tDR5HURETaHWq5E0IglhPcLkaZWFlTj1MxvaErVHquYs/Ntvv2HZsmVYsGABAKCkpAQAEBIS4lQuNDQUAFBcXCyXq1vGUc5Rpj4mk0m+MgPYLx0B9stTNlvTG8/ZbDYIIZq1DvIM69p7OnNdh6eEQxeuQ97OPFiqLbCYLMj+MxuBCYGI6hMFpZ+yRbfXmeva21jX3tOade3pOpucqGRlZWHSpEkYPXo0ZsyY0dTVNNq8efPwwgsvuEwvKChAdXXTG87ZbDYYDAYIIXjPs5Wxrr2HdQ3oeutQfLAYFXn2EWxLDaXIPZaLiD4R0IZpW2w7rGvvYV17T2vWdXm5Z1c4m5SolJaWYvz48QgPD8eXX34pB++4cmIwGBATEyOXd1xpCQsLk8tlZma6rLekpEQuU5+nnnoKM2fOlF+XlZUhMTERkZGRzW5MK0kSIiMjeeC3Mta197Cu7WLjY1GWXYb8Pflyt+XqI9XQdtPah+VXNL+hLevae1jX3tOada3VevZDodGJSlVVFa666ioYDAZs3rwZwcHB8jxH2xRHGxSHjIwMqNVqdOvWTS63bt06CCGc2qlkZGSgb9++DW5fo9FAo9G4TFcoFM2uREmSWmQ9dG6sa+9hXduFJIZAH6FH3s48VBZVAgAMJw2oLqpGzMAYaIObf3WFde09rGvvaa269nR9jdqqxWLBxIkTcfDgQXz//feIj493mt+tWzf06tULK1ascJq+fPlyXHrppVCr1QCA8ePHo6SkBOvXr5fLHD58GDt37sQVV1zRmJCIiDzmp/NDQnqC04i2pnITTv96GkWHi/i8IKI2qFFXVO6//358++23WLBgAcrKypwGcRs4cCA0Gg1mz56Nm2++Gd27d8fo0aOxfPlybN26Fb/88otcNj09HePGjcOdd96JBQsWQKvV4plnnkG/fv1www03tNy7IyKqQ5IkhHYLhX+kP3J35MJUZoIQAoWHCmHMMyJmYAw0ga5XbYnINxqVqPzwww8AgL/97W8u806cOIEuXbpgypQpqKysxPz58zF//nykpKRg1apVSE9Pdyq/fPlyzJw5E/feey8sFgvGjh2Lt99+GypVszoiERF5RBOoQfLIZBQdLkLx0WIIIVBtqMapX04hIiUCod1bf5A4Ijq3Ro1M2xZxZNr2h3XtPaxrz1SXViNvVx5M5WeHPtCGaBEzwPOrK6xr72Fde0+7G5mWiKgjcjwvKKxHmHwVpbrUfnWl6AjbrhD5EhMVIiLYnwsUmRaJxBGJUAfYG/4Lm0BhRiFO/XoKpjLTOdZARK2BiQoRUS26UB26XNzF6eqKqcyEU7+cQmFGIa+uEHkZExUiojocV1eSLkyS26gIIVB0pAgnfz6JquIqH0dI1HkwUSEiqoej7Up4r3B53JUaYw1ObzqNM3vPyKPcElHrYaJCRNQASSEhIiUCyRclQxtydvTa0pOlOLHxBIx5Rh9GR9TxMVEhIvKAJlCDpAuTEHVeFBRK+6nTUm1/InP2n9mwVFt8HCFRx8TR1YiIPOQY1TYgJgBn9pxBRYH9iczGPCMq8iuASCAyMtLHURJ1LLyiQkTUSH7+fkgYloDYQbFQaey/92wWG4ozinH619OoLq32cYREHQcTFSKiJgqKD0KX0V0QnHT2KfImgwmnfj2FM3vPwGq2+jA6oo6Bt36IiJpB6adETP8YBMYHovKXSnl66clSGHONiOwdiaCEpj/eg6iz4xUVIqIWoAvTIXZYLCJ6R5xtbGuyIHdnLk5vOs2RbYmaiIkKEVELkRQSwrqHocvoLgiMDZSnVxVX4dQvp5C/L5+3g4gaiYkKEVEL89P5Ie78OCQMS4Ba/9dzg4RAyYkSnNx4EobTBrTzB9cTeQ0TFSKiVqKP1KPLqC6ISHW+HZS3Ow+nfzuNqhIOxU90LkxUiIhakaSQEN4z3OV2UHVpNU7/dhq5O3M5WBxRA9jrh4jICxy3gyoLK5G/Lx+mcnvj2rKsMhhzjQjrGYbQbqHylRcisuMngojIi/wj/JF8cTKi+0ZD6acEANisNhRmFOLkxpMoyy7zcYREbQsTFSIiL5MkCSFdQtD1kq4I6RICSbI/mdlcZUbujly2XyGqhYkKEZGPKNVKRPeNRvLFydBH6eXpVSVVOP3baeRsz4G50uzDCIl8j21UiIh8TBOoQcLQBFTkVyB/fz5qjDUAgPKcchjzjAjtGoqwnmHyrSKizoRXVIiI2gh9lL07c3S/aCjV9qRE2ASKjxXjxPoTKD5WDGHj+CvUufCKChFRGyJJEkKSQxAUH4Tio8VycmI1W1FwoAClJ0oRnhKOoIQguW0LUUfGKypERG2QQqVARGoEul7S1emhhuYqM/J25eHUz6dgzDP6MEIi72CiQkTUhvnp/BA7MBZdLu7i1ODWVG5C9p/ZOP3baVQWVjawBqL2jYkKEVE7oAmyN7hNHJ4IXahOnl5VUoXMzZnI3JzJLs3UITFRISJqR/zD/ZF0YRLih8RDE6iRp1cWVuL0b6eRtTUL1aXVPoyQqGWxMS0RUTsUEBMAfbQe5TnlKDpUhJoKe5fmivwKVORXQB+lR0RKBLQhWh9HStQ8TFSIiNopSZIQFB+EwNhAlGWVoehwEcxV9gHiHAlLQHQAwnuFM2GhdouJChFROycpJAQnBSMoIQiGTAOKjxTLCYvxjBHGM0boo/QI7xXu1L6FqD1gokJE1EFICvsYLMGJwS4Ji+MKi3+EP8J7hcM/3N/H0RJ5hokKEVEHUzthKcsqQ9GRIvmZQZWFlagsrIQuTIfwXuHQR+rPsTYi32KiQkTUQdW+JVSWXYbiI8Vyo9uq4ipkbcmCNkSL8J7h0EfrOdIttUlMVIiIOjhJISE40Z6wlOeUo+hwkfzgw+rSamT/mQ1NoAZhPcMQGBfIhIXaFCYqRESdhNxLKC4Qxjwjig4XwVRmAmAf6TZ3Ry4KMwoR1iMMwYnBkBRMWMj3mKgQEXUykiQhMDYQgbGBqMivQNGRIlQV20e1NVeacWbPGRQdKkJot1AEJwdD6af0ccTUmTFRISLqxPRReuij9KgsqkTxkWJUFFQAACwmCwoOFqDoSBFCuoQgtGsoVFp+ZZD38agjIiL4h/vDP9wf1YZqFB8tRnlOOQDAZrGh+GgxSo6XICghCGHdw6AOUPs4WupMmKgQEZFMG6xF3OA41KTWoPhoMcqyyiBsAsImYDhtgOG0AQHRAQjrEQZdGAePo9bHRIWIiFyo9WrE9I9BREoESk6UoPRkKWwWG4Czo91qQ7QI6x6GgNgA9hSiVsNEhYiI6qXSqhCZFonwnuEoPVWKkuMlsFRbANi7Nudsz4Gfzg8hXUMQnMSGt9TymKgQEdE5KVQKhHUPQ2jXUJTnlKP4WLHctdlcZUbBgQIUHS5CcGIwQrqGQK1nOxZqGUxUiIjIY5JCQlBCEIISglBZWImS4yUwnjECsDe8LTlRgpITJQiIDkBI1xAO0U/NxkSFiIiaxD/CH/4R/qgx1qDkeAnKsspgszq3Y9EEahDSJQRBCUFQqBQ+jpjaIyYqRETULOoANaL7RSMiLQKGUwaUniyVn9psKjfhzN4zKMwoRFBiEEK68LYQNQ4TFSIiahFKPyXCeoQhtHsojLlGlJwokUe8tZqtKDlegpLjJdBH6hHSJYQPQiSPMFEhIqIWJUkSAuMCERgXCFOZCSUnSuTxWACgoqACFQUV8NP5ITg5GMFJwVBp+HVE7vHIICKiVqMJ0iCmfwwi0yJhOG1A6alSmCvtt4XMVWYUZhSi6HARAmICEJIcAv8Ifx9HTG0NExUiImp1SvXZ20KVBZUoPVkq9xYSNoHynHKU55RDrVfbr7IkBkOp5pgsxESFiIi8SJIk+UGI5kqzPCy/xWQfRK6mogYFBwpQmFGIgJgABCcFwz/Cn21ZOjEmKkRE5BN+/n6ISI1AeK9wGPOMKD1VisrCSgDOV1n8dH4ITgpGUGIQ/HR+Po6avI2JChER+ZSkONv4tsZYY7/KkmmAtcYK4K+2LIcKUXioEPpIPQLiA2BT2HwcNXkLExUiImoz1AFqRPaORERqBIxnjDCcNqAiv0KeX1FQAeMZI8oqyiD1lhCSFMKnOHdwTFSIiKjNkRQSAmMDERgbCHOVGWVZZTCcNsg9hmwWGwynDCjLLINar0ZQon1Yf94a6niYqBARUZvmp/NDeM9whPUIQ1VxFUpOlqDMWCbPr6moQWFGIQozCqEL0yEoIQiBcYF8knMHwUSFiIjaBUmS4B/uD22oFlK0BJ1VB2OOUW6ACwBVxVWoKq5C/r586KP0CIoPgj5aD4WSzxlqr5ioEBFRu6NQKRAcF4zQ5FD51lBZVhlqjDUA7L2GjHlGGPOMUKgUCIgJQFB8kL2rs4JdndsTJipERNSuOW4NhfcMR7WhGmVZZSjPLpfHZrFZbHIio/RTIiA2AIFxgfAPZ9LSHjBRISKiDkMbrIU2WIvI3pGoLKxEeU45jLlGWM32rs5Ws1UeZE5OWmIDeaWlDWOiQkREHY4kSdBH6qGP1EP0FajIr0BZdhkqzlTAZrWPwVI3adFH6e1XWiL92aalDWGiQkREHZqkkBAQE4CAmADYrDZU5FegPKfcJWkpyy5DWXYZFEoF/CP9ERAdAH20nk929jHWPhERdRoKpUIen8VmtaGyoBLlufakxXF7yGa1yQ1xAUAXppOTFk2gxpfhd0pMVIiIqFNSKBXylRZhE/Y2LX8lLY6GuMDZLs8FBwvgp/ODPlqPgOgA6MJ1vEXkBUxUiIio05MUZ5/qLIRAdWm1fFXF0eUZsD93qPRkKUpPlkJS2Md1cSynDlD78B20AiGAwkIoMzMBhQKIjAR88BRrJipERES1SJIEXagOulAdItMiUVNRg4r8ClScqUBlUSWETQCwj9VSUVCBioIKYD+g0qqgj9TDP8If/hH+UGnb6VdsaSnw0UfA229DcewYIh3Tu3cHHnoIuP12ICTEa+H49JpVRkYGxowZA71ej5iYGDz++OOoqak594JEREReotarEdo1FAnDEtBjXA/ED4lHSHKIy3OFLNUWGDINyN2Zi2M/HsOJjSdwZs8ZlGWXwVJtqWftbczatUBCAvDoo8Dx487zjh+3T09IsJfzEp+leyUlJbjkkkvQs2dPrFy5EtnZ2Zg5cyYqKyvxzjvv+CosIiKiejlGuQ2ICQAAmMpNqCyoREV+BaqKq+ReRABQY6xBjbEGpadKAdgTHl2YDtpQLXRhOqgD1JB8cCulXmvXAldeab/lI4TrfMe0qip7ue++A8aNa/WwfJaoLFy4EGVlZVi1ahXCwsIAABaLBffffz+efvppxMXF+So0IiIij2gCNdAEahDaLRTCJlBVUoXKgkpUFlaiurQaotYXfk1FDWoqamDINAAAlH5KaEO00IZooQnWQBui9d3Tn0tLgRtvtCcjNlvDZW02e5uVG28EsrJa/TaQzxKVNWvW4LLLLpOTFACYOHEipk+fjh9++AFTp071VWhERESN5mhc6x/uD8A+dH9VSRWqiqpQWfRX4mI7m7hYzdazbVz+olQroQnSQB2ghibQ/q86QA2lRtm6V18++giorHR/JcUdm81e/uOPgRkzWi8u+DBRycjIwJ133uk0LSQkBLGxscjIyGj8Ck0m+19dCgXg5+dczh2bDTCbXddZn7rrrampfwdLEqBWN62s2dxwdqvR+L6sWn22JbjFAlitDZd1sFga/lA0dr2elvXzs++/xpa1Wu3lW7qsu2OvNpUKUCqbVtbxuTCZzm7PQam0l/dkvbXLCmE/httyWU8/9y1ZtnZ9KxQ8R9TW0p9lR13XrqM2eI5QANAHqaAPCgS6BkIoVaguq7EnLwVGVBcaYa1xXrfNDFRVVKFSqXI6RyiEFUqNEiqtCn46Pyj8FJAUEhRKBSQ/P0h+Hn6W3Z5PBIIXvA6FEGhUKiQE8OabwL332tfblM+yB3zaRiXEzeWi0NBQFBcX17ucyWSCqdbJoaysDAAgHnsMQu3aNUz06QM8+KD8Wvrb39xXoBDwj4uD7bnnzpZ96inAaHQbh0hOBp566mzZWbOAoiL3QcfGQsyadbbsyy8Dubnuy4aHQ7z88tnX//wnpFOn3JcNCIB49dWzr998E9Lhw+7LqtUQb7119vV770Hat899WQBi4cKzLz74ANLOnfWXffPNsyetjz+GtGVL/WVfeQU2vb37n/j8c4hffqm/7MsvA+Hh9herVkH68cf6yz7/POC4Xfjdd5C++67+sk8+CXTpYn+xbh2klSvrLztzJtCrl/3Fzz9DWras/rIPPAD07Wt/sXkzpI8/rr/sPfcAgwfbX2zfDun99+sve9ttwPDh9hd790L617/qLzt5MjBqlP3F4cPAggUIrK4GtFqIOr/GxA03AGPH2l+cPAlp/vz613vllcDVV9tf5ORAmjOn/rJjxtgvCQNAURGkZ56pv+zFFwNTpthflJdDeuyx+ssOGwY4rrSaTJAefrj+sgMHAtOmya+lhx6qv6yn5wgAolcvYObMs2VrnyOEcKprniNqlW3kOQKBgfYXy5dD+vlnN4XsdW179VV7l1mg3ZwjNH37QhOiQUjuAUhffwybxQZrjdXpz2YVKB07EaYe5wEANEcPIOSHz+tdb9kl16EqdaC97MnDCFm9tN6y5SOvRGXfCwAAftknEPbVEijMJigz6zmGzuX4cYh774W48cZGnyNs57rF9Jd213dq3rx5eOGFF1ymV1VVwc9N1mspL0dlfr78OrCqCpKbk5AQAlVVVTDm50PxVxYbWFkJqarKbRxWoxEVtdYbUFEBRT1lbRUVMDaxrN5ohLKeskKhQHmtsv5GI1T1lbVancuWl9dbFgDKapXVlZfD71xl/zoJnatseUEBrBUVMBgM0JaVQXOOsuKvfaoxGBosaywshO2vDP1cZSuKimD1t1+aVZeWQnuusn/VxbnKVhYXw/JXWb+SEug8LKsqLoZ/A2WrSkpg9rBsdWkpav4qqywqgn9Vlb0nnRAul43rltU3sF6TwQDTX2UVhYUI8LCsVFyMwAbK1pSVodpR1mhssKy5vBxVjuPSZEKQp2WBBst6eo4AAIvR6Fy21jlCCOFU1zxH1CnbiHOE+Gu+tqwMajdlHXVdVlAA6a+rKu36HCEB0AAKjQIKKCBsAppkNSxxSpgrzbD4mWERFgirzenWkUO5sRxGQykAQGcsg39N/VcFjRVGlP1VVmssR0CNCcrqynrLe6LaaER1E84R5eXlHq1fEsLTG1ItKyoqCnfddRfmzZvnND0+Ph633nor5tfz687dFZXExESU5OUhKCjIdQEPL+vabDYUFBUhMi5OTlR468fDso28rGsTAgUFBYgMDYWCt35a9daPzWSy13Vk5Nnj2oG3flq0rM1mc65rniPOauHPslzX8fFQOI73TnKOsFltsFRbYLPYIKwCwiYgFEoIqennE6mkCIGD0+pf5hxsmZlAVFSjP8tlZWUIDQ2FwWBw//3tCLnJkTVTamqqS1sUg8GA3NxcpKam1rucRqOBpvYH5C8KnQ4Kne7cG66vjM0GSa2GQqE4e0L3ZH0OWm3rlHXzXtt0WTe331zYbJAkCYq/6rvF1tvaZet+8bRkWU/v1za2rEIBSau1fz4aquvGrBdo3Gejs5S12Rqua54j7Fri8+moa6XybF13knOEAoAqwPOQPNIlwj6Y2/HjnjemBeyJX7duUMTHu45Y68HnyNPzv88GfBs/fjzWrVuH0tJSedqKFSugUCgw1nHfnIiIiFqXJNlHnG2KGTNafVh9nyUq06dPR2BgIK677jr88MMPWLx4MR577DFMnz6dY6gQERF50+23A/7+rr0D66NQ2MvfdlvrxgUfJiqhoaFYv349VCoVrrvuOjz55JO4++678dprr/kqJCIios4pJAT48kv71ZFzJSsKhb3cypVeeeaPT3v9pKWlYd26db4MgYiIiAD7cPjffWcfXqDyr55AtdusOG7x6HT2JMVLzTR8+lBCIiIiakPGjbMPi//GG0C3bs7zunWzT8/O9lqSArTDcVSIiIioFYWE2BvJPvQQbIWFKDp5EuFdukAREdHqDWfdYaJCREREriQJCA+H1Wq1jxLuoyc989YPERERtVlMVIiIiKjNYqJCREREbRYTFSIiImqzmKgQERFRm8VEhYiIiNqsdt89Wfw1al5ZWVmz1mOz2VBeXg6tVuv5E32pSVjX3sO69h7Wtfewrr2nNeva8b0tzvHE5nafqJSXlwMAEhMTfRwJERERNVZ5eTmCg4PrnS+Jc6UybZzNZkNOTg4CAwMhNWMwmrKyMiQmJiIzMxNBQUEtGCHVxbr2Hta197CuvYd17T2tWddCCJSXlyMuLq7BqzXt/oqKQqFAQkJCi60vKCiIB76XsK69h3XtPaxr72Fde09r1XVDV1IceHOPiIiI2iwmKkRERNRmMVH5i0ajwaxZs6DRaHwdSofHuvYe1rX3sK69h3XtPW2hrtt9Y1oiIiLquHhFhYiIiNosJipERETUZjFRISIiojar0ycqGRkZGDNmDPR6PWJiYvD444+jpqbG12G1aytWrMC1116LhIQE6PV6DBgwAB9++KHLMMmLFi1Cr169oNVq0b9/f3z77bc+irjjMBqNSEhIgCRJ2LZtm9M81nfL+OijjzBw4EBotVpERERg/PjxqKqqkud/88036N+/P7RaLXr16oXFixf7MNr26+uvv8bQoUMRGBiI2NhYTJw4EcePH3cpx+O6cY4ePYrp06djwIABUKlU6NOnj9tyntSrwWDAXXfdhbCwMAQGBmLChAnIzc1t+aBFJ1ZcXCxiY2PFRRddJL7//nuxaNEiERwcLB544AFfh9auDRs2TEyePFksW7ZMrF+/Xjz55JNCoVCI2bNny2U+++wzIUmSePbZZ8WGDRvEtGnThEqlEps3b/Zh5O3f448/LqKjowUA8eeff8rTWd8t46WXXhKBgYFi3rx54qeffhJffPGFuO+++0R5ebkQQohff/1VKJVKMW3aNLFhwwbx7LPPCkmSxIoVK3wcefuyceNGoVAoxNSpU8WPP/4oli1bJnr16iW6d+8uKisr5XI8rhvvf//7n0hISBA33nij6Nu3rzjvvPNcynhar+PGjRMJCQli+fLl4quvvhJ9+vQR/fv3F2azuUVj7tSJyty5c4VerxdFRUXytH//+99CqVSK7OxsH0bWvhUUFLhMu+eee0RQUJCwWq1CCCF69eolpkyZ4lQmPT1djB8/3isxdkQHDx4Uer1eLFy40CVRYX03X0ZGhlCpVGL16tX1lhk7dqwYPny407QpU6aItLS01g6vQ5k2bZro2rWrsNls8rQNGzYIAOKXX36Rp/G4bjzHOVgIIW6//Xa3iYon9fr7778LAGLt2rXytIyMDCFJkli+fHmLxtypb/2sWbMGl112GcLCwuRpEydOhM1mww8//ODDyNq3iIgIl2kDBw5EWVkZKioqcPz4cRw+fBgTJ050KjN58mSsX78eJpPJW6F2KA899BCmT5+OlJQUp+ms75axePFidO3aFePHj3c732QyYePGjfi///s/p+mTJ0/GwYMHcfLkSS9E2TGYzWaX57c5hloXf91C5nHdNOd6ArKn9bpmzRqEhIRgzJgxcpmUlBQMGDAAq1evbtmYW3Rt7UxGRgZSU1OdpoWEhCA2NhYZGRk+iqpj+u233xAfH4/AwEC5buvWfVpaGmpqanDixAlfhNiuffHFF9i7dy+ef/55l3ms75axZcsW9O3bFy+99BKioqKgVqsxYsQIbN26FQBw7NgxmM1mt/UMgOeURpg6dSoOHDiAd999FwaDAcePH8fTTz+NgQMHYsSIEQB4XLcWT+s1IyMDKSkpLg8DTktLa/FjvVMnKiUlJQgJCXGZHhoaiuLiYu8H1EH99ttvWLZsGf7+978DsNc7AJe6Dw0NBQDWfSNVVlZi5syZmDt3rtuHhrG+W0ZeXh5++OEHfPzxx3j33Xfxv//9D5IkYezYscjPz2c9t6CRI0di1apVePLJJxESEoLu3bvjzJkzWLNmDZRKJQAe163F03r15vdnp05UqPVlZWVh0qRJGD16NGbMmOHrcDqkl156CdHR0bjjjjt8HUqHZrPZYDQa8cUXX2DChAm44oor8PXXX0MIgXfeecfX4XUov//+O2699Vbcc8892LBhA1asWAGbzYYrr7zSqYcVdQ6dOlEJDQ2FwWBwmV5SUuLUboWaprS0FOPHj0d4eDi+/PJL+d6oIzOvW/eOTJ5177lTp05hwYIFeOGFF2AwGFBaWgqj0QjA3lXZaDSyvltIaGgowsPD0a9fP3laWFgYBg4ciP3797OeW9CMGTNwySWXYMGCBRg9ejQmTJiA7777Djt27MAnn3wCgOeR1uJpvXrz+7NTJyqpqaku99IMBgNyc3Nd7s9R41RVVeGqq66CwWDAmjVr5IZwwNl7n3XrPiMjA2q1Gt26dfNqrO3ZiRMnUFNTgyuvvBKhoaEIDQ3F1VdfDQAYPXo0LrvsMtZ3CznvvPPqnVddXY3u3bvDz8/PbT0Drvf8qX4HDhzAgAEDnKYlJCQgIiICx44dA8DzSGvxtF5TU1Nx6NAhl/Gx3LX9bK5OnaiMHz8e69atQ2lpqTxtxYoVUCgUGDt2rO8Ca+csFgsmTpyIgwcP4vvvv0d8fLzT/G7duqFXr15YsWKF0/Tly5fj0ksvhVqt9ma47dqAAQOwceNGp7/XX38dALBw4UK8++67rO8WctVVV6GoqAi7du2SpxUVFWHHjh0YPHgwNBoNRo8ejS+++MJpueXLlyMtLQ1dunTxbsDtWHJyMnbs2OE07dSpUygsLJTrkcd16/C0XsePH4+SkhKsX79eLnP48GHs3LkTV1xxRcsG1aKdndsZx4BvF198sVi7dq348MMPRUhICAd8a6Z77rlHABALFiwQmzdvdvqrrq4WQgjx6aefCkmSxPPPPy82btwopk+fLlQqlfj99999HH37t3HjRpdxVFjfzWe1WsWQIUNE9+7dxbJly8RXX30lhg0bJsLDw0Vubq4Q4uyAb/fdd5/YuHGjeP7554UkSeLzzz/3cfTtyxtvvCEAiBkzZsgDvvXp00dER0eLwsJCuRyP68arqKgQK1asECtWrBCjRo0SiYmJ8uv8/HwhhOf1Om7cOJGYmCg+//xz8fXXX4u+fftywLfWcODAAXHppZcKnU4noqKixN///ndhMpl8HVa7lpycLAC4/Ttx4oRc7oMPPhA9evQQarVa9O3bV3zzzTe+C7oDcZeoCMH6bgkFBQXilltuEcHBwUKn04mxY8eK/fv3O5X56quvRN++fYVarRY9evQQixYt8lG07ZfNZhPvvfee6Nevn9Dr9SImJkZcf/314uDBgy5leVw3zokTJ+o9P2/cuFEu50m9lpaWijvvvFOEhISIgIAAccMNN7TKYKmSEHVuMBERERG1EZ26jQoRERG1bUxUiIiIqM1iokJERERtFhMVIiIiarOYqBAREVGbxUSFiIiI2iwmKkRERNRmMVEhIiKiNouJChEREbVZTFSImsloNEKhUMgPA/Q1IQQCAgLwxBNPtNg6q6qqoFQqMXfu3BZbZ31aI35fa84x4svjy5NtT506FZIkQZIk9OnTp8W2/cYbb8jrlSQJhYWFLbZual+YqFCbtXbtWqcTVe2/SZMmeTUWIQTmzJmDX3/91WXevn37IIRAv379vBpTfU6ePImKigr07du3xdZ54MAB2Gy2Fv0iqk9rxF9XQ/uzNTTnGPHl8eXY9rn2RUREBD755BPMnz/faXp2djauvPJKBAUFoXfv3vjmm29cll25ciWioqJgMBicpl9++eX45JNPcP311zf/jVC7pvJ1AET12b17NwDgrbfeQmhoqNO81vwSc+fw4cOYNWsWUlNTXeZdcMEFqKqqgkaj8WpM9dm/fz+Alq2jvXv3AgDOO++8FltnfVoj/roa2p+toTnHiC+PL8d+P9e+0Ov1uOWWW1ym33777cjOzsY//vEPbNq0Cf/3f/+HjIwMdOnSBQBQXV2Nv//973jppZcQHBzstGxqaipSU1Nx9OhRrFq1qmXeELVLTFSozdqzZw+Cg4Px4IMPQpIkj5errq6GVqtt0Vi2b98OABg0aJDLPIVC0eLba479+/dDpVIhLS2txda5d+9e+Pv7o1u3bi22zvq0Rvx1NbQ/W0NzjhFfHl979+5FZGQkoqOjG71sVVUVNmzYgJ9++gkXXXQRpk+fjt9//x1r167FtGnTAACvvvoqgoODcffdd7d06NSB8NYPtVm7d+/GwIEDG0xSxowZg+HDh+PXX3/FxRdfDJ1Oh4cffhgAcPDgQUyfPh0pKSnw9/dHTEwMbr75ZuTm5rqsZ/v27ZgwYQKioqKg1WqRmpqKOXPmALD/or355psBAD179oQkSQgJCXGKYcSIEU7rW716NUaNGoWgoCCEhITg5ptvdnuPffTo0bjooouwY8cOjB8/HoGBgYiPj8ebb77pUR0tX74cAwYMgFarxeDBg/HHH39g//796NWrF9RqtVwuMjISDz74oMvy559/Pq688spzbmfv3r1IS0vDli1bMGrUKOj1eqSmpuKzzz5zKtfY7Xga/0cffYR+/fpBp9Nh8ODB2Lx5MyZOnIj+/fu7rPOnn37CFVdcgZCQEISFheGqq67CsWPH5Pnn2p/ujBkzBunp6di8ebP8/nv06IHVq1cDsO/vYcOGQa/XY8CAAXIiVHv5useIp/ve3bLNjcfTz8bevXubfGWruroaQgj5aqijnisrKwHYbwvNnz8fb775JhQKfhVR/Xh0UJtUU1ODQ4cOITU1FYWFhU5/ZrNZLrdnzx4UFRXhuuuuQ3p6Ot544w1MnDgRAPDhhx/ixIkTuPXWW/HWW29h4sSJ+OKLL3Drrbc6bWvVqlUYPnw49u/fj8ceewyvv/46hg8fjt9//x0A8MQTT6BPnz7o2bMnPvnkE3zyySf473//6xRD7fYDr776Kq688kqEhobilVdewUMPPYSvvvpKjqu2vXv3orS0FFdffTUGDx6MV199FbGxsXj00Ufly+71ef311zF58mR07doVb731FtLT03HVVVdhy5YtTl8uOTk5KCwsdPlSt1qt2L9/v0dtH/bu3Quj0YhJkybh0ksvxfz58yFJEm666SZs3bq1SdvxNP558+Zh6tSp6NGjB9566y0MGzYM11xzDXbs2OHyJbpkyRJceumlsNlseOmll/Dkk09i9+7duOyyy1BVVQXg3PvTnT179sBgMGDSpEkYPXo05s6di/Lyctx0003497//jRkzZuD666/Hs88+i2PHjuHOO+90Wb7u+/d037tbtrnxePrZaE6iEhoaiu7du2Pu3Lk4ceIEli5dil27duGCCy4AADz++OMYP348LrrooiatnzoRQdQG7dy5UwBw+7d//34hhBBnzpwRAERAQIA4ePCgyzoqKipcpj377LNCoVCIqqoqIYQQhw4dEv7+/uL666+XpzlUV1fL/09KShJTp051WZ8jhnfffVcIIcQvv/wiJEkSzz//vFO5f/3rXwKA+OOPP+RpOTk5AoCIjIwUmZmZ8vQDBw4IAOKjjz5qsH5UKpV4+umnnabfd999AoB48cUX5Wlr1qwRAMTWrVudyu7bt08AEEuXLq13O0IIUVBQIACIsLAwceLECXn66dOnhVqtFvfee2+jt+Np/Nu3bxdKpVI89dRTTuXuuusuAUDMmzdPnrZ3716hVqud3rsQQuzevVsAEF9++aU8rb796Y5jH0dHR4ucnBx5+ltvvSUAiNTUVGEwGOTpM2fOFJIkycdP3WNECM/3vbtlmxuPEJ59Nhwxvv/++w3Wz+233y6Sk5Pdzlu/fr0IDQ2VP7uPPPKIEEKITZs2CZ1OJ06ePNnguoUQYtasWQKAKCgoOGdZ6ph4RYXapD179gCwX/L/8ccfnf4cDSAdZZ5++mm3jSL9/f3l/5eWlqKwsBChoaGw2WywWCwAgOeffx5arRZLlixxaQfgaLxoMBhw+vRpt1ceHDE4fnW+/PLLiI+Px/PPP+9UznHpPiMjQ57m+NU8a9YsJCQkyNP9/PwAwOnWR10vv/wygoOD8cwzzzhNv/jii53iccSoUChceuw4Giuf6xfzvn37AADPPPOM3AgSABITE5GSkoITJ040ejuexj937lzExsbihRdecCo3cuRIl3XOmTMHSUlJmDZtmtMVuLi4OPj5+eH48eMAGt6f7jj28ezZsxEbGytPDwgIAAC88sorCAoKkqcHBwdDoVDItzPqHiOA5/ve3bLNjQfw7LPhbtuNdckll+D06dPYsmULTp8+jddffx02mw0zZszA3/72NyQnJ+O9995DamoqUlJSsHDhwiZvizouNqalNmn37t1Qq9W46aaboFK5P0wdJ3t3XZWtVis++ugjvPPOO8jIyJAv+wP2rpQBAQEwmUz45ptvcPfddzud2OtynLDdfbHV7hVRWVmJ9evXY+bMmVAqlU7lKioqADgnH45lr7vuOqeyjmQmJSXFbTwmkwmrV6/Gvffe6/SFA0D+kqn95bJ792706NHDpeyuXbvg5+d3zp4vjjjd9epQKBTyej3djqfxm0wmrFmzBvfdd5/8Be5gNBqd3qfJZMJ3332HyspKREVFuX0fgYGBABrenw29/2uuucZp+qFDh6DT6TBmzBin6YcPH0b37t3lmN31nPF03ze0bFPj8eSz4diOJEnN7ukVEBCAoUOHyq8XL16MvLw8PPnkk1i3bh0ee+wx/Pe//5VvJaakpGD06NHN2iZ1LExUqE3as2cPevbsWW+S4igTGxvrtifKbbfdhs8//xy33347HnnkEURERECtVmPGjBnyr9Djx4+jsrISgwcPPmcsANw23NyzZw+SkpIQHByM3bt3w2KxuE0wjh49CgDo3bu307IxMTGIj493Krt7926oVCqnsrUdO3as3ri3bduGgIAAdO3aVZ62d+9et7H/+eefSElJcUkC6tq7dy/i4uJcEoDKykpkZGTIX5iebsfT+A8ePIjKykq36zx+/DiCgoKQlJQkv66srMSLL76IYcOGuX0fjvU0tD/dcRxncXFxTtN3796NPn36uHQb3r17t1MSVPsYqT3Nk31f37LNiceTzwZg359du3aVE5eWUFZWhmeeeQavvvoq9Ho9PvvsM0yYMEFO2CZMmIClS5cyUSEnTFSoTdqzZw9GjRp1zjLuvmwOHDiATz/9FK+//joeeeQReXpubi4OHz6Myy+/HADkX5Ln6vrs+GKIiIhwO8/xJeBYj7vxLhYtWoTk5GSn2yL1fbHv2bMHvXr1qnfcDEeviboqKirw8ccf47zzzpNjsdlsOHTokMugWfn5+fjtt9/cNvCta+/evS5XiAD7L2OTyYQbbrihUdvxNH7H/qnbI8RkMuGzzz5zqsvy8nIAQFpaGi677LIG309D+7O+8u720+7du116MpnNZhw6dMjp/dbXkNaTfV9fQ9qmxuPpZ8MRY0uPZTNnzhx07dpV7nWVk5ODgQMHyvPj4uKwa9euFt0mtX9so0JtTl5eHvLz8xu85Gy1WnHgwAG3J+ysrCwAQI8ePeRpZrMZd999N6xWq3zid8xft26dyzpq9yw6ffq0UzuCujE41te9e3eoVCps2rTJqdznn3+OX375BU888YScQFitVhw8eLDeL5yGbkskJycDADZs2OA0/aWXXkJxcbHTl4vVaoXZbHZKDiwWC6ZNmwaLxXLOLyIhBPbt24fs7GynLr4FBQWYP38+rrnmGgwYMKBR2/E0fke53377zanc/PnzkZub65SodOnSBZIk4csvv3R5DxaLBSUlJfLr+vanO/UdZ4WFhcjNzXWZfvDgQZjNZnn/1T1GHNM82ff1LduceDz9bDhibMlE5fDhw3jnnXfw5ptvyp+D6Ohop3ZbBw8eRExMTIttkzoGXlGhNsfR+LKhROXIkSOorq52e7IfMGAA/P398fDDD+PEiROoqqrCJ598Il8VcCwTFBSEqVOnYsmSJTCZTBg1ahTKy8uxceNGXHnllXjggQcAAF27dsWGDRvwz3/+E3FxcUhLS8PgwYPlGBwnc71ej2nTpmHhwoVQqVTo168ftm7dig8//BC33nor7rvvvnPGX1VVhaNHj+L222+v971HRkZi7NixWLJkCTQaDQYOHIjvv/9e/kKv/eXi5+eHfv364b333oNOp4NOp8OKFSug0+lcyrpz8uRJGI1GDB48GFdeeSVmzJiByspKvPPOO1AoFPjPf/7T6O14Gn9ERAQuv/xy/Oc//5Hrc926dfKYILXXGRUVhSlTpuDTTz9FWVkZxo8fD6vViqNHj2LlypVYtmwZLrzwwgb3pzv17SfHMVp3et32L3WPkYbWWXffN2ZZT+Px9LPhbtvN9eijj2LSpEly92TAfqvn2muvxdNPPw0A+Oabb/Dtt9+22Dapg/B1tyOiuv75z38KAOLAgQP1lvn8888FALFv3z6387/99luRmpoqtFqt6Nevn1i8eLGYPXu2UKlULt00n3nmGdGzZ0+h0WhEbGysuPHGG8XRo0flMtnZ2WLcuHEiICBAABBvvfWWUwyO7tJCCFFZWSkefPBBERERIXQ6nejfv7947733hM1m8yj+P/74QwAQ3377bYN1lJubK6655hoRGBgowsPDxaRJk8TSpUsFALF+/Xqnsjt27BCDBw8WWq1WnHfeeeI///mPWLRokQAgTp061eB2vvrqKwFA7Ny5UzzwwAMiODhYhISEiNtuu82pa2xjt+Np/GfOnBHXXXedCAoKErGxseLhhx8Wq1atEgDEli1bnNZZXV0t5s6dK3r37i10Op0IDw8XQ4YMEbNmzXLqjlvf/nSnvv302muvCQCitLTUafrjjz8ugoKC5P3t7hjxdN83ZllP4xHCs8+Gu23Xp6HuyQ7fffedCAgIcDlmhBBi3rx5Ii4uTsTGxop//OMfLvPZPZkkIYTwYl5ERNQsDz74IJYvX47c3NwGG1uTd0ydOhUbNmzAjh07oFKpzjnKr6eqq6thNBrxz3/+E6+88goKCgo8bldEHQvbqBBRm2QymVD3d9Qvv/yCf//735g+fTqTlDYkMzMTkZGR8u21lrBw4UJERkbilVdeabF1UvvEKypE1CZ9/fXXmDNnDiZMmICQkBDs2LEDixcvxsCBA/Hzzz/L7V/Itw4cOICcnBwA9jFT6use3liZmf/fvh3aMBDDYBg1zxK3Sba4USLdfpkh0uHuEFxWWnb9Vb3HzAw/YL/qvu/P3Hv/+krPfxIqQKQ5Z40xaq1Ve+86jqPO86zruqq19uv1gIcIFQAglhsVACCWUAEAYgkVACCWUAEAYgkVACCWUAEAYgkVACCWUAEAYgkVACCWUAEAYgkVACDWG1p0oCSsYT7rAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(np.arange(1, 101), inconfort_minimal, color='purple', linewidth=2, alpha = 0.3)\n", + "plt.plot(100, inconfort_minimal[-1], 