Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
<meta name="generator" content="pdoc3 0.11.6">
<title>dopes.data_analysis.data_processing API documentation</title>
<meta name="description" content="">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source > summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible;min-width:max-content}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin:1em 0}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => {
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
hljs.highlightAll();
/* Collapse source docstrings */
setTimeout(() => {
[...document.querySelectorAll('.hljs.language-python > .hljs-string')]
.filter(el => el.innerHTML.length > 200 && ['"""', "'''"].includes(el.innerHTML.substring(0, 3)))
.forEach(el => {
let d = document.createElement('details');
d.classList.add('hljs-string');
d.innerHTML = '<summary>"""</summary>' + el.innerHTML.substring(3);
el.replaceWith(d);
});
}, 100);
})</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>dopes.data_analysis.data_processing</code></h1>
</header>
<section id="section-intro">
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="dopes.data_analysis.data_processing.finite_difference"><code class="name flex">
<span>def <span class="ident">finite_difference</span></span>(<span>x, h, order, accuracy=2, kind='central')</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def finite_difference(x,h,order,accuracy=2,kind="central"):
""" Function to calculate the coefficient to calculate a finite difference for derivative calculation
args:
- x (array): the 1D array for which to calculate the finite difference. The size of the array should be higher than the size of the stencil given by 2 * |_ (order + 1) / 2 _| - 1 + 2 * |_ accuracy / 2_|
- h (scalar): the step size for an uniform grid spacing between each finite difference interval
- order (integer): the order of the derivation
- accuracy (integer): related to the number of points taken for the finite difference. see https://en.wikipedia.org/wiki/Finite_difference_coefficient
- kind (string): the type of finite difference calculated. For now, only "central" finite difference is implemented.
return:
- results (numpy array): an array with the results of the calculation of the finite difference
- x_results (numpy array): an array with the x value with the central value for each calculation of the finite difference
"""
if kind=="central":
n_stencil=int(2*np.floor((order+1)/2)-1+2*np.floor(accuracy/2))
stencil=range(-int(np.floor(n_stencil/2)),int(np.floor(n_stencil/2))+1)
coeff=finite_difference_coeff(stencil,order)/h**order
Nx=len(x)
matrix_coeff=np.zeros((Nx-accuracy-order+1,Nx))
for i in range(Nx-accuracy-order+1):
matrix_coeff[i,i:n_stencil+i]=coeff[:,0]
results=matrix_coeff @ x
# x_results=x[int((n_stencil-1)/2):-int((n_stencil-1)/2)]
return results</code></pre>
</details>
<div class="desc"><p>Function to calculate the coefficient to calculate a finite difference for derivative calculation</p>
<p>args:
- x (array): the 1D array for which to calculate the finite difference. The size of the array should be higher than the size of the stencil given by 2 * |<em> (order + 1) / 2 </em>| - 1 + 2 * |<em> accuracy / 2</em>|
- h (scalar): the step size for an uniform grid spacing between each finite difference interval
- order (integer): the order of the derivation
- accuracy (integer): related to the number of points taken for the finite difference. see <a href="https://en.wikipedia.org/wiki/Finite_difference_coefficient">https://en.wikipedia.org/wiki/Finite_difference_coefficient</a>
- kind (string): the type of finite difference calculated. For now, only "central" finite difference is implemented.</p>
<p>return:
- results (numpy array): an array with the results of the calculation of the finite difference
- x_results (numpy array): an array with the x value with the central value for each calculation of the finite difference</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.finite_difference_coeff"><code class="name flex">
<span>def <span class="ident">finite_difference_coeff</span></span>(<span>stencil, order)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def finite_difference_coeff(stencil,order):
""" Function to calculate the coefficient to calculate a finite difference for derivative calculation
https://en.wikipedia.org/wiki/Finite_difference_coefficient
args:
- stencil (list of integer): the node point for the calculation of each derivation point. The size of the stencil depends on the accuracy and the order of the derivation. For central difference, the length of the stencil is odd and symetric around 0.
- order (integer): the order of the derivation
return:
- coeff (numpy array): a column array of the coefficients to be used to calculate the finite difference
"""
N=len(stencil)
stencil_matrix=np.zeros((N,N))
for i in range(N):
stencil_matrix[i]=np.array(stencil)**i
delta=np.zeros((N,1))
delta[order,0]= math.factorial(order)
coeff=np.linalg.inv(stencil_matrix) @ delta
return coeff</code></pre>
</details>
<div class="desc"><p>Function to calculate the coefficient to calculate a finite difference for derivative calculation
<a href="https://en.wikipedia.org/wiki/Finite_difference_coefficient">https://en.wikipedia.org/wiki/Finite_difference_coefficient</a></p>
<p>args:
- stencil (list of integer): the node point for the calculation of each derivation point. The size of the stencil depends on the accuracy and the order of the derivation. For central difference, the length of the stencil is odd and symetric around 0.
