Skip to content
Extraits de code Groupes Projets
polytec.html 28,3 ko
Newer Older
  • Learn to ignore specific revisions
  • Nicolas Roisin's avatar
    Nicolas Roisin a validé
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    <!doctype html>
    <html lang="en">
    <head>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
    <meta name="generator" content="pdoc3 0.11.6">
    <title>dopes.data_analysis.polytec API documentation</title>
    <meta name="description" content="">
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
    <style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source > summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible;min-width:max-content}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin:1em 0}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
    <style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
    <style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
    <script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
    <script>window.addEventListener('DOMContentLoaded', () => {
    hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
    hljs.highlightAll();
    /* Collapse source docstrings */
    setTimeout(() => {
    [...document.querySelectorAll('.hljs.language-python > .hljs-string')]
    .filter(el => el.innerHTML.length > 200 && ['"""', "'''"].includes(el.innerHTML.substring(0, 3)))
    .forEach(el => {
    let d = document.createElement('details');
    d.classList.add('hljs-string');
    d.innerHTML = '<summary>"""</summary>' + el.innerHTML.substring(3);
    el.replaceWith(d);
    });
    }, 100);
    })</script>
    </head>
    <body>
    <main>
    <article id="content">
    <header>
    <h1 class="title">Module <code>dopes.data_analysis.polytec</code></h1>
    </header>
    <section id="section-intro">
    </section>
    <section>
    </section>
    <section>
    </section>
    <section>
    <h2 class="section-title" id="header-functions">Functions</h2>
    <dl>
    <dt id="dopes.data_analysis.polytec.find_max"><code class="name flex">
    <span>def <span class="ident">find_max</span></span>(<span>x, y, z, kind='maximum', height=None, width=None)</span>
    </code></dt>
    <dd>
    <details class="source">
    <summary>
    <span>Expand source code</span>
    </summary>
    <pre><code class="python">def find_max(x,y,z,kind=&#34;maximum&#34;,height=None,width=None):
        &#34;&#34;&#34; Function to find maximal values
        
            args:
                - x, y (array) : 1D array for the x and y position of the pixel 
                - z (array) : 1D array with the values at position (x,y) and with the same dimension as x and y
                - kind (string) : the method to determine the maximum. &#34;maximum&#34; only takes the max value of the z array while &#34;peaks&#34; is looking for the maximal peak. This last method is more robust with regards to outlier. The minimum height and width can be specified.
                - height (None, scalar or 2-element sequence) : required height of peaks. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required height.
                - width (None, scalar or 2-element sequence) : required width of peaks in samples. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required width.
            
            return:
                - x_max,y_max,z_max : three elements with the x, y position of the maximum value of the z array
        &#34;&#34;&#34;
        if kind==&#34;maximum&#34;:
            index=np.nanargmax(z)
            x_max=x[index]
            y_max=y[index]
            z_max=z[index]
            
        elif kind == &#34;peaks&#34;:
            n_interp=int(np.sqrt(len(z)))
            X,Y,Z=medfilt_2D(x,y,z,n_interp)
    
    
            if height is None:
                height = np.nanmax(Z[:,int(n_interp/2)])*0.1
            if width is None:
                width = n_interp/np.nanmax(x)*0.1
            
            param_peaks=find_peaks(Z[:,int(n_interp/2)],height=height,width=width)
            peak_x=param_peaks[0][np.nanargmax(param_peaks[1][&#34;peak_heights&#34;])]
    
            param_peaks=find_peaks(Z[peak_x],height=height,width=width)
            peak_y=param_peaks[0][np.nanargmax(param_peaks[1][&#34;peak_heights&#34;])]
            peak_height=np.nanmax(param_peaks[1][&#34;peak_heights&#34;])
            
            x_max=X[peak_x,peak_y]
            y_max=Y[peak_x,peak_y]
            z_max=peak_height     
    