'or', markersize=10, label=f\"Budget minimum pour inconfort nul = {cout_minimal_obtenu_a_la_tache_1}\")\n", + "plt.title('Inconfort en fonction du budget', fontsize=18)\n", + "plt.grid('on',alpha=0.3)\n", + "plt.xlabel(\"$Fraction$ $du$ $budget$ $minimal$ [%]\", fontsize=12)\n", + "plt.legend(fontsize=10)\n", + "plt.tick_params(axis='both', which='major', labelsize=11)\n", + "plt.axhline(y=0, color='r', linestyle='--', alpha=0.6)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ef6aa85b", + "metadata": {}, + "source": [ + "### Quid de la relation budget-inconfort si l'on change le volume de la pièce ?" + ] + }, + { + "cell_type": "markdown", + "id": "6d67576e", + "metadata": {}, + "source": [ + "Générons un graphe 3D permettant de visualiser l'impact du changement de volume de la pièce. Ce graphique mettra en exergue le fait qu'il n'est pas du tout équivalent de chauffer une petite pièce ou tout un auditoire... On le fait pour l'intervalle 13050." + ] + }, + { + "cell_type": "code", + "execution_count": 395, + "id": "b94f582a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAGlCAYAAADnBcIqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUdf7/X7M9ZUt6SIA0AoRQDS0BLAcHKhZOLNgOFEQF5CsW7FLs5eynqHdnOeFOPU+90zsUKyColCSE9IR0SN1N2022zfz+4PeZm9mS7G52k134PB+PPJTd2ZnPzszOvOb9fn/eL4bjOA4UCoVCoVAolAGRjPQAKBQKhUKhUEIBKpooFAqFQqFQPICKJgqFQqFQKBQPoKKJQqFQKBQKxQOoaKJQKBQKhULxACqaKBQKhUKhUDyAiiYKhUKhUCgUD6CiiUKhUCgUCsUDqGiiUCgUyhmD1WrF008/jX//+98jPRTKGcgZJZpqa2vBMAyef/75QZfdunUrGIYZhlH5H3+P/d133wXDMKitrfXbOofKqlWrkJqa6td1BuP3DATkd/Duu++O9FDOCCorK7F48WJotVowDIPPPvtspIcUsri6dqWmpmLVqlWi19zt80OHDiEvLw8RERFgGAYFBQVO27j//vvxpz/9CXPnzg3QtzgzCOV74Ejik2iqqanBhg0bMH78eISHhyM8PByTJk3C+vXrcezYMX+PkULxiieffDLobmypqalgGIb/U6lUyMzMxL333gu9Xj/Sw/OJ119/3SthRkTr4cOHAzeoALBy5UoUFRXhiSeewF//+lfMnDnTL+s9cOAAtm7dis7OTr+s70zC1T63Wq246qqroNfr8eKLL+Kvf/0rUlJSRJ/7/PPP8cEHH2D37t2Ii4sbodEDJpMJW7duxQ8//DBiY6AEBpm3H/jiiy9wzTXXQCaT4frrr8e0adMgkUhQVlaGf/7zn3jjjTdQU1PjdDIHGw8//DDuv//+kR4GJQA8+eSTuPLKK7Fs2TLR6zfeeCNWrFgBpVI5IuOaPn067r77bgBAf38/jhw5gpdeegk//vgjfv311xEZ01B4/fXXERsb6xQlOJPo6+vDwYMH8dBDD2HDhg1+XfeBAwewbds2rFq1Cjqdzq/rDiXKy8shkfzv+d3dPi8rK0NdXR3efvttrFmzxuW6amtr8d///hfjxo0L+LgHwmQyYdu2bQCA888/f0THQvEvXomm6upqrFixAikpKfj2228xatQo0fvPPPMMXn/9ddEPwBVGoxERERHej9aPyGQyyGRea0aKjwTDMZdKpZBKpSO2/eTkZNxwww38v9esWYPIyEg8//zzqKysRGZm5oiNjeKatrY2APCrqAmG34I/8Nf3cHyIcbfPW1tbXb4u5P/+7/+82vaZciwow4dX6blnn30WRqMR77zzjpNgAk4LkY0bN2LMmDH8a6tWrUJkZCSqq6tx8cUXQ61W4/rrrwcA7Nu3D1dddRXGjh0LpVKJMWPGYNOmTejr6xOtl6zjxIkTWLJkCSIiIpCUlITt27eD4ziXY33rrbeQkZEBpVKJWbNm4dChQ6L3XeVzzWYzNm3ahLi4OKjValx22WVobGwEwzDYunWraDyu6m3c5Yg/+OAD5OTkICwsDNHR0VixYgUaGhpcjtuR/fv3Y9asWVCpVMjIyMCbb77pdtmhbMeRzz//HEuXLkVSUhKUSiUyMjLw2GOPwW63D/pZsh9KSkpw3XXXISoqCvPnzx/yOJ9//nnk5eUhJiYGYWFhyMnJwT/+8Q/RMgzDwGg04r333uNTYSQS4q6m6fXXX0d2djaUSiWSkpKwfv16p5TJ+eefj8mTJ6OkpAQXXHABwsPDkZycjGeffXbQcQ9EYmIiAIgE/Pnnn+/y6dTVedfZ2YlVq1ZBq9VCp9Nh5cqVbtM9H3/8MSZNmgSVSoXJkyfj008/dblOlmXx0ksvITs7GyqVCgkJCbj11lthMBj4ZVJTU1FcXIwff/yR38++PFGT33ZTUxOWLVuGyMhIxMXF4Z577nE611iWxcsvv4wpU6ZApVIhLi4OF154oSjdZ7PZ8Nhjj/G//dTUVDz44IMwm82idaWmpuKSSy7B/v37MXv2bKhUKqSnp+P999/nl9m6dSsfMb/33nvBMIxoX+Xn5+Oiiy6CRqNBZGQkFi5ciJ9//lm0HXLO/fjjj1i3bh3i4+MxevRobN26Fffeey8AIC0tjd+HA9XbkXPwyJEjyMvLQ1hYGNLS0rBjxw6nZVtbW7F69WokJCRApVJh2rRpeO+990TL/PDDD2AYximF5KombqDruDs8vXYJa5rc7fNVq1bhvPPOAwBcddVVTudbWVkZrrzySkRHR0OlUmHmzJn417/+JdqOu2NB+O9//4sFCxYgIiICarUaS5cuRXFxsWgdnpyvtbW1fGpw27Zt/LEl95Dm5mbcdNNNGD16NJRKJUaNGoXLL798wGP//PPPg2EY1NXVOb33wAMPQKFQiH6fH3/8MX+NjY2NxQ033ICmpia36yfjdlcL6XgPJNf4iooK3HDDDdBqtYiLi8MjjzwCjuPQ0NCAyy+/HBqNBomJifjDH/7gtE6z2YwtW7Zg3Lhx/P1/8+bNTr/VPXv2YP78+dDpdIiMjMSECRPw4IMPDvhdAolXoZYvvvgC48aNw5w5c7zaiM1mw5IlSzB//nw8//zzCA8PB3D6wJpMJtx+++2IiYnBr7/+ildffRWNjY34+OOPReuw2+248MILMXfuXDz77LPYvXs3tmzZApvNhu3bt4uW3bVrF3p6enDrrbeCYRg8++yzuOKKK3DixAnI5XK341yzZg0++OADXHfddcjLy8N3332HpUuXevVdHXniiSfwyCOP4Oqrr8aaNWvQ1taGV199Feeeey7y8/MHfGoqKirC4sWLERcXh61bt8Jms2HLli1ISEjw63Zc8e677yIyMhJ33XUXIiMj8d133+HRRx9Fd3c3nnvuOY/WcdVVVyEzMxNPPvkkL26HMs6XX34Zl112Ga6//npYLBb8/e9/x1VXXYUvvviCP05//etfsWbNGsyePRtr164FAGRkZLhd59atW7Ft2zYsWrQIt99+O8rLy/HGG2/g0KFD+Omnn0Tni8FgwIUXXogrrrgCV199Nf7xj3/gvvvuw5QpU3DRRRcNuj+sViva29sBnE7P5efn44UXXsC5556LtLS0QT/vCMdxuPzyy7F//37cdtttyMrKwqeffoqVK1c6Lfvll1/immuuwZQpU/DUU0/BYDBg9erVSE5Odlr21ltvxbvvvoubbroJGzduRE1NDV577TXk5+fz++Sll17CHXfcgcjISDz00EMA4PK89AS73Y4lS5Zgzpw5eP755/HNN9/gD3/4AzIyMnD77bfzy61evRrvvvsuLrroIqxZswY2mw379u3Dzz//zNcZrVmzBu+99x6uvPJK3H333fjll1/w1FNPobS0FJ9++qlou1VVVbjyyiuxevVqrFy5En/5y1+watUq5OTkIDs7G1dccQV0Oh02bdqEa6+9FhdffDEiIyMBAMXFxViwYAE0Gg02b94MuVyON998E+effz5+/PFHp2vkunXrEBcXh0cffRRGoxEXXXQRKioq8Le//Q0vvvgiYmNjAWDQOhyDwYCLL74YV199Na699lp89NFHuP3226FQKHDzzTcDOJ3eOv/881FVVYUNGzYgLS0NH3/8MVatWoXOzk6vozEEd9dxV3hz7RLibp8nJCQgOTkZTz75JDZu3IhZs2bx6youLsa8efOQnJyM+++/HxEREfjoo4+wbNkyfPLJJ/jd734n2objsQBOXzdWrlyJJUuW4JlnnoHJZMIbb7yB+fPnIz8/XySWBztf4+Li8MYbb+D222/H7373O1xxxRUAgKlTpwIAli9fjuLiYtxxxx1ITU1Fa2sr9uzZg/r6ereTX66++mps3rwZH330ES+2CR999BEWL16MqKgoAOB/u7NmzcJTTz2FlpYWvPzyy/jpp598uhcMxDXXXIOsrCw8/fTT+PLLL/H4448jOjoab775Jn7zm9/gmWeewc6dO3HPPfdg1qxZOPfccwGcfgC67LLLsH//fqxduxZZWVkoKirCiy++iIqKCr4mtbi4GJdccgmmTp2K7du3Q6lUoqqqCj/99JPfvoPXcB7S1dXFAeCWLVvm9J7BYODa2tr4P5PJxL+3cuVKDgB3//33O31OuBzhqaee4hiG4erq6pzWcccdd/CvsSzLLV26lFMoFFxbWxvHcRxXU1PDAeBiYmI4vV7PL/v5559zALh///vf/GtbtmzhhF+/oKCAA8CtW7dONJ7rrruOA8Bt2bJFNJ6UlBSnsTuus7a2lpNKpdwTTzwhWq6oqIiTyWROrzuybNkyTqVSifZFSUkJJ5VK/bqdd955hwPA1dTU8K+5Oja33norFx4ezvX39w+4PrIfrr32WtHr3ozT1T52HJPFYuEmT57M/eY3vxG9HhERwa1cudJpXI7fs7W1lVMoFNzixYs5u93OL/faa69xALi//OUv/GvnnXceB4B7//33+dfMZjOXmJjILV++3P3O+P+kpKRwAJz+5s2bx7W3t4uWPe+887jzzjvPaR2O++Szzz7jAHDPPvss/5rNZuMWLFjAAeDeeecd/vUpU6Zwo0eP5np6evjXfvjhBw6AaJ379u3jAHA7d+4UbXv37t1Or2dnZ7scpzvI/j906JDoOwHgtm/fLlp2xowZXE5ODv/v7777jgPAbdy40Wm9LMtyHPe/3/CaNWtE799zzz0cAO67777jXyPHY+/evfxrra2tnFKp5O6++27+NXJNee6550TrXLZsGadQKLjq6mr+tZMnT3JqtZo799xznb7z/PnzOZvNJlrHc8895/S7GwhyDv7hD3/gXzObzdz06dO5+Ph4zmKxcBzHcS+99BIHgPvggw/45SwWC5ebm8tFRkZy3d3dHMdx3Pfff88B4L7//nvRdsh3Fp4/A13HXeHptYvjTh8L4e/V3T4n4/34449Fry9cuJCbMmWK6LrEsiyXl5fHZWZm8q+5OxY9PT2cTqfjbrnlFtF6m5ubOa1WK3rd0/O1ra3N6b7Bcafvla6+myfk5uaKtsFxHPfrr7+KrksWi4WLj4/nJk+ezPX19fHLffHFFxwA7tFHH+Vfc7xfuTruBMfvQj67du1a/jWbzcaNHj2aYxiGe/rpp0XfOSwsTHSM//rXv3ISiYTbt2+faDs7duzgAHA//fQTx3Ec9+KLL3IA+Ht8MOBxeq67uxsA+CctIeeffz7i4uL4vz/+8Y9OywifGAlhYWH8/xuNRrS3tyMvLw8cxyE/P99peWFRIMMw2LBhAywWC7755hvRctdccw2vugFgwYIFAIATJ064/X7/+c9/AAAbN24UvX7nnXe6/cxg/POf/wTLsrj66qvR3t7O/yUmJiIzMxPff/+928/a7XZ89dVXWLZsGcaOHcu/npWVhSVLlvhtO+4QHpuenh60t7djwYIFMJlMKCsr82gdt912m1/HKRyTwWBAV1cXFixYgKNHj3rxzf7HN998A4vFgjvvvFNUh3fLLbdAo9Hgyy+/FC0fGRkpqklSKBSYPXv2gOeVkDlz5mDPnj3Ys2cPvvjiCzzxxBMoLi7GZZdd5pSS9oT//Oc/kMlkot+WVCrFHXfcIVru5MmTKCoqwu9//3vR7/e8887DlClTRMt+/PHH0Gq1+O1vfys6Rjk5OYiMjPTpXPIEx3NlwYIFov36ySefgGEYbNmyxemzJCVOfsN33XWX6H1SfO94PCdNmsRfG4DTUZ4JEyYMejztdju+/vprLFu2DOnp6fzro0aNwnXXXYf9+/fz10vCLbfc4pd6OplMhltvvZX/t0KhwK233orW1lYcOXIEwOn9kJiYiGuvvZZfTi6XY+PGjejt7cWPP/7o8/ZdXccd8ebaNVT0ej2+++47XH311fx1qr29HR0dHViyZAkqKyud0lKOx2LPnj3o7OzEtddeKzrnpVIp5syZ4/KcH+x8dUdYWBgUCgV++OEHUTrNE6655hocOXIE1dXV/GsffvghlEolLr/8cgDA4cOH0drainXr1kGlUvHLLV26FBMnTnT6DQwVYUG+VCrFzJkzwXEcVq9ezb+u0+mcflcff/wxsrKyMHHiRNE+/81vfgMA/D4nUbHPP/8cLMv6dey+4nF6Tq1WAwB6e3ud3nvzzTfR09ODlpYW0U2F34hMJsodE+rr6/Hoo4/iX//6l9MJ1NXVJfq3RCIRXaAAYPz48QDglAsW/lAB8AJqoJO0rq4OEonEKZUzYcIEt58ZjMrKSnAc57bAd6BUYVtbG/r6+lx+dsKECfwNYqjbcUdxcTEefvhhfPfdd043AMdj4w7HlNNQx/nFF1/g8ccfR0FBgSjv7WuvEVIf4HiMFQoF0tPTneoHRo8e7bStqKgoj9tsxMbGYtGiRfy/ly5digkTJuDKK6/En/70Jyex48n4R40a5fQg4/h9yPdwNaNo3LhxItFZWVmJrq4uxMfHu9wmKcZ1h91u5wt5CdHR0VAoFG4/Q+qThERFRYl+r9XV1UhKSkJ0dLTb9ZDfsOP3TExMhE6nczqejtcJV9t1RVtbG0wmk8trQ1ZWFliWRUNDA7Kzs/nXfUm/uiIpKcmpcFl4HZw7dy7q6uqQmZnpNCEnKysLAFzWxXiCu+u4I95cu4ZKVVUVOI7DI488gkceecTlMq2traI0tKvrEgD+hu2IRqMR/duT89UdSqUSzzzzDO6++24kJCRg7ty5uOSSS/D73/+er290x1VXXYW77roLH374IR588EFwHIePP/6Yr6sD3F/TAGDixInYv3//oGP0BsffkFarhUql4tPNwtc7Ojr4f1dWVqK0tNRtOppcZ6655hr86U9/wpo1a3D//fdj4cKFuOKKK3DllVcOOuEsUHgsmrRaLUaNGoXjx487vUfy9+4K2ZRKpdMXtNvt+O1vfwu9Xo/77rsPEydOREREBJqamrBq1aohqUp3T3Scm6Jxb3F3k3ZVuMowDP773/+6HJOrqJ0v+Hs7nZ2dOO+886DRaLB9+3ZkZGRApVLh6NGjuO+++zw+NsLI0FDHuW/fPlx22WU499xz8frrr2PUqFGQy+V45513sGvXLq++n68E4rxauHAhAGDv3r28aGIYxuU6PSnCHyosyyI+Ph47d+50+f5gNTcNDQ1ON6Xvv/9+wCJxf89o9FREB/o6IcTxtxAMeHodI7i6jo805Fp0zz33uI1iOYpoV9cl4HRdkyvh4jjLeqjn65133olLL70Un332Gb766is88sgjeOqpp/Ddd99hxowZbj+XlJSEBQsW4KOPPsKDDz6In3/+GfX19XjmmWeGNB6Ct+cD4HpfePK7YlkWU6ZMwQsvvOByWTKZLCwsDHv37sX333+PL7/8Ert378aHH36I3/zmN/j6669HZDa0V4XgS5cuxZ/+9Cf8+uuvmD179pA2XFRUhIqKCrz33nv4/e9/z7++Z88el8uzLIsTJ07wT1UAUFFRAQB+6RydkpIClmVRXV0tUunl5eVOy0ZFRbmcoeT4BJeRkQGO45CWliYatyfExcUhLCyMfwoS4jimoWzHFT/88AM6Ojrwz3/+ky/cA043NR0KQxnnJ598ApVKha+++ko0Rfmdd95xWtbTmyaZpVNeXi6KYlosFtTU1IiiQoHCZrMBEEdwo6KiXIb6Hc8v0vqjt7dXJDgdzw/yPauqqpzW6fhaRkYGvvnmG8ybN2/QG72r/ZyYmOj0G542bdqA6/GEjIwMfPXVV9Dr9W6jTeQ3XFlZyUdVAKClpQWdnZ1+6x0XFxeH8PBwl9eGsrIySCQS0Qxid/gSIT158qTTNHnH62BKSgqOHTsGlmVFIoek1cl+IBF4x2uZr5EogjfXrqFCfrdyudzn3yvJLsTHx/vtNz/Ysc3IyMDdd9+Nu+++G5WVlZg+fTr+8Ic/4IMPPhjwc9dccw3WrVuH8vJyfPjhhwgPD8ell17Kvy+8pjlGzsrLywf8DQTqfHBFRkYGCgsLsXDhwkH3lUQiwcKFC7Fw4UK88MILePLJJ/HQQw/h+++/H5ZrtNN4vFl48+bNCA8Px80334yWlhan9715QiMKUfgZjuPw8ssvu/3Ma6+9Jlr2tddeg1wu55/WhwKZ/fTKK6+IXn/ppZecls3IyEBXV5coLXPq1Cmn2TlXXHEFpFIptm3b5rRvOI4ThSsdkUqlWLJkCT777DPU19fzr5eWluKrr77y23bcbZt8lmCxWPD66697tR5Hhro/GIYRPfXU1ta67PwdERHhUZflRYsWQaFQ4JVXXhGN589//jO6urqGPHPSE4g/llBYZGRkoKysTJTmKiwsdJoxcvHFF8Nms+GNN97gX7Pb7Xj11VdFyyUlJWHy5Ml4//33ReLsxx9/RFFRkWjZq6++Gna7HY899pjTWG02m2i/utrPKpUKixYtEv0J6wt9Zfny5eA4jm8YKIQcu4svvhiA82+WPM3663hKpVIsXrwYn3/+uSi63tLSgl27dmH+/PlOKR1XEOHjTUdwm80mmrpvsVjw5ptvIi4uDjk5OQBO74fm5mZ8+OGHos+9+uqriIyM5Kfup6SkQCqVYu/evaJtDPV37s21a6jEx8fj/PPPx5tvvolTp045ve+YKnbFkiVLoNFo8OSTT8Jqtfq0DkfIzELHY2symdDf3y96LSMjA2q12mmqvSuWL18OqVSKv/3tb/j4449xySWXiAT0zJkzER8fjx07dojW99///helpaUD/gY0Gg1iY2P9fj644uqrr0ZTUxPefvttp/f6+vr4WY2u3BKmT58OAB7tr0DgVaQpMzMTu3btwrXXXosJEybwHcE5jkNNTQ127doFiUTiUd574sSJyMjIwD333IOmpiZoNBp88sknbvPCKpUKu3fvxsqVKzFnzhz897//xZdffokHH3zQL+3yp0+fjmuvvRavv/46urq6kJeXh2+//dbl0/mKFStw33334Xe/+x02btzIT08dP368qD4kIyMDjz/+OB544AHU1tZi2bJlUKvVqKmpwaeffoq1a9finnvucTumbdu2Yffu3ViwYAHWrVvHX/iys7NFgm2o23EkLy8PUVFRWLlyJTZu3AiGYfDXv/51yGmLoYxz6dKleOGFF3DhhRfiuuuuQ2trK/74xz9i3LhxTjVFOTk5+Oabb/DCCy8gKSkJaWlpLttkxMXF4YEHHsC2bdtw4YUX4rLLLkN5eTlef/11zJo1y2V93lBoamrinyQtFgsKCwvx5ptvIjY2VlTPdPPNN+OFF17AkiVLsHr1arS2tmLHjh3Izs4W1ZddeumlmDdvHu6//37U1tZi0qRJ+Oc//+my5uzJJ5/E5Zdfjnnz5uGmm26CwWDAa6+9hsmTJ4uE1HnnnYdbb70VTz31FAoKCrB48WLI5XJUVlbi448/xssvv4wrr7wSwOn9/MYbb+Dxxx/HuHHjEB8f77YuZKhccMEFuPHGG/HKK6+gsrISF154IViWxb59+3DBBRdgw4YNmDZtGlauXIm33nqLTzH/+uuveO+997Bs2TJccMEFfhvP448/zvePWbduHWQyGd58802YzWaPe3cRkfPQQw9hxYoVkMvluPTSSwdstpiUlIRnnnkGtbW1GD9+PD788EMUFBTgrbfe4msC165dizfffBOrVq3CkSNHkJqain/84x/46aef8NJLL/H1qVqtFldddRVeffVVMAyDjIwMfPHFF4PWrXmCp9cuf/DHP/4R8+fPx5QpU3DLLbcgPT0dLS0tOHjwIBobG1FYWDjg5zUaDd544w3ceOONOOecc7BixQrExcWhvr4eX375JebNmyd6YPeEsLAwTJo0CR9++CHGjx+P6OhoTJ48GTabDQsXLsTVV1+NSZMmQSaT4dNPP0VLSwtWrFgx6Hrj4+NxwQUX4IUXXkBPTw+uueYa0ftyuRzPPPMMbrrpJpx33nm49tpr+ZYDqamp2LRp04DrX7NmDZ5++mmsWbMGM2fOxN69e/lIpj+58cYb8dFHH+G2227D999/j3nz5sFut6OsrAwfffQRvvrqK8ycORPbt2/H3r17sXTpUqSkpKC1tRWvv/46Ro8eLer9N6z4MuWuqqqKu/3227lx48ZxKpWKCwsL4yZOnMjddtttXEFBgWjZlStXchERES7XU1JSwi1atIiLjIzkYmNjuVtuuYUrLCx0Od01IiKCq66u5hYvXsyFh4dzCQkJ3JYtW0RTxd1NVeU491MmhfT19XEbN27kYmJiuIiICO7SSy/lGhoaXE4d/frrr7nJkydzCoWCmzBhAvfBBx+4XCfHcdwnn3zCzZ8/n4uIiOAiIiK4iRMncuvXr+fKy8vd7WKeH3/8kcvJyeEUCgWXnp7O7dixw+/bcdVy4KeffuLmzp3LhYWFcUlJSdzmzZu5r776yuUUZUfI+NxNE/VknK5aDvz5z3/mMjMzOaVSyU2cOJF75513XO6LsrIy7txzz+XCwsI4APxUV1ffk+NOtxiYOHEiJ5fLuYSEBO7222/nDAaDaJnzzjuPy87Odvou7tpPOOLYckAikXDx8fHctddey1VVVTkt/8EHH3Dp6emcQqHgpk+fzn311Vcut9XR0cHdeOONnEaj4bRaLXfjjTdy+fn5LqcO//3vf+cmTpzIKZVKbvLkydy//vUvbvny5dzEiROdtv/WW29xOTk5XFhYGKdWq7kpU6Zwmzdv5k6ePMkv09zczC1dupRTq9UcgEHbD7hrOeDq+uDquNpsNu65557jJk6cyCkUCi4uLo676KKLuCNHjvDLWK1Wbtu2bVxaWhonl8u5MWPGcA888IBTm4yUlBRu6dKlTtt1bPcw0DXl6NGj3JIlS7jIyEguPDycu+CCC7gDBw4M+p2FPPbYY1xycjInkUgGbT9AzsHDhw9zubm5nEql4lJSUrjXXnvNadmWlhbupptu4mJjYzmFQsFNmTLF5VTytrY2bvny5Vx4eDgXFRXF3Xrrrdzx48fdXoO9wdNr11BbDnAcx1VXV3O///3vucTERE4ul3PJycncJZdcwv3jH//glxnsWHz//ffckiVLOK1Wy6lUKi4jI4NbtWoVd/jw4UH3g6vvdeDAAf77k3tIe3s7t379em7ixIlcREQEp9VquTlz5nAfffSR+x3pwNtvv80B4NRqtaitgJAPP/yQmzFjBqdUKrno6Gju+uuv5xobGwcds8lk4lavXs1ptVpOrVZzV199Ndfa2ur2/ul4jXe3f1xdPy0WC/fMM89w2dnZnFKp5KKioricnBxu27ZtXFdXF8dxHPftt99yl19+OZeUlMQpFAouKSmJu/baa7mKigqP95e/YTguAFWPfmbVqlX4xz/+4XLm3nBApjoLO6JSKGcC06dPR1xcnNtaQkrwcP7556O9vd3lZBwKhTI8BNdUCAqFEhCsVitfdE744YcfUFhYSA1FKRQKxUOoYy2FchbQ1NSERYsW4YYbbkBSUhLKysqwY8cOJCYmOjXqo1AoFIprqGiiUM4CoqKikJOTgz/96U9oa2tDREQEli5diqeffhoxMTEjPTwKhUIJCUKipolCoVAoFAplpKE1TRQKhUKhUCgeQEUThUKhUCgUigdQ0UShUCgUCoXiAVQ0USgUCoVCoXgAFU0UCoVCoVAoHkBFE4VCoVAoFIoHUNFEoVAoFAqF4gFUNFEoFAqFQqF4ABVNFAqFQqFQKB5ARROFQqFQKBSKB1DRRKFQKBQKheIBVDRRKBQKhUKheAAVTRQKhUKhUCgeQEUThUKhUCgUigdQ0UShUCgUCoXiAVQ0USgUCoVCoXgAFU0UCoVCoVAoHkBFE4VCoVAoFIoHUNFEoVAoFArF71RWVmLx4sXQarVgGAafffbZSA9pyFDRRKFQKBRKkPPuu++CYRgcPnx4pIfiMStXrkRRURGeeOIJ/PWvf8XMmTP9st4DBw5g69at6Ozs9Mv6vIGKJgqFQqFQKH6lr68PBw8exOrVq7FhwwbccMMNGD16tF/WfeDAAWzbto2KJgqFQqFQKKFPW1sbAECn0/ltnUaj0W/r8hUqmigUCoVCCTFWrVqFyMhINDU1YdmyZYiMjERcXBzuuece2O120bIsy+Lll1/GlClToFKpEBcXhwsvvFCU6rPZbHjssceQkZEBpVKJ1NRUPPjggzCbzaJ1paam4pJLLsH+/fsxe/ZsqFQqpKen4/333+eX2bp1K1JSUgAA9957LxiGQWpqKv9+fn4+LrroImg0GkRGRmLhwoX4+eefRdsh6cgff/wR69atQ3x8PEaPHo2tW7fi3nvvBQCkpaWBYRgwDIPa2lp/7NZBkQ3LVigUCoVCofgVu92OJUuWYM6cOXj++efxzTff4A9/+AMyMjJw++2388utXr0a7777Li666CKsWbMGNpsN+/btw88//8zXGa1ZswbvvfcerrzyStx999345Zdf8NRTT6G0tBSffvqpaLtVVVW48sorsXr1aqxcuRJ/+ctfsGrVKuTk5CA7OxtXXHEFdDodNm3ahGuvvRYXX3wxIiMjAQDFxcVYsGABNBoNNm/eDLlcjjfffBPnn38+fvzxR8yZM0e0rXXr1iEuLg6PPvoojEYjLrroIlRUVOBvf/sbXnzxRcTGxgIA4uLiArmr/wdHoVAoFAolqHnnnXc4ANyhQ4c4juO4lStXcgC47du3i5abMWMGl5OTw//7u+++4wBwGzdudFony7Icx3FcQUEBB4Bbs2aN6P177rmHA8B99913/GspKSkcAG7v3r38a62trZxSqeTuvvtu/rWamhoOAPfcc8+J1rls2TJOoVBw1dXV/GsnT57k1Go1d+655zp93/nz53M2m020jueee44DwNXU1LjeWQGEpucoFAqFQglRbrvtNtG/FyxYgBMnTvD//uSTT8AwDLZs2eL0WYZhAAD/+c9/AAB33XWX6P27774bAPDll1+KXp80aRIWLFjA/zsuLg4TJkwQbdcVdrsdX3/9NZYtW4b09HT+9VGjRuG6667D/v370d3dLfrMLbfcAqlUOuB6hxMqmigUCoVCCUFIfZKQqKgoGAwG/t/V1dVISkpCdHS02/XU1dVBIpFg3LhxotcTExOh0+lQV1cnen3s2LFO63Dcriva2tpgMpkwYcIEp/eysrLAsiwaGhpEr6elpQ24zuGGiiYKhUKhUEIQf0dgSOTJ1+1yHOfP4QAAwsLC/L7OoUBFE4VCoVAoZygZGRk4efIk9Hq922VSUlLAsiwqKytFr7e0tKCzs5OfCTdU4uLiEB4ejvLycqf3ysrKIJFIMGbMmEHX46m4CwRUNFEoFAqFcoayfPlycByHbdu2Ob1HIkMXX3wxAOCll14Svf/CCy8AAJYuXeqXsUilUixevBiff/65qEVAS0sLdu3ahfnz50Oj0Qy6noiICAAYkeaWtOUAhUKhUChnKBdccAFuvPFGvPLKK6isrMSFF14IlmWxb98+XHDBBdiwYQOmTZuGlStX4q233kJnZyfOO+88/Prrr3jvvfewbNkyXHDBBX4bz+OPP449e/Zg/vz5WLduHWQyGd58802YzWY8++yzHq0jJycHAPDQQw9hxYoVkMvluPTSS3kxFUioaKJQzlBYloXVagXHcZDJZJBKpSMa1qZQKCPDO++8g6lTp+LPf/4z7r33Xmi1WsycORN5eXn8Mn/605+Qnp6Od999F59++ikSExPxwAMPuJx1NxSys7Oxb98+PPDAA3jqqafAsizmzJmDDz74wKlHkztmzZqFxx57DDt27MDu3bvBsixqamqGRTQxXCAqtygUyojBcRwvmPr7+8GyLBiGgUQigUwm4wUUFVEUCoXiHVQ0UShnEBzHwWazwWazAThtjUBEE8uy4DgOHMdREUWhUCg+QEUThXKGwLIsOjs7ceLECWRnZ4NhGFitVrAsC4nkf3M+yE+eZVleUAGgIopCoVAGgdY0USghDsdxsNvtsNlsMJvNaGtrg0QicdszhQghIoxI9InjOJjNZlgsFgCnRZRcLodUKoVMJoNEIqEiikKhnNVQ0UShhDAcx8FqtfKu5o4RpZaWFshkMuh0OrcN6YhLOAAnEdXf388vQ0QUiURREUWhUM42qGiiUEIUlmVhsVj49BsRNkTsHDt2DEajka9z0mg0iIqKQlRUFDQajUhgCaEiikKhUFxDa5oolBCDpONIOwGhWOnp6cHBgwchk8kQGxuLcePGgWEYmM1mGAwG/s9ut0Or1fIiSq1WuxVRrrZP/liWBXBaRJE0HhVRFArlTIWKJgolhHBMxwmjQizLori4GE1NTZgyZQqSkpLcFoIbjUZ0dnbyIorjOOh0OkRFRUGn00GtVnsseIQiivxJJBKnwnIqoiiU0KK/v5+vcfQGhUIBlUoVgBGNPFQ0USghgjC6JBRLAGAymVBYWAibzQaTyYQlS5bwAstRNDnCcRx6e3thMBh4IcUwDC+ioqKiEBER4bWIIlEoALBarTCbzYiJiaEiikIJAfr7+5GWEonmVrvXn01MTERNTc0ZKZxoTROFEuQ49l5yFEynTp1CcXExkpOTMWbMGPz0009erZ9hGKjVaqjVaowdOxYsy/IiqqOjAydOnIBEIhGJqPDwcLeCh4yPCDWO49De3o6GhgZERkbCbDaL0nnkv47fi0KhjBwWiwXNrXbUHEmBRu25TW13D4u0nDpYLBYqmigUyvBCOnuTqI0wYmSz2VBWVoaWlhZMnToV8fHxMJlMfKsBX0WIRCKBRqOBRqPh3c97enpgMBjQ1taGqqoqyGQyPpUXFRWFsLCwAUUUiSrJZDI+EmWz2WC1WvlxOtZEURFFoYw8GrXEK9F0pkNFE4UShAitUISz4wg9PT0oKCiAQqHAvHnz+Cc6sgxJ4fkDiUQCrVYLrVaL1NRUsCyLrq4uGAwGtLS0oKKiAgqFgo9C6XQ6hIWFuV2fq0iUOxFF+kSRdB6FQhle7BwLuxdFPHaOHXyhEIaKJgolyHDVe0kohhoaGlBeXo7U1FRkZGSIxMRwRGYkEgkvkIDTtVZERDU1NaGsrAxKpZJfhiznDk9FlGO3ciqiKJTAw4IDC89VkzfLhiJUNFEoQQSJLtntdqfoktVqxfHjx9HZ2YlzzjkHMTExTp8PRKRpMKRSKaKjoxEdHQ3gdNqQiKiGhgaUlJRAoVDwzTajoqKgUCjcrs+diLJaraJu5VREUSiBhwULb2JH3i0delDRRKEEAUIrFFfpOIPBgMLCQqjVasybN8+t6BCKJuG/hxOZTIaYmBhe1FmtVtTV1eHUqVOoq6tDcXExIiIiRDVRcrnc7foGE1E0EkWhBA47x8HuxSR7b5YNRahoolBGmMHScSdOnMCJEyeQmZmJlJSUAYWQo2gKBuRyOTQaDQwGA2bNmgWr1cq3N6ipqcHx48cRGRkpqomSydxfmlyJKBKhs1qt/DJCEUVm51EoFO+g6TkxVDRRKCMI6b3kKrrU39+PoqIi9PX1Yfbs2dBqtYOuz1E0BZN4IsjlcsTHxyM+Ph7A6anNpMlmVVUVTCYT1Go1L6K0Wu2gIkroqycUUSQSJZFIXM7Oo1AoA8OCg52KJh4qmiiUEcCx95KjYGpra0NRURFiY2MxY8aMAUWDkGCMNAEDpwkVCgUSEhKQkJAAACLLl/LycpjNZmg0Gj6Vp9Vq3ZoPk215KqKEs/OoiKJQKINBRROFMsywLIu+vj4cPXqUF0RCK5SKigo0NDRg0qRJSE5O9mrdwSqavEGpVCIxMRGJiYkAgL6+Pj6dV1paCovFwvvm6XQ6aLXaAeuXhCKK7BdXIsqxJoqKKAqFpuccoaKJQhkmHHsv6fV6AP8TOsQKhWVZ5ObmIjIy0uttnAmiyZGwsDCEhYUhKSkJHMfxIoq0OLDZbB6bD5P940pEWSwWdHV14dSpUxg3bhwVURQKaCG4I1Q0USjDgKtibwB8p29ihZKUlIQJEyYMmH7ydHtnIgzDIDw8HOHh4UhOTgbHcTCZTLyIamhoAMuyTiJqoG7lwP9ElN1uR1tbGzIyMmA2mwdscUBFFOVsgP3/f94sfyZDRROFEmAG6r1ks9lQWVmJlpYWTJkyha/r8ZUzMdI0EAzDICIiAhERERg9ejQ4joPRaORFVF1dHQBAp9PxNVGRkZGDCh4ijEh7A47jnESUsB6KiijKmYrdy0Jwb5YNRahoolACxEC9l8h/jxw5AqVSiby8vAGtR7xBePMOphv5cAg5hmEQGRmJyMhIjBkzBhzHoaenB52dnTAYDKipqRGZD+t0OkRERLhtCir0v3MUUf39/fwyRESRSJSjOKZQQhU7By9tVAI3lmCAiiYKJQB4YoUCALGxsZg4caJfGzEyDHPWRJoGg2EY3nx47Nixbs2HiYga7DhQEUU526DpOTFUNFEofmag3ktCKxSJRIKxY8f6vXM1FU3ucWU+3N3dzZsPd3V1geM4FBcX8zVRnpgPAwOLKMceUVREUUIFFgzs8PxcZb1YNhShoolC8RPC3kscxw1qhbJ3796AiBuhaKI35oEhqTqdToe0tDS0t7ejvLwcYWFhOHXqFMrLy3nzYRKNUqlUbtfnTkSxLMuLKIlE4lRYTkUUhRIaUNFEofgBlmVhs9m8skJhGIafPedPgjHSFCqCgNivpKenAxCbDzc1NaGsrAwqlUpk+aJUKgdcnysRZbfbYbfb0d/fT0UUJahhudN/3ix/JkNFE4UyBIS9l0gRsadWKBKJJOCRJop3OO43R/Nhm83GF5UT8+Hw8HCRiHJnpgy4Nx8mIspsNotqooS+eVREUUYCu5fpOW+WDUWoaKJQfMTRCsXxxkasUGJiYlxaoQRK3Diulwoo7xhInMhkMsTGxiI2NhbA6Ro14cw8o9GIyMhI0ew8uVw+4LbciSibzca/78o3j4ooynBARZMYKpooFB8Q9l4S3vTIe8QKJSsrC8nJyS5vcIFKzwHBbdgbzDi2HBgMuVyOuLg4xMXFAThtPkxEVHV1tch8mNRODWY+7EpE2Ww2WK1WkYgS9ony92QCCoXAcgxYzotCcC+WDUWoaKJQvGCg3kuAd1YogYw0UXxjqMdDoVAgPj4e8fHxAMTmwxUVFTCbzbyI8tR82J2I6u7uRn19PbKysqiIogQMGmkSQ0UTheIhA/VeAry3QglkTVOgIlhDIVSiXv4UnY7mw/39/byIIubDGo2GF1EajcYrEdXZ2QmGYfhIFODa8oWKKIqv2CGBHZ6fP/YAjiUYoKKJQvEAYujqKrpkt9tRWlrqtRVKoCNN/f39OHbsGPr6+hAdHc3fmAeqsTnbCbSwU6lUGDVqFEaNGsWbD5N03smTJ3nzYVITpdFo3AoelmV5AeUYibJarbBYLLzIoiKKQvEPVDRRKANA0nFkdpyjYOrp6UFBQQEUCoXXViiBbDnQ1dWFwsJCREdHY9SoUejq6kJNTQ2OHz8uSg/pdLohmwOfSXhb0zQUhObDSUlJIvPhzs5ONDY2wm638wKK+OYJzZ4dxY+rdB6pvyORKEcRRWbnUSiu4LysaeJoTROFcnbCcRz0ej0AIDw83KUVSnl5OVJTU5GRkeH103sg0nMcx8FisaCqqgpZWVlITEyEzWbjo1/CGpvy8nKYzWZotVpReigQUYhQuimP1Fg9MR/mOI4XUZ6MkxSNE4QiylUkSjg7j0IBaE2TI1Q0USguINGlmpoaKJVKjB8/nn9PaIVyzjnn8D18vMXfkSaz2YzCwkLYbDZMmDABY8aM4euvCMIaG5IeIjflxsZGsCzrFNk4m26gwVR35cp8uLe3lz9eBoMBLMvi2LFj/PESmg+7W+dgIkoikTgVlp9N5wBFjJ2TwM55UdMUPD+hgEBFE4UiwLH3kmM0yNEKZaBGhoPhz0hTR0cHf/OMjIz0KE0oTA8lJyc73ZRramogkUj4GzLxYTuTb6DDmZ7zFoZhoFaroVarMXbsWLS0tKCmpgYajQYdHR2orq6GVCoVWb6Eh4f7RUQ51kQF6z6i+B8WDFgvCsFZnNmqiYomCuX/Q24WJPpDCmxZluWtUKqrqzF+/HjeCmUo+KMQnOM4VFdXo6amho8u/fzzzz6t1/Gm7GhmW1FRAYVCISoqH8hCJFQJJUEgk8mQmpoKAKLj1draiqqqKshkMlH92mCiVyiiyDlEJkEIu5VTEXX2QNNzYqhoopz1CJ+uHWfHSSQSmM1mHD58GH19fZgzZ47ICmUoDDU9Zzab+dlxc+bMgUaj4d/zh2Gvo5mt3W7nZ3o1NDSgpKQEERERokjUQI0bQ4FgSs8NhmMhuKvjRUQUMR9WKBSi4zWY+TAAKqLOcrxPz4XOb8gXQvsKR6EMkcF6L/X396OlpQUJCQkurVCGwlDSc3q9HoWFhYiKinIaV6BaGUilUpEPm9Vq5VN51dXV6OvrG7BxY6gIklC54Q+WSiSpuqioKACn6/RcmQ8La9gGMx8m6yXbJ39msxkWiwWA6z5RobJPKc6cTs950RGcRpoolDMToRWKo1hiWRaVlZVobm6GVqvF1KlT/X7h90XckDThiRMnMH78eIwdO9ZpXIP921/I5XJR92th48aSkhK+51BUVFTAGnn6m2CuaXLEVcuBgZBKpYiOjkZ0dDSA/5kPd3Z28pFDX8yHybodRZQ782HH3xqFEkpQ0UQ56/DGCiUlJQX9/f0Buch7m56zWCw4duwYjEYjZs+e7TZNGKhI02A4Nm4kPYcMBgP0ej3sdrtXM71GglAQdoShCryBzIdra2vR29srSr96aj4MOIuo/v5+9PX1ob29HampqZDL5Xwkioqo4Ib1siM4LQSnUM4gvLVCaWhogMlkCshYvBE3ZNaeVqtFXl7eoDevkb75O/Yc6ujoQFlZGbRaLdrb21FdXS0qUiYz84KBULmBk2ar/sIT8+HIyEiRiPLEfBg4LaK6u7vR0tLCP4iQZUgEioqo4ITWNImhooly1kB6L3ljhUJmzwUCT1JWHMehtrYWlZWVHs/aCwbR5Ai5OaakpCAlJQUsy/L1NSdPnkR5eTlUKpVIRA2lnYOvhFp6LpBjdWc+3NnZicrKSvT390OtVvM1UYN1l2dZlq9xEkaiWJblRRSZsUpFVPDAQkJbDgigoolyxuOq95KjFUphYSFkMpmTFUoga3EGS89ZLBYUFRWhp6cHs2fPhk6n83i9wSaaHBH2f0pPT+fra0hqqLi42Kuohr8I9v0mxN+RpsEYyHyYdJcn5sM6nc5pIoBjDZa7dB7LsjCbzejv76ciKgiwcwzsXlijeLNsKEJFE+WMxrH3kvBC7YkVSiAjTQOJm87OThQUFECj0SAvL8+rqEsoiCZHHOtrLBYLXwtVUVEhuiGTmXmBEgyhckMOdKRpMIQ1bABE3eWJ+bDwmJEJF+4Q/jaB/83Os9vtsNvtbgvLHT9H8S92L2ua7DTSRKGEHsLeSyTlIrywemqFMtzpOY7jUFdXh4qKCmRmZiI1NdXrG0IoiiZHFAoFEhIS+DQpuSHr9Xo0NTWJjGyjo6P9ZvcSSvttuCNNgxEWFoawsDDefNjRosdms0Emk6G2thZRUVFQq9UeiSih+bBwEgd537Emiooo/8JyErBe1DSxIfQb8gUqmihnHI7F3o4XUVJUHRkZOagVSqAjTUJvOKvViqKiInR3d2PWrFl8fx1fCMab/1DG5HhDJka2er0etbW1YBiGj2hER0f7bPdCa5r8gyuLnqqqKhgMBvT09KC+vl5kPqzT6aBWqwftVu5KRNlsNlitVrciKpiEJSX0oaKJckYxUO8ljuNQU1ODqqoqj6M4/jbVFSKMNHV1daGgoACRkZFep+McORMiTQPhaGTLsix6enqg1+vR2tqKyspKUefr6Ohor+xeglWIOBJskaaBYBgGcrkcERERyM7OFvkcdnZ2oqamBgzDiBptemI+7KmIEpoPh8o+CxZoek4MFU2UM4LBei8RyxGTyeSVFcpwFIKTdFxGRgbS0tKCwtMulJBIJNBqtdBqtbx9SFdXF/R6PRobG1FaWso3bYyOjh6w31Ao7TeWZQdsPRFsCAvBXfkcEhHV0dGBEydO8LYwRER5Yj48kIgCXHcrpyJqYFh4V9wdmEfM4IGKJkrIM1jvpba2NhQVFSEmJsZrK5RApudYloVer0dHRwdmzpw5pHSckGCMlAznmBw7X5OmjXq9nu83ROxeoqOjRbO8Qik9F0pjBf7XcsAVEokEGo0GGo2Gb0nR09MDg8GAtrY23nxYKKI8MR92JaKsVissFgv/PhVRA+N9y4Eze/9R0UQJaex2O5qbmxEZGQmlUunSCqW+vh5ZWVlITk72+iYTKNHU1dWFhoYGMAyD+fPn+7Un0dkWaRoMx6aNZrMZer0eBoMBpaWlsFgsvN2L2WwOmZtmKKXngNO/1YH6OAkRRg9TU1NFfb1aWlpQUVHBp2CJkBqsOaorEUXS+SQS9fnnn+P48eN4/vnnh/ZlzyC8b24ZOuekL1DRRAlJhL2XioqKMG3aNJFju9AKJTc3F5GRkT5tx9+iSdjmgHiy+buJIxVNA6NUKkV2L319fbyI6ujo4L3ToqOjg9buBQjuQnBXDCWdKOzrBYjNh0lzVKVSKWqOOlgdG6l3IpCax7q6Op/GeKZCDXvFUNFECTlYloXNZuPTcaQxHsHRCsXTp1tX+LMQ3Gaz4fjx4zAYDMjJyUFPTw/a29v9sm4hwSqagnFMwlleo0ePRmVlJcxmM9RqNTo6OlBdXQ2pVMqn8oLJ7iXUIk3eGgwPhCvzYSKihObDwnTeYA8nDMPwVjGU/0EjTWKoaKKEDO56L5FoELFCaW5uFlmhDAV/FYJ3d3ejoKAAYWFhyMvLg1KpRG9vb0CERLCKplBBqVS6tHs5deqUKKJBRNRI2L0AoRlpGsoDzEDIZDLExMTw/dasVit/3Orq6lBcXMybDxMh5SrqZTQaER4eHpAxhirez547s0XTmf3tKGcMJB1nsVicmlVKJBL09vbi4MGD6O3txbx58/wimMi6SQGpr+NuaGjAL7/8gqSkJMycOZNPGwRqZh4VTb7juN9IWig9PR05OTlYsGABxo8fD5lMhrq6Ouzfvx+//PILKisr0d7ezlv1DNdYQ0k0DdYR3J/I5XLExsYiMzMTs2fPxoIFC5CWlgYAqKmpwb59+/Drr786HTej0eg20rR3715ceumlSEpKAsMw+Oyzz0TvcxyHRx99FKNGjUJYWBgWLVqEyspK0TJ6vR7XX389NBoNdDodVq9ejd7eXtEyx44dw4IFC6BSqTBmzBg8++yzTmP5+OOPMXHiRKhUKkyZMgX/+c9/fN1VI47dbscjjzyCtLQ0hIWFISMjA4899pjotzic+3YwaKSJEvQIey8JCzmB/4mpyspKpKamYty4cX69MJN1+fKUbLPZUFxcjI6ODpddxwPZA4qKJt8ZSIi4s3sxGAwiE1sShQqk3Ys/013DwUiOVy6Xi8yHhcetqqoKu3fvxpdffom4uDi+h5SjeDIajZg2bRpuvvlmXHHFFU7bePbZZ/HKK6/gvffeQ1paGh555BEsWbIEJSUlfL3l9ddfj1OnTmHPnj2wWq246aabsHbtWuzatQvA6Yj04sWLsWjRIuzYsQNFRUW4+eabodPpsHbtWgDAgQMHcO211+Kpp57CJZdcgl27dmHZsmU4evQoJk+e7Pd9x3IMWG9aDnjpPffMM8/gjTfewHvvvYfs7GwcPnwYN910E7RaLTZu3Ahg+PatJzAcvbpSgpTBei8RK5TW1lakpKRg4sSJfh+DzWbDN998g4ULF3pVxNrT04OCggIolUpMmzbNZVHqyZMnUV9fj7lz5/pzyCgrKwPLspg0aRJYloXFYhnxmyuZqZaXlzei4xiM8vJyyGQyZGRk+PR5oXWIwWCAzWaDVqvlRdRgXa+94fDhwxgzZozfoqqB5vDhwxg7diwvXIKJxsZGfPnll/jggw/Q0NDAd+VfsmQJtmzZ4rQ8wzD49NNPsWzZMgCnr1VJSUm4++67cc899wA4PUM2ISEB7777LlasWIHS0lJMmjQJhw4dwsyZMwEAu3fvxsUXX4zGxkYkJSXhjTfewEMPPYTm5mY+7Xv//ffjs88+Q1lZGQDgmmuugdFoxBdffMGPZ+7cuZg+fTp27Njht33S3d0NrVaLpw+dB1Wk5/GV/l4b7p/1I7q6uqDRaAZd/pJLLkFCQgL+/Oc/868tX74cYWFh+OCDD4Z133pC6DymUM4qSD8VUr/kKJg6Ozvx008/wW6387YZPm4IjPUgJKanIe29B5K+NwH7Cf5tsk1PI0Icx6GxsRE///wzEhMTMWvWLLezeAKZnqP4xlCPB7F6yc7Oxrx58zBz5kzExsaiq6sL+fn52LdvH4qKitDY2Aij0Tik7Z3NheD+ZvTo0bj11luh0Wjw1FNPoaqqCmvXrvX4t1RTU4Pm5mYsWrSIf02r1WLOnDk4ePAgAODgwYPQ6XT8TR0AFi1aBIlEgl9++YVf5txzzxXVyS1ZsgTl5eUwGAz8MsLtkGXIdvwN8Z7z5g84LbqEf2az2eX68/Ly8O2336KiogIAUFhYiP379+Oiiy4CMLz71hNoeo4SdJDoiKvokisrlIKCAp/TXIz5H5BYPgQ4C8AoIbGXg7EdABu2GZwsW9TTZTBsNhtKSkrQ3t6OGTNm8Ckct9sOUHqOrJfjONTW1qKpqUkU7RiJLtKhIuT8WSfkzu7FsWEjOS5RUVGithmDEWqF4MNZ0+QrRqMRarUaKSkpWLVqlcefa25uBgCnqF9CQgL/XnNzs1OUjRx/4TKk9kq4DvJeVFQUmpubB9yOv7GDgd2LNgJk2TFjxohe37JlC7Zu3eq0/P3334/u7m5MnDgRUqkUdrsdTzzxBK6//noAw7tvPYGKJkrQQNJx7qJL7qxQpFKpb+KDbYPE8jkAGSAdxY+BYevAmP8OTrqdLzgfbP29vb0oKCiAXC5HXl6eRze/QEaaWJZFQUEBurq6kJKSAqPRiJqaGhw/fhwajUbUDTvYb2RnCo4NG4W9hpqamkR2L+RvIIFLI03+x2g0IiIiYqSHEVQIo0eeLg8ADQ0NovScu4j7Rx99hJ07d2LXrl3Izs5GQUEB7rzzTiQlJWHlypVDG3wAoKKJEhQMZoXS3t6OY8eOITo6GvPmzRNZofjagJKxl4LhusFJBE9EDAOOiQZjrwY4PcDEDLr+pqYmlJSUICUlxatC9EDNcrNYLGhtbYVWq8XcuXNFMw1JN2y9Xo/i4mLYbDaRsW0gGzmGQvnkcM5Ic2f3YjAYeIFL7F7IVHnhZIRQizQFsuWAP+A4zuc+TYmJiQCAlpYWjBo1in+9paUF06dP55dpbW0Vfc5ms0Gv1/OfT0xMREtLi2gZ8u/BliHv+xs74GWk6TTEFmcw7r33Xtx///1YsWIFAGDKlCmoq6vDU089hZUrVw7rvvWE4Jb9lLMCu90Os9kMm83Gz44T1hKVl5cjPz8f48ePx7Rp05y84yQSCS+2vEMGgIGzxST7/1+X8et3JZrsdjuKiopQVlaG6dOnY/z48V49SQciPXfy5Ek0NjZCpVJh5syZfP6eCBbSDVtYcxMVFQWDwYDDhw/jp59+QnFxMU6dOuW2BuFMZ6SECLF7GT9+PObMmYN58+ZhzJgxsFqtKCsrw969e3H06FHU1NSgs7MzJCI3QkJhvAO1HBiItLQ0JCYm4ttvv+Vf6+7uxi+//ILc3FwAQG5uLjo7O3HkyBF+me+++w4sy2LOnDn8Mnv37uVtXQBgz549mDBhAp8+ys3NFW2HLEO2E2qYTCan80KYPRjOfesJNNJEGTGEViiAc3SJWKHY7fYBrVBIHtzr7cumgJPEAGwLIEkCGAbgbGA4A1j5AkByOv3nKiJE0nEymQx5eXk+FaL7Mz3HsizKyspw6tQp3h6EjNtd9ERYc0Oc5ru6uqDX6/l0EWkIGB0dDZ1O55XZcSgSTNEwpVKJxMREJCYm8nYvZFZeY2MjrFYrqqqqEBcXh6ioKERGRgZt5Imk3kNZNPX29qKqqor/d01NDQoKChAdHY2xY8fizjvvxOOPP47MzEx+WnxSUhI/wy4rKwsXXnghbrnlFuzYsQNWqxUbNmzAihUrkJSUBAC47rrrsG3bNqxevRr33Xcfjh8/jpdffhkvvvgiv93/+7//w3nnnYc//OEPWLp0Kf7+97/j8OHDeOuttwKyT3xNz3nKpZdeiieeeAJjx45FdnY28vPz8cILL+Dmm28GcPo6NVz71hPO7CsgJWghvZfI04TjxbS5uRnHjx/3yApFIpGInh48hlGDVd0ESd+bYNg6nL5dMuAkaWCV14vWL4wInTx5EsXFxRg7diwyMzN9vhH4Kz3X19eHgoICcByH3NxctLS0oKury+v1OPp7Wa1Wpx5EGo2GTymp1eqgvwl6S7A2jBTavSQnJ4PjOOzduxcajYZP5wmPH7F7CZbvQs7zYD5fbDYbzGazW9F0+PBhXHDBBfy/77rrLgDAypUr8e6772Lz5s0wGo1Yu3YtOjs7MX/+fOzevVtU37hz505s2LABCxcuhEQiwfLly/HKK6/w72u1Wnz99ddYv349cnJyEBsbi0cffVTURygvLw+7du3Cww8/jAcffBCZmZn47LPPAtKjCQi8jcqrr76KRx55BOvWrUNrayuSkpJw66234tFHH+WXGa596wm0TxNlWBFaobiaHSe0Qpk8ebJHuebq6moYjUZMnTrVt0HZ6yGxHgC4LnDS0eBk8/koE3C6E3B2djZ0Oh1KS0vR0tKCKVOmDLnfTFdXFw4fPoyFCxf6vI729nYUFhYiISEBWVlZkEqlqK2thcFgwIwZM/iZiMK6Jl8RGtvq9XoAgE6n40XUQDfprq4uHD9+HPPmzRvSGAINKZQfO3bsSA9lUH744QfMmjULERERYFkW3d3dvMjt6ury2sA2kNhsNuzduxfnnntu0EYrDQYDUlJS0NHRwdeZnc2QPk33H7wIykjPZ9yae614Ove/HvdpCjWC8+ylnJEMVuzd09ODwsJCyGQyzJs3z+OUl+81Tf8f6ViwUvc3SYlEApPJhLKyMkgkEp/Tca7WOxR7lhMnTuDEiRPIysrC6NGjnd73N2FhYUhOTuYjHT09PdDr9Whra0NlZSUUCgUvoEbSk20ohNIzpDAqJpFIoNPpoNPpkJaWBrvdzheVEwNbkmolf8MpXtxFlIMJo9EIANSw1wFq2CuGiibKsCC0QnHVe6mxsRFlZWVez0ADhtBywENsNhtKS0sxduxYr4u9B8LX9JzVasWxY8dgNBoxZ84cp6e54fCeYxiGnx1Dps+TmzQxSI2MjORFVLCkiQYjWNNzjpBaNXfnolQqdTKwFdqGELsXIqC0Wm1AZ7aRh5pg3rdGoxEqlSpoI2EjRaBtVEINenZQAoonVijFxcUwGAwu/dk8wdeWA4Nht9tRXl6O/v5+pKam+t2mxZfZc11dXSgoKIBarUZubq7LPj7C/Tuc0+eFN2mLxcKn8kpLS2GxWAAAdXV1iI6ODuqi5WAdlxAiij0dq6P3Wn9/P59mLSkp4e1eSNG/P+1eALj87QcbpEdTMI9xJLBDArsXE+29WTYUoaKJEjBIOu7w4cPIyspyqnnp7OxEYWEhIiIikJeX53PNRSBEk8lkQkFBAQDP+414i7cRocbGRpSWliIjIwNpaWluL+6O6x2Jm4BCoRDN/GptbUVZWRm6urpQW1vLFy2TVJ4/0p3+IFTSc0MtrFapVBg1ahQ/09JkMvEiqr6+HsDpejVyjMLDw4d0HgV7jybg9Oy48PDwkR4GJcihookSEEhnb5ZleeNSctF1ZYUylAvykGuaHCAz95KTkzFhwgQcOXIkIJEsoUXLQN/fbrejpKQEbW1tHkXjhiM95w0Mw0ClUkEqlWLq1KmiouVTp06hvLwcKpWKT+XpdLoRsXoRjjfYIeejP8bKMAwiIiIQERGB0aNH8/VqBoMB7e3tqK6uhkwmEzVB9cbuhYw3mOuZgP+1GwiF4z+c0PScGCqaKH7FVe8lYR8loRXK7NmzodPphrxNf9U0kUaaTU1Nopl7gUr/CRt4unsKN5lMyM/Ph1Qq9dieJdhEkyOORcs2m42vt6murkZfXx/UajUvojQazbDdcEOppgkITGG1sF4tJSWF799lMBhw8uRJXuQK+3cNVvQfCj2aTCYTtVBxAQsJWC9Sbt4sG4pQ0UTxG469l8g0dyJqhFYoeXl5fosm+EPUkEaaHMchLy9PFKYPpLEu4D4l1NraimPHjvERr5G2ZwkUMpkMcXFxiIuLA3C63obUQxUVFYFlWVFrg6GmigYiVPabPyNNgyHs/5Seng6bzSayeyERGqGfoWMxdShEmnp7e6locoGdY2D3InrkzbKhCBVNlCEj7L1EntSFF3OJRIL6+nq0t7cjKysLycnJfr3YDzU919LSgqKiIreNNANlrCtMzwlhWRZVVVWoq6vD5MmTRX5LnhCMosmb461SqZCUlISkpCRwHIfe3l4YDAZ0dHTwqSJhawN/9h8KpUiTP3pv+YJMJkNsbCxiY2MBnC76J/VQ5eXlMJvNIlNojUYTEjVN1KzXNTQ9J4aKJsqQcOy95HghN5lM6Ovrg81mG9AKZSj4mp4j6bjGxsYBxclwpOcIZrMZhYWFMJvNPu+vYBRNvsIwDNRqNdRqNcaOHQu73c6nioT9h4T1UMF+c/YHwWTWq1AokJCQgISEBADiJqhNTU1gWRYqlQp2ux09PT1BWzfkq+/cmQ7npY0KR/s0USiuGaj3EvC/gmqZTIb09PSAXZB8ETXEeoRlWeTl5Q34hBko0eQYaTIYDCgoKEBUVBTOOeecIfWLOVNEkyNSqZQXSBkZGXz/IWGUQ6vViqxevLlBh1qkKRhxbIJqNBp5k+GjR4/yNW3CmZPB8F1MJhMVTS6wg4EdXqTnvFg2FKGiieI1g/VestvtvHns5MmT0dTUFNDxeCtqWltbUVRUJLIe8ef6vYVlWdTV1aGiogKZmZlISUkZ0k0kGG5Aw4Vj/yFXU+eFrQ08mVIeCvtvoMaWwQQxhdbpdOA4DpMnT+Y7ybe0tKCiogIKhUJ0jEbK7oW2HHANy3mXcmPPzOc1HiqaKF7hixVKc3OzX1sCOEJqjgYrNmVZFpWVlaivr0d2djbvfj0YgS4ELy0tRXd3N2bOnMmb5Q51vYEUeb4yHNEvR1Nbxxu0UqkU1UM5TkYI5giOkGBKz3mC3W6HVCqFRCKBVquFVqvl7V66urqg1+v5dGt4eDh/fIaz/YTRaHSyI6JQHKGiieIxwt5L3lih+LuPkiMkUjSQaOrv70dBQYFPtVWBGn9vby+A04W0Q2nu6Ugo3UwDiTurF71ej5qaGhw/fpxvbUBu0KGS1gyVSBPB3W9TmG4FTjsEkGNUXV0Nk8kkOkaBtHuhNU2uYb2safJm2VCEiibKoAh7L5GLtSsrFL1ejxkzZvCzagjCPk2BgFyM3UVX2tracOzYMY/Tca7Wb7VahzxOIadOncLx48fBMAyys7P9mpI4kwrB/Ymj1YvZbHayEmEYBu3t7QgLCwvagmUg9CJNnrYckMvlovYTZrPZyY6H1KxFRUVBrVb7TTwSgUYRw4IB60WdkjfLhiJUNFEGhGVZ2Gw2t+k4oRXKvHnzXN78A22o6040CafuT5o0CcnJyT6v31/jFzbQnDZtGoqKivwucFzZqFAR5YxSqRRZvZBGokajkS9YJjdnX7pgB5IzJdI0GEqlUmT3IpyZV19fD47j+B5SUVFRQ/KOMxqNtKbJBbRPkxgqmiguGaz3kjdWKFKpFGazOWBjJWMTRrP6+/tRWFgIq9U65FYH/hJNJEVot9v5BpqB6AEVjCIp2KMixEpELpcjLS0N0dHR6O7uhl6v57tgh4WF8SIqKipqSLMbh0qoRZrsdvuQo6kMw/A1a8Tupbe3F3q9XtTDSyiivPE0NBqNNNLkApqeE0NFE8UJRysUR8HkrRVKoNNzZBtE2JDO47GxscjJyRnyzc0fhdUdHR0oLCxEbGwssrOz+RRhIAROMIqmUIJhGJHVS3p6uqjWpqqqCv39/U4NHIcz8hMqBeuEQHQEF/bwcrR7IZ6GpPCfiKiB7F7OhOaWgdjPLLxsbknTc5SzCWHvJXLzEOKLFUqgC8GF26isrERtba1fO48PJRpEInLV1dWYOHEiRo8eLRpTIGa6UdHkOxzHwWi3wNbfA7lECp08DBKGcaq16evr4+uhSANHoaFtIK1egNCwJREyHOMV2r0AENm91NXVobi4mLd7IYX/5IGK9JMK5ULwsrIybN68GWq1GmFhYbygjIyMFP1/eHg4IiMjeUGZlpY24Ho5L2uaOCqaKGcDg/VeEk7Xd3XzH4jhiDQxDIPi4mKwLIu5c+f6Nczua3rOarWiqKgI3d3dmD17NrRardMyNNIUPNg5FrW2HlR31gJ9csglUoxSaTAjajQiZeLUUlhYGMLCwkRWL3q9Hu3t7aiuroZcLhfVQw1maOstNNI0OO7sXgwGAyorK9Hf3w+1Wo3y8nLodDr09/d7FGmy2+3YunUrPvjgAzQ3NyMpKQmrVq3Cww8/LPKT3LJlC95++210dnZi3rx5eOONN5CZmcmvR6/X44477sC///1vSCQSLF++HC+//LJIuB07dgzr16/HoUOHEBcXhzvuuAObN292Oa6jR4/iiy++wLXXXov6+noYjUYYjUbelaGvrw8WiwUWi4XfHxdccAG++eabkDqXRhoqmiiD9l4iZrZ2u90nQRLoQvCOjg5YLBZEREQMuZO2K3wRTd3d3SgoKEB4eDjy8vLc3jQD5WsnXKfJZIJCoRjRGhwg+LuU1xg7UG3vxjhGg8QwHSysDXVGPViOw/y4dEgZ1zd9xzSRsPdQfX09SkpKEBkZKWptMNRp86EWaSJ9mkYSV3YvBoMBu3btwieffIKenh5s2rQJl112GRYuXIjp06e7HPMzzzyDN954A++99x6ys7Nx+PBh3HTTTdBqtdi4cSMA4Nlnn8Urr7yC9957D2lpaXjkkUewZMkSlJSU8BMKrr/+epw6dQp79uyB1WrFTTfdhLVr12LXrl0ATl9DFi9ejEWLFmHHjh0oKirCzTffDJ1Oh7Vr1zqNy2QyYfHixdi5c6fL72+z2WC1WtHX14eoqCg8++yz+OyzzwYVTNR7TgwVTWc5LMvCYrG4jC4B/7NCGTVqFCZOnOjThS9QkSaO41BdXY2amhooFAqkpKQERBh4K5qamppQUlKCtLQ0ZGRkDHhRClR6Dji9fyoqKlBTU8M3FYyJiUF0dPSQZhmdidg5Fid6O6CABBqZChKGgUoqR6JKg1P93egwGxGv8uxhwbH3kNDQtqysDBaLBTqdjo9CeWv1AtBIkz8g0cIXXngBTzzxBMaMGYPFixfjp59+whNPPIG1a9fiueeec/rcgQMHcPnll2Pp0qUAgNTUVPztb3/Dr7/+CuD0sXnppZfw8MMP4/LLLwcAvP/++0hISMBnn32GFStWoLS0FLt378ahQ4cwc+ZMAMCrr76Kiy++GM8//zySkpKwc+dOWCwW/OUvf4FCoUB2djYKCgrwwgsvuBRN5557LqZOncr/m2VZUYsYmUwGmUwGpVIJhmGQkZGB2bNnD7qfaCG4GCqazlJIOq68vBzx8fFOF25HK5TExESftxWImiZSjN7X14c5c+aguLg4YJEMT4UN2WfNzc0u+1W5IlCz51iWxeHDh9Hf3485c+YAOJ0O0Ov1OHHiBGQyGX9jD0T6KNSwsSxMdivkYADB70AplcHGsTCzNp/XLYxwCKfN6/V61NXVgWEYUSrPkxlfZ0vLgeGCpK42btwInU4Hm80Go9Hoctm8vDy89dZbqKiowPjx41FYWIj9+/fjhRdeAADU1NSgubkZixYt4j+j1WoxZ84cHDx4ECtWrMDBgweh0+l4wQQAixYtgkQiwS+//ILf/e53OHjwIM4991zRb3PJkiV45plnYDAYRO4BHMdh/PjxKC0txd///ncsXbrUKSNAhDY5DldeeSWWL18+6L6hkSYxVDSdhQjTcS0tLVCr1dBoNPz7xApFKpXyU+OHgr8jTXq9HoWFhYiKisKMGTMgk8kCWmzuibAxmUwoKCgAwzDIy8vzeKpzIOqPjEYj7HY7ZDIZ5s6dC47jwHEcIiIiMGbMGH6WkdC6IjIyko9CabXaoL7BBQK5RAqtXIU+zi5OTdssUEpkiJD5r1u7cNo8y7K81UtzczMqKiqgUqlEM75cTbYItZYDwS6aSHd+UtMkk8lc1iACwP3334/u7m4+8m632/HEE0/g+uuvB3A6Og+ATwMSEhIS+Peam5t5v0QCeZARLuNYpE3W2dzc7NJyKT8/H2+//Ta+/fZbTJs2DbNnz8aECROg1Wpdni+enEO0uaUYKprOMhytUISCRmiFMnbsWGRmZvrlQuevmiaO43DixAmcOHECEyZMwJgxY/gffSDrpgZLz5GO4ySF6c0+83d67uTJk3yn8enTpwOAqNcWIJ5llJGRAYvFwkc+iouLYbfbeRd6f80EC/YbvIRhMC4yFj+DQ6u5FwkKGcysHZ3WPkxUxyNK7nm/H6+26+DFRmZ8Ca1ehK0NiKANtfRcMNQ0DYTJZEJ4eLhHY/zoo4+wc+dO7Nq1i0+Z3XnnnUhKSsLKlSuHYbTOkHPh0ksvRVxcHL788kv8/e9/xxdffIHs7Gycd955mD59OuLi4rzqXQXQSJMjVDSdJTj2XhLmuYmQGsgKZSj4I9JksVhw7NgxGI1GlzPR/Nm12xF36+Y4DlVVVaitrfXKANhx3f6INJFO4ydPnsSkSZNQXFzscRRLoVCIOmMbjUbRTDCFQjGgye2ZwugwHSZItJDJVei1WaCQSDFdl4QJ6oRhEyiOM76IjQgRtDabDVFRUWBZFlKpNGTEUyhEmjyt87v33ntx//33Y8WKFQCAKVOmoK6uDk899RRWrlzJlzK0tLRg1KhR/OdaWlr4B5nExES0traK1muz2aDX6/nPJyYmoqWlRbQM+be7cgm1Wo3f/va3+O1vfwuO4/Cf//wHH330Ee68804kJCRg4cKFuOyyyzBt2jSPm41S0SSGiqazANJ7idz4hRcvqVSK3t5eHDhwAOHh4W6tUIYCEU2+XuANBgMKCgqg0+nc9oYabtFERJzJZBpSiwN/pOfMZrPIjHgo62QYBpGRkYiMjMTYsWOdTG6Li4t5A9WYmBi/en+NNAzDII5RYUpMOmThKsgZKZTSkb1EOtqIEEHb2NgIs9mMn376iY9CRUdH+/236y+CXTR5Y6FiMpmcvosw0p2WlobExER8++23vEjq7u7GL7/8gttvvx0AkJubi87OThw5cgQ5OTkAgO+++w4sy/I1iLm5uXjooYdgtVr5a96ePXswYcIEl6k5sn0SvZZKpVi6dClfsP7vf/8bO3fuxIUXXojY2Fjce++9uP766wf93lQ0iaGi6QzHMR3naIXS19eH1tZWZGZmIi0tLSBPrUJvOG9C9MLGkOPHj8fYsWPdji+QNU2OKbSuri7k5+dDq9UiNzd3SJGXoabnOjs7kZ+fj+joaGRnZ0Mmk6G/vx+Af6b4O5rc9vf385GPxsZGABDdtL0N/QcbHMdBykic+jIFA0JBazabwbIs4uPj+QabpaWliIiI4I+HsHnjSBPsosmbSNOll16KJ554AmPHjkV2djby8/Pxwgsv4OabbwZw+jjdeeedePzxx/nr6iOPPIKkpCQsW7YMAJCVlYULL7wQt9xyC3bs2AGr1YoNGzZgxYoVfMT6uuuuw7Zt27B69Wrcd999OH78OF5++WW8+OKLTmMSTgzgOI6PQhI7LJlMhksvvRSXXnopAODDDz9ER0cH9dvzgeD4RVECinDaKcFsNqOoqAhGoxGJiYlIT08P2PaJUPKmrsFisaCoqAi9vb1uG0M6biOQkSZyAWpoaEB5eTnGjRs3oN+et+v2hYaGBpSVlSEzMxMpKSlOYwlE6kalUiEpKYlv6uhYxEz82YLtpu0NoZDuIr9pYQdsq9Xq1LxRo9Hwx2OkooJk6nuw1zR52g381VdfxSOPPIJ169ahtbUVSUlJuPXWW/Hoo4/yy2zevBlGoxFr165FZ2cn5s+fj927d4tMn3fu3IkNGzZg4cKFfHPLV155hX9fq9Xi66+/xvr165GTk4PY2Fg8+uijLtsNMAyDF198EUuXLsX48eP511y5OgDANddc4/G+oZEmMaF3RaN4xWBWKMnJyQEfA7lYeipqDAYDCgsLodFogsKqhay7qKgI7e3tyMnJ4XvwDBVfUmksy6KkpAStra0455xz+CiQcLxA4Hv5MAwDjUYDjUaD1NRU2Gw2vh8RuWlrtVo+AhXIBqf+IlRqhFyJELlcjvj4eH5WFmltYDAY0NDQAACiAv+wsLBh+a6uygKCDRJp8gS1Wo2XXnoJL730kttlGIbB9u3bsX37drfLREdH840s3TF16lTs27fPo3E98cQTiIuLQ1paGsxmM6RSKaRSKX8PEBqby2QyzJkzBw888AAf/XIHB+9mxAV3C9uhQ0XTWQTLsqiqqkJdXR1vhVJdXY2+vr6Abpf8aAcTNRzHoba2FpWVlRg/frzL6Ik7JBIJX+Tub0i6q6+vD3l5eaKnxaHibXquv78f+fn54DgOubm5A6bDhrsDt0wmE/mzmUwmPpVXW1sLlmVRXFwc1PU3wd61nOBJy4GwsDAkJycjOTlZFBVsbW1FZWWlU4F/oHp1hYJoOhPMevv6+vDggw/i/fffh1Kp5FO5ERERov+qVCqMHj2aPwcGg0aaxFDRdJZgMplw7Ngx2Gw2UeGyVCoNmNgQMtgMOkefNp1O5/X6iaeSP2lpacGxY8cAAOecc47fZ455E2nS6/UoKChAXFwcJk2a5Dbd4WgIPFII+xF1d3fj6NGjCAsLE9XfkIJyrVYbNOmbUIk0eTNOx6igsMBfaGZLRJQ/j0coiCZv0nPByksvvYTS0lJ0d3eju7sbBoPBpQedxWKBzWaDxWLxaAILFU1iqGg6w2EYZkArFNJyINAMFGnq7OxEQUEB1Gr1gD5tg63fn+kfYlDc0NCASZMmoaioKGBF8oOJJo7jUFdXh8rKSqf+VK4Q2qgI/z2SkPRAeno60tPTYbVa+ShUaWkprFarKHU0UjYvoRRpGooIcSzwF/bqIseDpFajo6MRGRnp8/Gw2+0uLZqCCaPRGPKi6ZZbbgnIeqloEkNF0xlOb28viouL3VqhBMoXztV2HEWNUAwMtbDan6KJTOG3Wq3Izc2FSqVCUVFRQGpyBkvP2e12FBcXo6OjAzNnznQ51djVOoHgEgCOx1Uul4usRYSpvBMnTkAulw9L6siRUKpp8mfkxrFXFzkeBoMBtbW1fNE5OSbepKiDfeYc4F1NU7BC2rq4gpzTpK7Jm3OciiYxVDSd4URGRuK8885zO4tpOEWTcDtWqxXHjx9HZ2enx2JgIPxVCE56QkVHRyMnJwcymYy/EAVCNA0UaSLWLBKJhBdvnhCMomkgGIZBREQEb/Nit9t5mxeSOiK9oYbD5iUURFMgbVQcjwfLsuju7oZer8epU6dQXl6OsLAwXkRFRUUNOEsyFEST0Wjka/FClWBJb5/pUNF0hkO6frtDJpMNS02TUNR0dXWhoKAAERERmDdvnl+iCENtOTBQCow8mQUq0uRK3LS3t6OwsNBnaxYgdESTI1KplBdIgLgr9vHjx8GyrFNvKH8IiGBKZw7GcEbEJBIJdDodX2dIZkkaDAZ+IolQ1Go0GtH56m1/tpHgTKhpEuJP2xqOY8B5ET3yZtlQhIqms4CBio2HM9Jks9lQV1eHiooKZGRk+LWZ5lDSczabDUVFRejq6sKsWbNcFqEHquM4mQJMEDb0zMrKwujRo31aJ1mX8N+himNX7N7eXuj1erS1taGyshJKpZI3Gx4s6jEQoSQyRzJ64zhLkjQ8NRgMfBpbWJ9ms9lCItLka1f/YMSfIpUa9oqhouksZ7hmzzEMg4aGBpjNZr/2OSL4Kmp6enpQUFAAlUo1YBG6P+xOXCFMz9lsNj5l6UlDz4EI1HiHgj/GwzAM1Go11Go1UlJSYLfb+d5QJOohbOio0Wi8Fo2hIDKDqfbKseFpb28vDAYDOjo6UF1dzQum5uZmREVFBWWriTOpM7bBYMAXX3yBG264wekcsdlsfGTQU2hNkxgqms5yhuoL5wnd3d3o7OyEUqlEXl5eQC6avtQ0nTx5EsXFxUhNTcW4ceMG/P6BjDQRT7H8/HwoFAqfZxA6QkRKsIknfyKVSkUGt0KbF9LQkQiowQqYQ2k/+bsQ3F8IRS3xLqytrUVzczMaGhpQUlLCt5ogXeODIXV3JkWaamtrsXLlStx4441O733//fe44oor0NPT43EKj6bnxFDRdBYwUNSBpDICUXcgtB0JDw9HfHx8wJ4yvalpYlkWZWVlOHXqFKZNm8Z3UB6IQIomk8mEgwcPYvTo0Rg/frxfbobBGGkaDhyjHq4KmIWz8oTnfCilMwNZCO5PpFIpwsLCEBERgenTp/NWL3q9HuXl5TCbzaLWBmq1eti/F3loCfXZcyaTCR0dHSgvL0dycjIMBgOsVisUCgVkMhlUKhWampowduxYr9ZLI01iqGg6y/HFF84TbDYbiouLodfrcc4556ClpSWgNhqeipq+vj4UFBTwHbU9DckHQjRxHAe9Xo/Ozk5MnToVo0aN8tu6z1bRJIRhGGi1Wmi1WqSlpYlsXioqKmA2m0W1NyQKFQpiJFgjTa4gfZoAsdULMQwnx6S+vh4ARLPyhitldib0aSouLsbKlSshk8nQ0tKCNWvW8GKJmDwfPnwYv/nNb7xaL400iaGi6SyHNJ2z2Wx+64XT09OD/Px8vk5IqVSira0toAXnnhS0kxlpCQkJyMrK8kok+ls0Wa1WHDt2DN3d3YiKivKrYAKC78YfDOMRFjCTG7bQ5oXc2FtaWhAXFzdsvaF8IVQiTYD7onWGYfiu8cTqhXSybmlpQUVFBZRKpSgy6O+O/IQzIdIUHR2Na665BpWVlbDb7YiJiUFnZyc6OjrQ2NgIjuPwu9/9Dhs2bADgebE452WkiYomyhkNwzB+m0HHcRwaGxtRVlbmVCcU6ILzgUQNx3E4ceIETpw4MaQZaf6K3PT29uLo0aMIDw9HWloaDAaDX9YrhEaaBkZ4wx49ejRYloVer8exY8dw8uRJlJeXi2xFdDpdUEV2gqkQfDA8neknjAwSA2jSr6umpgbHjx/nWxtERUX57ZiQZp6hXtOUkZGBLVu24KuvvoJGo8Hrr78+0kM6I6Gi6SxgsIurP0STzWZDSUkJ2tvbMWPGDL4w15/bGAgimhxvJiSi09vbizlz5kCj0Qxp/UOlubkZRUVFSElJQWZmJhoaGgIibqho8g6JRMKfGzk5OXwqr6OjAyUlJbDZbKLeUOHh4SMqWkKhYSTB13pJmUwmsnoh/boMBgN/TEh6NSoqymerF+LFFuqiyWazQSaT4ciRIzhx4gQ4joPVagXwv4yCL3Y2HABvLiVn+lWHiibKkKNAZNo+mfnlaoaSvzp2u4PcQISiiTTRjIyMRF5e3pBC+0MVTRzHoaKiAg0NDZg6dSoSEhL49QZaNIVKRGKkER4HhUIhsnkxGo3Q6/X8NHqhzUt0dHTA0kYDjTVUjquwpmkoOPbrMhqNfD1UTU0NJBKJKJXnaQf93t5eAAj59BzZx+np6SgrK0N3d/eQ2pYQWDBgaJ8mHiqaKEMy7W1sbERpaSlSUlIwbtw4txfHQEeahAXtEomEH5e/mmgORTRZLBYUFhaiv78fc+fOFRWcDnen8ZEk2MbjDsdzhWEYREZGIjIykp9G39XVhY6ODtTW1qK4uNipN1Sgo0ChVAjOsqzfRaXwmBCrl66uLhgMBjQ1NaGsrEw0U1Kn07ltetrb28una0MZct6OHTsWtbW1eOSRR7BmzRoolUqEh4dDpVJBLpdDrVZ7FfmjheBiqGg6CwhEes5ut6OkpAStra2YPn36oL5NQ7U5GQxyA7FarSgrK0NbWxvOOeccPrQ/VHwVN93d3cjPz4darUZubq7ThXs4Ik0Uz/B0fw1k80I6YkdFRfFdysPCwvw+1jOhENyfEEPhqKgopKenw2q1orOzE3q9HpWVlejv7xcJW7VazY/JZDIhIiIiZESoO0j0saCgACdOnEBBQQE+//xzJCcnQyaTQalUor29Hdu2bcNll13m8XFhOQYMbTnAQ0UTxev0XG9vLwoKCiCXyzFv3jyPwuCBjjSRG8jRo0chk8ncpgl9xZdIE2memZ6ejvT0dJc3uUCJG7Le/v5+FBQUwGq18vUhgTa8DVV8TWe6snnp6OjgZ4CpVCpR2shXmxfHsYbKMRwJ7zm5XC6yehG2NmhsbOSF7c8//wydTudVjVpTUxPuu+8+/Pe//4XJZMK4cePwzjvvYObMmQBOH5stW7bg7bffRmdnJ+bNm4c33ngDmZmZ/Dr0ej3uuOMO/Pvf/4ZEIsHy5cvx8ssvi6LQx44dw/r163Ho0CHExcXhjjvuwObNm92Oi5wPOTk52LJlCxQKBUwmE4xGI0wmEywWC5qbm/nSAE+/L8d5WdN0hj+rUdFE8So9R4TA2LFjkZmZ6fGFO9Ciqa2tDQCgVqsxZcoUv99QvIkIsSyL8vJynDx5ctAoXKDSc8DpWrNjx44hJiYGOp0OBoMBxcXFsNvtAY+EhCpDjd4IO2KTGWAk4kFsXobazJHjuLOypmkohIWFISwsTGT10tbWhg8//BAFBQWQyWS4+eabsXjxYixcuNBtw1uDwYB58+bhggsuwH//+1/ExcWhsrISUVFR/DLPPvssXnnlFbz33ntIS0vDI488giVLlqCkpIR/kLv++utx6tQp7NmzB1arFTfddBPWrl2LXbt2ATgdoV68eDEWLVqEHTt2oKioCDfffDN0Oh3Wrl074HedM2cO5syZM+g+8Vw00fScECqazgL8kZ6z2+0oLS1FS0uLR+k4X7bhCxzHobKyEnV1dZBKpUhLSwvIBdrTSJPZbOYjO540zwxUes5ms6GiogITJkxAcnIybDYbEhMT+QJaYSSE1H4QcRWIqEAo3OADIURkMpnI5kXYG6q+vh4Mw/Cz8mJiYjzqmE/Ol5EWIp4SbDP9hML222+/xT//+U889thjiIuLw3PPPYcbbrgB+/btQ15entNnn3nmGYwZMwbvvPMO/1paWhr//xzH4aWXXsLDDz+Myy+/HADw/vvvIyEhAZ999hlWrFiB0tJS7N69G4cOHeKjU6+++iouvvhiPP/880hKSsLOnTthsVjwl7/8BQqFAtnZ2SgoKMALL7wwqGgCTlup7N27F1VVVWAYBpMmTUJeXh5Gjx4dEr/FYIaKJsqggsZoNKKgoABSqRR5eXk+RSYCMXvObDbj2LFj6O/vR25uLg4dOhSwqI0noqmzsxP5+fmIiopCTk6OR2kYf6fniEWMxWJBZmYmb2orTD2RAtqUlBRRl+zy8nJYLBbodDo+CjXSU+uHk+GoAQsLC0NycjKSk5PBsix6enrQ0dHB94YKDw8f1JeNnIehclyCTTQ5YrVaERcXh2effRbA6ai1u1ln//rXv7BkyRJcddVV+PHHH5GcnIx169bhlltuAQDU1NSgubkZixYt4j+j1WoxZ84cHDx4ECtWrMDBgweh0+l4wQQAixYtgkQiwS+//ILf/e53OHjwIM4991xRg9UlS5bgmWeegcFgEEW2HKmqqsKmTZtw5MgRREVFgWVZNDU1YcyYMfjLX/7iURRKCI00iQneM5kybAxU03Tq1CkcOHAAMTExmD17ts+pHH8XghsMBhw4cAByuRy5ubmIjIwMaFuDwdJoDQ0NOHToEFJTUzFt2jSP61b8mZ6zWCw4fPgw9Ho9IiIi+L4zA4kB0iV7woQJyM3NxaxZsxATE4OOjg4cOnQIBw8eRHl5Odra2gLanDRYGE4hIpFIoNVqkZ6ejpkzZ2L+/PlIS0uD3W5HWVkZ9u3bh/z8fNTX16O3t9fJgDmURFMwmPK6o7e3VxQRHqgb/IkTJ/j6pK+++gq33347Nm7ciPfeew/A6T5sAPi6IUJCQgL/XnNzs1P6TyaTITo6WrSMq3UIt+EIuY488sgj6OzsxOeff47i4mKUlpairq4OGRkZuPvuu91+3h3Ee86bP29pamrCDTfcgJiYGISFhWHKlCk4fPgw/z7HcXj00UcxatQohIWFYdGiRaisrBStQ6/X4/rrr4dGo4FOp8Pq1av5dhKEY8eOYcGCBVCpVBgzZgwvlL2BRprOAga7uMpkMpjNZtFr5MLd3NzssantQJBo1lBTIBzHob6+HhUVFXwkRdh1fLgjTSzLoqSkBC0tLT7N1vNXeq6npwdHjx6FRqPBOeecg19//dXr9TIMg4iICERERGDMmDGw2+28DYOwHocUlEdERITMjdsTRnq2oaMvm8lk4lN5J06c4G+spAlnMEdvhARDTdNAeOM7x7IsZs6ciSeffBIAMGPGDBw/fhw7duzAypUrAzlMj/n++++xc+dOzJo1C3a7nS96/8tf/oKsrCz09PQgMTHR4/UFuhA8FOrEhFDRRHFKzxmNRhQWFoJhGK9MbQfbBjC0p06bzYZjx4twsKsM+kQb9hqbMLFhDH4TPwOjVNEBMdUluIpi9ff3Iz8/HxzH+Zy29Ed6jnQZT0tLQ0ZGBhiG8ct6pVKpqCNzX18fOjo6eK824fue+IKNtCgZjGAqrnYUsKQPkV6vR1NTEwDg8OHDfBo1mGdEBnt6zmQyeSyaRo0ahUmTJoley8rKwieffAIAvBhpaWkR+UmSWlCyTGtrq2gdNpsNer2e/3xiYiJaWlpEy5B/uxM85NyNjIxEeXk5Fi5cCKlUyl9vOzs7YTabvTYmPi2avEnPebX6kKkTIwTvmUwZNoTpuebmZhw8eBBRUVGYM2eO3xq+kYumr+mz3t5eHPz5IP5jKsCh8EZUm5txsr8Du1sO47mKj9DY1x5w0SRct16vx4EDBxAZGYk5c+b4nLYcSnqOFMEXFRVh6tSpIq+/QLQyCAsLw+jRozF16lQsWLAA2dnZkMvlqKmpwf79+3HkyBHU1NSgu7s76AWSO4JFNDlC+hBlZGRgypQpAE43MTSbzSguLsa+fftQWFiIhoYGmEymoNr/oZCe81RIzJs3D+Xl5aLXKioqkJKSAuD0zT4xMRHffvst/353dzd++eUX5ObmAgByc3PR2dmJI0eO8Mt89913YFmWrzfKzc3F3r17eRsUANizZw8mTJjgsp7Jbrfz5+5tt92Gp59+Gn/+859x9OhRlJaW4tixY1i3bh3y8vIGrIdyBalp8uaPfG/hn2M2g/Cvf/0LM2fOxFVXXYX4+HjMmDEDb7/9Nv/+YHViAAatEyPLuKoTKy8v98r/k0aaKJDJZLx33MmTJzFlyhSnfPpQEUaavIVEUpikCNT2GxAhUSFCdjoky3IcWswGfNn8C2ZI4gJW0yT0tiPpwQkTJmDMmDFDutH6mp6z2Wy8p97cuXOdfLMC3dxS2Exw3LhxMJvNfBSqoaEBDMPwM8JIE8hgJ5iExkCQHk2JiYmiGZF6vR7t7e2orq6GQqEQ9YYabpsXIcEeaTIajR57Um7atAl5eXl48skncfXVV+PXX3/FW2+9hbfeegvA6d/dnXfeiccffxyZmZl8KikpKQnLli0DcDoydeGFF+KWW27Bjh07YLVasWHDBqxYsQJJSUkAgOuuuw7btm3D6tWrcd999+H48eN4+eWX8eKLL7ocl1CU3nPPPaitrcVjjz2GmJgYMAyDmpoajBkzBv/4xz+87l/HwTs/ObLsmDFjRK9v2bIFW7dudVqe1IndddddePDBB3Ho0CFs3LgRCoUCK1eu9GudmDCCJVxnc3Ozx2KSiqazgMFu6jabDT09PXyaKRB2AsQs0htRQ/odNTU1YerUqTjM1sLaZEOU9H9PhRKGQbhUieNdNThHkhCwSBPDMLDb7SgqKkJHRwdmzpzp9RObu/V6e7M2Go3Iz8+HUqnE3Llz3RatDqcIUCqVSEpKQlJSEliWRXd3Ny+gSkpKeF+vzs7OYbEZ8ZVgjTQJcWxs6crmhfSGqqmpQXFxMdRqNS9ihd2wh4Ngr2kymUy8WBmMWbNm4dNPP8UDDzyA7du3Iy0tDS+99BKuv/56fpnNmzfDaDRi7dq16OzsxPz587F7926RWNm5cyc2bNiAhQsX8s0tX3nlFf59rVaLr7/+GuvXr0dOTg5iY2Px6KOPukwjcRyHF198EevWrYNCoUBVVRVee+01rFq1CsePH4fZbMa4ceOwcOFCn/aPr7PnGhoaRGLUXTuNUKgTE0JF01mCu5tzS0sLysrKIJFIMHfu3IBe3Lzp1UQ6WdvtduTm5iIiIgLSlgaXy7IcBxkjhTSA6TmbzYaOjg5ERkYiNzfXb93GvU3Ptbe3o7CwEMnJyRg/frzb4zWSNioSiQQ6nQ46nQ7p6emwWCxoaWnhU4kcx4maa/qzc/tQCKaapoEYzELFsRatv7+fLyhvbGwEAL43VKCbm5JGnMEsmoxGo1dmvZdccgkuueQSt+8zDIPt27dj+/btbpeJjo7mC5TdMXXqVOzbt2/Q8XR3d+PBBx/EXXfdBZZlccstt+D777/HzJkzRemq4Uaj0XgUwQvmOjFXUNF0liKM4mRkZKC2tnZY/KE8EU0dHR0oLCxEbGwssrOz+dDzVE0aPpMq0WnthU4eCYZhYGVt6OesWBg9A1J9YGbPtbe3o66uDnK5HLNnz/brfvI0PcdxHOrq6lBZWYlJkyYhOTl5wOWFommkhYBCoeBnxMyfP5/vTXTq1Cm+NxERUDqdbsRusKGUnvPmmKpUKj4KyHEcenp6oNfr0dzcLGpuOpixrS+Q32Mw1zR5M3suGLFYLFAqldi5cyfi4uKwb98+lJeX8wa9CoUCCoUCcrmc/7dX+Jqf8xBv6sSISCJ1YrfffjsAcZ1YTk4OANd1Yg899BCsViufrh6oTswdVDSdhZhMJhQWFoJlWeTm5oLjOFRXVwd8u4O1BOA4DjU1NaiursbEiROdutcmhcXgd0nz8EnTfrSYO8GBg4SRIDMiCRclzkJ95wm/1jRxHIfa2lpUVVUhMTER/f39fr+hk+830I3QbrejuLgYHR0dmDVrFnQ6nUfrDUYRwDAM/wSalpYGq9UKg8GAjo4OlJaWwmaziTpkD6fFSyhFmnw9D4X7n9i8kOamxNiW2LzExMQgMjJySPuE/N7PpEhTsKFWq7Fp0yY8/fTTCA8PR1hYGO68807I5XIolUoolUqEhYWBYRiMGTMGW7Zs8W4DXqbn4GWfpmCtE3MHFU1nCeQm2traiqKiIiQmJmLixImQSqXo6+vzSw+lwRgoPWe1WlFUVITu7m7Mnj3bbUfeJQkzkRmZjCOGSvTZzUiLSMSsqAlQSRV+7dNks9lw/PhxdHZ2Yvbs2TAajWhocJ0eHApkf7ubYUTaGpD2D56msoTHMZiFgGNvImLx0tbWhsrKSqhUKj7VFCiLl1DDn+ku0tyU2CIJe0PV1dVBIpHwUajo6GiPbF6EkN97MIsmb1oOBCMqlQp33XUXcnJy8NVXX+HQoUOYMWMGuru7YTKZYDKZ0N7eDoPBAIvFAsA74R3oPk3BWCc2EFQ0nSUQe42GhgZkZ2eLCh/Jjchut/s1NO+IO9HU09OD/Px8hIeHIy8vb9DwcXrEKKRHjHJ63V8tB0ihtUKh4MdjMpkCkvojFy5XUSGDwYCCggI+TenNjSdYI00DCXNXFi+kuabQ4oVEQfxt8RJKkaZAjTM8PBzh4eEYPXq0qKC/qakJpaWliIiIEPWGGkzEkrEG634lQj2URRNwun7o0ksvRV5eHjQaDV9U7Q5vriXDYaMSbHViA0FF01lCfn4+TCYTbzkihAilkRBNTU1NKCkpETVm9BWJRMI/SflKa2srjh07htGjR4sKrQNlrCtMzwlpbGxEaWkpxo8fj7Fjx3q9XxxFU7DetAZCaHbLcZyoueaJEycgl8tFzTX9ce6Gwn4aLnHnWNBvtVr5KFRpaSmsVisvYqOjo112iA/2Hk2Ad32aghmr1YqYmBg8+eSTsFgsaGtrA8dxfD2TVCpFWFiY9+0nOMa7lNsZ7j1HRdNZwvjx46FSqVxewCQSCT+lPpAIC8FZlkVpaSmam5sxffp0Pj0wFIaSniN1XTU1NU6RODL2QESahOk58t/y8nKcPHnSJ1sW4XqDMdLkKwzD8FEQocWLXq8XWbwMpRYnVCJNIzUbTS6XIyEhAQkJCS5tXuRyuSiVJ5fLg75HExD6heAEuVwOm82G77//Hp988glaWlogk8mgUCgQHh4Os9mM888/HzfffLNX53qg03OhBhVNZwkajWZAUeRNOwBfIaKmr6+Pr9Px1X7EFb4KG1JP1dPT47JR5FDWPRjC9JzFYkFBQQEsFsuQ7WuCTTT5W4wIp9VnZmair68Per0eHR0dqKurg1QqFTXX9OTpOpj210AEMj3nKa58ConNS11dHd8bipzDwSqeiPgLddFERNDRo0exefNmmM1mzJs3DzabDUajEW1tbTh16hQmTJgAIDQigMEKFU0UAP/rCh5IpFIpuru7ceLECSQmJiIrK8vv0/e9FTa9vb04evQowsPDkZub67aeKtCRpp6eHpSUlPCGu0NNNQWbaAo0YWFhSE5ORnJyMu/TRgRUSUkJ1Go1L6A0Gs2AdVXBTjD2PSIilXR/N5vNfFsDi8WCffv2iXpDBaKBri/09fWBZVmXD0qhBBFB33zzDaRSKY4dOzbgNcQrwRTglgOhBhVNFACBjzRxHIfe3l50d3dj8uTJg/YZ8gVvO44Te5aUlBRkZmYOeMMMtAgpKCjwS12XkLNJNAkRWrwA/7uBd3R0iCxeHGeEhcr+CoZI02AolUqMGjUKMpkMVqsVWVlZ0Ov1/KxIpVLJi1h/1aP5gtFoBICQbjkA/E/sh4eHY8qUKX7dn8NRCB5KUNF0ljDYRTaQosliseDYsWMwGo1ISEgIiGACPK9p4jgOFRUVaGhowNSpUz3y2QtEpInjOFRVVQE4XXNGmrn5g2CNNI1E3RC5gY8aNQosy/LNNcmMsMjISMTExARd9MYdwRhpcofdbodUKoVarYZarUZKSgrsdjvfG4rUo2k0GpHNy3CdI0ajERKJZFj7gQUCsr/y8vJw6NAhvP322/jd734HhmGgUCggk8kgkUigUCh827fBdykZMahoogA4LTgCkZ7r6upCfn4+tFotRo8eHdAUoCfCxmKxoLCwEP39/Zg7d67HtQz+Fk1Cw12S2vAnwR6JGCkkEgm0Wi20Wi1v8UKKmdva2nh/QXIDDxaLFyGhEGkiuKplkkql/KxIQGzzQnqhCSOBgTwGpLFlqIhQd5D03LFjx/DPf/4Tn3/+OT7++GMkJiZCqVRCrVbDZDJh9erVmDVrlpeF4DTSJISKJgqA0zVN/u6m3dDQgPLycowbNw6pqamoqamB2Wz22zYcGUzYdHd3Iz8/H2q1Grm5uV6FsP0pmhwNd/ft2+f3KJa3nnZnKwqFAomJiUhMTERzczPq6uqgVqt5i5Hw8HBeQHnSl2g4CJVZfoBnBeCONi+kNxSx2SE2L4FocHqmtBsg+1ir1eKWW26BVCpFS0sLDAYD+vr6YLVaUVtbi6VLlwLw8hyiNU0iqGg6SxjO9Byx/Whvb0dOTg4fRQl03dRANU0nT55EcXEx0tPTkZ6e7vVNh/RpGuoNy5XhbiB6QIXKTTXYkMlkSE1N5S1GSC0U6UskNBoeqWLmYJ2J5gpvZ2kxDMNHAonNDmktUV5eDrPZLOoNNVSbF6PRGDRF6UOBpOOvuuoqXHXVVYMu7935w/z/P2+WP3OhookCwH/pORJFkcvlyMvLE4XWAy2aXNU0CY2Jh9IPyhOPuIEYyHA3EPVHwVrTFOwIj61MJnOyeBEWMxOLF1LMPFxRqFCKNNnt9iEJPLlcztu8kAanJJVXW1srmrUXHR3ttRmtyWRy2ZQzFCHfobe3F4cOHUJrayvCw8ORmJiIcePGeWVKK4JGmkRQ0UQB4J/0XEtLC4qKipy6aRO8nd3mLY4pNLPZjIKCAlitVuTl5Q3piZJ8F1+e8gcz3A1EKs1RNI10dCIUbkoDiUyhxcvYsWP5YuaOjg5UVFTwERAiogJ5Iw6lQnB/nnfCBqfE5oX0hmpoaEBJSQkiIyN5AaXT6Qbd9pmSniN0dHRg+/bt2LNnD7q6umA2myGTyXDRRRdh+/btGDNmzEgPMeShoukswZP0nNVq9WndLMuisrISDQ0NmDx5MhITE91uI5B1NkLR1NnZiYKCAuh0OuTk5Ax5Cq5QNHkDMdwF4NZwN1DpOZZl+YLztrY2/qYeCN+2MwFvIjiOxcykO3ZHR4eoOzYRUf6cAh5qheCBisAJW0tkZGTAYrHwQrakpAQ2m82pN5TjfiOF4KEOEafPPPMMdu/ejU2bNuG3v/0tJBIJjh8/jv/7v//DvffeizfffNOtGbpbaKRJRGg8rlACjq/pObPZjEOHDqGtrQ1z5851K5jINgKdnrPb7WhsbMShQ4eQkpKCadOm+eWG5YtoMhgMOHjwICIjIzFnzhy3s4AClUqzWq345ZdfYLPZcM455yAuLg4GgwGHDh3CwYMHUV5ejvb29oB3gg8lfBUjJPoxbdo0LFiwAFlZWZDJZKipqcG+fftw5MgR1NbWoqenZ8jH+myNNA2GQqFAQkICJk2ahHnz5mHmzJmIiopCR0cHDh06hAMHDqC0tBStra38A6Kvounpp58GwzC48847+df6+/uxfv163sZn+fLlaGlpEX2uvr4eS5cuRXh4OOLj43Hvvfc6XXd/+OEHnHPOOVAqlRg3bhzeffddj8e1a9cuPPXUU7jtttuQkZGBtLQ0XHrppfj3v/+NH374AQaDwevvynvPefN3BkMjTRQAvgkag8GAgoICREdHexTNGQ6rFo7jUF5ePiTfNlcQp3ZPRZM3hruBSM9ZLBa0tLQgOTkZEyZMgM1m49s+OKaWLBaLUxQqUARznZW/xubYHbu/v583GhZavPhahxNKFhh2u93r7+cPXKVTSZf4mpoafPXVV3jttdeQkpIChmFgs9k8frg6dOgQ3nzzTUydOlX0+qZNm/Dll1/i448/hlarxYYNG3DFFVfgp59+AnB6XyxduhSJiYk4cOAATp06hd///veQy+V48sknAQA1NTVYunQpbrvtNuzcuRPffvst1qxZg1GjRmHJkiUDfl8Abr9HXFwcenp6fGrfQL3nxFDRdJYw2BO0NzVNwqJmT0QBIZA1Tf39/SgoKAAAzJkzJyB1Cp6IG18Md/2dnmtqasLJkyeh0WiQnZ3tNGZhaol4b3V0dKC9vR1VVVV8gXMgpngHM4EqsFapVE4WL3q9HvX19bx1DknlDWTxEuhxBoKRrqUjOArZtLQ0dHd345NPPsHx48cRExODhQsXYvHixfyUfVf09vbi+uuvx9tvv43HH3+cf72rqwt//vOfsWvXLvzmN78BALzzzjvIysrCzz//jLlz5+Lrr79GSUkJvvnmGyQkJGD69Ol47LHHcN9992Hr1q1QKBTYsWMH0tLS8Ic//AEAkJWVhf379+PFF1/0SDRdddVV2LZtGyIiIjBx4kTI5XJYLBY8/fTTyMrK8j41B9D0nANUNFEAeJ6es9lsKCoqQldXl8ui5sG2EYiaJoPBgPz8fMTExKC7uztgT7aDiRtfDXf9FWkSdjofNWqUx9smxqtjx46FzWbjo1BlZWWiafYxMTEh3zl5MAItRhzrcIQWL42NjQAgqoUiFi9CgkWIeEKwRsXi4+Oxfv16VFRU4Nxzz8V1112Hr7/+Gj/++CNuu+02t59bv349li5dikWLFolE05EjR2C1WrFo0SL+tYkTJ2Ls2LE4ePAg5s6di4MHD2LKlCkiB4IlS5bg9ttvR3FxMWbMmIGDBw+K1kGWEaYBB+Luu+9GaWkpNm3ahPT0dKhUKlRVVaGurg67du3y7ffrbcqNpucoZwoD1c54kjrr6elBQUEBVCoV8vLyvBYnZBv+elLmOA719fWoqKjAhAkTkJycjFOnTgWs2HygBpc9PT04evSoT4a7/qhpstlsKCwshNFoRG5uLpqbm3lfLW+QyWSiKd5GoxEdHR1obW1FZWWlqNmjJ7OTQomRSB0KLV6EjR2bmppQVlaGiIgIUXNNItxDJdI01JYDgcZkMmHs2LHIyclBTk7OgMv+/e9/x9GjR3Ho0CGn95qbm6FQKJweIhMSEtDc3Mwv42jZRP492DLd3d3o6+sbVPSkpqZiz549eOutt1BQUACTyYTLL78c69ev99l1gOFO/3mz/JkMFU0UAIOn50hzyNTUVIwbN86nizZ54vTH06dwGj8p+AQC2wnbnWgixr++Gu4ONT1nMplw9OhRKJVK5ObmQi6X+0WICetCUlJSRM0eS0pKYLfb+Rt6TEyMy6hIqDGSYsRVY0eyv4uLi2G32xEVFYW+vr6QacgY7FExTwvBGxoa8H//93/Ys2dPUFrrEJqbm8EwDG699VbR6319fbwPIGVoUNFEAeA+0sSyLMrKynDy5ElMmzYN8fHxQ9oGgCH/ePv6+pCfnw+JROI0jT8Qxrru1k0Md2traz02/nXFUIQeSU0mJiZi4sSJ/A0qEDPyHJs99vb2oqOjg7e7iIiI4AWURqMR3SxDITISbBEcuVyOhIQEJCQkiPZ3Z2cnamtr0drayqfxgrX2LBREkyf1j0eOHEFrayvOOecc/jW73Y69e/fitddew1dffQWLxYLOzk5RtKmlpYWfUZyYmIhff/1VtF4yu064jOOMu5aWFmg0mkGjTN3d3Xj66aexZMkSXHTRRbDZbJBKpbBYLPjXv/4FuVyOK664YtDv6gStaRJBRdNZxGDpOceapr6+PhQUFIDjuCE3hwR873UkpKOjAwUFBUhMTERWVtawNtAUihuh4e7cuXOhVquHtF5fBA6ZoTdhwgSMHTt2wHWScfuz0SBxrk9NTRVFRYqKisBxnCgKFUxixB3BPLNPuL8NBgNiY2OhUqmcas/IPg8LCwuKfR6sNU0ETyNNCxcuRFFRkei1m266CRMnTsR9992HMWPGQC6X49tvv8Xy5csBAOXl5aivr0dubi6A033annjiCbS2tvIPn3v27IFGo8GkSZP4Zf7zn/+ItrNnzx5+HQPR0tKCXbt2YdOmTQDAlwgolUqYTCa8/vrruOKKK7wXsrSmSQQVTRQAp39gLMvyT9vEIy0hIQFZWVl+ufAxDOOzqOE4DrW1taiqqkJWVhZGjx7tcrlANtAkaTRhOmzu3LlDLjz3Nj1H2io0NTW5naFHRBPHcWBZlv8jx4D81184RkV6enrQ0dGBpqYmlJaW8k/z3d3d0Ol0QXFDdyTYIk3u4DjOqfbMcQakUqkUzYD0Z3NNbwiFmiZPIk1qtRqTJ08WvUYiq+T11atX46677kJ0dDQ0Gg3uuOMO5ObmYu7cuQCAxYsXY9KkSbjxxhvx7LPPorm5GQ8//DDWr1/Pp7Zvu+02vPbaa9i8eTNuvvlmfPfdd/joo4/w5Zdfuh0bOW+7urogk8mQkpLC/+7Jbz06OhodHR388l5BI00iqGiiAPhf6sxms6G+vh4nTpwYUJwMZTveiiabzYbjx4+js7MTs2fPHnDabKDTc11dXSgqKhIZ7g4VbyJNpODbZDJh7ty5bp+SyTqJWJLL5fz/C/c/MQz2542NYRhoNBpoNBqkpaXBYrGgtbUVFRUVKCoq4i/iJLU0En18QhlHcec4A5L04dLr9aisrER/fz9vchsTEzOsXmvBnJ4jEx2GEiUW8uKLL0IikWD58uUwm81YsmQJXn/9df59qVSKL774Arfffjtyc3MRERGBlStXYvv27fwyaWlp+PLLL7Fp0ya8/PLLGD16NP70pz8N2G6AIJfLoVar8Y9//ANXXnklf03v7+/Hjz/+iJSUFN++GBVNIqhoOosY6EJJfmBkxsWcOXOg0Wj8PgZvRRMxAFYoFMjNzR202DhQoonjOFgsFtTU1CA7O1tkuDtUPK1pcoxwyeXyAZc3m83o6+uDSqXijz3Zjt1u5yOLJC0bqCgU6dRcUVGB3NxcmEwmtLe3i/oUkaiIWq0esWhPqESaBhMiA1m81NTUiCxeoqKiBj2PAjnWkWYoNio//PCD6N8qlQp//OMf8cc//tHtZ1JSUpzSb46cf/75vPWSJ5Bzdvz48bjkkktw9913o6urCxkZGVAoFPjiiy/w2Wef8S0SvD7HqWgSQUUTBcDppm0A+PqlQF1IvUnPtbW1obCwkO9q7cnFNxBdx8lMvf7+fqSlpflVMAGepef0ej3y8/ORlJQ06L5gWRZqtRocx+Gnn36CWq3mb6KkeaKwvkz4NxxRKDJDjPQp6ujoQEdHB+rr6/kmhCQKFcgburvxBTveijtHk9vOzk7o9XrU1NSguLhY1FzT36I12GuaPE3PhQJhYWG455570NbWhi1btkChUMBoNCIsLAwPPPAArrvuOt8seGhNkwgqmih8QbFEIsGECRMCeqPypOaI4zhUV1fzUZ2kpCSP1+/vSJPQcDcqKiog040HS8+R4zNx4sQBXcpJDZPdbuf97qxWK9rb2/nIjkQiQUxMDOLi4nhRIhRQwpTecEShlEolkpKSkJSUxHfL7ujoQG1trSgKFRsbG/C0UjAXggsZSvRGIpHwnbHHjRuH/v5+PgpFzg9/pU6FdTXBCMuyHs+eCwVYlsWoUaPw/vvvo66uDvX19dDpdJgyZQq/TCg8FAQ7VDSdxdjtdpSWlqKlpQUzZszA8ePHA1YPRBgsEmS1WlFUVISenh6fUoT+FE3EWy82NhbZ2dn8TEJ/4y49x3Ec3+5hMEsWIpbI+MiNSqFQiERJZ2cnOjo6UF1djaKiIuh0Oj4KFRERAYlEIuqnRdY5HFEoYbdsckMnUai6ujrIZDJER0cjNjYWUVFRfi9uDpX0nD/HqVKpROdHd3c3Ojo60NDQgJKSEqjVal5AObaRGAx/z9j0NyaTCRzH+a2maaQh+7m5uRk2mw2pqamQyWQ4deoUpFIpdDqdTyKYNrcUQ0XTWYTwQmsymVBQUACGYTBv3jyoVCrIZDKPrFSGwkCiqbe3F0ePHkV4eDhyc3N9+oH7q+WAK8PdQNVLuUrPWa1WFBYWoq+vb8CCbwCi6BCJBrnbDokyZGZmoq+vj49CVVdXQ6FQ8AIqOjoaUqnUKQpFaqHIH1kvMTR2d4P05Sbv6NkmFHx9fX1OJsP+EBKhIJoCFb2RSCTQ6XTQ6XTIyMiAxWLhjYaFbSRIJGqw+sJgF02kY76vNU3BRm9vL95//33861//Ql9fH4DTs6LDwsLQ2dmJdevW4brrrvOh5QBoTZMAKprOQlpbW3Hs2DEkJSWJGiIGoh7IEXeihnTVTklJQWZmps83r6G2HBjIcDdQoskx0mQymXDkyBGEhYUNWvAtFDIDCSZXhIWFYcyYMRgzZgw/46q9vR1lZWWwWCyIiopCXFwcYmNj+cZ6jlEoYUqPfJdApPFcCT4ShTpx4gQUCgUvoKKionyqowmV9NxwRcQUCoXI4oW0kTh58iTKy8sRHh7O73Ni8SKEnBPBWtNkMpkgk8lCvpM9aRb80Ucf4fnnn0dOTg5+85vfwGKxwGQywWq14uTJk7xrAmVoUNF0FkEMXevq6lzWCg2HaHIUNRzHobKyEnV1dUPqqk0YirAZzHA3UBYtwpom0ryTCNqBbo7CiI+3gskR4YyrCRMmwGg0or29HS0tLfwNkrxPPOfcRaFcpfH8vd/CwsIwevRojB49Gna7nY9CVVRUwGKxOEWhPCGU0nPDHb1xbCNBmpnq9XqRxYuwuabdbucjkMFIb28vn5IOZci1Y/fu3Vi4cCHefvvtAZf39vsy8DI959XaQw8qms4iTp06hZaWFrcdrF11Bfc3QmFmsVhw7Ngx9PX1ITc31y8Fmb7eoD0x3A10eq6hoQFlZWWD9scSFnyTz/vzxiT0nBN2+25vb0dRURFYlkV0dDTi4uJEaRp3USibzcafV6TZoT9vVFKplBdIwigUafSoUqlEjR4HinwE6w1eCGlSOpI4NjN1NHYOCwvjZ+IFq+cZEU2hDvkt+atvnBN09pwIKprOIpKSkhAdHe22gHYw015/QERTd3c38vPzoVarPeo55Cm+1DR5arg7VGPdgTAYDGhpaUFOTs6AbuSOBd/D8STvqtt3W1sbGhoa+CnrwpYGjlEoi8WCiooKPuJDBFSgWhqQKfZjxoyBzWbjo1BCuxEiooR+XjTS5BuujJ0NBgOam5vBsiz27dvHR/6io6P9Vn82VEwm0xkhmsi+zM3Nxcsvv4zXX38dixYtglwuh1KphFKphFQq9bqQn4fWNImgouksgmGYAWccDVd6rru7G/X19UhPT0d6erpfL6DefAdvDXcD4WtntVpx6tQpWCyWQf39PC34DiTCNA0pFha2NGAYhhdQMTExsNvtKCgogFwux8yZM3m7nuFqaSCTyfjxjB8/3mVEhAioYBMj7giGSNNAEIsXuVyO7u5uTJ8+nW9rQCYcEAEViFmQnkIaWwbzvvQEIvb379+PgwcP4tChQ/jrX//KPyCHhYWhq6sLL774IiZOnOjDBkBFkwAqms4iBrs4BDo9x7Is9Ho9uru7cc455yAuLs7v25BIJLBarYMu54vhrqfr9hSj0YijR4/ytiKDCSZfC74DiWNLg66uLrS3t6OmpgbHjx8HAERGRiIzMxMKhQIMw4jSeMPdWNMxIkJu5iUlJbBarVCpVLyQCkRPrqHi2FIimCFpOWLxQiYcOM6C1Gq1vIiKjIwctnO7t7f3jOjRRM6JGTNm4LHHHuMndRiNRvT19cFisaCzs5MXp6ESUQ1WqGii8MhkMpjN5oCs22w2o6CgAH19fXxzxUDgSd2Rr4a7/iwEJwXfycnJUCqV6OzsdLusPwu+A4mwz1J0dDQKCwv5GTuHDh3yuKUBqdkajihUfHw84uPjwXEcjh8/DqvViubmZlRUVCAiIoIvbHY1O2wkEM5SDHZcTW0X1p8B4OvP9Ho9amtr+ffJTMlANto1Go0eTxIIZshDyNVXX+3R8t6eO7RPkxgqmig8gUrPdXV1IT8/HzqdDvHx8TAYDH7fBmGw79De3s5bs3hbOOmvQvD6+nqUl5fzBd91dXVum1sGsuA7UDQ2NqK8vByTJk3CqFGjAEDU0qC8vBxmsxlRUVGIjY1FXFyc25YGw9VYk6SuIyIikJ6ezhe/d3R04Pjx43yPInJDH6lp6sJatmDHk35AwlmQrjrCk+aagbB4OVO6gf/973+HzWbjo6Su/uRyORITE33bfzQ9J4KKprMIT9Jz/hZNpEnkuHHjkJqaiqampoDWTbkTNhzHoa6uDpWVlZg0aZJP/nFDLQRnWRZlZWU4deoUZs6cyUdhXK1XKBZIsXew3yhJjVhjYyNmzJghKmgXtjTgOA4mkwltbW1obW3li8Q9bWngbWNNX3BV/N7R0YGmpiaUlpaKbubEz284CKX0nLe+c44d4YkvoV6vR0NDA5/GJuJ1KBYvwJkjmt577z20t7dDJpOJriPkNySTydDX14dvvvnGt+7nVDSJoKKJwuPPmiaWZVFaWorm5mZRk8hAFFMLcSWaiOFuR0cHZs2aBZ1O57d1e4rVakVBQQHMZrNTDyhH7zmhQPC3GAgUZB93d3dj1qxZA96MGIbh61xSU1Nhs9n4FgHClgZERA3W0sBfjTXd1Xo49iiyWCx8FKqwsBAAeAE1VL+2wQil9BxpL+Erjr6ERLiSBzG1Ws0LKF9mhpFC8FDn4YcfhtFoRH9/P//X19fH/7/ZbEZ3d7fPNXo0PSeGiqazjIHMYf3VcqC/vx8FBQVgWRZ5eXmiad1D7dg9GI6iTGi4m5ubO6TiXl9Fk9FoxJEjRxAREYG5c+c6zRYS1koFa8H3QFgsFhQWFoJlWcyePdtr0SCTyZyiOu3t7WhqauJTNKQzuauWBoM11vTmZurJ/lYoFEhMTERiYiI4jnPyayMmw4FIKYWSaPKn3YtEIoFWq4VWq0V6erpIuBKLF9JKIjo62qPfudFoRGxsrF/GN5LMmzcvsBugfZpEUNFE4fFHeo6Y3MbExCA7O9spPB/otgZCUdbZ2Yn8/HzecHeoF3BfCsHb29tRUFCAMWPGYPz48S5vdiQ9F4qCyWQyIT8/H5GRkZg8efKQmxgKozrk5jhQSwNSKDxQY02y3sGiUL6kXhmGEd3MhSml+vp6SCQSURRqqIXNJBoWCudGoDzyAGfhSqJQp06d4jvYkygUSfc6YjQakZaWFpDxnVHQ9JyI4I/7U4aNoaTnSM3Q4cOHkZ6ejilTpri8gQZaNJFoUGNjIw4dOoT09HRMnjzZLxdvbyNNdXV1yM/PR1ZWFiZMmDCoJYrNZuN7BYXCTbGzsxO//vorYmNjMXXq1IB0fSYtDaZOnYrzzjsP06ZNg1KpRE1NDX788UccOnQINTU16O3t5fcdaeqnUCggl8v5cdntdthsNlgsFthsNqdj6Y+p2CSlNHnyZCxYsACTJ0+GQqFAbW0t9u/fjyNHjqC2thY9PT0+ibRQ6SUFeF/T5CtEaKelpSEnJwfz589HWloabDYbSktLsXfvXhQWFqKxsREmk4n/nKfNLZ966inMmjULarUa8fHxWLZsGcrLy0XL9Pf3Y/369YiJiUFkZCSWL1+OlpYW0TL19fVYunQpwsPDER8fj3vvvdfpevvDDz/gnHPOgVKpxLhx4/Duu+/6vmMoAYFGms4yApGeI/Us7e3togJnVwRaNDEMg/7+fpSXlzsZ7g4VTwvBST1XS0vLoPuD3ASNRiPKy8sRFxfns+HscNLS0oLi4mJkZmZizJgxw7JNYaEwsUshUShi2jtYS4OBGmv6u3+NY2Fzf38/bzJcV1cnmn4/UKd+IcHe2FLIUGuafEUul4taSZCGpm1tbaisrERRURFv3+RJKvnHH3/E+vXrMWvWLNhsNjz44INYvHgxSkpKeNG1adMmfPnll/j444+h1WqxYcMGXHHFFfjpp58AnN4XS5cuRWJiIg4cOIBTp07h97//PeRyOZ588kkAQE1NDZYuXYrbbrsNO3fuxLfffos1a9Zg1KhRWLJkSeB22CDQmiYxVDRReHwRNH19fcjPzwfDMMjLy/t/7Z15eFNl2sbvJN33vaUt3Si0hRa6UoqAOCDI2io66igiA85YAQG/EVxGURhZREdRUFwYQR1AsK3sCJRNZO++b5S2dEnSfUub7f3+6Jxj0jVpkyZt39919VLS0+RNmp5z53me9777nCXQVn4bADauQyaTYfr06Rr3YFFl7Uzor0QiQVRUlNI8V2eYdpytrS0CAwNRU1ODnJwcSCQSNttNcRBaH2Aqivfu3UNQUJDW/LZUwdTUFKNHj2ZNE3uyNHBwcGDfCz1ZGjAVKKYapWlLAwAwMTGBm5sb3NzcIJfLWZPHe/fuISsrC9bW1mzbsaeokaFkTDhYlabe6M7QlMPhIDU1FSkpKfjtt99w4sQJPPbYY1iwYAH8/Py63MfZs2eV/r1//344OTkhKSkJM2bMQENDA/bt24eDBw/iT3/6EwDgu+++Q0BAAG7evIkpU6bg3LlzyM7OxoULF+Ds7Izg4GBs2bIFGzduxHvvvQcjIyPs3bsX3t7e+PjjjwEAAQEBuHbtGj755BOdiibanlOGiiYKCzMPpOosAmPQ6OLigoCAAJV+hhFmmj75M4G7pqam4PF4WjGt60s0NTc3Izk5GRYWFj2G/jJ0nl9S/GTc3NzMDkIzu4QYPyNNDxarA2OZIBQKER4eDisrK52sozu6szSorq6GUCjs09JAKpUiNzcXbW1tcHR0VLI00JaxJpfLZbfPK4YMMyLK0NCQFVCKlUdtzglpGrlcrlVzyv5gYGCAmTNnYubMmYiMjMTq1ashk8lw9uxZ5Obm4uuvv+7zPhoaGgCAtdRISkqCRCLB7Nmz2WP8/f3h4eGBGzduYMqUKbhx4waCgoKUoprmzp2L2NhYZGVlISQkBDdu3FC6D+aYdevWaeCZDwA1K01UNFGGFb1dcJmLfF9ldUII7t+/j8LCQtagUVUUT/6a+hSqGLjr7OyMmzdvauR+O9PbILhQKERaWho8PDwwduzYXl/n3ga+ORwOLC0tYWlpyW5vZy7+JSUlSllq9vb2g/ZJnomdaWtrw+TJk3utoOkaRUsDprqgaGkgk8lgb28PBwcH2NraIi8vj31eJiYmPRprKvpBaVq4KJo8KkaNFBQUoK2tjd0Zpquctv6gD5WmnmCEtZ+fH2bNmoU1a9ao9HNyuRzr1q3DQw89hMDAQAAd5x8jI6MuVibOzs6oqqpij+mcbcn8u69jGhsbIRKJdPc3RytNSgydv0CK1lEcmO3pE6JUKkVmZibq6+v75Xmk+BgDPaF2F7jb2tqqtfZfTyaUjGnmhAkT4Orq2ut61Q3d7ZztxrSg8vPz0d7eruRnpK2TKmPbYGRkhIiICL2rHvRFT5YGjEUAj8eDu7s72tvbYWxsrHNjzc5RI62trWwVinHTz8/PZ3eG6asw0dVMk6r0x6dp1apVyMzMxLVr17S0Kj2EiiYlqGiisDAn/5520DGZbYaGhoiKiurXrA1zEh3oMHhPgbs8Ho8VJpo+YXduz8nlcmRnZ0MgEPQpIBXFEnNf6rbZFLevjxs3jnXV5vP5yMvLg7m5OTsHZW1trZE2XlNTE1JSUmBvb69yC1afYXZaGRoaorKykm171tbWsuHJ6lgaaLuNBwBmZmYwMzPD6NGjIRAIUFBQAEII8vLyIBaL2SqUvb29XlUA9b2V2NraqpYj+OrVq3Hy5ElcvXpVqbru4uLChuIqngP4fD5cXFzYY27fvq10f8zuOsVjOu+44/P5sLKy0unvlQ6CK0NF0wijv1EqTPvJzc0Nfn5+/T4ZMheVgYim3gJ3FSsE2hRN/Rn41mQERmdXbYlEwu4QYgbzGUHQ37ZOdXU10tPT4eXlBW9v7yEzgNwXjBB0dHSEv78/OByOUvZZdXU1iouLkZmZyQ5nOzg4wMLCQqvGmqrA4XBgZGQEPz8/tsWkuDPM1NSUFVA9+RMNFvosmmQymcqiiRCCNWvWICEhAZcvX+7i7RQWFgZDQ0MkJiZiyZIlAIC8vDyUlpYiKioKQIex7gcffACBQAAnJycAwPnz52FlZYXx48ezx5w+fVrpvs+fP8/eB0U/oKKJokRn2wFCCIqKilBcXNxn+0lVBuIK3lfgruIFTdMwoqm5uRlJSUmwsrJSe+BbW8KDCeR0cXFRuvgXFRUhIyMDtra2bBVKlSH57kJ3hwOM+aqnp2cXIdjZ0qCtrY2dJ2MsDezt7eHo6MhaGgCaMdZUFUXLAUXh7OHhAalUyrZvs7Oz2Z2ZjIgaiBt+f9eqr63DlpYWAFApi23VqlU4ePAgjh07BktLS3YGydraGqamprC2tsaKFSvw2muvwc7ODlZWVlizZg2ioqIwZcoUAMCcOXMwfvx4LF26FB9++CGqqqrwz3/+E6tWrWIr9i+//DJ2796NDRs24K9//SsuXryII0eO4NSpU1p6FSj9gYomihKKlSamBdbU1ITIyEiN7Zbqj7WBqoG7mmr/dQfjcXXz5k14enrC19e3z4Fv5sI5mIaVnS/+quwkU1wzE7obGhraq8fUUEMgECAzMxPjxo1TafOCiYmJ0nB2X5YGnatQil+aqkL1tuvUwMAAjo6OcHR0ZHdh1tTUoKqqiv29MwLK2tpa61UgfZ5pYkwuVak0ffnllwCAmTNnKt3+3Xff4cUXXwQAfPLJJ+ByuViyZAna29sxd+5cfPHFF+yxPB4PJ0+eRGxsLKKiomBubo5ly5Zh8+bN7DHe3t44deoU1q9fj127dsHd3R3ffvutbu0GADrT1AkqmkYYqrTnpFIpmpubkZKSAhMTE0RFRWk0hFRd0aRO4C7zaV7TlSZCCMrLywF0+Kf0JNoYFE0Ude3wbWZmBg8PD7Ya0Tkcl7nw29raIj8/H42NjZg8efKwCDNlKCsrQ0FBAQIDA9n2iDr0ZWlgamrKtkM7WxqoYqypahVK1ZaX4i5Mpn3LZLVlZWVBJpOxMSP29vZa8QLT5/ZcS0sL6xjfF6oY2pqYmGDPnj3Ys2dPj8d4enp2ab91ZubMmWxWpr5AZ5qUoaKJooSBgQHq6uqQmZkJT0/PPrfP9wd1RE1/Anc1LZoUB74BdNkWrIgmBr61SeedZI2NjRAKhbh//z4yMzPB4/Hg6enJ7vTTp7X3B0II7t27h9LSUoSGhqq927M7urM0qK2thVAo7GJpoGhO2pOxpjpVqP7+TgwNDbvsIKypqUFFRQVyc3NhaWnJ7sS0srLSyO9dn9tzzc3NMDc3H/Lv70FjmAshddDPjwEUnUAIgUgkwoMHDxAUFNRjwOxAUbXSVF9fjxs3bsDCwgKRkZEqz2RoUjSJxWLcuXMHjY2NiIyMBNDzvJTi/BKzDn0+KTNhs6NGjWIv9L6+vmhsbMStW7fw+++/Izc3FzU1NVqzcdAmhBDk5OSgvLy8X/YYqmJgYAAnJydMmDABM2bMQHh4OCwtLVFeXo7ffvsNN2/eRGFhIerr65Xy8YyMjNgvHo/H+oAp5uMpvp8AzVRvFLPawsPDMW3aNIwePRptbW1IT0/Hb7/9hqysLFRVVUEsFvf7cfS50sSIJooKkH58DYDt27eDw+EomXrqU7YfrTRRAHSIg/T0dLS3t8Pd3Z3dBqsNVBFNDx48QE5ODsaNGwcPDw+1xMdAd+cxMC7jVlZWmDhxYq9D5ur6L+kL9fX1SE1NhaurK1tV9PDwgEwmY6snWVlZkEql7BC0g4ODRtu12kAmkyEjIwOtra2saeVgwAgSKysr+Pj4QCwWs+1QxV2N/bU00Eb2nJGREbuJgKk+1tTUsD5WVlZWbBtPHUd6fZ9popUm1RjM9tydO3fw1VdfYeLEiUq361O2HxVNI4zuThKNjY1ISUmBpaUlnJ2dte463JtoksvlyMvLQ0VFRb8DdweyO49BIBAgPT2924Hvzvc9WDvkNE1VVRWysrIwbty4LqG7PB6vy1CxUChUupAyMzwWFhZ69ZwlEglSU1NBCNG5GaeRkRFGjRqFUaNGacTSoK2tDQDYfDxAMxYWDEz10draGj4+Pmhvb2dnocrKysDhcJRChnt6bbXllaYp+mNsOWIZpEHw5uZmPPfcc/jmm2/wr3/9i71d37L9qGga4VRUVCArKwve3t4YM2YM8vLytLLzTJGeKkGM95FYLEZUVFS/8+MG0p5TjIgJDAzsst2+O4PLoVZhYp5jcXExJk6c2GforuJQMXMhra6uRnV1Ne7fv8/u2nJwcFDaiq8LmBk4U1NTBAUF6dVMTU+WBtXV1UqWBp0jcpj/lpSUoKqqChMmTNCapUFnjI2NlUQfU4UqKSnpUoVSFM/M8LQ+vf6KNDc3q2VsSVGfxsZGpX8bGxv3uuFg1apVWLBgAWbPnq0kmvQt24+KphEKU9EpLy/HpEmT2B1FPB4P7e3tWn3s7ipNiq2wvryP+qK/okkulyMrKwvV1dWYPHkyrK2tu71vZkiaqQIwtw8FwaSJ0F1jY2O4ubnBzc2NjXYRCoXIzc2FWCyGnZ0dK6IG0xuI2fFpb28Pf39/va1yMHS2NKivr2d34ylaGtjb20MgEOD+/fvsMLu2LA16g8vlwsbGBjY2NhgzZgza2trYKlRJSYlS/AvzvtLX30FLS4tWQr2HI/1tz3WuXm/atAnvvfdetz9z+PBhJCcn486dO12+p2/ZflQ0jTA4HA7a29uRlpbGVnQUy9SM5YA26dw+UwzcHTNmzIDFR398oNrb25GamgqZTNbrLj2mSqbo8M3kj+k7jO9We3u7WoP1vaEY7eLn54eWlhZUV1ejsrISubm5sLCwYNt4mtqV1R3MbJa7u7tG3kODTee8OeZ1FAqFyMvLA9ARs6HYBu48Y6dtY83OmJiYKOUi1tfXo7a2FsXFxawP0oMHD+Dg4KB380PqRqiMaPrZnisrK1P6UNZTlamsrAxr167F+fPnB92AtT9Q0TTCkEgkuHHjBmxsbLqt6HR2BNcGjKjpLnBXE6hbaWpqakJSUhJsbGz6bOkwomkoteOArqG72phb43A4sLCwgIWFBby8vNghaKFQiOTkZHC5XFZA2dnZaWwNzFb/sWPHdvl0O1QxNzeHmZkZWltb0dLSAi8vLzQ3NysN5TNVKOZCo21jzd7gcrmws7ODnZ0dfH19UVdXh5SUFDQ0NOD+/fswNDRkRaGtra3W5yb7grbn1KCfoonZENEXSUlJEAgECA0NZW+TyWS4evUqdu/ejV9//VWvsv2oaBphGBoaYuLEibC1te32gt+fKo26cLlc9iLeOXBXU/ev6nMQCARIS0tTqcrFbBe/d+8eXF1d4eDgoPOTvyowWWsODg6D2rbqPARdX1+P6upqFBQUQCQSsb5Ajo6O/Q4kLS8vR15eHiZMmKAx0a0PMK3ixsZGREREsK8P47FUXV2N8vJy5OTksNU8Jqi5p2FypqU8GFUoxkZh0qRJbOuxpqYGhYWFaGtrg42NDSv6TE1NB/3DBx0EVx1t756bNWsWMjIylG5bvnw5/P39sXHjRowePVqvsv30/4xP0Tj29vY9utwORntOJpNBKBTC2tq6S+CuJlCl0kQIQXFxMYqKihAUFNSnxQLzqX3ChAlsFllmZqZGLvzahAnd9fb2hpeXl84qY4qViHHjxim1n5iID2YOSpWID+b3V1JSguDgYNjZ2Q3SM9E+jF2CSCRCeHi4UltDFUsDRWPNniwN+mOsqQ6KO+c6tx6ZkOGamhoUFRXByMiIFVA2NjaDMjze2to6rES2VtHy7jlLS0sEBgYq3WZubg57e3v2dn3K9qOiiaKEtitN1dXVKC0thbGxMcLCwrRS9ejLckAulyMzMxM1NTU9DnwzdB74tra2ho2NDZvpJhQKIRAIkJ+fD3Nzc3abvjbnd1RFn0N3FR21mYgPoVCItLQ0AGA9oRS9jBgIIcjLywOfz2eNJIcLUqkUaWlpkMlkCA8P79MuoXM1T9HhPSsrSy1Lg+6c7PtbherNo8nMzAxmZmYYPXo0m+lXU1ODvLw8iMVipZBhbX0QaWlpoe05VdGD7Dl9yvbjEFWCdSjDColE0qOoqKurQ1paWpdwyoGiGLjr4uKCtrY2REREaPQxGLKysmBoaIhx48Z1+V57eztSUlJACEFISEivg4eKbQ2g94FviUTCVk5qamrA5XJZATXY2/CZWTFmZ+RQCt0lhKChoQFCoRDV1dVoaWlhWzlMNS8jIwPNzc0IDQ3Vy+pef5FIJEhJSWHbWgNt/SpaGtTW1sLAwIAVUN3NlHU21lR836vbxqutrUV+fj5bCVAFJtOPqULV19fD1NSUFVCdw6UHwtNPP41HH30U69ev18j9DUcaGxthbW0N/1e3gmes+oC2rL0NuZ+9hYaGBo2FvOsTtNJEUUIblabOgbsikQglJSUafQxFepppamxsRHJyMmxtbREYGNirkFHXsNLQ0FDpE3/nbfiKbtraCEdlYF5rZhZmqM1tcDgcdlv72LFjIRKJWDFaWFgIDocDAwMD+Pv7a/V1HGza29uRnJysUX8pRUsD5j1ZXV2N/Px8tLW1sa1lBwcHmJmZ9WmsyaB4XE8ipj/GloqZfky4NFOFysnJgVQqVapCDWSnFR0Ep/QXKpooShgYGGh0pqm7wF2xWKzVLDMul9vlOfD5fKSnp8PHxwc+Pj59DnwPZIdc5234jJs2M7hrZWXFVqE0uRWbMQcFgMmTJ+t91IkqmJqaYvTo0XByckJSUhK4XC4sLCyQm5uL7Oxspfmdofp8RSIRu3tz/PjxWmlZ92QNwcyUmZqasq+jra2t0jwS0LUK1dcwuSbcwBnTVMaVvqWlBTU1NeDz+ewcHPOcVJmDU4RaDqiBHrTn9AkqmkYgvV2keTyexiIQ6uvr2V1bEyZMUPp0qs25KR6PxwaNMin39+7dU2vgW1OWAt25aQuFQnaY3NjYmL0wDKT90NLSwkbh9FVFG2q0tLSwFUJGVDC7yIRCIUpLS1l3aqaap2/RLj3BPDdmZ+NgrVlxpkwqlaK2thbV1dWspYFiFcrExKRLFaqzpYFMKkNJbhXK8vloF0lgbMWFsQa7wop2FswcHFOFysrKgkwmg52dHSui+qpC0t1zqjOY2XNDASqaKEowF9uBhm32Frir7WFzZvcc06qqra1FZGRkr/31wXL4NjY2VnKBZgagMzIyIJfL2dmd7gage4KZQ3Nzc+uSkzfUaWhoQEpKSpfnpriLjHGn7hxJwryWtra2eikiGX8wXf/eDAwM4OTkBCcnJzZnsLq6GhUVFUoGpT1ZGsjlcqRdLUDOnWIYGPFgYMjD/TwhDMy4GB8wHnbO6lWBVMHQ0LDHNefl5bG7rxh3csXHZ6pWw2kDgVahlSYlqGiiKMFcXKRSab+CTlUJ3B0M0SSRSFizs6ioqF4/eTKVNcVE+cG4gHUOxWV2PjFhrra2tuz3exp47i10d6jD2CX4+vrCw8Oj12M7R5Iw8zs5OTnsTBkjovRhFoqpwnp5ecHb21vXy2FRrIx6e3srWRowrd/OlgZ1/Ebcz66AwygbmFmaQCQSoa4ZkDTKUZBagrBZHT45qlgatLW2g19aA6lYBis7c9i79l197W7NTLxLRkYGCCFsFcrW1hbGxsZobW3VaqVpz5492LlzJ6qqqjBp0iR8/vnnmDx5stYeT6tQ0aQEFU0jkN4EAYfD6beoUTVwV9vtOeak6eLiggkTJqg88K0Nkz9VUUyX9/X1hUgkYtt4inYGzKd9AGzo7qRJk+Dg4KCTdWuLiooK5OTkYMKECX22VDvD4/HYizozU9a5csKIUUtLy0Gv8NTU1CAtLW1IOJgrWhowOxurq6tRUlLCWhqIamRoamiBk7sd2trbUFZWBnt7exjYGaO6ooH9ENLXLFRVSTWSLmShlt8IQgiMjA3hNcENYX8aD0Nj1S9VRkZGcHFxgYuLC/thpKamBg8ePMArr7yCBw8ewNraGvfu3UN4eLjG/+Z/+uknvPbaa9i7dy8iIyPx6aefYu7cucjLy2ONF4cSnP99qXP8cIZaDoxAZDJZr8PeFy9eRFhYWK/+RZ1RDNwNCgrqdbu0SCTClStXMHfuXI1fsKqqqpCeng5jY2PMmDFDqwPfg4VEImHjSKqrq8HlcmFgYACxWIyQkJAuQZZDGcaaori4GBMnTuy2UjkQxGIx28ZTtIZgzBW13cYTCATIyMjQS+8sdWFaopl38nHnXA7sR1lCTuSwsraC6yhX1FQ1wMrWHI8tfQgcDqeLsabipUfcJsXlI7fRUNMMZ08H8HhciJrbUFNRj4g5QfCP0Ew17sGDBzh27Bg+/PBDyGQyGBsb47HHHsPq1as1VgmKjIxEREQEdu/eDaCj+j569GisWbMGb7zxhkYeYzBgLAfGx6pvOZD9JbUcoIwg1HUFVzdwV3FHjqYuUooD3x4eHqivrx8WggnomN9gPjmLxWKkpKRAJBLBwMAASUlJsLOzYysn+tB66i+EEOTn56OqqgphYWFaOeEaGRl1CZllqnnt7e1sS9TBwUHjHlBMpSsoKGhIVhw6w7RE7awdUFfahuLCEjiNtkWbqA0ZaZmQtBBMnhMEkUjUp6UBv7Qa1ZX1GOXtAM7/vm9ibgwTC2Pcy3qAcWGeGqkIubu74y9/+QvefPNNCAQC5OXl4fTp02hpaRnwfQMdojwpKQlvvvkmexuXy8Xs2bNx48YNjTwGRbdQ0TQC6UsgqBra29/AXcVhc02IJplMhszMTNTV1SEyMhJtbW2oqanpcc2KM0z6LpgUYewbGDd1Ho+HlpYWCIVC9oJsaWnJCqihsoMM+CNrraGhARERET22djWJYrQLsw1fKBSCz+ezw8TMHJS1tfWAXsuysjIUFBRg0qRJGq+e6RqJvB3GjjKMEjmDKzEAh8uBsYU5bP3MYWrHxfXr1/u0NOCCy3pwERAQeUcVimvAhVgkhkwqA9dIM2201tZWAICNjQ2mTZuGadOmaeR+gY45PJlM1uVc6OzsjNzcXI09zmBCd88pQ0UTpQuqzDRJpVKkp6ejqalJ7cBd5oSpibkmRkhwOBx24LsnH6jOA99DSTA1NjYiNTW1S+gusw2bGYBl5qCKi4thZGTECijFC5W+wUSHSCQSRERE6KxaxmzD9/LyUmqJMgPQjICys7NTa5NEcXEx7t+/j9DQ0GHVSgX+GGgPnzYJ9jaO4JfWQCKWwtreAo7uduDxuCpZGtg4WsPMwhTtIgnMLE3YKlRTbQvGTHIHAYFYLNZIPl5LSwtMTEz0ckelXkIHwZWgoonShb5EU2trK5KTk2FsbIyoqCi1TQUHMmyuSENDA5KTk9lgR0UfqM6iqXMkir4KiO5gLAn6Ct01MjKCm5sb3NzclOwMGB8bRVfy/uyM1AZMrI2hoSHCw8MHHB2iKRRbonK5nB2ALioqQkZGBmxtbVkR1VNVjKnEVlRUDLuMPKDD6iI1NRW+vr7sQLtPoHuX43qyNKisrGQH8+3t7eHsbYvS7Cq0NBrD0MgAzXWtsHW0xvgIXxgYGKhsrNkXzc3NGjWVVcTBwQE8Hg98Pl/pdj6fr/aGBr1imAshddCPMxRlUFGlPdfTTFN1dTXS0tLg6uoKPz+/fouP7oSNOjBzVL6+vl2EROf7HkrzS50pKytDfn6+2rvIOtsZMEaQzK4nGxsb9vuD0QrrDkZ8W1tbK5mf6htcLhe2trawtbVlo12YofyCggKYmpqyYpQxKCWEIDc3F9XV1QgPDx92Roq1tbVITU3FuHHj4O7eVSj1RG+WBnKrVhi7yNEibISRzBg+k0YjINwHDq5/uGR2Z6zJoGoVSpvGlkZGRggLC0NiYiJiYmLYNScmJmL16tVaeUxtQ9tzylDRROlCd1UgxcDd8ePHw83NTeOPoQqEEBQVFbFb7bsbqFW8b8UK01ASTIQQFBQUsH5XAwnd7WwEqZjnVlBQADMzM1ZADXR2R1UaGxuRkpICFxcXjBs3bsj8XoCOaBcPDw82H62zQam9vT3a2togFosRHh4+rEKFgT8Ek5+f34DPA0qWBoEKYc3CarS01uHegwI0tf/h8t7dMDkjoFStQjGiSVvvuddeew3Lli1DeHg4Jk+ejE8//RQtLS1Yvny5Vh5P69D2nBJUNFG60FnQdA7c1cRcRn9Ek0wmQ0ZGBhoaGnqdo2IqTZqORBksmMH2pqYmrYTuMnluo0ePhlQq7TK7wwgoOzs7rbTLampqkJ6ezrYbhzKdW0/19fXIzs5GW1sb5HI5MjMz2TaeNi/UgwXjMeXv7w9XV1eN3nfnsGZFl/fi4mIYGBiwc1CK783O+XiMkOqpCqXtCJWnn34aQqEQ7777LqqqqhAcHIyzZ8+qvFFG36CVJmWoaKJ0QdFyoLvAXU09hjqiqa2tDcnJyeDxeH3OUTGeMBKJhD1RDpWL1WCH7hoYGMDZ2RnOzs7s7A5TgWpra1NyJdfE755xMA8ICND4RVfXyGQy3Lt3D4aGhpg8eTJkMhlb0WNyBhWjXfS1HdkTjEN7QEDAoHhMKbq8y+Vy1uW9oKAAIpGInStzcHCAubl5r5YGihtA6urqtD47t3r16iHbjusCrTQpQUXTCESVmSaRSNRj4K4mUMcVnBn4VmUdTBvOyMgI165dYy/4g2FcOFCY0F0rK6s+ncy1geLszrhx49gt+FVVVcjLyxuwk3ZpaSkKCwuHpYO5RCJBSkoKeDweQkNDYWBgAENDwy45g4o7yBTjSPTdX4tpP44fP14nA81cLpfNkvPz80NraytbhSooKICJiQk7V9adpQFTeWpvb8e3336Lurq6QX8OlOEBFU0jFCbWoDt4PB6amppw586dbgN3NQGPx1NpELyyshKZmZndDnx3hinLc7lcTJs2DY2NjRAIBKxxob29PZycnODg4KD1Co666GPoruIWfMZJmxkmNzAwUGrj9SVkCwsLUV5errbT/FCgvb0dycnJMDU1RVBQULdiV3Ew39/fH83NzRAKhSgvL0dOTg7rr+Xg4KCTaJfeEAqFSE9PR2BgoN60mMzMzLrMlfVmacDldlgfrFy5EkZGRsjIyND1Uxgy0PacMlQ0UZSQy+UQCoVoampCeHi41oz4+mrPMRfakpISBAcHw9HRsdf7626HXOeqiUAgQFlZGbKzs2FtbQ0nJyed7h5jqKysRHZ2Nvz8/NTaiTSYdHbSZoafc3JyIJFIlOwMFAWpXC5HdnY26urqtDKfpWtEIhEbH6RqNVZxB5mPjw/a29vZubL79++zszuMINVlhZSJfdFnF/O+LA127doFT09PVFVVobS0FJcuXRp2BqNahbbnlKCiicLCzNO0trbC0tJSqyeW3kSTTCZDeno6GhsbERkZ2ae/TV8D3xwOhzWB9PHxQVtbG4RCIQQCAQoKCtgwXCcnp0H9lE8IYY0Ph1LLisvlsp/imYuUQCBAaWkpK0iZC35hYSHa29sxefJkvW9BqUtLSwvbNvb39+/3+8bY2FhJkNbV1UEoFCIvLw/t7e1s1URTc2WqwufzkZmZqdeCqTPdWRoUFRXh4MGDSEtLg4WFBdauXYsFCxZg8eLFw847SytQ0aQEFU0jlM7tOcXA3XHjxuH+/ftaffyeZprUGfjur8O3iYkJu3tMIpGwbae7d++yn1q1Pawrl8uRk5PD7kgcqidvxYvUmDFj2B1PfD4fBQUF4HK5cHV1RWtrKwwNDYfc8HNPMH8vrq6uGm2nKs7uEELQ0tKC6upqpbkyRkBZWVlpTeAzA/sTJ07ss8qrz/B4PKSmpqKhoQFFRUV48OABTp8+jY8//lilD2QU2p7rDBVNlC6BuzU1NWoF9vaH7maamMFzR0dHjB8/vs85GU04fBsaGrI+MYptJ8ZFm7lAOTg4aGzHjUQiQXp6OsRiMSZPnjyo1QNtY2JiAnt7e5SUlMDBwQGjRo1it6kDf0SR2Nvb6437t7ow71MvLy94e3tr7XEUK6RMtAsz/JycnKxU8dPk61lZWYmcnJwhVf3sDrlcjvXr1+PatWu4dOkS+0EpKioKW7Zs0fXyhg600qTE0DxrUTRCT4G7mog46YvOj1FRUYGsrCyMHTsWnp6eKg18a9p/SfEi5O/vj8bGRna7eGZmJuzs7Aa8/V4kEiE1NRXGxsaIiIgYssKhJ5gKjLOzM/z8/MDhcODi4gJC/jAuZKJImNfTwcFhyBhAMgJw7NixbHTIYNFZ4Hd+PRl7CAcHh37P6THBz0M9WFgul2PDhg04f/48Ll++DA8PD10vacjCIQScHjYN9XT8cGZ4nbEpKiOVSpGamtpt4K6BgcGgiCaxWMw6X5eWlvZ74FsbcDgcWFtbw9raGr6+vmhtbYVAIGDbJJaWlmwbT1XTQsYFm9lBNVxaVQy1tbVIS0uDl5dXl52OnY0LW1tbIRQKwefzB7XtNBAEAgEyMzMHzaeoNzrbQzBb8IVCIfLz81mXdwcHB1hbW6v0XisvL0deXh6Cg4NhZ2c3CM9CO8jlcrz99ts4fvw4Ll26pNVqIGXkQUXTCCUzMxMymazbuSGmCkQI0drFi8fjQSKRKAk3CwuLXn9Glw7fZmZmrBgQi8UQCoVKpoWMgLKxsel2XYzPjY+PT5+VtKEIn89HVlaWytEaZmZm8PT0hKenp9JcGTPPpi+7xxiYllVgYKBeDkV33oLP7MZLS0sDIYStoPYU1vzgwQPk5+cPecFECMHmzZtx5MgRXLp0CWPHjtX1koY+tD2nBBVNIxRmZqi7T6A8Hg+EEK2KJsbsz8rKClOmTOlz4JupMAGqD3xrCyMjI7i5ucHNzQ0ymUzpAgX8EUPCGGqWlZWxmX1DOum8B5jnFxQU1K+h4c5tJ2b3WG5uLsRiMWtn4OjoqBN/Leb5DZWWlaLLO9MWra6uxv3799mwZkaUmpmZ4cGDBygoKEBISMiAMg51DSEE27Ztw/79+3Hx4kX4+/vreknDAjoIrgwVTSMUY2PjHltwzJyNVCrVykWqvr4e9+/fB4/HQ3h4uFoD3xwOR6+qNDwej/WIYeZMFA01jY2NIRaL+y0o9BkmPLmsrAyhoaEaySTs7PzMmEA+ePAAOTk5sLKyYgXUYGS5MZYQmnp+g41iW9TX15cNa66urkZRUREbmTRu3LghbTpKCMG///1vfPnll7h48SICAwN1vaThA600KUFF0wilt4sNI2K0MdfEDHw7OzujpaWlT8E0lAJ3FedMxowZg7S0NDQ1NcHU1BRpaWl6Zag5UORyOXJzc1nLhL5aq/2hOxPIzm1RRkDZ2NhodEaM2SRRUVGB8PDwYbM1XTGsubi4GPfu3YODgwOKi4tRWFjYo0mpPkMIweeff45PPvkE586dw6RJk3S9pGEFrTQpQ0UTpQscDkcptFcTEEKQn5+PsrIyhISEQC6Xo6CgoNfjB2PgWxswJqEcDgdTp06FkZGR3hhqagKZTIaMjAy0trYiIiJi0CwTjI2Nu2S5MbNicrlcyc6gu7kdVSGEIDc3F9XV1QgPDx92LuYAcP/+fdy/fx8RERGwsrICIQRNTU0QCoWsaz5T1XNwcICFhYVevkcJIfjqq6+wfft2nD17FuHh4bpe0vCDVpqUoKKJ0i2a3EEnlUqRnp6O5uZmduC7urq6x/vX5cD3QOkpdFcfDDU1ARNMy+FwEBERMSBxMhAUs9wIIaw9RHFxMTIzM9nt946OjmrZGcjlcmRlZaGxsRHh4eFDxgpBHYqLi1FSUoKwsDBYWVkB6PigZGVlBSsrK4wZMwbt7e3se7S4uBiGhobsILm+DOcTQvDdd9/hvffew6lTpzBlyhRdL2lYQitNylDRNELpS4hoyquJyeYyNDRUGvjuztxS3wa+1YXZcu/u7t6rS7QuDDU1AePWbmZm1mMwrS7obA8hEonYNl5+fj5b1evLzoCpoIlEIoSHhw+72BcA7AxaWFhYry1HY2Njpc0OdXV1qK6uVhrOVwzEHWwIIfjxxx/x5ptv4sSJE5g+ffqgr4EyMtGfMzJFr9CEaKqrq0NKSgqcnZ0REBCgVEHpfP+K7Thm2HsoCab+hu4OhqGmJmhublbKWdPnapipqSm7/V4ikbC7GxVdtBV3NwId1dC0tDTIZDKEh4frrIKmLZih/QcPHiA8PFytGTTGAsLBwQF+fn5oaWmBUChkA3EtLCxYkT8YHluEEBw5cgT/93//h/j4eMycOVOrjzfioe05JahoonTLQGeaysvLWRHRnRuvomjqLJj0+YLcGSZ0t6SkZMCxE9ow1NQETGyIh4cHfHx8hpSYNTQ0hIuLC1xcXCCXy1FfX89WoJgwXDs7O1RWVsLQ0BChoaF6Vd3TBIxgKi8vV1swdUYx2oUJxGVEaWlpqZIotbOz08prmZCQgDVr1uCnn37CnDlzNH7/lK4M95abOgyvswNFZfq68PV3pokZ+H7w4AFCQkJ6FBFMe24ozy8phu5qY4fVQA01NQHjgq2L2BBNw+VyWZE0btw4tLS0oLKyEoWFhZDL5bCyskJpaSkcHR31dvBZXTrvAtT0ULuRkZFSq5kRpQUFBWhra1OKdtHEfNiJEyfw97//Hf/973+xYMECDTwDSp8Q0vGlzvHDGCqaKN3Sn/Yc0+JoaWnBlClTej1BM9UkiUTCVpeG0kWKCd2VSCSDErqriqGmk5OTRod0GZfoCRMmsLmEwwVmh6hAIICTkxPGjh3LvqbFxcUwMjJi26L6PpzfE8wHGD6fPyi7ABVFKdPGq66uZqNyzM3N2SqUtbW12n/vZ86cwYoVK7B//37ExMRo50lQukAHwZWhoonSLeq251pbW5GcnAxjY2NERUX1OhNCCAGXywWPx0NaWhqcnZ3h5OQ0ZHxhRCIRUlJSYGpqivDw8EFv5/RkqJmXl4f29nbY29vDycmp3147ii3Hoe4S3RMtLS1KM1ocDkdJlHYezlf0LxoK806EEOTl5UEoFCI8PFwnvmDm5uYwNzdno3JqampQXV2N1NRUAGDnpFSxiEhMTMSyZcvw9ddf48knnxyE1VNY6EyTEhxChnktjdIj7e3tPX4vOzsbPB4Pfn5+fd5PXV0dkpOTMWrUqD6HhBUNK0UiEQQCAYRCIRobG1nzRycnJ73d6s2E7jo5OcHPz0+vKhCEELS0tLCvaVNTE2xsbNiKiSoXTsajSCgUIiQkZNiYOirS1NSE5ORkuLq69rrLEQBrZ8Bsv29ublb7NR1sOvtM6dvfEhPtIhQKUV1djZaWFvY1dXBw6FIRu3r1Kp566il8/vnnWLZs2ZCqSA9lmHNyxOP/goGh6pV0qaQNdxL+iYaGBtbSYjhBRdMIpjfRlJeXB5lMhvHjx/d6H0y8RU8D34p0jkRRFByK5o91dXWwsLBgBdRgDj33hj6E7jZWN6GhugnWDpawcuhd0HR+Tfsy1JTJZMjMzERzczNCQ0P17mKrCZihdi8vL3h7e6v980wMiVAoRG1tLczMzFgB1Z+Wk6YhhCAnJwe1tbUICwsbEr9DxiKiuroatbW1MDU1RWZmJtzd3WFubo5nnnkGH330EV566SWdv74jCVY0xfRDNP0yfEUTbc+NYDgcDnrSzDwer1dRxZT/y8vLERoa2meQaV8O353NH5mh5+LiYnbo2cnJSWcXptLSUhQWFupsvqddJMb5A1eQfjkbbS3tMDE3xsSZ4/HosodhbNp9C04dQ02ZTIa0tDTI5XJEREQMmVapOtTU1CAtLW1AQ+2KMSRSqZSdg2JaToyA0tbOsd4ghCA7Oxt1dXUIDw/XqUWFOihaREilUtTW1uLIkSPYsmULWlpaEBgYCFNTU9TW1mo8MPm9997D+++/r3Sbn58fcnNzAXR88Pi///s/HD58GO3t7Zg7dy6++OILpXNAaWkpYmNjcenSJVhYWGDZsmXYtm3bsNuFSemA/lYp3dLbIDgz8N3a2trnwDegfiSKoaEhXF1d4erqyg49CwQCpKSkgMvlsgJqMAZ0mWHayspKnYa2nt9/Gdfi78DawQL2rjZobRThWtxtAMDClx/t8+d7M9SUSqXgcDgwNTVFSEjIsBRMzC5Af39/uLq6auQ+DQwM4OzsDGdnZ3a2THHnGOOxNRgGkIQQZGVloaGhYUgJps4wYn7ZsmX4+eefsWrVKlhaWmLXrl1Yvnw5Dhw4gOeee06jjzlhwgRcuHBBaQ0M69evx6lTp3D06FFYW1tj9erVeOKJJ/D7778D6KjOLliwAC4uLrh+/ToqKyvxwgsvwNDQEFu3btXoOnUFHQRXhrbnRjBisbjHSlNZWRm760YRZuDbxMQEkyZN6nPgW5Ohu3K5HHV1dRAIBBAIBJDL5Wy7SdGoUFMotqtCQkJ0Nr9SL2jEF69+Bw6XAxtHK4XbG0AIsOrz5bB27F8ZvLm5GUlJSTAyMgIhBK2trXpjqKkpGOPRoKAgODk5DcpjMgaQQqEQDQ0NrAGkk5OTxu0MmOiXpqYmhIWFDXkn8/T0dMyfPx8bN27Ehg0b2NeqoqICxsbGGq02vffee/jll1/YSqEiDQ0NcHR0xMGDB9nh89zcXAQEBODGjRuYMmUKzpw5g4ULF6KiooKtPu3duxcbN26EUCgc0h9AmPbc5MVb1G7P3T7+Dm3PUYYffbXnOleaamtrkZKSAldX1z6HoBXFEqCZSBQulwt7e3vY29vD399f6ZN9RkYGu2vM0dFxwDuc2tvbkZqaCi6Xq/N2VYOwEW3NbXBwt1O63czaDDUPatEgbOyXaGpoaEBKSgrc3NzYgWh9MdTUFGVlZSgoKEBwcLDGWzu9wewcYzy2mNZoSUkJm+PGtPEGUi2Vy+WssB8Ogik7OxuLFi3CunXrlAQTAI1VCDtTUFAAV1dXmJiYICoqCtu2bYOHhweSkpIgkUgwe/Zs9lh/f394eHiwounGjRsICgpSatfNnTsXsbGxyMrKQkhIiFbWPJjQSpMyVDRRusXAwEDJcqCsrAy5ubnw9/fvcx6kt4FvTcHhcGBjYwMbGxv4+vqyu8ZKS0uRnZ0NW1tb9mKvbrWkubkZKSkpsLGxwYQJE3S+Q87awRLG5sZobRTB2vEPMShqFMHY3BhW9urvcKuurkZ6ejp8fX2VBvj1wVBTUxQXF+P+/fs6basCHR5bTLtZsTWanZ0NqVSqZGegjjiXy+XIyMhAa2srwsPDh3RVA+jYfLJw4UL87W9/wzvvvDMo76/IyEjs378ffn5+qKysxPvvv4/p06cjMzMTVVVVMDIy6vLecXZ2RlVVFQCgqqqqy4wj82/mmCEPtRxQgoomSrcwlSZm+3JFRYVGBr61gWK0g4+PD2tlwFRLrKyslKolvcGE7o4ePRpjxozRC2Fg42yNwGn+uHH8LoCOClNrQyvqhY2YGhMBG2drte6voqICOTk5mDBhAlxcXHo8TheGmpqAccFmYkP0yTahc9ZgU1MTG0GSnZ0Na2trtjXa23uVEUwikQhhYWFDXjAVFhZi4cKFWLp0KbZs2TJof3fz5s1j/3/ixImIjIyEp6cnjhw5MiR2Hg4GtNKkDBVNI5jeTkyMuWVSUhJEIhGioqL6nOkhhLDVKV06fJuamsLT0xOenp4Qi8Wsb1FhYSHMzMzYQfLO2+6Z2Rd/f3+4ubnpZO09Mfevj3QM+17Lg7CsBiZmxohaHI45L85U+T4IIbh//z7u37+PkJAQ2NnZ9f1D/0PbhpqaQtFnKiIiQusu2AOBw+HAysoKVlZWGDNmDGsRUV1djaKiIpiYmCjZGTAVT7lcjrS0NLS3tyMsLGxImG32xv3797Fw4UIsWbIEO3bs0Gll18bGBuPGjUNhYSEeffRRiMVi1NfXK1Wb+Hw++2HDxcUFt2/fVroPPp/Pfm9YQGNUlKCiidItYrEYYrEYADBlypQ+T8zM/BLj9q0PFRqgo1ri7u4Od3d3SKVSVFdXQyAQ4O7duzA0NGQrULW1tSgrKxv02RdVMTE3Rsyr8/Dw01HsDJOts43KP8/sAqyqqkJYWNiABjS5XC5sbW1ha2vLZrgJBAKUlZUhOztbZ+aPcrkc2dnZqK+vR0RExJCrFChaRDBb7xUre4x7dkVFBaRS6bAQTGVlZZg/fz7mz5+PTz/9VOet8ObmZhQVFWHp0qXs65uYmIglS5YA6GghlpaWIioqCgAQFRWFDz74gI3jAYDz58/DysqqT487ytCE7p4bwUil0m5tBWpqapCSkgKpVIo5c+aoNfDN4XD0RjD1BhOVwbTxmJ14bm5usLe31/nJW5Mww8KNjY0IDQ3VqpBR11BTU8hkMrZdFRoaOuQHohVhHLT5fD7Ky8shk8lga2sLZ2dnjQXh6oLKykrMnTsXDz/8ML7++mudtHj/8Y9/YNGiRfD09ERFRQU2bdqE1NRUZGdnw9HREbGxsTh9+jT2798PKysrrFmzBgBw/fp1AB3vu+DgYLi6uuLDDz9EVVUVli5dipUrVw55ywFm91zUvM1q7567ceZdunuOMjJgBr7Hjh2L3NzcHnfXAYMz8K0teDwebGxsUFpaCjMzM/j4+KC+vh65ubmQSCRwcHBg201D2aSO8dSSSqWYPHmy1ltnvRlqGhoaaiUEl3mOMpkM4eHhQ7760hkOhwNLS0sUFRXBwsIC/v7+qKurY4NwGTsDR0dHrQpTTVJVVYX58+dj6tSpOhNMQEeiwbPPPouamho4Ojpi2rRpuHnzJhwdHQEAn3zyCbhcLpYsWaJkbsnA4/Fw8uRJxMbGIioqCubm5li2bBk2b96sk+ejFegguBK00jSCkclk7AySXC5Hbm4uKisrERISAmtra5w/fx5/+tOfur3QMhUmmUymV+04VVEM3Q0KCmKFESEETU1NrBdUa2urkpXBUBq4bW9vR0pKCoyMjDBx4kSdij/FXWNCoRAymYzddj8QYSqRSJCSkgIej4dJkyYNaYHbEzKZDCkpKSCEICQkROk5KgrTmpoa8Hg8JTsDfRrQZxAKhZg/fz6CgoLw448/Dsvf2XCAqTRNnat+pen6r7TSRBnGSCQSpKamor29nR34JoSAw+FAKpV2EQq62CGnSRoaGpCamtpt6K7icK6ilUF5eTlycnKGRKgw8IcJqbW1tV7YJnTeNdbY2MhaGWRmZvbLULO9vZ01Wp04caJeCoSBIpVKkZKSAg6Hg9DQ0C7PsbPTe11dHYRCIXJzcyEWi9nXXF8Ef01NDRYtWgQ/Pz/88MMPVDANBeSk40ud44cx9B07wmlpaUFycjLMzMwwZcoU9iTG4XC6Nbhk5peGqmBi4jTGjBkDDw+PPtdvbm4Ob29veHt7K83rFBQU6GWoMNDxCTE5ORmurq4YO3as3qyLgcPhwNraGtbW1vD19e2XoaZIJEJycjKsrKz0QhRqA0YwcblcBAcH9ykKFc1f/fz80NzcDKFQyIZqW1lZKdkZDPb7or6+HtHR0fD09MThw4eHXRt12ELbc0oMvzMNRWXq6urY/n1oaGiXT32KokmxHadvO+RUpbS0FJmZmZgwYQI8PT3VXj8zrxMWFoaHH34YHh4eaGxsxK1bt3D9+nUUFBSgoaGh1zkwbVNTU4O7d+/Cy8sL48aNGxK/I8ZQMyIiAjNmzIC7uzsaGhpw69Yt/P7778jPz0d9fT37ura0tODu3buws7NDYGDgsBRMEokEycnJ4PF4KgmmzjBzUD4+PoiMjMT06dPh6uqK+vp69nXNy8tDbW0tu4lDmzQ2NuLxxx+Hk5MTjh49qhdVL4pqcPCHV5NKX2re/7Zt2xAREcF+WIqJiUFeXp7SMW1tbVi1ahXs7e1hYWGBJUuWsNYODKWlpViwYAFrK/P6668rGTQDwOXLl9mNIr6+vti/f7/arwetNI1gTExMEBAQ0GM8AePV1Hnge6jskGPQRuhuT6HCzIWO2TE2GKHCDIzP1Pjx4zFq1KhBeUxN05OhJpMNZmNjg7q6Ori6ug4ZUagujGAyNDTEpEmTNNJ2NDY2Zq03mNe1uroaGRkZkMvlbAvP3t5e4xWg5uZmLFmyBBYWFkhISBgWeYYjCi37NF25cgWrVq1CREQEpFIp3nrrLcyZMwfZ2dmsz5omgpOLi4uxYMECvPzyy/jvf/+LxMRErFy5EqNGjcLcuXNVXi8dBB/ByOVySCSSHr9//fp1+Pj4wNHRccgOfDNb0VtaWgYldHewQ4UZSkpKUFRUhIkTJ8LBwUErj6FL5HI5ysvLkZeXBx6Pp3Sh17WhpiaRSCRISkqCsbExJk2apHXBTQhh58uEQiFaWlpga2vLtvEGOrfX2trKehydOnUKFhYWmlg2ZRBgBsEfmvUeDAzUGASXtuH3xPf6PQguFArh5OSEK1euYMaMGRoLTt64cSNOnTqFzMxM9rGeeeYZ1NfX4+zZsyqvj1aaRjB9CSAejweJRDJkBZNi6O7kyZMHZYaiu1BhgUCA/Px8tLe3sxd6TYQKAx0XvYKCAlRUVCAsLAzW1upFqgwV6urqUFBQAD8/P7i7u/doqKnvA/q9IRaLlQbbB6NC2Xm+TCQSsQIqPz+f9dlydHSElZWVWucAkUiEZ555BhKJBGfPnqWCaYjS3xiVxsZGpduNjY1V8k9raGgAADaxQFPByTdu3FC6D+aYdevWqf7kQEUTpQfkcjnMzMzYuQdtV0o0jT6E7iqGCo8dOxYtLS3g8/ldQoWdnJz6ZcbY2QFbnyNDBoJAIEBGRoZSK1kxa7DzgP5gGWpqErFYjKSkJJiZmSEoKEhnc1qmpqbw8PCAh4cHJBIJ2x5NTk4Gl8tlBVRfdgbt7e14/vnn0djYiHPnzg3Lrecjhn4OgncOdt+0aRPee++9Xn9ULpdj3bp1eOihhxAYGAgAGgtO7umYxsZGiEQilT9sUdFEUYIQws4w+fn5wdXVla2UMFuYnZ2dYW9vr7fbhfUxdFcxVHjMmDE9hgo7OTmp1EKUSqVIT0+HWCxGRETEsHLAVoSZ0woKCmJjKjqjC0NNTdLe3o6kpCRYWFjo1WC7oaEhXFxc4OLiArlcjvr6egiFQjZvUNEmQvH9JxaL8cILL6CqqgqJiYkamSGk6A4OIeCoMcXDHFtWVqYkllU5R61atQqZmZm4du2a+gsdJPTzqkcZFDqLie4cvhUrJYzpY1FRETIzM2Fvb89GOejL9uGKigrk5OToZeiuIt2FCgsEAhQWFrKVEmdnZ1hYWHT5PYnFYqSkpMDAwADh4eF6K14HSllZGQoKCtTKA+zsW8QYamZlZWnMUFOTMILJ0tJSr60TuFwu7OzsYGdnx+YNCoVCVFRUIDc3F1wuF+fPn8fixYuxZ88e3L9/H5cuXVIrFJqip8j/96XO8QDrd6cqq1evxsmTJ3H16lW4u7uzt7u4uGgkONnFxaXLjjs+nw8rKyu1Wvr6+RdKGXQUDSs5HE6XGSbG9NHX1xdTp05FZGQkrKyscP/+fVy5cgXJyckoLy9nQ351sf6ioiLk5eUhODhYrwVTZ5hQ4dDQUMycORPe3t5obW3FnTt3cO3aNeTl5aGurg6EEIhEIty5cwempqZd3KGHE8XFxSgsLERoaGi/A5QZQ82AgABMnz4doaGhMDU1xb1793D58mUkJyfjwYMHaG9v1/DqVaOtrQ13796FlZWVXlWY+oKpmnp7e2Py5MmYMWMGzMzMkJKSggULFuD06dOYMmUK0tLSet1ooim2b98ODoejNJuiqS3qlD8qTep8qQMhBKtXr0ZCQgIuXrwIb29vpe8rBiczdBecnJGRAYFAwB7TOTg5KipK6T6YY5j7UJXhecalqAyHw2H9l9QxrFScKWHMCRkTvYHO6qgLM9tTV1eHiIiIIT1wamBgwLZEFEOFmaR7mUwGOzs7va5KDARCCAoLC1FeXo6wsDCNzcL0ZKhZWVmJ3NxclQw1NQkjmGxtbTF+/Hi9aCH3FyMjI0RERMDLywt8Ph9vv/02fv/9dyxduhQSiQRlZWVasxm4c+cOvvrqK0ycOFHpdk1sUaf8Dy2bW65atQoHDx7EsWPHYGlpyc4gWVtbw9TUFNbW1lixYgVee+012NnZscHJUVFRmDJlCgBgzpw5GD9+PJYuXcoGJ//zn//EqlWr2GvQyy+/jN27d2PDhg3461//iosXL+LIkSM4deqUWuullgMjnLa2No1GorS1tUEgEIDP56OhoUHrsSMSiYQNpA0JCRm2sz01NTVIS0uDhYUF2traIJVKh02oMAMhBHl5eRAIBAgLCxu0wXaxWMzuGKupqYGJiQk7SG5tba1xQSMSiZCUlAQ7OzsEBAQMacEEdHxoWbt2LS5fvoxLly7Bw8ODvT0/Px/+/v5aedzm5maEhobiiy++wL/+9S8EBwfj008/1dgW9ZEOYzkwY9q7alsOXL22WWXLgZ7e/9999x1efPFFAB3Xlf/7v//DoUOHlIKTmdYb0GG7Ehsbi8uXL7PBydu3b1c6N16+fBnr169HdnY23N3d8c4777CPoSpUNI1grly5gh07dmDx4sVYsGAB7OzsNHoCb29vZ2d16urq2E/zTOzIQOkpdFeXyGRy/PbzTVyLu40GQQPGhHhhzosz4TPJs9/3yefzkZmZye4e6xwqLBKJYGdnNyRDhRkUdwKGhYXpzDZA0VBTKBQCACugNBGAKxKJcPfuXTaDbzgIptdffx1nzpzBpUuXurRWtMmyZctgZ2eHTz75BDNnzmRF08WLFzFr1izU1dUpzcB4enpi3bp1WL9+Pd59910cP36cNU0FOlrCPj4+SE5ORkhIyKA9D32FFU0PvaO+aPp9Cw3spQw/fH19ERUVha+//hqvvvoqZsyYgZiYGCxatAgODg4DPqEbGxuzu5qYT/PMILm5uTmcnJzg7Ozcr3YIE7rr7OwMPz8/vbn4HPxXPC799xoIITAwNMCNY0lIv5KDNV+sQMCUsWrfX2lpKQoLCzFx4kQ4OjoC6DlUmGmP2tjYsAJqKHgWyeVypKenQyQS6XwnII/HY4W9XC5nfbaYHWMDMdRsbW1FUlISHB0d9eo921/kcjneeustnDhxApcvXx5UwXT48GEkJyfjzp07Xb6nqS3qlA7669M0XKGiaQTj5uaGd955B//85z9RVFSEn3/+GT/88APWr1+PqVOnIiYmBosXL4aLi8uAT/CK8RjMtnCBQID79+/DxMSEFVCq+OqoG7o7WDzIq8BvR2/CyNQI5tYdtgGEENRU1OKXz87AP9JX5bUyg+0PHjzoM/qlp1Dh/Px8vQ0VZpDJZEhNTYVUKkV4eLje7MIEOgbJbW1tYWtry+4Y66+hZktLC5KSkuDs7Dws4l8IIXj//fdx9OhRXL58Gb6+voP22GVlZVi7di3Onz9PI1kGAy3HqAw1qGiigMPhwNfXF2+88QY2btyIkpISxMfHIy4uDhs2bMDkyZMRHR2N6OhouLu7D/iEr7gtXCaTsQKK8dVxdnbucZ6EqbwEBgb26NujK/KT7kEsEsPO1Za9jcPhwMzSDCVZD9Bc1wJLu76H1OVyOXJyclBbW4vw8HC1BtsVPYvEYjH72hYXF7Pi1MnJSW13Z20gkUiQkpICLpeLsLAwvWiv9oSiz5a6hpqMYHJxccHYsWN1/roPFEIItm3bhgMHDuDSpUvw8/Mb1MdPSkqCQCBAaGgoe5tMJsPVq1exe/du/PrrrxrZok7pgCPv+FLn+OGM/p6lKDqBw+HAy8sLr732GtavX4+KigpWQL399tsICQlBTEwMoqOj4eXlNeALAI/Hg7OzM5ydndndYnw+HykpKUqtEmtraxQUFIDP5+ttXIihkSHAAYicgMP743WRy+TgGXBhYNT3n5tMJkN6ejra2toQERExoE/SRkZGSqHCjIBiQoWZFp4uTB8ZB2wmMmSoOM0zqGqoaWhoiJSUFLi6usLXV/VKo75CCMHHH3+MvXv3IjExERMmTBj0NcyaNQsZGRlKty1fvhz+/v7YuHEjRo8ezW5RZ3Lvutui/sEHH0AgELAfvjpvUaf8D1ppUoIOglNUghACPp+PX375BXFxcbhy5QomTJiA6OhoxMTEaPwTNBN8y+fzIRAIIJVKwePx4OfnBxcXF73cbt8gbMTb87ahtVEEG+eOKplUIkU9vwEPPRGJv330fK8/LxaLkZqaCg6Hg+DgYK21qnQVKszQ1taGpKQkWFlZDTvrBEVDTT6fD4lEAnNzc/j4+Az5XY6EEHz22WfYuXMnzp07h/DwcF0viUVxEBwAYmNjcfr0aezfv5/dog50hJADHR9OgoOD4erqym5RX7p0KVauXEktB/4HMwg+M+JttQfBL9/5YNgOglPRRFEbQghqa2tZAZWYmIhx48Zh8eLFePzxxzW6jbq9vR3JyckAOnw7qqurIZPJBvUirw43jt3F95uOorVJBADgcAB3P1es+/pvcHDr2R2Z2Qlobm6OwMDAQXtOhBB22FkgELDDzoyVgaaFW0tLC5KTk2Fvbz8sttv3RFNTE+7evct6lQkEArS2tirtchxK9hiEEOzduxdbtmzB2bNnWX8cfaGzaNLUFvWRDCOaHgl/S23RdOnuViqaKJTuYC66x48fR3x8PH799Vd4eHggOjoajz/++IDCR5nQXcYAkMvldrnI62MeXkVhFe6cSUVTbTNGB7ghYl4wzCx7HhRubm5GcnIy616tKyFBCEFzczP72ra0tLD5YpowKm1qakJycvKwaVX1RFNTE5KSkuDh4QEfHx/2dsZQUygUoqGhYdANNfsLIQT/+c9/8Pbbb+P06dOYNm2arpdEGQSoaOoeKpooGqWxsRGnTp1CfHw8zpw5AycnJ1ZAhYaGqiygmNBd5sLT3QWlO78ifczD6426ujqkpqb2+jx1RWtrKzvszJwA1QkVVqS+vh43fruJ9koZ7O3sMf4hP9iPsu37B4cYjY2NSEpKgpeXV69b8AfbULO/EELwww8/4PXXX8eJEycwc+ZMXS9JZzQ2Ng5LEdATrGgKe1N90ZS0jYomCkVdWlpacPbsWcTFxeHUqVOwsbHB4sWLER0djcjIyB5bUEzoLmPmqCpMlYTP57NVEmdnZ701fGSsE8aNG6cUUKmPtLe3swKqtraW9dlycnLqNlRYkdraWhzeFY/bB9PR3iwGAYGJmTGiX30MMa/O0xuBMFAaGhqQnJwMb29veHl5qfxz2jbU7C+EEPz000949dVXER8fjzlz5uhkHfpASkoK3n33XTz//PN4+umndb2cQYEVTaFvwoCnhmiSteFSMhVNFMqAEIlEOH/+POLi4nDixAmYmJhg8eLFiImJwdSpU2FgYAC5XI4zZ87AzMwMkyZNGlBCOtMK4fP5aGpqGvQ8vL548OAB8vPz9dI6oS8Ud4tVV1fDyMiIvcjb2NgoiSCBQIBLJ67ixOZLkEvlMLMyBYfDgai5DQQEa/e+hMnzh777cn19PVJSUljvsP6iaKgpFAoHbKg5EOLi4hAbG4sjR45g/vz5g/a4+kZeXh4CAgJgb2+PiIgILF++HE899ZSul6V1GNH0p5A31BZNF1O2U9FEoWgKsViMxMRExMXF4dixY+BwOJg3bx5KS0tRUFCAmzdvDkgwdWaw8/B6gxCCe/fuobS0FMHBwbC1HdotKsVQYaFQCA6Hwwqo9vZ25ObmIv90Ga4eugkLW+W5nabaZgT/KRAbf1ytw2cwcBjB5Ovri9GjR2vsfgkhrKGmUChEU1OTWoaaA+H48eNYsWIFDh48iOjoaK09zlDg119/RWNjI6ZMmYKVK1dCJpNh5cqVeOaZZ3S9NK3CiqbgN2DAU/2DplTWjoupVDRRKFpBKpXi5MmTWLVqFVpbW2FhYYFHHnkEMTExeOSRRzReFdJ2Hl5vEEKQk5OD6upqhIaGqmVaORSQy+Wor6+HQCBAZWUlpFIpbG1tceGz60g5lwVrB0ul41vqW+A61gU7L23S0YoHTl1dHVJSUgalxapoqFlXV9eroeZAOH36NJYtW4YDBw6wgbcjGSbMHOioOq1fvx5tbW1YsWIFnnvuOR2vTnuwomnSRvVFU9qOYSuadL/ViDKiKSsrw5tvvomwsDD8+OOPSElJQVxcHNauXYumpibMmzcPMTExmD17tkY+WWszD683ZDIZMjMz0dLSgoiIiCGRCacuXC4XdnZ2aGhoACEE48ePh0gkgpGtAeRyGdpEbTAwNGBndORyAu+J/Q8y1jW1tbVITU2Fn58f3NzctP54qhpqDsSs9MKFC3jxxRfx7bffjljBRAhR+ttndu3KZDL4+flh9+7dWLt2Lb799lvIZDK88MILOlztICAHoM6pcJg7gtNKE0WnJCUl4dChQ9ixY4fSwKtcLsfNmzcRFxeHhIQECIVCzJ07FzExMZgzZ47GqzSKeXjV1dVq5+H1dd+pqakghCA4OFgvh9I1ASEEhYWFKC8vR2hoKPsps6aiFm/N3Yo6QQMMjA1AiBzSdhlMLUzw5uFXETB5nI5Xrj41NTVIS0uDv7+/WpsVtIGioaZQKIRMJlOag1LVhuPq1at46qmnsHv3brzwwgvDZkBfHRQFU2ZmJuRyOUxNTTF27FjI5XIQQsDj8VBaWoo1a9agvr4eL774IpYvX67jlWsettIU1I9KU8bwrTRR0UTRe+RyOZKTk/Hzzz8jPj4eDx48wKOPPoro6GjMnz9fo60JAEqRI0KhEIaGhqyAUnc7eFtbG1JSUoZsXIiqEEKQl5cHgUCAsLCwLq3O4oxSfP/OERSm3gchBA6jbfHQC2Gw9bFU8isaCi3L6upqpKenIyAgAKNGjdL1cpQghKCxsZGtoKpqqPn7779jyZIl+Pjjj7Fy5coRL5jWr1+PS5cuoba2FgYGBti3bx8eeeQRAB3nBx6Ph/Lycrz66qsQCoV44YUXsGLFimH1ujGiaVbgBrVFU2Lmh1Q0USj6gFwuR0ZGBiugioqKMGvWLCxevBgLFy7ssntroCgOOgsEAqU8PBsbm17bIIz7tZ2dHQICAoZVXIgicrkc2dnZqK+vR1hYWI+tR0IIairqIJPK4DjaHlwuVylUmPEr0qdQ4c4IhUJkZGRg/PjxQyLYtbOhppWVFVuBMjc3B5fLxa1btxATE4MPPvgAq1at0rvXfLB59dVXkZCQgIMHD6KtrQ27d+/G6NGjsXv3bvYYRjjx+XysXr0alZWVrHAaLh+MWNE04XX1RVPWTiqaKBR9gxms/vnnn5GQkICsrCw8/PDDiImJwcKFC+Hg4KC1PDyhUAhCCHuBt7OzUxJF9fX1SE1Nhbu7O8aMGaPzC1FJ1gMUphTD0s4CIbMCYWisGeNPRsS2trYiNDR0QIP7UqkUNTU1bItUHYE6GDCCacKECXB2dtbpWvqDoqHmxYsXsXfvXkyZMgWJiYn45z//iddee01r79Mvv/wSX375Je7fvw8AmDBhAt59913MmzcPwB+xJ4cPH1aKPVF8nUtLSxEbG4tLly7BwsICy5Ytw7Zt2zSaAvDVV1/ho48+Qnx8PIKCggAAb7/9NqRSKebPnw8ej8c6okulUhgYGKCqqgqbNm3CrVu38Pe//x0vv/yyzv/eNQErmsb/Q33RlP0RFU0Uij7DzNMwAiolJQUPPfQQYmJisHjxYjg7O2v0REYIUQq9VczDI4QgKysLvr6+A/Ls0QTtIjE+e/kb3DqZArlMBg6HAxtnG2z4/hX4TfYd0H3LZDKkpqZCKpUiNDRUow7szJwOUyUhhLCDzrrIGxQIBMjIyEBgYOCQFEydaWpqwjfffIP//ve/KC0thbm5OWs8y4gDTXLixAnweDyMHTsWhBAcOHAAO3fuREpKCiZMmIDY2FicOnUK+/fvh7W1NVavXg0ul4vff/8dwB8Buy4uLti5cydb2XnppZc0GrB76tQp5OTk4JVXXoGZmRmam5sxbtw4WFlZwdjYGNnZ2diwYQM++OADAH8Ip9OnT2PhwoU4dOjQsDG/ZEVTwP+pL5pyPqaiiUIZKhBCUFJSgri4OMTHx+PWrVuYMmUKoqOjER0dDTc3N40LqMbGRvD5fFRUVEAikcDa2hoeHh46T7Y/8O4RHN/9KzhcDngG/9sFJJHDwtYce9M+hKmF6qZ1ikgkEqSkpIDL5SI4OFirz7G7vEF7e3uthQp3hs/nIzMzE0FBQUPOiLQnsrKyMG/ePKxduxZvvPEGbty4gWPHjuHOnTu4cuXKoFRK7OzssHPnTjz55JNwdHTEwYMH2R17ubm5CAgIwI0bNzBlyhScOXMGCxcuREVFBSta9+7di40bN0IoFGp0cwUTlyKRSDBv3jyYm5tj9+7dsLa2xtmzZ7F06VJcuHAB06dPB9AhQF9//XU4Ozvj/fff19g6dA0rmvz6IZryqGiiUIYkhBCUl5cjPj4ecXFxuH79OkJDQxETE4Po6Gh4enpq5AJBCMH9+/dRXFyMcePGsYaauszDk4ilWD52LURNbTA0/kPUEDmBVCzFqj1/xZ/+on74qlgsRnJyMoyNjQd9uL2nUOG+Bp37S1VVFbKysjBx4kQ4Ojpq9L51RW5uLubNm4eXXnoJW7ZsGfRWkkwmw9GjR7Fs2TKkpKSgqqoKs2bNQl1dHWxsbNjjPD09sW7dOqxfvx7vvvsujh8/jtTUVPb7xcXF8PHxQXJyMkJC+ucqz1SKAGU/JqDjvRYfH48FCxbAxKTjw0VaWhrmz5+Pw4cPs6IJACorK/VuU8BAYUTT7HGvqS2aLuT/e9iKJurTRBnWcDgcuLu749VXX8WaNWvA5/ORkJCAuLg4bNq0CYGBgYiOjkZMTAx8fX37dQFhdo7x+XxERETA0rLDxNHX15e9wN+/fx9ZWVmDmocnampDe0s7uFzl58ThcsDhcVFbUaf2fba1tSEpKQmWlpYIDAwc9DkjDocDS8uOHXdjxoxhB50rKyuRm5s7oFDhzlRWViInJweTJk2Cg4ODhp6BbikoKMDChQuxbNkybN68eVAFU0ZGBqKiotDW1gYLCwskJCRg/PjxSE1NhZGRkZJgAgBnZ2dUVVUB6BCvnduizL+ZY9SFafsyGw4ePHiAMWPGAPhjJ92SJUuU/t3c3Ax3d3d2rcztw00wKUFIx5c6xw9jqGiijBg4HA5cXFwQGxuLl19+GTU1NTh27Bji4uKwdetW+Pn5sXl4AQEBKl1Q5HI5MjMz0dTUhMmTJ3fZOWZhYQELCwv4+PiwF/gHDx4gJydH63l4FrZmsBtli+oHNeAZKnhgyeQgcgKP8eo5WDO7Ae3t7VV+fbSNmZkZvLy84OXlpRQqXFhYqFaocGcqKiqQm5uLSZMmwd7eXovPYPAoLi7GwoUL8dRTT2H79u2DLnj9/PyQmpqKhoYG/Pzzz1i2bBmuXLkyqGtgiIiIQH5+PqytrWFgYAADAwPMmzcPu3btAoAu7xWmkvziiy9i3rx57JC4PvwNUAYXKpooIxIOhwMHBwesWLECf/3rX1FfX4/jx48jPj4eH3/8MTw9PREdHY3HH3+8x4qKRCJBWloaZDIZIiIi+qwcKV7gmfZdVVUV8vLytJKHx+Vy8fi6+fjm9R8haZOAa8gDkXd8ahzt74qwORNVvq+mpiYkJydj1KhRGDt2rF5eLIyNjeHu7g53d3cls9KSkhIYGRmxr29fXlvl5eXIy8tDcHDwgDMQG2uakfjjVdxLK4XdKBvMXjoDo/0H3wyztLQUCxYswMKFC/HJJ5/oZCeikZERfH07Nh+EhYXhzp072LVrF55++mmIxWLU19crVZv4fD5r6+Di4oLbt28r3R+fz2e/pw6ZmZkQCoX4/PPPERoaipaWFhgZGSE4OLjb42tqanDixAls374dkZGR+OyzzwB0becNW+QE4KhRPZLTShOFMqzhcDiwtbXFsmXLsGzZMjQ2NuLkyZOIj4/H7Nmz4ezszLbwQkNDweVyUVpaihs3bmDs2LH9GoQ2MTGBh4cHPDw8lPLwCgoKNJqHN/evMyFpkyDu3yfRXN8CDoeDkEcn4uVPl4FnoNosUkNDA5KTk+Hp6Qlvb2+9FEydMTQ0xKhRozBq1CjIZDLU1NRAKBQiNTVVKVS4s1XEgwcPkJ+frxHB9CCvAm/O2Yqm2mZwuAA4HBz77CzWfv0SHnn2oQE+Q9WpqKjAggULMHv2bOzZs0dvLvRyuRzt7e0ICwuDoaEhEhMT2XZYXl4eSktLERUVBQCIiorCBx98AIFAwA7jnz9/HlZWVhg/frxaj2toaIiamhpERUWxu/mY9zTjv6RIfX09mpqasHTpUrz99ts9Hjdsoe05JeggOIXSCy0tLThz5gzi4uJw6tQp2NraYvbs2Th16hRmz56NvXv3avQipJiHV1NTo7E8PHGbGFXFQljamcPW2Ubln2Py1fTBPkETKIYKM1YRDg4OcHJyQltbG4qKihASEgJbW9sBP9abcz5A7q1CyGXKYVwGRgb4rmAXrOy1735eVVWFefPmITIyEt99953OLvRvvvkm5s2bBw8PDzQ1NeHgwYPYsWMHfv31Vzz66KOIjY3F6dOnsX//flhZWWHNmjUAgOvXrwP4w3LA1dUVH374IaqqqrB06VKsXLlSbcuBkpIShIWF4ebNm2zlqy9aW1vZGbmRIpjYQXCfV2HAVWMQXN6OC/c+G7aD4FQ0USgqIhKJsGfPHvzzn/+Eu7s7RCIR620zdepUjW+7l0qlrIDSdB6eKjBmjvqQr6YNGKsIgUCAiooKiMVi2NjYwM3NDQ4ODgMa1K/j1+PFMWt7/P6aL1dg9tIZ/b5/VRAKhZg/fz4mTpyIH374QafWFytWrEBiYiIqKythbW2NiRMnYuPGjXj00UcB/GFueejQISVzS8XWW0lJCWJjY3H58mWYm5tj2bJl2L59u9rPq729HZGRkTh//vyw2RGpDVjR5L1GfdFU/PmwFU20PUehqMjVq1exefNmbN++Ha+88gouXLiAuLg4PP/88+DxeFi4cCEef/xxTJ8+XSPWAgYGBkotJmZGh0m1728enipUVlYiOzt72Jg5dgeHw4G1tTXq6+shl8sRFBQEkUiEsrIyZGdnw8bGhm2TMlvOVUUskvTywEB7q3iAq++dmpoaLFq0CP7+/vj+++91KpgAYN++fb1+38TEBHv27MGePXt6PMbT0xOnT58e8FrKy8thZ2ensdnBYY+cAKAzTQy00kShqMi+fftgamqKv/zlL0q3SyQSXLlyBT///DN++eUXSCQSLFy4EDExMZg5c6bGd8YNJA9PFZi5nuG0c6wnGG+t0NBQWFtbs7czg/oCgQD19fVqz5nJ5XL8bcI/ICyr6fb7e5K2wd1PO9W7+vp6LFy4EG5uboiLi9O6tcVQgxACqVQKQ0PDEdNq6w9spcnjFfUrTaVfDNtKExVNFIoGkclk+O233xAXF4eEhAQ0Nzdj/vz5iImJwaxZszT+6VadPDxVYERESEhIF9+c4UZxcTFKSkoQGhra68ldcc6strYWpqamrJlmb6HC13+5gx1Ld4PL5XbMNXEAEODRFx/G6t1/1cpzamxsxOLFi2FnZ4dffvlF7QrZcENxyFuV2yl/QEVT91DRRKFoCZlMhps3b7ICqrq6Go899hiio6Mxd+7cAe+M6wwhBPX19eDz+V3y8PrKayOEoKioCA8ePOhTRAwH7t27h9LSUoSFhbFmpKrQOVTYwMCAfY27q/KlXszE0Z0ncC+1BLajbDBv5Z8w/++zweNpfgdbc3MzHn/8cZiYmODkyZMjvv2kKIyuXLkCgUAAPz8/jBs3DiYmJiPHMqCfsKJpdKz6oqnsSyqaKBRK/5HL5UhKSmIDhcvLy/Hoo48iOjoa8+bN0/jJRTEPj8lrY3aJdc7DYxzNBQIBwsLCNC7m9AlCCO7du4eysjK1BVNnegoVZqp8g9n2aW1tZbfrnzp1ChYW2t+ZN1T47LPP8P7774PH48HZ2Rnz58/Hxo0bYWdnR4VTL7Ciye1l9UVT+V4qmigUimaQy+VIT09nBVRRURFmzZqF6OhoLFiwADY2NhoPFG5ubmYFFJOHx1SgCgoKUF9fj7CwsGFdnWCqaeXl5QgLC9OosGCqfIyAGsxQYZFIhD//+c9oa2vDmTNnhuWFqj8QQlBdXY1nnnkGb7zxBiZNmoQvvvgC586dw4QJE7B161Y4OjpS4dQDrGhy/bv6oqniKyqaKBSK5iGEIDs7mxVQ2dnZmDlzJmJiYrBw4ULY29trfPaCycPj8/lobm4Gj8eDj48PXF1dh+3QMCEEhYWFqKioQHh4uFaraYMZKtze3o5nn30WtbW1OHfu3LCfQ+sLxZZcS0sLpFIp/vrXv2Lv3r1wdHQEIQSffPIJ4uLi4O/vjw8++AAuLi50xqkbWNE06u8w4Kp+XpDKxbhQSUUThULRMoQQFBQUsAIqNTUV06ZNQ0xMDBYtWgRnZ2eNndhlMhlSU1MhFovh5OSEmpoaNDY2wsbGhg0UHi5DxMzrWlVVpZP2I5M5KBAI2AuRJiJzxGIxli5divLycly4cGHADubDiZ9++gk7d+6EsbEx6uvrcefOHaUA5127diE+Ph42Njb49ttvqV9TN7CiyeVv6oumqq+paKJQKIMHExAaFxeH+Ph43L59G1FRUYiOjsbixYvh5ubWbwElkUiQkpICLperFAHDbLPn8/nsCc/Z2VmjeXiDDSEE+fn57LyW4oVTFzCROUKhELW1tf0OFZZIJFi+fDkKCwtx8eJFODg4aHnl+g9TLbp79y4eeughbNy4EYWFhbh69SoCAwNx6NAhJaf3HTt2ICsrC19//fWw+YCgSVjR5LRSfdEk+JaKJgpFHbZt24b4+Hjk5ubC1NQUU6dOxY4dO+Dn56frpQ05CCF48OAB4uPjER8fj+vXryMsLAzR0dGIjo6Gp6enyhdbsViM5ORkGBsbY+LEiT0OKyvm4dXV1cHCwoIVUENlUJwQgtzcXFRXVyM8PFzvhJ9iqHB1dTWMjY1VChWWSqX429/+hvT0dFy6dGnYmo+qimJrLTk5mfUZ+8c//gGZTIZDhw5h7969sLa2xvfff6/kPSYWi2FkZETnmrqBFU2OK9QXTcJ9VDRRKOrw2GOP4ZlnnkFERASkUineeustZGZmIjs7e8hcdPURQgiqqqqQkJCAuLg4XL16FRMnTmQFlK+vb48X27a2NiQlJcHS0hKBgYEqXyS0lYenTQghyMnJQW1t7ZAYcGdChRkBxYQKOzs7w9bWlv1dyWQyrFq1Cjdv3sSVK1cwatQoHa9cd3z00UeYNm0apkyZAqAjJ/GRRx5BRkYGXn/9dezYsQNAh8g8cuQIvvjiC1hbW+Pbb79Vet3oPFP3UNHUPVQ0UQYFoVAIJycnXLlyBTNmaDdza6TA7A46duwY4uLicPHiRfj5+SE6OhoxMTHw9/dnLwbl5eW4d+8e7O3tERAQ0O+LRE95eE5OTr0aPQ4mzHB9XV0dwsPDh1zrpXOocHt7O/bt24fHHnsMd+7cwdWrV3Hp0iWtBiirUilm8uIOHz6slBenWPkqLS1FbGwsLl26BAsLCyxbtgzbtm0bcKzLl19+iVWrVuH69eusaJJIJDhz5gy2bduG+vp6pKWlsRsb5HI54uLisHnzZkycOBE//vijXrxX9RlWNDn8VX3RVP0fKpoolIFQWFiIsWPHIiMjA4GBgbpezrCD2fJ+7NgxxMfH4/z58/Dy8kJ0dDQCAgKwfv167Ny5E88884xGh8mZ9pJQKNR6Hp4qMIKJsVAYaoKpM4QQlJeXY/v27Thz5gwEAgFmzZqF5557DosWLdLa8LcqleLY2FicOnUK+/fvh7W1NVavXg0ul4vff/8dQMf7Izg4GC4uLti5cycqKyvxwgsv4KWXXsLWrVv7tS5CCBoaGhAUFIRRo0bhu+++w4