- order (integer): the order of the derivation</p>
<p>return:
- coeff (numpy array): a column array of the coefficients to be used to calculate the finite difference</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.fit_gaussian"><code class="name flex">
<span>def <span class="ident">fit_gaussian</span></span>(<span>x, y, xmin=None, xmax=None, x0=0, A=1, W=1)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def fit_gaussian(x,y,xmin=None,xmax=None,x0=0,A=1,W=1):
""" Function to fit the data with a Lorentzian function
args:
- x (array_like) : a 1D input array.
- y (array_like) : a 1D input array with the same dimension of x.
- xmin (scalar) : a scalar or array of values to set the minimum value of the data range on which the Gaussian is calculated.
- xmax (scalar) : a scalar or array of values to set the maximum value of the data range on which the Gaussian is calculated. .
- x0 (scalar) : the starting position of the Gaussian function for the fit
- A (scalar) : the starting amplitude of the Gaussian function for the fit
- W (scalar) : the starting full width at half maximum (FWHM) of the Gaussian function for the fit
return:
- a tuple (parameter_dictionary, data_gaussian) with the a dictionary containing the fitting parameters ("position", "amplitude" and "width") and the corresponding Gaussian function evaluated in x.
"""
if (xmin is None) and (xmax is None):
x_fit=x
y_fit=y
else:
index=(x>=xmin) & (x<=xmax)
x_fit=x[index]
y_fit=y[index]
p_gaussian=curve_fit(gaussian, x_fit, y_fit, p0=[x0,A,W])[0]
return {"position":p_gaussian[0],"width":p_gaussian[1],"amplitude":p_gaussian[2]}, gaussian(x,*p_gaussian)</code></pre>
</details>
<div class="desc"><p>Function to fit the data with a Lorentzian function </p>
<p>args:
- x (array_like) : a 1D input array.
- y (array_like) : a 1D
input array with the same dimension of x.
- xmin (scalar) : a scalar or array of values to set the minimum value of the data range on which the Gaussian is calculated.
- xmax (scalar) : a scalar or array of values to set the maximum value of the data range on which the Gaussian is calculated. .
- x0 (scalar) : the starting position of the Gaussian function for the fit
- A (scalar) : the starting amplitude of the Gaussian function for the fit
- W (scalar) : the starting full width at half maximum (FWHM) of the Gaussian function for the fit
return:
- a tuple (parameter_dictionary, data_gaussian) with the a dictionary containing the fitting parameters ("position", "amplitude" and "width") and the corresponding Gaussian function evaluated in x.</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.fit_lorentzian"><code class="name flex">
<span>def <span class="ident">fit_lorentzian</span></span>(<span>x, y, xmin=None, xmax=None, x0=520.7, A0=1, W0=3)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def fit_lorentzian(x,y,xmin=None,xmax=None,x0=520.7,A0=1,W0=3):
""" Function to fit the data with a Lorentzian function
args:
- x (array_like) : a 1D input array.
- y (array_like) : a 1D input array with the same dimension of x.
- xmin (scalar) : a scalar or array of values to set the minimum value of the data range on which the Lorentzian is calculated.
- xmax (scalar) : a scalar or array of values to set the maximum value of the data range on which the Lorentzian is calculated. .
- x0 (scalar) : the starting position of the Lorentzian function for the fit
- A (scalar) : the starting amplitude of the Lorentzian function for the fit
- W (scalar) : the starting full width at half maximum (FWHM) of the Lorentzian function for the fit
return:
- a tuple (parameter_dictionary, data_lorentzian) with the a dictionary containing the fitting parameters ("position", "amplitude" and "width") and the corresponding Lorentzian function evaluated in x.
"""
if (xmin is None) and (xmax is None):
x_fit=x
y_fit=y
else:
index=(x>=xmin) & (x<=xmax)
x_fit=x[index]
y_fit=y[index]
p_lorentzian=curve_fit(lorentzian, x_fit, y_fit, p0=[x0,A0,W0])[0]
return {"position":p_lorentzian[0],"amplitude":p_lorentzian[1],"width":p_lorentzian[2]}, lorentzian(x,*p_lorentzian)</code></pre>
</details>
<div class="desc"><p>Function to fit the data with a Lorentzian function </p>
<p>args:
- x (array_like) : a 1D input array.