        
        return x_max,y_max,z_max</code></pre>
    </details>
    <div class="desc"><p>Function to find maximal values</p>
    <p>args:
    - x, y (array) : 1D array for the x and y position of the pixel
    - z (array) : 1D array with the values at position (x,y) and with the same dimension as x and y
    - kind (string) : the method to determine the maximum. "maximum" only takes the max value of the z array while "peaks" is looking for the maximal peak. This last method is more robust with regards to outlier. The minimum height and width can be specified.
    - height (None, scalar or 2-element sequence) : required height of peaks. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required height.
    - width (None, scalar or 2-element sequence) : required width of peaks in samples. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required width.</p>
    <p>return:
    - x_max,y_max,z_max : three elements with the x, y position of the maximum value of the z array</p></div>
    </dd>
    <dt id="dopes.data_analysis.polytec.medfilt_2D"><code class="name flex">
    <span>def <span class="ident">medfilt_2D</span></span>(<span>x, y, z, kernel_size=9, n_interp=None)</span>
    </code></dt>
    <dd>
    <details class="source">
    <summary>
    <span>Expand source code</span>
    </summary>
    <pre><code class="python">def medfilt_2D(x,y,z,kernel_size=9,n_interp=None):
        &#34;&#34;&#34; Function to convert unstructured 1D data (three vectors) in 2D grid for which the z values have been filtered with a 2D median filter to remove the outliers
        
            args:
                - x, y (array) : 1D array for the x and y position of the pixel 
                - z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y
                - kernel_size (int) : size of the median filter window.    
                - n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
                    
            return:
                - X,Y,Z : three meshgrids of the same dimension (n_interp x n_interp) with the x,y coordinates and the z values filtered. The X and Y grid are linearly spaced from the minimal and maximal valeus of x and y, respectively.
                
        &#34;&#34;&#34;
    
        X, Y, Z_interp = unstructured_to_regular(x,y,z,n_interp)
        Z_med = medfilt2d(Z_interp,kernel_size)
        
        return X,Y,Z_med</code></pre>
    </details>
    <div class="desc"><p>Function to convert unstructured 1D data (three vectors) in 2D grid for which the z values have been filtered with a 2D median filter to remove the outliers</p>
    <p>args:
    - x, y (array) : 1D array for the x and y position of the pixel
    - z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y
    - kernel_size (int) : size of the median filter window.
    <br>
    - n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array</p>
    <p>return:
    - X,Y,Z : three meshgrids of the same dimension (n_interp x n_interp) with the x,y coordinates and the z values filtered. The X and Y grid are linearly spaced from the minimal and maximal valeus of x and y, respectively.</p></div>
    </dd>
    <dt id="dopes.data_analysis.polytec.plot_1D_line_from_file"><code class="name flex">
    <span>def <span class="ident">plot_1D_line_from_file</span></span>(<span>file_path,<br>unit_mult=(1, 1),<br>use_lines=None,<br>ax=None,<br>color_list=None,<br>ls_list=None,<br>marker_list=None,<br>**plot_kwargs)</span>
    </code></dt>
    <dd>
    <details class="source">
    <summary>
    <span>Expand source code</span>
    </summary>
    <pre><code class="python">def plot_1D_line_from_file(file_path,unit_mult=(1,1),use_lines=None,ax=None,color_list=None,ls_list=None,marker_list=None,**plot_kwargs):
        &#34;&#34;&#34; Function to plot a line data from a file
        
            args:
                - file_path (string) : the file to read
                - unit_mult (array) : array of three scalar to multiply the data of the x, y and z vector.
                - use_lines (array) : list of lines to be plotted. Be careful that the number of column in the file is usually twice the number of lines (as each line has an x and z vector).
                - ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it
                - color_list, ls_list, marker_list (array) : list of color, linestyle and marker to be used for the data lines found in the files. If the length of the list is smaller than the number of data lines, the last component is kept for the last data lines. 
                - plot_kwargs : this method also takes any keyword argument for the Axes.plot() function
            return:
                -fig, ax, data : the figure with its axe and the data array read from the file. If ax is provided, only data is returned
        &#34;&#34;&#34;    
        if use_lines is not None:
            index=np.transpose(np.array([use_lines])) @ (2 * np.ones((1,2*len(use_lines))))+ np.array([[0,1]*len(use_lines)])
            use_col=[int(i) for i in index[0]]
        else:
            use_col=None
            
        data=np.genfromtxt(file_path,skip_header=2,delimiter=&#34;\t&#34;,usecols=use_col)
        n_lines=int(len(data[0])/2)
        