QJE9jvS6VSXL58GevWrYOZmRkuXbrErpcQglOnTmHy5MlwcnIa4Cs0/GFFk91y9UVT7XdUNFEo/UUul2Px4sWor6/HtWvXdL2cEUFDQwNOnjyJb7/9FteuXUNwcDCmT5+Oxx9/HCEhIRqf39B2Hp4qEEKQlZWFxsZGhIWFaTzzT1fI5XK89dZbiI+PxzfffIPk5GQkJCQgLS0N165dQ2RkpNbX0LlS3NDQAEdHRxw8eBBPPvkkACA3NxcBAQG4ceMGpkyZgjNnzmDhwoWoqKhgq0979+7Fxo0bIRQKB2RvkZycjBdeeAE+Pj7YsGEDpk2bxn5PJpPhypUr2LBhAwghuHTpUpeLN51h6htGNM2yXaa2aEqsOzBsRRN911C0zqpVq5CZmYnDhw/reikjBmtra7i6uiIpKQnbtm3Dhg0bUFFRgQULFiAwMBBvvPEGbt68CZlMppHH4/F4cHR0xIQJE/Dwww9jwoQJkMvlyMjIwNWrV5GdnY3q6mrI5XKNPF5nmMcajoLpvffew9GjR5GYmIh58+bh7bffxt27d1FYWIiQkJBBWUdDQwMAsJWtpKQkSCQSzJ49mz3G398fHh4euHHjBgDgxo0bCAoKUmrXzZ07F42NjcjKyur3WuRyOUJDQ3Hw4EEUFhZi+/btW2fhOQAAJWNJREFUuHr1Kvt9Ho+HmTNn4qOPPoKpqSkCAwNRV1endB9UMKkBIYBcja9hXocZWGOZQumD1atX4+TJk7h69Src3d11vZwRg0wmw7p16/D5559j2bJlAICnnnoKra2tOHfuHOLi4rBkyRKYm5tj0aJFiImJQVRU1IBnTYCOC5K9vT3s7e2V8vCys7PVysNTFblcjszMTLS0tCA8PHzYGHQSQrBt2zb88MMP7LyaIp6enoOyDrlcjnXr1uGhhx5iW+tVVVUwMjLqYqbp7OyMqqoq9pjOO/uYfzPH9Aculwu5XI6JEyciLi4OTz31FLZu3Qq5XI6ZM2eyxzz88MPYvHkztm3bhtraWiW7AYoaEAJADSFERROFoj6EEKxZswYJCQm4fPkyvL29db2kEQWPx8Pt27e7VFzMzMwQExODmJgYtLW1ITExEfHx8XjuuefA4/GwaNEiPP7445g2bZpGoj84HA5sbW1ha2sLPz8/Ng8vPz+/1zw8VWEqTK2trQgLCxtWgumjjz7CV199hcTERKW5ncGGqRTrU2udEU4BAQH45ZdfsGTJEnzwwQeQyWSYNWsWgI733iOPPIIpU6bAzMyMtuT6i1wOcNSoEBPtVJP1BfoOomiFVatW4ccff8TBgwdhaWmJqqoqVFVVQSQS6XppI4a+WlQmJiZYsGAB9u3bh8rKSvz4448wMDDAihUrMGbMGLzyyis4d+4cxGKxRtbD4XBgbW2NcePG4aGHHkJERATMzMxw7949XLlyBampqaioqIBEIlHp/pgMP5FINOwqTJ999hl27dqFX3/9FZMmTdLZWphK8aVLl5QqxS4uLhCLxaivr1c6ns/nw8XFhT2Gz+d3+T7zvYHC5XIhk8ng6+uLY8eOoba2Flu3bsW5c+cglUoBdLyWZmZmIIRQwUTRCPRdRNEKX375JRoaGjBz5kyMGjWK/frpp590vTRKNxgaGuLRRx/F3r178eDBA/z888+wsLDA6tWr4eXlhZdeegknT55EW1ubRh6Pw+HA0tISvr6+mDp1KiIjI2FlZYXS0lJcuXKFNSnsSbDJZDKkpaWhvb0dYWFhWg3EHUwIIdi7dy8+/PBDnDlzBmFhYTpbx+rVq5GQkICLFy92qRQzr3liYiJ7W15eHkpLSxEVFQUAiIqKQkZGBgQCAXvM+fPnYWVlhfHjx2tknTweDzKZDF5eXjh27BiamprwwQcfsOvKyckBAGovMBAIUf9rGEN3z1EolB6RyWS4ceMG4uLikJCQgNraWjz22GOIjo7GnDlztGJU2jmrrXMeHiOYpFIpQkJChpVg2rdvH9555x2cOnVKaUfYYPPKK6/g4MGDOHbsmNIslbW1NWsUGhsbi9OnT2P//v2wsrLCmjVrAADXr18H8IflgKurKz788ENUVVVh6dKlWLlypcqWAzKZrMe5N8V2G3NcVVUVHn/8cVhZWcHa2honT55EUVHRiDYB7S/M7rk/mT0DA44au+eIGBdbDw/b3XNUNFEoFJWQy+W4e/cuGyhcUVGBOXPmIDo6GvPmzYOlpaXGH7O7PDyxWAwDAwOEh4drZHBdHyCE4IcffsDrr7+OEydOsAPNuqKnysx3332HF198EcAf5paHDh1SMrdUbL2VlJQgNjYWly9fhrm5OZYtW4bt27er9HtjhFBNTQ0+/fRTZGZmIioqChMnTsRjjz3W6/Fz5sxBaWkpDh48iEcffbR/L8IIhxVNpk+rL5pEP1HRRKFQKAxyuRxpaWmsgCouLsasWbMQHR2NBQsWaMXcUiQSITk5GWKxGDKZbEjm4XUHIQSHDx/G2rVr8csvvyht4x+pMNEm9fX1CAkJQXBwMHx8fPDgwQNcvHgRR48e7VZYMsKpubkZRUVFOp0HG+qwosn4z+qLpvYjVDRRKBRKdzAu3D///DPi4+ORk5ODRx55BDExMViwYAHs7e0HLKCkUilSU1MBACEhIZDJZN3m4Tk5OcHCwmJIzbDExcUhNjYWR44cwfz583W9HL1BLpdj5cqVaGpqwtGjRwEA06dPh6GhIY4ePaoUvKtIby09iuqwosnoKRhwVG+BS4kEF8VHh61oooPgFIoC27dvB4fDwbp163S9lCEDh8PBhAkTsGnTJqSmpiIzMxMPP/ww9u3bhzFjxmDRokX49ttvwefz0Z/PaFKpFCkpKeBwOAgJCQGPx4ORkRHc3NwQEhKCmTNnwsvLC83Nzbh9+zauX7+OgoICNDQ09OvxBpPjx4/j5Zdfxn//+18qmDrB4XDw4MEDLFiwAACwcOFCtLS04NChQ7C3t8edO3eQlpbW5eeoYNIsRE7U/hrOUNFEofyPO3fu4KuvvsLEiRN1vZQhC4fDwbhx4/DWW2/hzp07yMvLw7x583Do0CGMGzcO8+bNw5dffony8nKVBI1UKkVycjJ4PB6Cg4O7vSAaGBhg1KhRmDRpEmbOnAlfX1+0tbUhKSkJ165dQ15eHurr6/VOQJ0+fRorVqzAgQMHEB0drevl6BVyuRxisRhWVlawsLDA0qVLUVpaihMnTsDZ2RkNDQ04evQoUlJSWHsBytBmz5498PLygomJCSIjI3H79m1dL6lbqGiiUAA0NzfjueeewzfffEOdgzUEh8OBj48PXn/9dVy/fh1FRUV44okncOzYMYwfPx6zZ8/Grl27UFJS0q2gkUgkSEpKgoGBASZNmqRSBYHH48HZ2RlBQUGYOXMm/P392UrV1atXkZOTg9raWq3FuajKhQsX8OKLL+Lbb79ls9tGMp3jfLhcLoyNjREUFIQ///nPuHbtGi5evAg3NzcAwG+//YYjR47Azc1t2GwG0FuIXP0vNfnpp5/w2muvYdOmTUhOTsakSZMwd+5cJbsKfYHONFEoAJYtWwY7Ozt88sknmDlzJoKDg/Hpp5/qelnDEkIIKisrkZCQgPj4eFy9ehUTJ05ETEwMoqOjMWbMGFRXV+Ojjz7C008/jeDg4AEbE8rlctTV1YHP50MoFIIQAkdHRzg7O8POzm5QjQ+vXLmCp556Cl988QWWLl06pOavtIHiDNKOHTtgYmICHx8fLFq0CECH/cH+/fvx1VdfwdDQEE1NTVi/fj3+9a9/0Ta6FmFmmmZyHld7pukySVBrpikyMhIRERHYvXs3gI6/19GjR2PNmjV44403+rV+bUElOmXEc/jwYSQnJ+POnTu6XsqIgMPhwNXVFatWrcIrr7yC6upqVkBt2bIFvr6+aG1thaurKzZv3qwRQTPYeXg9ce3aNfz5z3/Gp59+SgXT/2Be76ioKDQ2NqKlpQUODg5ITEzEp59+is8++wxGRkbYtGkTJBIJ/Pz8sGPHDqxatQrAHzvtKNpBStrVqh5J0eHo39jYqHS7sbFxtykFYrEYSUlJePPNN9nbuFwuZs+ezYY/6xO00kQZ0ZSVlSE8PBznz59nZ5lopUk3EEJQWFiIWbNmgcPhQCgUwsvLC9HR0Xj88ccxfvx4jVeECCFsHp5AINBIHl5P3Lp1CzExMdi6dSteeeWVEX+hVzSnTEpKwtatW3H06FGUl5fjp59+wvfff4+pU6di7969AIB79+7BwsICXC4XDg4OXe6Dolna2trg7e3dr3BlCwsLNDc3K922adMmvPfee12OraiogJubG65fv866yQPAhg0bcOXKFdy6dUvtx9cmtNJEGdEkJSVBIBAgNDSUvU0mk+Hq1avYvXs32tvb6W6cQUIoFGLJkiWIiorCjz/+iNbWVpw8eRJxcXF45JFH4OrqiujoaMTExGikZQf8kYdnbW2NsWPHorm5GXw+H/fu3UNWVhbs7e3h5OQER0fHATmPJyUl4YknnsD7779PBROUW3JVVVUoLy+HkZERCCEYPXo0Vq5cCSMjI+zbtw8rVqzAvn374OPjAwDs/BvNk9MuJiYmKC4u7lf2ZHfVv76yMIcKtNJEGdE0NTWhpKRE6bbly5fD398fGzduRGBgoI5WNvIQCAT49NNPsXnz5i4VnubmZpw+fRpxcXE4c+YM7O3tsXjxYsTExCAiIkIrF8/m5mY2zqW5uRl2dnasF5Q64cBpaWlYsGAB3njjDbz++usjXjAp8sQTT+Du3buwsLCAra0tfv/9d/Z7TU1N+OGHH7B3716MGTMGCQkJOlwpRVuIxWKYmZnh559/RkxMDHv7smXLUF9fj2PHjulucd1ARROF0gnantNvWltb8euvvyIuLg6nTp2ChYUFFi1ahJiYGERFRWmlMthXHl5PZGVlYd68eVi3bh3efvvtES+YFCtMmzZtwokTJ/DWW28hKSkJe/fuxZw5c5RCvVtaWvDVV1/BwsICf/vb33S1bIqWiYyMxOTJk/H5558D6Gi7enh4YPXq1Xo3CE5rmxQKZUhhZmaGxx9/HD/++CMqKyvx5Zdfoq2tDc8++yzGjh2LtWvX4vLly5BIJBp9TC8vL0yePBnTpk2Dk5MTqqqqcO3aNdy+fRslJSUQiURKP5Obm4uFCxciNjZW64Lp6tWrWLRoEVxdXcHhcPDLL78ofZ8QgnfffRejRo2CqakpZs+ejYKCAqVjamtr8dxzz8HKygo2NjZYsWJFl7mUgcIIpu+++w5WVlb48MMP8eSTT+Kdd97B3r17cfPmTSULBnNzc7z66qusYKKf8Ycnr732Gr755hscOHAAOTk5iI2NRUtLC5YvX67rpXWBVpooFMqwQCKR4NKlS4iLi8Mvv/wCmUyGhQsXIiYmBjNnzlSrpaYq7e3tEAqF4PP5qKurw927d9HY2Ijp06djzZo1eP7557F9+3atz96cOXMGv//+O8LCwvDEE08gISFBqdWxY8cObNu2DQcOHIC3tzfeeecdZGRkIDs7m62UzZs3D5WVlfjqq68gkUiwfPlyRERE4ODBgxpda2ZmJrvp4siRI6xIEolEOHnyJN566y0EBATg+PHjGn1cin6ze/du7Ny5E1VVVQgODsZnn32GyMhIXS+rK4RCoVCGGRKJhFy6dIm88sorxNXVldjY2JDnnnuO/PTTT6Smpoa0tLRo/Ku+vp7s27ePREZGEh6PR+zt7cm7775L0tPTiVwuH7TnDoAkJCSw/5bL5cTFxYXs3LmTva2+vp4YGxuTQ4cOEUIIyc7OJgDInTt32GPOnDlDOBwOKS8vH9B6unvu586dI97e3mT+/PlKt4tEIhIfH08sLS3JV199NaDHpVC0AW3PUSiUYYeBgQFmzpyJPXv2sPEbDg4O2LBhA7y9vbF8+XL88ssvaG1t1dhjGhoaYurUqaisrMSLL76IXbt2ISsrC1OmTMGcOXM09jjqUlxcjKqqKsyePZu9zdraGpGRkawPzo0bN2BjY4Pw8HD2mNmzZ4PL5Q54yzfTlnzrrbfYeaVHH30U33zzDe7evYvFixezx5qYmGDevHn4/fff6QwTRS+hoolCoQxreDwepk2bhk8//RT37t3DuXPn4OHhgXfffRdeXl547rnncPToUTQ1NQ3ocSoqKrBgwQLMmTMHX3/9NZ577jn8/PPPEAqF+Pe//62hZ6M+jM+Os7Oz0u3Ozs7s96qqquDk5KT0fQMDA9jZ2fXLp6c78vPzsXz5csTHxwMAZs2ahSNHjuDOnTtKYcUmJiYICgoCAJ3H3VAonaGiiTJkIYTQwVCKWnC5XERGRmLnzp3Iz8/H1atXERAQgO3bt8PLywtPP/00Dh48qHbAb1VVFRYsWIBp06Zh7969SjNMZmZmrAgYKXQndn7++WcsX74czz//PA4fPgxCCB5++GHExcUhMzMTwcHBXV5z6sNE0TfoO5IyZOFwOGzpXyaTjRgBVV5ejueffx729vYwNTVFUFAQ7t69q+tlDTm4XC5CQ0OxdetWZGdn486dOwgLC8Nnn30Gb29vLFmyBN9//z1qamp6fW8JBAIsXLgQoaGh2Ldvn96Zobq4uAAA+Hy+0u18Pp/9nouLS5dwVKlUitraWvYYdWDETucq1Z49e/DSSy/hxRdfxH//+1/IZDJMnToVP/74Ix5++OERb8lA0X+oaKIMSbZs2YKVK1eyO2x4PN6IOOHW1dXhoYcegqGhIc6cOYPs7Gx8/PHHsLW11fXShjQcDgeBgYF47733kJaWhvT0dMyYMQPffPMNfHx8sHjxYnz77bfg8/lKAqqmpgaLFy9GQEAAvv/+e43GrmgKb29vuLi4IDExkb2tsbERt27dYmMroqKiUF9fj6SkJPaYixcvQi6Xq7yD6cCBA0hPT2f//dNPP8HLy6vLTNSuXbuwYsUKrFq1Cj/99BOkUilmzJiBXbt2AaAtOYqeo7sZdAqlf1RWVpK5c+cSFxcX4urqSgwNDcmTTz5Jbt++reulaZ2NGzeSadOm6XoZIwa5XE4KCwvJjh07SGRkJDEwMCDTp08nH330EUlKSiIhISFk0aJFpL29XafrbGpqIikpKSQlJYUAIP/+979JSkoKKSkpIYQQsn37dmJjY0OOHTtG0tPTSXR0NPH29iYikYi9j8cee4yEhISQW7dukWvXrpGxY8eSZ599VqXHT05OJoaGhmTlypUkMzOTEEJIW1sbmTNnDnFzcyPXr18nhPyxk+769evEwMCAcDgc8uuvv2rypaBQtAoVTZQhx7Fjx8jUqVPJDz/8QAgh5O7du+Tpp58ms2bNIlVVVTpenXYJCAgg69atI08++SRxdHQkwcHB5Ouvv9b1skYEcrmclJSUkH//+99k+vTphMPhkKCgINLW1qbrpZFLly4RAF2+li1bRgjpWPs777xDnJ2dibGxMZk1axbJy8tTuo+amhry7LPPEgsLC2JlZUWWL19OmpqaVF7D8ePHiZeXF3nxxRdJamoqIYQQqVRKoqOjiYODA7ly5Qp7bEpKCnnvvffIf//734E/eQplEKHmlpQhx9tvv40bN27g559/hp2dHYCOuIrp06djy5YtWLVqFXusYmzDcIAxInzttdfw1FNP4c6dO1i7di327t2LZcuW6Xh1IwdCCG7evInRo0fD3d1d18vRKUQhnPXs2bP4+9//jhkzZuC1115DSEgICCH485//jHPnzmHbtm3w8fHBJ598AicnJ/zwww8AOuan9LG1SaF0hoomypCiuroaL774Im7cuIH33nsPf/nLX2Bvb49r167hT3/6E06fPo3Zs2dDLBZ36wBNuknfHkoYGRkhPDwc169fZ2979dVXcefOHdZzh0IZbBQ/nFy4cAEvvfQSoqKi8Nprr7HeT2vXrsXhw4dhYWEBd3d3XLlyRZdLplD6BR0Epwwpbt++DaFQiKlTp+Knn36Ch4cHPDw8sGHDBixatIg18Lty5Qrc3NxQU1Oj9PNDWTABwKhRozB+/Hil2wICAlBaWqqjFVFGKoqft5n/l8lkmD17Nvbt24ebN2/iww8/ZAfBd+3ahcuXL+P8+fO4fPkygI4KE4UylKCiiTKkuHnzJoyMjPDJJ5/g2rVrSE5ORmRkJLy8vPD9998D6MggO3fuHIyMjGBvb8+e0AsLC/H77793uU+ZTMaGuxYXF+Pbb79FQ0PD4D0pNXjooYeQl5endFt+fj48PT11tCLKSOfYsWN4+eWX8eSTT2LTpk2oqKjAn/70Jxw4cADJycnYuXMnWxkNCAiAj48POBwO5HI5bclRhhxUNFGGDLW1tcjOzoaHhwd8fX0BAH5+fti5cycOHz6MS5cuAQAaGhpw/PjxLjM+W7duxTPPPNPlfnk8HgwNDQF0iLK//e1vEAqFWn42/WP9+vW4efMmtm7disLCQhw8eBBff/210hwXhaINOlsBcDgcHDx4EM888wzMzMwgkUiQmJiIiIgI5OfnY/r06fjxxx+RnZ2NN998E2lpaUo/T40rKUMR+q6lDBlu3LiBoqIiPPTQQ0q329nZwdDQEEVFRQCAnJwcFBQU4NlnnwXQcXJvbm7G77//jtjYWPbnLl++jDVr1mDx4sU4d+4ce0xISAh8fX310iwzIiICCQkJOHToEAIDA7FlyxZ8+umneO6553S9NMowh8vloqioCGfPngXQYbK6bds2fPTRR/jss89w7Ngx/Oc//0FYWBhmzZqFsrIyTJkyBQcOHIC1tTXGjRun42dAoQwcKpooQ4qamhr84x//QGxsLC5fvozffvsNTzzxBOzs7NiT8tmzZ+Hj4wM/Pz9W+KSnp6OwsBCPP/44gA7jvejoaNy/fx+Ojo7YtGkTvv/+eyQlJWHBggUAlOctZDIZZDLZID/b7lm4cCEyMjLQ1taGnJwcvPTSS7peEmWE8PHHH2Pp0qVoaWkBIQR8Ph8BAQHs9/38/LB161aMGjUKJ06cgFwuR0REBH755ReYmppS40rKkIeKJsqQYcGCBSgtLUV8fDyqqqrw9NNPY9myZWhtbcXOnTsxc+ZMAMDVq1fx6KOPAvhj8DshIQFjx45FQEAA8vPzsWPHDjz//PM4fvw49u3bh7fffhsffvgh7t69i6VLlwLoSK1vbm6GVCoFj8djdwfJ5XK9rEJRKNrmiSeegL29PS5cuABXV1e4ubkhMTGRFUNcLheBgYHg8XjIzs5mW3Cd/0uhDFXoO5gyZGAqPY899hgSEhLA5/Nx9uxZHD9+HM8//zxMTU0BdASkVlZWsscnJSXhp59+wpNPPgmgY3DVxMQEzz33HCuqJk+eDAMDA0yaNAljx46FXC5HcnIyli9fDm9vb0ybNg3Xrl2DXC4Hl8sd8rvwKJT+MHv2bDg5OeGzzz4Dl8vFo48+igsXLuDo0aNKxzk6OiptwqBQhgvUp4ky5JDL5b3uvDl//jyeffZZPPLII4iMjMTXX3+N+/fvIzk5GYGBgVi6dCnEYjF2794NR0dHAEBGRgaeeOIJPPXUU9i6dSvOnDmD999/HzKZDJs2bcKtW7dQWFgIZ2dnyGQyfP75592uixDSrZkmI7YolKGAop8Z8/+MF9OVK1fwl7/8Bfv378fUqVPx7LPPorKyEiEhIayH2MmTJ5GamjrijT8pww96FqcMObhcbq9blR999FEkJibC1dUVJiYmCAsLg4ODA8aPHw9CCMaOHYt79+6xggkAUlNT2ZYfAHzyyScYNWoUjh49ioULF2Lz5s3gcrn47LPPunx6vnfvHurq6sDlcrsIJsW2xUhFJpPhnXfegbe3N0xNTTFmzBhs2bKFViH0GA6Hg7a2NggEAlY8Me9tPz8/eHh44PDhwzA3N8ehQ4cwb948lJSUYNeuXRAIBLhx4wbc3d31Zg6QQtEYg5fYQqHohpKSEnLu3Dn230eOHCGurq7kxo0bhBBCrly5QsLCwkhAQAAhhJDm5mZiZWVFDhw4QKRSKftzb775JrGzsyNXr14lhBBSWFhIXn31VfLQQw8RGxsbEhISQo4fP05kMhmRyWSEEEJu375N3N3dSVlZGRtWOtL44IMPiL29PTl58iQpLi4mR48eJRYWFmTXrl26XhqlByQSCVm8eDHx8PAg//nPf0hGRobS9w8fPkyMjIzIxYsXlW6vq6tjQ4AV/3YolOECdRajDEsUKzyMazjDnDlzMGvWLEyfPh1z586FRCJBcnIyNm/eDKDDTdzR0RE+Pj7sp+umpiY0NjbC29ubtTx4/vnnERwcjB07dsDNzQ0HDhzA9u3b4eXlhaCgINy4cQNfffUV7Ozs2DYFGeIxLv3h+vXriI6OZnclenl54dChQ7h9+7aOV0bpCQMDA6xbtw7Hjx/Ha6+9BldXVzz00ENYs2YNPD098fTTT2Pv3r04c+YMZsyYAUIIDAwMYGNjw97HcMp8pFAYRm7PgDKs4XK5bEuMdGoDWVtb4/vvv0deXh7+8pe/YO3ateDxeHjssccAAK6urpDJZErRJAUFBbh79y6mTJkCLpeLCxcu4NatW6ipqQGHw4GXlxc2bdoEAPj1118BAF988QW+//57VFZW4s0330RxcTE4HE6X9chkMuzZswePPPII/vOf/7Du5MOFqVOnIjExEfn5+QCAtLQ0XLt2DfPmzdPxyvSbPXv2wMvLCyYmJoiMjBx0kfnII4/gk08+wcWLFxEbG4vExEQ8+eSTePLJJ5GcnIyJEyfi559/Rm1tLXX2powcdFvoolAGH5lM1qVVxufz2f+Xy+Vk/vz55MknnyT37t0jd+7cIXPnziW2trbk7NmzhBBClixZQiZMmEBeeOEF4uLiQhwdHckzzzxDZs2aRZ599llCCCGZmZmEy+WSzZs3k5kzZ5KIiAhSV1fXZT2NjY0kMjKSuLu7k4cffpj85z//0d6T1wEymYxs3LiRcDgcYmBgQDgcDtm6dauul6XXMO2v//znPyQrK4u89NJLxMbGRul9Oti0t7eTvXv3ksWLFxMLCwsye/ZswuFwyFtvvaWzNVEogw0VTZQRi1wuZ7+YfzOkpqaS0NBQ4uzsTJ588kni7+9PQkNDiVgsJoQQEhkZSTZs2EAIIUQkEpGzZ8+Sv/3tb8TNzY3s3LmTEELImjVrSFBQEHufzKxHZ1JSUoihoSE7N8I8huJsVGFhIWlvb9fk0x80Dh06RNzd3cmhQ4dIeno6+f7774mdnR3Zv3+/rpemt0yePJmsWrWK/bdMJiOurq5k27ZtOlkP8z5kOHXqFHn99deJj48PuXnzpk7WRKHoAiqaKJROJCYmssKFEEJOnDhBoqOjyZo1awghHaJmy5YtxNPTk1RWVir9bFtbGyuOvLy8yLvvvtvn4+3cuZM4OjoSQkiPw+KxsbFdhnGHCu7u7mT37t1Kt23ZsoX4+fnpaEX6TXt7O+HxeCQhIUHp9hdeeIEsXrxYN4vqBplMRpqbm9n/p1BGAnSmiUJRQCqVYseOHXjuuedw5swZXLp0CW+++Sbq6+vx/PPPA+hwCn/++ecxduxYbN68GVlZWeDz+cjPz4dMJoOJiQlSU1NRVlaG6OjoXh+vubkZCQkJWLx4Mfv4QEfo8LFjx/DMM8/gmWeeQUlJCQIDA9mfI/+bizp58iTKy8u18VJojNbW1i6WCzwej0Zq9EB1dTVkMhmcnZ2Vbnd2dkZVVZWOVtUVLpcLc3Nz9v8plJEAfadTKAoYGBjgX//6F8zMzLB8+XK8+uqr8Pb2xscff4zJkycD6BAsXl5eeOedd5CTk4PIyEjMmzcPn3zyCe7cuQMAOHHiBLy8vFhvqJ4oLi7G3bt38cILLyjdvmvXLqxatQqOjo5obGxESkoKwsLCcPz4cQB/+OjExcVh9OjRmDx5Mvh8vpZelYGxaNEifPDBBzh16hTu37+PhIQE/Pvf/2ZzACkUCmWoQLc8UCidiIiIwP79+wEAZWVlcHZ2hpGREft9xjJgxowZuHTpEsRiMS5dugQzMzOEh4cD6KgWjBo1CmKxGCYmJj0+VmJiIiwsLDBjxgwAHVUsoCM/b9GiRfj888/x5ptvYu3atbh48SL7fblcDhMTE3z33XdwdHTE0aNHe30cXfL555/jnXfewSuvvAKBQABXV1f8/e9/x7vvvqvrpeklDg4O4PF4XUQwn8+Hi4uLjlZFoVAAWmmiUHpl9OjRSoJJEZlMBplMBiMjI8ydOxfTp09n8+9eeOEFCIVCTJgwAR9//DHbdlOkpaUFv/zyC+tfxLSr5HI5Hn74Ydy9exfp6eloaWnB3Llz8fbbb2PWrFkAOtohTAXrzJkzWLJkCaytrTX+/DWBpaUlPv30U5SUlEAkEqGoqAj/+te/enxdRzpGRkYICwtDYmIie5tcLkdiYiKioqJ0uDIKhUJFE4XST3g8Hmvg17kFFxYWhtzcXPz73/8GgG59bO7fv4+bN29i2bJlAP6oYHG5XDz//PNwdXXFggULUFlZCQCwsrJiK03M8bm5ucjOzqatrmHGa6+9hm+++QYHDhxATk4OYmNj0dLSguXLl+t6aRTKiIa25ygUDdDZ5ZsJ6H3qqad6/JnLly/DxMSErR4p3oe3tzeOHTuGxx57DBkZGYiNjcVHH33EDt4yxMfHw8PDA5MmTdLgs6HomqeffhpCoRDvvvsuqqqqEBwcjLNnz3YZDqdQKIMLrTRRKFqA2U3U0w4xkUiEhIQELFy4EAAgFosBACUlJTh27BgAoLGxEe7u7jhw4AB+/PFHXLhwocv9HD16FIsXL4aFhYU2ngZFh6xevRolJSVob2/HrVu3EBkZqeslUSgjHlppolC0SE9bsQsLC3Hx4kUcPXoUANj5noKCAvzwww9wcHBAS0sLJk+eDHd3dwQGBrIxJAxFRUVIT0/Hp59+qtXnQKFQKJQOqGiiUHSAgYEBwsLCsHLlSqSmpmLLli0AOnbupaam4vnnn4dQKMTkyZPx448/gsvlYtq0aQA6BtB5PB4SEhLg5uaGkJAQXT4VCoVCGTFwSG8mMhQKRWtIpVIUFhaiqakJERER7BwUQ0xMDMaPHw8bGxu88MIL7HZzQgg4HA4iIiIQHh6OL7/8UldPgUKhUEYUVDRRKHoEI5x+/fVX3LhxA++99x77PUYsAR2tOT8/P5w9exazZ8/W0WopFAplZEHbcxSKHsFUmubOnYuIiAgAHUKKEAIej4e2tjaYmJjg1q1bcHZ2Zs00KRQKhaJ9qGiiUPQUOzs7AMrD5Fu3bsXp06eRkpKCF198ETY2NjpaHYVCoYw8qGiiUIYQa9aswejRo3H69OkueXUUCoVC0S50polCoVAoFApFBai5JYVCoVAoFIoKUNFEoVAoFAqFogJUNFEoFAqFQqGoABVNFAqFQqFQKCpARROFQqFQKBSKClDRRKFQKBQKhaICVDRRKBQKhUKhqAAVTRQKhUKhUCgqQEUThUKhUCgUigpQ0UShUCgUCoWiAv8P2dqc41AnS9EAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 2 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "n = 10\n", + "budget = 10*np.random.rand(n)\n", + "volume = 500*np.random.rand(n)\n", + "inconfort = [resoudre(budget[i], volume[i], 13050, 22.5) for i in range(n)]\n", + "\n", + "x = []\n", + "y = []\n", + "for i in range(n):\n", + " if (inconfort[i] is not None):\n", + " x.append(budget[i])\n", + " y.append(volume[i])\n", + "z = [i for i in inconfort if i is not None]\n", + "\n", + "colors = z\n", + "\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "ax.scatter(x, y, z, c=colors, cmap='viridis', marker='o')\n", + "\n", + "ax.set_title('Graphique de la relation Budget-Inconfort pour différents volumes')\n", + "ax.set_xlabel('Budget [$]')\n", + "ax.set_ylabel('Volume [m^3]')\n", + "ax.set_zlabel('Inconfort [/]')\n", + "\n", + "cbar = fig.colorbar(ax.collections[0], location='right', pad = 0.1, shrink = 0.8)\n", + "cbar.ax.set_title('Inconfort')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1071e282", + "metadata": {}, + "source": [ + "### Commentaires" + ] + }, + { + "cell_type": "markdown", + "id": "8124c352", + "metadata": {}, + "source": [ + "L'objectif était d'étudier la relation entre le budget et l'inconfort occasionné. Notre code est testé pour 100 budgets différents allant de 0\\$ à la valeur pour laquelle l'inconfort est nul. Dans le cas de l'intervalle 13050, l'inconfort dépasse les 12000 sans l'intervention de la pompe, dans le cas de l'intervalle 22504 il atteint les 800. Notre code s'exécute (pour obtenir les informations du premier graphe) en respectivement 5.3625 et 7.89081 secondes pour les deux semaines testées. Pour obtenir le deuxième graphe (en 3D), il faut compter un peu moins de 2 minutes pour 1000 résolutions.\n", + "\n", + "Dans les deux semaines testées, comme attendu, plus le budget est restreint moins le confort peut être assuré. Les deux décroissent jusqu'à arriver à leur budget pour lequel l'inconfort est nul. L'inconfort en se passant de la pompe est évidemment plus petit durant les périodes plus estivales.\n", + "\n", + "On peut également observer l'effet du volume de la pièce sur l'inconfort. Pour un budget donné, l'inconfort monte rapidement lorsque la pièce à chauffer augmente en volume." + ] + }, + { + "cell_type": "markdown", + "id": "0d1eeb96", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Question 3.2</b> :<br> \n", + " Expliquez la pente linéaire observée dans une grande partie du graphique obtenu. Recalculez la valeur de la pente à partir des informations fournies par le solver pour la résolution avec le budget maximal (tâche 2 initiale, Question 2.2), et comparez à celle du graphique. Enfin, expliquez pourquoi le graphique cesse à un moment d'être une droite.\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "4e9b0c8a", + "metadata": {}, + "source": [ + "---\n" + ] + }, + { + "cell_type": "markdown", + "id": "fa986f94", + "metadata": {}, + "source": [ + "### Explication et calcul de la pente" + ] + }, + { + "cell_type": "markdown", + "id": "6145880c", + "metadata": {}, + "source": [ + "On constate pour l'intervalle 13050 que pour un pourcentage de budget allant de 0 à environ 50, la décroissance de l'inconfort est linéaire. Jusqu'à 100% du budget, la courbe ressemble davantage à une parabole. On peut s'aider de l'analyse post-optimale pour calculer la pente de la droite. Pour l'intervalle 22504, c'est sur l'intervalle $[0\\%,30\\%]$ que la droite se trouve.\n", + "\n", + "Le problème peut être représenté sous la forme standard par : $\\min_x \\mathbf{c}^Tx$ tel que $Ax = b$ et $x \\ge 0$. Nous avons vu que lorsque l'on obtient la valeur optimale $x^*$ de ce problème, on peut prédire l'évolution du sommet et du coût optimaux. Dans notre cas, la quantité que l'on modifie est le budget alloué. On change donc (voir formulation) la contrainte $\\sum\\limits_{i=0}^{n-1}c_i(p_{n_i}+p_{r_i})\\le Budget \\Leftrightarrow -\\sum\\limits_{i=0}^{n-1}c_i(p_{n_i}+p_{r_i})\\ge -Budget$ en $\\sum\\limits_{i=0}^{n-1}c_i(p_{n_i}+p_{r_i})\\le Budget + \\Delta b\\Leftrightarrow -\\sum\\limits_{i=0}^{n-1}c_i(p_{n_i}+p_{r_i})\\ge -Budget + (-\\Delta b)$, avec $\\Delta b\\gt 0$ représentant un petit incrément de budget. Or, il a été vu que si l'on modifie le membre de droite de $Ax = b$ en remplaçant $b$ par $b+\\Delta b$, le nouveau sommet (primal) devient $x_{new}^* = B^{-1}(b+\\Delta b)$ et le coût optimal est augmenté de $\\mathbf{y^{*}}^T\\Delta b$, avec $y^{*}$ la solution du dual.