- y (array_like) : a 1D
input array with the same dimension of x.
- xmin (scalar) : a scalar or array of values to set the minimum value of the data range on which the Lorentzian is calculated.
- xmax (scalar) : a scalar or array of values to set the maximum value of the data range on which the Lorentzian is calculated. .
- x0 (scalar) : the starting position of the Lorentzian function for the fit
- A (scalar) : the starting amplitude of the Lorentzian function for the fit
- W (scalar) : the starting full width at half maximum (FWHM) of the Lorentzian function for the fit
return:
- a tuple (parameter_dictionary, data_lorentzian) with the a dictionary containing the fitting parameters ("position", "amplitude" and "width") and the corresponding Lorentzian function evaluated in x.</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.fit_lorentzian_2peaks"><code class="name flex">
<span>def <span class="ident">fit_lorentzian_2peaks</span></span>(<span>x, y, xmin=None, xmax=None, x0=(520, 520.7), A0=(1, 1), W0=(3, 3))</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def fit_lorentzian_2peaks(x,y,xmin=None,xmax=None,x0=(520,520.7),A0=(1,1),W0=(3,3)):
""" Function to fit the data with a Lorentzian function
args:
- x (array_like) : a 1D input array.
- y (array_like) : a 1D input array with the same dimension of x.
- xmin (scalar) : a scalar or array of values to set the minimum value of the data range on which the Lorentzian is calculated.
- xmax (scalar) : a scalar or array of values to set the maximum value of the data range on which the Lorentzian is calculated. .
- x0 (tuple) : the two starting position of the double Lorentzian function for the fit
- A (tuple) : the two starting amplitude of the double Lorentzian function for the fit
- W (tuple) : the two starting full width at half maximum (FWHM) of the double Lorentzian function for the fit
return:
- a tuple (parameter_dictionary, data_lorentzian) with the a dictionary containing the fitting parameters ("position", "amplitude" and "width") and the corresponding double Lorentzian function evaluated in x.
"""
if (xmin is None) and (xmax is None):
x_fit=x
y_fit=y
else:
index=(x>=xmin) & (x<=xmax)
x_fit=x[index]
y_fit=y[index]
p_lorentzian=curve_fit(lorentzian2, x_fit, y_fit, p0=np.reshape([x0,A0,W0],newshape=6))[0]
return {"position":p_lorentzian[:2],"amplitude":p_lorentzian[2:4],"width":p_lorentzian[4:]}, lorentzian(x,*p_lorentzian)</code></pre>
</details>
<div class="desc"><p>Function to fit the data with a Lorentzian function </p>
<p>args:
- x (array_like) : a 1D input array.
- y (array_like) : a 1D
input array with the same dimension of x.
- xmin (scalar) : a scalar or array of values to set the minimum value of the data range on which the Lorentzian is calculated.
- xmax (scalar) : a scalar or array of values to set the maximum value of the data range on which the Lorentzian is calculated. .
- x0 (tuple) : the two starting position of the double Lorentzian function for the fit
- A (tuple) : the two starting amplitude of the double Lorentzian function for the fit
- W (tuple) : the two starting full width at half maximum (FWHM) of the double Lorentzian function for the fit
return:
- a tuple (parameter_dictionary, data_lorentzian) with the a dictionary containing the fitting parameters ("position", "amplitude" and "width") and the corresponding double Lorentzian function evaluated in x.</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.gaussian"><code class="name flex">
<span>def <span class="ident">gaussian</span></span>(<span>x, x0, A, W)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def gaussian(x, x0, A, W):
""" Faussian function
args:
- x (array_like) : a 1D input array.
- x0 (scalar) : the position of the Gaussian function
- A (scalar) : the amplitude of the Lorentzian function
- W (scalar) : the full width at half maximum (FWHM) of the Lorentzian function
return:
- an array of the same dimension od x
"""
return A*np.exp(-np.power(x - x0, 2.) / (2 * np.power(W, 2.))) / (W * np.sqrt(2*np.pi))</code></pre>
</details>
<div class="desc"><p>Faussian function </p>
<p>args:
- x (array_like) : a 1D input array.
- x0 (scalar) : the position of the Gaussian function
- A (scalar) : the amplitude of the Lorentzian function
- W (scalar) : the full width at half maximum (FWHM) of the Lorentzian function
return:
- an array of the same dimension od x</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.interpolate"><code class="name flex">
<span>def <span class="ident">interpolate</span></span>(<span>x, y, x_interp, kind='cubic')</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def interpolate(x,y,x_interp,kind="cubic"):
""" Function to interpolate an 1-D array
args:
- x (array_like) : a 1-D array of real values.
- y (array_like) : a 1-D array of real values of the same dimension of x.
- x_interp (array_like) : a 1-D array of real values of the any dimension but with all values include between the max and min value of x.
- kind (string or integer) : Specifies the kind of interpolation as a string specifying the order of the spline interpolator to use. The string has to be one of ‘linear’, ‘nearest’, ‘nearest-up’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, or ‘next’.
return:
- an array the same size as x_interp containing the interpolated result.
"""
f=interp1d(x, y,kind=kind)
return f(x_interp)</code></pre>
</details>
<div class="desc"><p>Function to interpolate an 1-D array</p>
<p>args:
- x (array_like) : a 1-D array of real values.
- y (array_like) : a 1-D array of real values of the same dimension of x.
- x_interp (array_like) : a 1-D array of real values of the any dimension but with all values include between the max and min value of x.
- kind (string or integer) : Specifies the kind of interpolation as a string specifying the order of the spline interpolator to use. The string has to be one of ‘linear’, ‘nearest’, ‘nearest-up’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, or ‘next’.
return:
- an array the same size as x_interp containing the interpolated result.</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.lorentzian"><code class="name flex">
<span>def <span class="ident">lorentzian</span></span>(<span>x, x0, A, W)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def lorentzian(x,x0,A,W):
""" Lorentzian function
args:
- x (array_like) : a 1D input array.
- x0 (scalar) : the position of the Lorentzian function
- A (scalar) : the amplitude of the Lorentzian function
- W (scalar) : the full width at half maximum (FWHM) of the Lorentzian function
return:
- an array of the same dimension as x
"""
return A/(1+((x-x0)/(W/2))**2)</code></pre>
</details>
<div class="desc"><p>Lorentzian function </p>
<p>args:
- x (array_like) : a 1D input array.
- x0 (scalar) : the position of the Lorentzian function
- A (scalar) : the amplitude of the Lorentzian function
- W (scalar) : the full width at half maximum (FWHM) of the Lorentzian function
return:
- an array of the same dimension as x</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.lorentzian2"><code class="name flex">
<span>def <span class="ident">lorentzian2</span></span>(<span>x, x0, x01, A, A1, W, W1)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def lorentzian2(x,x0,x01,A,A1,W,W1):
""" Function with the sum of two Lorentzian
args:
- x (array_like) : a 1D input array.
- x01 (scalar) : the position of the first Lorentzian function
- A1 (scalar) : the amplitude of the first Lorentzian function
- W1 (scalar) : the full width at half maximum (FWHM) of the first Lorentzian function
- x02 (scalar) : the position of the second Lorentzian function
- A2 (scalar) : the amplitude of the second Lorentzian function
- W2 (scalar) : the full width at half maximum (FWHM) of the second Lorentzian function
return:
- an array of the same dimension as x
"""
return A/(1+((x-x0)/(W/2))**2)+A1/(1+((x-x01)/(W1/2))**2)</code></pre>
</details>
<div class="desc"><p>Function with the sum of two Lorentzian </p>
<p>args:
- x (array_like) : a 1D input array.
- x01 (scalar) : the position of the first Lorentzian function
- A1 (scalar) : the amplitude of the first Lorentzian function
- W1 (scalar) : the full width at half maximum (FWHM) of the first Lorentzian function
- x02 (scalar) : the position of the second Lorentzian function
- A2 (scalar) : the amplitude of the second Lorentzian function
- W2 (scalar) : the full width at half maximum (FWHM) of the second Lorentzian function
return:
- an array of the same dimension as x</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.moving_median"><code class="name flex">
<span>def <span class="ident">moving_median</span></span>(<span>x, window_length=3)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def moving_median(x,window_length=3):
""" Function to perform a median filter on a array
args:
- x (array_like) : the input array.
- window_length (scalar) : size of the median filter window.
return:
- an array the same size as input containing the median filtered result.
"""
return signal.medfilt(x,window_length)</code></pre>
</details>
<div class="desc"><p>Function to perform a median filter on a array</p>
<p>args:
- x (array_like) : the input array.
- window_length (scalar) : size of the median filter window.