        if ax is None:
            fig,ax=plt.subplots(dpi=200)
            
            ax.set_xlabel(&#34;d (mm)&#34;)
            ax.set_ylabel(&#34;z (mm)&#34;)
        if use_lines is None:
            lines_to_plot=range(n_lines)
        else:
            lines_to_plot=range(len(use_lines))
    
    
        for i in lines_to_plot:
            d_lines=data[:,2*i]*unit_mult[0]
            z_lines=proc.moving_median(data[:,2*i+1],9)*unit_mult[1]
            if color_list is not None:
                plot_kwargs[&#34;color&#34;]=color_list[np.min((i,len(color_list)-1))]
            if ls_list is not None:
                plot_kwargs[&#34;ls&#34;]=ls_list[np.min((i,len(ls_list)-1))]     
                plot_kwargs.pop(&#34;linestyle&#34;,None)    
                
            if marker_list is not None:
                plot_kwargs[&#34;marker&#34;]=marker_list[np.min((i,len(marker_list)-1))] 
    
            
            ax.plot(d_lines,z_lines,**plot_kwargs)
    
        if ax is None:        
            return fig,ax, data
        else:
            return data</code></pre>
    </details>
    <div class="desc"><p>Function to plot a line data from a file</p>
    <p>args:
    - file_path (string) : the file to read
    - unit_mult (array) : array of three scalar to multiply the data of the x, y and z vector.
    - use_lines (array) : list of lines to be plotted. Be careful that the number of column in the file is usually twice the number of lines (as each line has an x and z vector).
    - ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it
    - color_list, ls_list, marker_list (array) : list of color, linestyle and marker to be used for the data lines found in the files. If the length of the list is smaller than the number of data lines, the last component is kept for the last data lines.
    - plot_kwargs : this method also takes any keyword argument for the Axes.plot() function
    return:
    -fig, ax, data : the figure with its axe and the data array read from the file. If ax is provided, only data is returned</p></div>
    </dd>
    <dt id="dopes.data_analysis.polytec.plot_map"><code class="name flex">
    <span>def <span class="ident">plot_map</span></span>(<span>x,<br>y,<br>z,<br>ax=None,<br>vmin=None,<br>vmax=None,<br>cmap='coolwarm',<br>medfilt=True,<br>kernel_size=9,<br>n_interp=None,<br>**contour_kwargs)</span>
    </code></dt>
    <dd>
    <details class="source">
    <summary>
    <span>Expand source code</span>
    </summary>
    <pre><code class="python">def plot_map(x,y,z,ax=None,vmin=None,vmax=None,cmap=&#34;coolwarm&#34;,medfilt=True,kernel_size=9,n_interp=None, **contour_kwargs):
        &#34;&#34;&#34; Function to plot a 2D map from unstructured 1D data (three vectors)
        
            args:
                - x, y (array) : 1D array for the x and y position of the pixel 
                - z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y
                - ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it
                - vmin, vmax (scalar) : define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. If vmin or vmax are not given, the default color scaling is based on levels.
                - cmap (str or Colormap) : the Colormap instance or registered colormap name used to map scalar data to colors.
                - medfilt (boolean) : if True apply a median filter on the data by interpolating it on a n_interp x n_interp grid
                - kernel_size (int) : size of the median filter window.    
                - n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
                - contour_kwargs : this method also takes any keyword argument for the Axes.contourf() and axes.tricontourf()
            return:
                -fig, ax_map, ax_bar : the figure with the 2D map axe (ax_map) and the axe with the color bar (ax_bar)
                
        &#34;&#34;&#34;
        if vmin==None:
            vmin=0
    
        if ax==None:
            fig,ax=plt.subplots(1,2,gridspec_kw={&#34;wspace&#34;:0.1,&#34;width_ratios&#34;:[5,0.2]})
        ax[0].set_xlabel(&#34;x (mm)&#34;)
        ax[0].set_ylabel(&#34;y (mm)&#34;)
      
        if medfilt:
            X,Y,Z=medfilt_2D(x,y,z,kernel_size,n_interp)
            if vmax==None:
                vmax=np.ceil(np.nanmax(Z)*1e3)/1e3
            ax[0].contourf(X, Y, Z, vmin=vmin, vmax=vmax,cmap=cmap,**contour_kwargs)
    
