Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
<meta name="generator" content="pdoc3 0.11.6">
<title>dopes.data_analysis.diode API documentation</title>
<meta name="description" content="">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source > summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible;min-width:max-content}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin:1em 0}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => {
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
hljs.highlightAll();
/* Collapse source docstrings */
setTimeout(() => {
[...document.querySelectorAll('.hljs.language-python > .hljs-string')]
.filter(el => el.innerHTML.length > 200 && ['"""', "'''"].includes(el.innerHTML.substring(0, 3)))
.forEach(el => {
let d = document.createElement('details');
d.classList.add('hljs-string');
d.innerHTML = '<summary>"""</summary>' + el.innerHTML.substring(3);
el.replaceWith(d);
});
}, 100);
})</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>dopes.data_analysis.diode</code></h1>
</header>
<section id="section-intro">
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="dopes.data_analysis.diode.depletion_length"><code class="name flex">
<span>def <span class="ident">depletion_length</span></span>(<span>doping_in, doping_out, Vbias=0, temp=300)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def depletion_length(doping_in, doping_out, Vbias=0,temp=300):
""" Function to calculate the depletion length in a pn junction
args:
- doping_in (scalar): the doping in the region for which the depletion length has to be calculated
- doping_out (scalar): the doping in the adjacent region for which the depletion length has to be calculated
- Vbias (scalar): the bias voltage of the pn junction
- temp (scalar): the temperature
return:
- a scalar with the depletion length calculated in one region
"""
kB = 1.38e-23 # J/K
q = 1.602e-19 # C
epsilon_0 = 8.8542e-12 # F/m
epsilon_si = 11.7
phi_0 = kB * temp / q * np.log(doping_in * doping_out / sc.intrinsic_concentration(temp)**2 )
return np.sqrt(2 * epsilon_si * epsilon_0 / q * doping_out / doping_in / (doping_in + doping_out) * (phi_0 - Vbias))</code></pre>
</details>
<div class="desc"><p>Function to calculate the depletion length in a pn junction</p>
<p>args:
- doping_in (scalar): the doping in the region for which the depletion length has to be calculated
- doping_out (scalar): the doping in the adjacent region for which the depletion length has to be calculated
- Vbias (scalar): the bias voltage of the pn junction
- temp (scalar): the temperature</p>
<p>return:
- a scalar with the depletion length calculated in one region</p></div>
</dd>
<dt id="dopes.data_analysis.diode.ideal_diode"><code class="name flex">
<span>def <span class="ident">ideal_diode</span></span>(<span>Vbias, Is, n=1, temp=300)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def ideal_diode(Vbias,Is,n=1, temp=300):
""" Function to calculate the current in an ideal diode
args:
- Vbias (scalar or sequence): the bias voltage of the diode
- Is (scalar): the saturation current of the diode
- n (scalar): the ideality factor of the diode, 1 for radiative recombination, 2 for SRH recombination
- temp (scalar): the temperature
return:
- a scalar or sequence with same dimension as Vbias
"""
kB = 1.38e-23 # J/K
q = 1.602e-19 # C
return Is * (np.exp(q * Vbias / (n * kB * temp)) -1 )</code></pre>
</details>
<div class="desc"><p>Function to calculate the current in an ideal diode </p>
<p>args:
- Vbias (scalar or sequence): the bias voltage of the diode
- Is (scalar): the saturation current of the diode
- n (scalar): the ideality factor of the diode, 1 for radiative recombination, 2 for SRH recombination
- temp (scalar): the temperature</p>
<p>return:
- a scalar or sequence with same dimension as Vbias</p></div>
</dd>
<dt id="dopes.data_analysis.diode.j_radiative"><code class="name flex">
<span>def <span class="ident">j_radiative</span></span>(<span>Vbias, mu_n, mu_p, tau_n, tau_p, ND, NA, ln, lp, temp=300)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def j_radiative(Vbias,mu_n,mu_p,tau_n,tau_p,ND,NA,ln,lp,temp=300):
""" Function to calculate the radial contribution to the current density in a silicon pn junction
args:
- Vbias (scalar): the bias voltage of the pn junction