\n", + "\n", + "En résolvant le problème pour un pourcentage de budget dans l'intervalle qui nous intéresse, i.e. $[0\\%,50\\%]$, on peut demander au solveur de nous fournir la variable duale associée à la contrainte $\\sum\\limits_{i=0}^{n-1}c_i(p_{n_i}+p_{r_i})\\le Budget$. Commme il n'y a qu'une contrainte incrémentée, il n'y qu'une variable duale d'intérêt.\n", + "\n", + "Résolvons donc le problème pour un budget de 20% du budget minimal à allouer :" + ] + }, + { + "cell_type": "code", + "execution_count": 400, + "id": "13a297f7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Valeur duale de la contrainte de budget = 2043.7646964520766\n" + ] + }, + { + "data": { + "text/plain": [ + "9455.733996151686" + ] + }, + "execution_count": 400, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cout_minimal_obtenu_a_la_tache_1 = 8.182333695034458\n", + "resoudre((20/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)" + ] + }, + { + "cell_type": "markdown", + "id": "7c079cc9", + "metadata": {}, + "source": [ + "Le solveur nous apprend l'inconfort pour 20% est de 9456, mais surtout que $y^{*}=2044$. Donc, si l'on ajoute un petit budget $\\Delta b$, c'est-à -dire que l'on ajoute $(-\\Delta b)$ au membre de droite de la contrainte de budget, la solution (l'inconfort) devrait changer de $\\mathbf{y^{*}}^T(-\\Delta b) = -2044\\Delta b$. Dans notre cas 1% du budget représente $0.0818\\$$ donc l'inconfort va changer d'une valeur de $0.818\\times (-2044)=-167$.\n", + "\n", + "Donc, la pente est d'environ -167 par pourcent.\n", + "\n", + "Vérifions cette valeur théorique. Si l'on passe d'un budget de 20% à 30% du budget minimal à allouer pour un inconfort nul, on devrait avoir une variation d'inconfort d'environ $10\\times(-167) = -1670$. Par conséquent, l'inconfort devrait être de $9456-1670=7786$." + ] + }, + { + "cell_type": "code", + "execution_count": 401, + "id": "7d03cc2d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7786.255703567915" + ] + }, + "execution_count": 401, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "resoudre((30/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5)" + ] + }, + { + "cell_type": "markdown", + "id": "5eb757f9", + "metadata": {}, + "source": [ + "C'est bien la valeur obtenue !\n", + "\n", + "Cette approximation de l'inconfort est en réalité exacte tant que $B^{-1}(b+\\Delta b)\\ge 0$, où $B$ est la matrice des variables de la base du tableau simplexe du problème. En-dehors du domaine de validité de cette inégalité, l'approximation n'est plus exacte et elle surévalue la variation du nouveau coût optimal. Le domaine hors de l'intervalle $[0\\%,50\\%]$ est tel que la variable duale $y^{*}$ est variable et non plus constante. On peut le voir en résolvant les problèmes ci-dessous :" + ] + }, + { + "cell_type": "code", + "execution_count": 405, + "id": "1359b547", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Valeur duale de la contrainte de budget = 2066.038771528725\n", + "Valeur duale de la contrainte de budget = 2043.7646964520766\n", + "Valeur duale de la contrainte de budget = 2036.042620899515\n", + "Valeur duale de la contrainte de budget = 2015.3824537180549\n", + "\n", + "Valeur duale de la contrainte de budget = 1992.4084547788225\n", + "\n", + "Valeur duale de la contrainte de budget = 1727.3669914785114\n", + "Valeur duale de la contrainte de budget = 1118.9338873755696\n", + "Valeur duale de la contrainte de budget = 892.7378006683173\n", + "Valeur duale de la contrainte de budget = 670.4271279008\n" + ] + }, + { + "data": { + "text/plain": [ + "313.91528460992583" + ] + }, + "execution_count": 405, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# La variable duale est constante\n", + "resoudre((10/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)\n", + "resoudre((20/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)\n", + "resoudre((30/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)\n", + "resoudre((40/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)\n", + "print()\n", + "# La variable duale commence à varier\n", + "resoudre((50/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)\n", + "print()\n", + "# La variable duale n'est plus une constante\n", + "resoudre((60/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)\n", + "resoudre((70/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)\n", + "resoudre((80/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)\n", + "resoudre((90/100)*cout_minimal_obtenu_a_la_tache_1, 360, 13050, 22.5, True)" + ] + }, + { + "cell_type": "markdown", + "id": "d5523f6e", + "metadata": {}, + "source": [ + "<div class=\"alert alert-block alert-info\"><b>Bonus</b><br>\n", + " Estimez l'effet de l'utilisation d'une version imprécise des données de température (prévisions)<br>\n", + "</div>\n", + "Ce bonus est optionnel, et ne conduit pas à l'obtention de points supplémentaires : il est seulement destiné à attirer votre\n", + " attention sur le caractère artificiel de la situation proposée, où on connaît parfaitement et à l'avance les températures extérieures." + ] + }, + { + "cell_type": "markdown", + "id": "640fd558", + "metadata": {}, + "source": [ + "## Consignes et conseils\n", + "- Le projet se réalise par groupe de (maximum) quatre étudiants (cf. groupes constitués sur Moodle). \n", + "\n", + "- L'assistant responsable du projet est Guillaume Van Dessel. Toutes les questions sur le projet doivent être posées via Moodle dans le forum prévu pour le projet (et pas par message/mail individuel). Des permanences seront prévues, et seront annoncées via Moodle.\n", + "\n", + "- Il est fortement suggéré d'utiliser un langage de modélisation pour formuler et résoudre vos problèmes d'optimisation linéaire. Nous conseillons d'utiliser le module CVXPY combiné au solver d'optimisation HIGHS (nous avons vérifié que cette combinaison est suffisamment performance pour le projet).\n", + "\n", + "- Les groupes peuvent échanger leurs réflexions, partager leurs idées et comparer leurs résultats. Ils ne peuvent pas recopier les raisonnements, les solutions ou les codes informatiques. L'utilisation de toute information ou aide extérieure doit obligatoirement être mentionnée dans le rapport, en citant la source.\n", + "\n", + "- Votre rapport final sera constitué de ce notebook complété, où vous aurez inséré vos codes, vos résultats, vos graphiques et commentaires.\n", + "\n", + "- Ce rapport est à remettre au plus tard le **mercredi 24 mai 2023** à minuit (soir), via Moodle, sous la forme d'une archive compressée contenant votre notebook et tous les fichiers nécessaires pour le faire fonctionner (code Python, etc.). Le notebook doit contenir les cellules sous forme déjà évaluée (résultats, tableaux, graphiques, etc.), mais doit pouvoir également être ré-évalué en entier. \n", + "\n", + "- Organisez efficacement votre travail de groupe, et répartissez vous le travail. Les tâches à effectuer durant cette seconde partie sont *largement indépendantes* les unes des autres.\n", + "\n", + "\n", + "### Changelog\n", + "- 2023-03-24 v1\n", + "- 2023-04-23 v1.1 avec récapitulatif des précisions apportées sur Moodle (en bleu)\n", + "- 2023-04-28 description des tâches de la seconde partie\n", + "- 2023-05-12 v2 avec le format attendu (notebook) pour le rapport final\n", + "- 2023-05-12 v2.1 précisions supplémentaire pour quelques questions" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Notebook_final.ipynb b/Notebook_final.ipynb index 14c60f9..d907704 100644 --- a/Notebook_final.ipynb +++ b/Notebook_final.ipynb @@ -1,7 +1,6 @@ { "cells": [ { - "attachments": {}, "cell_type": "markdown", "id": "tight-speech", "metadata": {}, @@ -35,7 +34,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "loved-savings", "metadata": {}, @@ -55,7 +53,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "892c7f7b", "metadata": {}, @@ -64,7 +61,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "79b302b5", "metadata": {}, @@ -85,7 +81,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "71cacb8c", "metadata": {}, @@ -94,7 +89,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "ff08fda0", "metadata": {}, @@ -117,7 +111,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "72f2ef61", "metadata": {}, @@ -126,7 +119,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "17a74ae8", "metadata": {}, @@ -146,7 +138,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2173f762", "metadata": {}, @@ -155,7 +146,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "edd45834", "metadata": {}, @@ -180,7 +170,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "d3dbd195", "metadata": {}, @@ -189,7 +178,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "5f418ea2", "metadata": {}, @@ -212,7 +200,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "7188a70b", "metadata": {}, @@ -221,7 +208,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "1ff5ea64", "metadata": {}, @@ -249,7 +235,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "59d693bb", "metadata": {}, @@ -260,7 +245,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "fe74881b", "metadata": {}, @@ -280,7 +264,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "6e4c0afb", "metadata": {}, @@ -291,7 +274,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2c46fc8e", "metadata": {}, @@ -301,7 +283,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "4ff6e898", "metadata": {}, @@ -335,7 +316,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "88f0fe15", "metadata": {}, @@ -394,7 +374,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2464e1b7", "metadata": {}, @@ -403,7 +382,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "ee2956e1", "metadata": {}, @@ -412,7 +390,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "ff637cd4", "metadata": {}, @@ -450,7 +427,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "4d2a8259", "metadata": {}, @@ -509,7 +485,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "a9f2839f", "metadata": {}, @@ -518,7 +493,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2c111601", "metadata": {}, @@ -529,7 +503,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "dcd4fd17", "metadata": {}, @@ -541,7 +514,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "dd5e6cd6", "metadata": {}, @@ -552,7 +524,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "c7f40ff2", "metadata": {}, @@ -591,7 +562,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "af08cae2", "metadata": {}, @@ -607,7 +577,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "7aa5fe9a", "metadata": {}, @@ -618,7 +587,41 @@ ] }, { - "attachments": {}, + "cell_type": "code", + "execution_count": 12, + "id": "9fbb0da2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.3461926094565912" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Duree = 16\n", + "x_i = cp.Variable(n//Duree, boolean=True) #Allumage\n", + "\n", + "# Formulation et résolution du problème\n", + "objectif = cp.Minimize(c.T@(p_n_i+p_r_i))\n", + "contraintes = [T_i[0] == T_initial, T_i[n] == T_final, T_min <= T_i, T_i <= T_max, T_i[1:n+1] == T_i[0:n]+deltaT_i, p_n_i>=0, p_r_i>=0, \n", + " deltaT_i == -(1-eta)*(T_i[0:n]-T_ext)+(cp.multiply(p_n_i,COP_normal(T_ext)))*0.25/(V*Cx)-p_r_i*COP_reverse*0.25/(V*Cx)]\n", + "\n", + "for i in range(n):\n", + " contraintes.append((p_n_i[i]+p_r_i[i])<=p_max*x_i[i//Duree])\n", + " contraintes.append((p_n_i[i]+p_r_i[i])>=0.25*p_max*x_i[i//Duree])\n", + "#contraintes.append((p_n_i+p_r_i)<=p_max)\n", + "\n", + "probleme = cp.Problem(objectif, contraintes)\n", + "probleme.solve(solver=cp.GLPK_MI, warm_start=True, verbose=False)" + ] + }, + { "cell_type": "markdown", "id": "8fcc662f", "metadata": {}, @@ -632,7 +635,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "86e20172", "metadata": {}, @@ -641,7 +643,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "bf51cba6", "metadata": {}, @@ -655,7 +656,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "0048810c", "metadata": {}, @@ -664,7 +664,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "99ecd372", "metadata": {}, @@ -674,7 +673,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2bb743d7", "metadata": {}, @@ -683,7 +681,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "11c4dbac", "metadata": {}, @@ -692,7 +689,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "7a3e7b09", "metadata": {}, @@ -709,7 +705,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "ad42aa0d", "metadata": {}, @@ -720,7 +715,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "8f10fc9d", "metadata": {}, @@ -729,7 +723,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "99dd3eee", "metadata": {}, @@ -738,7 +731,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "6fa7c356", "metadata": {}, @@ -757,7 +749,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "1a3e181b", "metadata": {}, @@ -766,7 +757,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "7768e2fc", "metadata": {}, @@ -785,7 +775,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "0d664883", "metadata": {}, @@ -794,7 +783,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "509aabc1", "metadata": {}, @@ -846,7 +834,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "151041f9", "metadata": {}, @@ -855,7 +842,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "82c78b09", "metadata": {}, @@ -877,7 +863,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "185b221d", "metadata": {}, @@ -888,7 +873,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "01eb34c3", "metadata": {}, @@ -897,7 +881,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "e0cc21fb", "metadata": {}, @@ -936,7 +919,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2d28c4ed", "metadata": {}, @@ -996,7 +978,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "bb0516f4", "metadata": {}, @@ -1005,7 +986,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "91c6e0e0", "metadata": {}, @@ -1044,7 +1024,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "36627caa", "metadata": {}, @@ -1104,7 +1083,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "e4aee6ab", "metadata": {}, @@ -1113,7 +1091,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "cef532c6", "metadata": {}, @@ -1124,7 +1101,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "db6baecb", "metadata": {}, @@ -1133,7 +1109,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "cf7d1ad5", "metadata": {}, @@ -1144,7 +1119,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "3d678078", "metadata": {}, @@ -1153,7 +1127,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "06fe7ddc", "metadata": {}, @@ -1162,7 +1135,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "06ad1cc3", "metadata": {}, @@ -1225,7 +1197,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "53c22b28", "metadata": {}, @@ -1322,7 +1293,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "32b36538", "metadata": {}, @@ -1331,7 +1301,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2be891ab", "metadata": {}, @@ -1342,7 +1311,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "bdd3bf32", "metadata": {}, @@ -1351,7 +1319,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "0c5b5691", "metadata": {}, @@ -1360,7 +1327,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "7f47806b", "metadata": {}, @@ -1376,7 +1342,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "eb40a4fa", "metadata": {}, @@ -1385,7 +1350,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "e9b4e1d8", "metadata": {}, @@ -1450,7 +1414,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "5771ea0c", "metadata": {}, @@ -1459,7 +1422,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2e0ae6ba", "metadata": {}, @@ -1468,7 +1430,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "caedf962", "metadata": {}, @@ -1479,7 +1440,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "0b194fe0", "metadata": {}, @@ -1533,7 +1493,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "6896fd35", "metadata": {}, @@ -1587,7 +1546,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "ef6aa85b", "metadata": {}, @@ -1596,7 +1554,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "6d67576e", "metadata": {}, @@ -1653,7 +1610,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "1071e282", "metadata": {}, @@ -1662,7 +1618,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "8124c352", "metadata": {}, @@ -1675,7 +1630,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "0d1eeb96", "metadata": {}, @@ -1686,7 +1640,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "4e9b0c8a", "metadata": {}, @@ -1695,7 +1648,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "fa986f94", "metadata": {}, @@ -1704,7 +1656,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "6145880c", "metadata": {}, @@ -1748,7 +1699,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "7c079cc9", "metadata": {}, @@ -1782,7 +1732,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "5eb757f9", "metadata": {}, @@ -1844,7 +1793,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "d5523f6e", "metadata": {}, @@ -1857,7 +1805,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "640fd558", "metadata": {}, @@ -1903,7 +1850,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.9.7" } }, "nbformat": 4, -- GitLab