        else:
            if vmax==None:
                vmax=np.ceil(np.nanmax(z)*1e3)/1e3
    
            ax[0].tricontourf(x, y, z, vmin=vmin, vmax=vmax,cmap=cmap, **contour_kwargs)
            
        fig.colorbar(mpl.cm.ScalarMappable(norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax), cmap=cmap), 
                         orientation=&#39;vertical&#39;, label=&#34;Deflection (µm)&#34;,cax=ax[1])
    
        ax_map=ax[0]
        ax_bar=ax[1]
        
        return fig, ax_map, ax_bar</code></pre>
    </details>
    <div class="desc"><p>Function to plot a 2D map from unstructured 1D data (three vectors)</p>
    <p>args:
    - x, y (array) : 1D array for the x and y position of the pixel
    - z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y
    - ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it
    - vmin, vmax (scalar) : define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. If vmin or vmax are not given, the default color scaling is based on levels.
    - cmap (str or Colormap) : the Colormap instance or registered colormap name used to map scalar data to colors.
    - medfilt (boolean) : if True apply a median filter on the data by interpolating it on a n_interp x n_interp grid
    - kernel_size (int) : size of the median filter window.
    <br>
    - n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
    - contour_kwargs : this method also takes any keyword argument for the Axes.contourf() and axes.tricontourf()
    return:
    -fig, ax_map, ax_bar : the figure with the 2D map axe (ax_map) and the axe with the color bar (ax_bar)</p></div>
    </dd>
    <dt id="dopes.data_analysis.polytec.plot_map_from_file"><code class="name flex">
    <span>def <span class="ident">plot_map_from_file</span></span>(<span>file_path,<br>n_step=1,<br>unit_mult=(1, 1, 1),<br>ax=None,<br>vmin=None,<br>vmax=None,<br>cmap='coolwarm',<br>medfilt=True,<br>kernel_size=9,<br>n_interp=None,<br>**contour_kwargs)</span>
    </code></dt>
    <dd>
    <details class="source">
    <summary>
    <span>Expand source code</span>
    </summary>
    <pre><code class="python">def plot_map_from_file(file_path,n_step=1,unit_mult=(1,1,1),ax=None,vmin=None,vmax=None,cmap=&#34;coolwarm&#34;,medfilt=True,kernel_size=9,n_interp=None, **contour_kwargs):
        &#34;&#34;&#34; Function to plot a 2D map from a file of unstructured 1D data (three vectors x,y and z)
        
            args:
                - file_path (string) : the file to read
                - n_step (int) : reduce the number of point to be plotted by taking one point each n_point index of the x, y ,z vectors
                - unit_mult (array) : array of three scalar to multiply the data of the x, y and z vector.
                - ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it
                - vmin, vmax (scalar) : define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. If vmin or vmax are not given, the default color scaling is based on levels.
                - cmap (string or Colormap) : the Colormap instance or registered colormap name used to map scalar data to colors.
                - medfilt (boolean) : if True apply a median filter on the data by interpolating it on a n_interp x n_interp grid
                - kernel_size (int) : size of the median filter window.    
                - n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
                - contour_kwargs : this method also takes any keyword argument for the Axes.contourf() and axes.tricontourf()
            return:
                -fig, ax_map, ax_bar : the figure with the 2D map axe (ax_map) and the axe with the color bar (ax_bar)
        &#34;&#34;&#34;    
        n_step=10
        data=np.genfromtxt(file_path)
        x=data[::n_step,0] * unit_mult[0]
        y=data[::n_step,1] * unit_mult[1]
        z=data[::n_step,2] * unit_mult[2]
    
    
        if vmin==None:
            vmin=0
    
        if ax==None:
            fig,ax=plt.subplots(1,2,gridspec_kw={&#34;wspace&#34;:0.1,&#34;width_ratios&#34;:[5,0.2]})
            ax[0].set_xlabel(&#34;x (mm)&#34;)
            ax[0].set_ylabel(&#34;y (mm)&#34;)
          