- mu_n (scalar): the mobility of the electrons
- mu_p (scalar): the mobility of the holes
- tau_n (scalar): the lifetime of the electrons
- tau_p (scalar): the lifetime of the holes
- ND (scalar): the donor doping concentration in the n region
- NA (scalar): the acceptor doping concentraion in the p region
- ln (scalar): the length of the cathode (n-doped region)
- lp (scalar): the length of the anode (p-doped region)
- temp (scalar): the temperature
return:
- a scalar with the radiative current density calculated
"""
b_rad = 4.76e-15 # cm3/s - low-impurity value entre 1 et 10
kB = 1.38e-23 # J/K
q = 1.602e-19 # C
Dn = kB * temp / q * mu_n
Dp = kB * temp / q * mu_p
Ln = np.sqrt( Dn * tau_n )
Lp = np.sqrt( Dp * tau_p )
ld_n = depletion_length(ND, NA, Vbias)
ld_p = depletion_length(NA, ND, Vbias)
ni = sc.intrinsic_concentration(temp)
n_p0=ni**2/NA
p_n0=ni**2/ND
coeff_radial = Dn * n_p0 / Ln / np.tanh( (lp-ld_p) / Ln ) + Dp * p_n0 / Lp / np.tanh( (ln-ld_n) / Lp ) + ni**2 *b_rad* (ld_p + ld_n)
return q * ( coeff_radial * (np.exp(q * Vbias/ ( kB * temp)) - 1 ) )</code></pre>
</details>
<div class="desc"><p>Function to calculate the radial contribution to the current density in a silicon pn junction</p>
<p>args:
- Vbias (scalar): the bias voltage of the pn junction
- mu_n (scalar): the mobility of the electrons
- mu_p (scalar): the mobility of the holes
- tau_n (scalar): the lifetime of the electrons
- tau_p (scalar): the lifetime of the holes
- ND (scalar): the donor doping concentration in the n region
- NA (scalar): the acceptor doping concentraion in the p region
- ln (scalar): the length of the cathode (n-doped region)
- lp (scalar): the length of the anode (p-doped region)
- temp (scalar): the temperature</p>
<p>return:
- a scalar with the radiative current density calculated</p></div>
</dd>
<dt id="dopes.data_analysis.diode.j_srh"><code class="name flex">
<span>def <span class="ident">j_srh</span></span>(<span>Vbias, ND, NA, tau=1e-07, temp=300)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def j_srh(Vbias,ND,NA,tau=1e-7,temp=300):
""" Function to calculate the Shockley-Read-Hall contribution to the current density in a pn junction
args:
- Vbias (scalar): the bias voltage of the pn junction
- ND (scalar): the donor doping concentration in the n region
- NA (scalar): the acceptor doping concentraion in the p region
- tau (scalar): the global lifetime associated to the SRH mechanism
- temp (scalar): the temperature
return:
- a scalar with the SRH current density calculated
"""
kB = 1.38e-23 # J/K
q = 1.602e-19 # C
ld_n = depletion_length(ND, NA, Vbias)
ld_p = depletion_length(NA, ND, Vbias)
ni = sc.intrinsic_concentration(temp)
x=(ld_p + ld_n) # approximation by considering only the depletion region without diffusion mechanism, gives an upper limit as the effective length is always below
coeff_SRH = q * ni * x / (2 * tau)
return ( coeff_SRH * (np.exp(q * Vbias/ (2 * kB * temp)) - 1 ) )</code></pre>
</details>
<div class="desc"><p>Function to calculate the Shockley-Read-Hall contribution to the current density in a pn junction</p>
<p>args:
- Vbias (scalar): the bias voltage of the pn junction
- ND (scalar): the donor doping concentration in the n region
- NA (scalar): the acceptor doping concentraion in the p region
- tau (scalar): the global lifetime associated to the SRH mechanism
- temp (scalar): the temperature</p>
<p>return:
- a scalar with the SRH current density calculated</p></div>
</dd>
<dt id="dopes.data_analysis.diode.two_diodes"><code class="name flex">
<span>def <span class="ident">two_diodes</span></span>(<span>Vbias, Is1, Is2, n1=1, n2=2, temp=300)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def two_diodes(Vbias,Is1,Is2,n1=1,n2=2, temp=300):
""" Function to calculate the current for a two diodes model
args:
- Vbias (scalar or sequence): the bias voltage of the diode
- Is1 (scalar): the saturation current of the first diode
- Is2 (scalar): the saturation current of the second diode
- n1 (scalar): the ideality factor of the first diode, 1 for radiative recombination, 2 for SRH recombination
- n1 (scalar): the ideality factor of the second diode, 1 for radiative recombination, 2 for SRH recombination
- temp (scalar): the temperature
return:
- a scalar or sequence with same dimension as Vbias