<br>
return:
- an array the same size as input containing the median filtered result.</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.remove_baseline"><code class="name flex">
<span>def <span class="ident">remove_baseline</span></span>(<span>x, y, xmin_baseline, xmax_baseline, polyorder=2)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def remove_baseline(x,y,xmin_baseline,xmax_baseline,polyorder=2):
""" Function to remove the baseline a 1-D array
args:
- x (array_like) : a 1D input array.
- y (array_like) : a 1D input array with the same dimension of x.
- xmin_baseline (scalar or array) : a scalar or array of values to set the minimum value of the data ranges on which the baseline is calculated. Several windows can be specified by specifying an array of values
- xmax_baseline (scalar or array) : a scalar or array of values to set the maximum value of the data ranges on which the baseline is calculated. Several windows can be specified by specifying an array of values.
- polyorder (scalar) : the order of the polynome to calculate the baseline
return:
- a tuple (corrected_data, baseline) with the corrected data and the baseline calculated.
"""
if isinstance(xmin_baseline,(int,float)):
xmin_baseline=[xmin_baseline]
xmax_baseline=[xmax_baseline]
index=[False]*len(x)
for i in range(len(xmin_baseline)):
index = index | ((x>=xmin_baseline[i]) & (x<=xmax_baseline[i]) )
p=np.polyfit(x[index],y[index],deg=polyorder)
baseline=np.polyval(p,x)
return y-baseline, baseline</code></pre>
</details>
<div class="desc"><p>Function to remove the baseline a 1-D array</p>
<p>args:
- x (array_like) : a 1D input array.
- y (array_like) : a 1D
input array with the same dimension of x.
- xmin_baseline (scalar or array) : a scalar or array of values to set the minimum value of the data ranges on which the baseline is calculated. Several windows can be specified by specifying an array of values
- xmax_baseline (scalar or array) : a scalar or array of values to set the maximum value of the data ranges on which the baseline is calculated. Several windows can be specified by specifying an array of values.
- polyorder (scalar) : the order of the polynome to calculate the baseline
<br>
return:
- a tuple (corrected_data, baseline) with the corrected data and the baseline calculated.</p></div>
</dd>
<dt id="dopes.data_analysis.data_processing.smooth"><code class="name flex">
<span>def <span class="ident">smooth</span></span>(<span>x, window_length=11, polyorder=2)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def smooth(x, window_length=11, polyorder=2):
""" Function to smooth an array by applying a Savitzky-Golay filter
args:
- x (array_like) : the data to be filtered.
- window_length (scalar) : the length of the filter window.
- polyorder (scalar) : the order of the polynomial used to fit the samples. polyorder must be less than window_length.
return:
- an array the same size as input containing the filtered result.
"""
return signal.savgol_filter(x,window_length,polyorder)</code></pre>
</details>
<div class="desc"><p>Function to smooth an array by applying a Savitzky-Golay filter</p>
<p>args:
- x (array_like) : the data to be filtered.
- window_length (scalar) : the length of the filter window.
- polyorder (scalar) : the order of the polynomial used to fit the samples. polyorder must be less than window_length. <br>
return:
- an array the same size as input containing the filtered result.</p></div>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="dopes.data_analysis" href="index.html">dopes.data_analysis</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="dopes.data_analysis.data_processing.finite_difference" href="#dopes.data_analysis.data_processing.finite_difference">finite_difference</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.finite_difference_coeff" href="#dopes.data_analysis.data_processing.finite_difference_coeff">finite_difference_coeff</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.fit_gaussian" href="#dopes.data_analysis.data_processing.fit_gaussian">fit_gaussian</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.fit_lorentzian" href="#dopes.data_analysis.data_processing.fit_lorentzian">fit_lorentzian</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.fit_lorentzian_2peaks" href="#dopes.data_analysis.data_processing.fit_lorentzian_2peaks">fit_lorentzian_2peaks</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.gaussian" href="#dopes.data_analysis.data_processing.gaussian">gaussian</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.interpolate" href="#dopes.data_analysis.data_processing.interpolate">interpolate</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.lorentzian" href="#dopes.data_analysis.data_processing.lorentzian">lorentzian</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.lorentzian2" href="#dopes.data_analysis.data_processing.lorentzian2">lorentzian2</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.moving_median" href="#dopes.data_analysis.data_processing.moving_median">moving_median</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.remove_baseline" href="#dopes.data_analysis.data_processing.remove_baseline">remove_baseline</a></code></li>
<li><code><a title="dopes.data_analysis.data_processing.smooth" href="#dopes.data_analysis.data_processing.smooth">smooth</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.6</a>.</p>
</footer>
</body>
</html>