"""
kB = 1.38e-23 # J/K
q = 1.602e-19 # C
return Is1 * (np.exp( q * Vbias / (n1 * kB * temp)) -1 ) + Is2 * (np.exp( q * Vbias / (n2 * kB * temp)) -1 )</code></pre>
</details>
<div class="desc"><p>Function to calculate the current for a two diodes model </p>
<p>args:
- Vbias (scalar or sequence): the bias voltage of the diode
- Is1 (scalar): the saturation current of the first diode
- Is2 (scalar): the saturation current of the second diode
- n1 (scalar): the ideality factor of the first diode, 1 for radiative recombination, 2 for SRH recombination
- n1 (scalar): the ideality factor of the second diode, 1 for radiative recombination, 2 for SRH recombination
- temp (scalar): the temperature</p>
<p>return:
- a scalar or sequence with same dimension as Vbias</p></div>
</dd>
<dt id="dopes.data_analysis.diode.two_diodes_with_resistances"><code class="name flex">
<span>def <span class="ident">two_diodes_with_resistances</span></span>(<span>Vbias, Is1, Is2, n1=1, n2=2, temp=300, Rs=0, Rsh=inf)</span>
</code></dt>
<dd>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def two_diodes_with_resistances(Vbias,Is1,Is2,n1=1,n2=2, temp=300, Rs=0, Rsh=float("inf")):
""" Function to calculate the current for a two diodes model by taking into account the series and shunt resistances
args:
- Vbias (scalar or sequence): the bias voltage of the diode
- Is1 (scalar): the saturation current of the first diode
- Is2 (scalar): the saturation current of the second diode
- n1 (scalar): the ideality factor of the first diode, 1 for radiative recombination, 2 for SRH recombination
- n1 (scalar): the ideality factor of the second diode, 1 for radiative recombination, 2 for SRH recombination
- temp (scalar): the temperature
- Rs (scalar): the serie resistance
- Rsh (scalar): the shunt resistance
return:
- a scalar or sequence with same dimension as Vbias
"""
kB = 1.38e-23 # J/K
q = 1.602e-19 # C
if isinstance(Vbias, (int,float)):
# x0=np.min((two_diodes(Vbias,Is1,Is2,n1,n2, temp),Vbias/Rs))
I = fsolve(lambda x:Is1 * (np.exp( q * (Vbias - Rs * x) / (n1 * kB * temp)) -1 ) + Is2 * (np.exp( q * (Vbias - Rs * x) / (n2 * kB * temp)) -1 ) + (Vbias - Rs * x ) / Rsh - x,x0=0)
else:
I=np.zeros(len(Vbias))
i=0
i=0
for v in Vbias:
# x0=np.min((two_diodes(v,Is1,Is2,n1,n2, temp),v/Rs))
I[i] = fsolve(lambda x : Is1 * (np.exp( q * (v - Rs * x) / (n1 * kB * temp)) -1 ) + Is2 * (np.exp( q * (v - Rs * x) / (n2 * kB * temp)) -1 ) + (v - Rs * x ) / Rsh - x,x0=0)
i+=1
return I</code></pre>
</details>
<div class="desc"><p>Function to calculate the current for a two diodes model by taking into account the series and shunt resistances</p>
<p>args:
- Vbias (scalar or sequence): the bias voltage of the diode
- Is1 (scalar): the saturation current of the first diode
- Is2 (scalar): the saturation current of the second diode
- n1 (scalar): the ideality factor of the first diode, 1 for radiative recombination, 2 for SRH recombination
- n1 (scalar): the ideality factor of the second diode, 1 for radiative recombination, 2 for SRH recombination
- temp (scalar): the temperature
- Rs (scalar): the serie resistance
- Rsh (scalar): the shunt resistance </p>
<p>return:
- a scalar or sequence with same dimension as Vbias</p></div>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="dopes.data_analysis" href="index.html">dopes.data_analysis</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="dopes.data_analysis.diode.depletion_length" href="#dopes.data_analysis.diode.depletion_length">depletion_length</a></code></li>
<li><code><a title="dopes.data_analysis.diode.ideal_diode" href="#dopes.data_analysis.diode.ideal_diode">ideal_diode</a></code></li>
<li><code><a title="dopes.data_analysis.diode.j_radiative" href="#dopes.data_analysis.diode.j_radiative">j_radiative</a></code></li>
<li><code><a title="dopes.data_analysis.diode.j_srh" href="#dopes.data_analysis.diode.j_srh">j_srh</a></code></li>
<li><code><a title="dopes.data_analysis.diode.two_diodes" href="#dopes.data_analysis.diode.two_diodes">two_diodes</a></code></li>
<li><code><a title="dopes.data_analysis.diode.two_diodes_with_resistances" href="#dopes.data_analysis.diode.two_diodes_with_resistances">two_diodes_with_resistances</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.6</a>.</p>
</footer>
</body>
</html>