        if medfilt:
            X,Y,Z=medfilt_2D(x,y,z,kernel_size,n_interp)
            if vmax==None:
                vmax=np.ceil(np.nanmax(Z)*1e3)/1e3
            ax[0].contourf(X, Y, Z, vmin=vmin, vmax=vmax,cmap=cmap,**contour_kwargs)
    
        else:
            if vmax==None:
                vmax=np.ceil(np.nanmax(z)*1e3)/1e3
    
            ax[0].tricontourf(x, y, z, vmin=vmin, vmax=vmax,cmap=cmap, **contour_kwargs)
            
        fig.colorbar(mpl.cm.ScalarMappable(norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax), cmap=cmap), 
                         orientation=&#39;vertical&#39;, label=&#34;Deflection (µm)&#34;,cax=ax[1])
    
        ax_map=ax[0]
        ax_bar=ax[1]
        
        return fig, ax_map, ax_bar</code></pre>
    </details>
    <div class="desc"><p>Function to plot a 2D map from a file of unstructured 1D data (three vectors x,y and z)</p>
    <p>args:
    - file_path (string) : the file to read
    - n_step (int) : reduce the number of point to be plotted by taking one point each n_point index of the x, y ,z vectors
    - unit_mult (array) : array of three scalar to multiply the data of the x, y and z vector.
    - ax (list of two Axes) : the axes of the subplot in which plotting the map and the color bar next to it
    - vmin, vmax (scalar) : define the data range that the colormap covers. By default, the colormap covers the complete value range of the supplied data. If vmin or vmax are not given, the default color scaling is based on levels.
    - cmap (string or Colormap) : the Colormap instance or registered colormap name used to map scalar data to colors.
    - medfilt (boolean) : if True apply a median filter on the data by interpolating it on a n_interp x n_interp grid
    - kernel_size (int) : size of the median filter window.
    <br>
    - n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
    - contour_kwargs : this method also takes any keyword argument for the Axes.contourf() and axes.tricontourf()
    return:
    -fig, ax_map, ax_bar : the figure with the 2D map axe (ax_map) and the axe with the color bar (ax_bar)</p></div>
    </dd>
    <dt id="dopes.data_analysis.polytec.unstructured_to_regular"><code class="name flex">
    <span>def <span class="ident">unstructured_to_regular</span></span>(<span>x, y, z, n_interp=None)</span>
    </code></dt>
    <dd>
    <details class="source">
    <summary>
    <span>Expand source code</span>
    </summary>
    <pre><code class="python">def unstructured_to_regular(x,y,z,n_interp=None):
        &#34;&#34;&#34; Function to convert unstructured 1D data (three vectors) in 2D grid
        
            args:
                - x, y (array) : 1D array for the x and y position of the pixel 
                - z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y
                - n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array
                    
            return:
                - X,Y,Z : three meshgrids of the same dimension (n_interp x n_interp) with the x,y coordinates and the z values interpolated. The X and Y grid are linearly spaced from the minimal and maximal valeus of x and y, respectively.
                
        &#34;&#34;&#34;
        if n_interp==None:
            n_interp=int(np.sqrt(len(z)))
            
        x_interp = np.linspace(min(x), max(x),n_interp)
        y_interp = np.linspace(min(y), max(y),n_interp)
        X, Y = np.meshgrid(x_interp, y_interp)  # 2D grid for interpolation
        Z=griddata(list(zip(x, y)), z, (X, Y), method=&#39;linear&#39;)
    
        return X,Y,Z</code></pre>
    </details>
    <div class="desc"><p>Function to convert unstructured 1D data (three vectors) in 2D grid</p>
    <p>args:
    - x, y (array) : 1D array for the x and y position of the pixel
    - z (array) : 1D array with with the values at position (x,y), and with the same dimension as x and y
    - n_interp (int) : the number of points for the dimensions of the interpolation along x and y. if None, n_interp is set as the square root of the dimension of the z array</p>
    <p>return:
    - X,Y,Z : three meshgrids of the same dimension (n_interp x n_interp) with the x,y coordinates and the z values interpolated. The X and Y grid are linearly spaced from the minimal and maximal valeus of x and y, respectively.</p></div>
    </dd>
    </dl>
    </section>
    <section>
    </section>
    </article>
    <nav id="sidebar">
    <div class="toc">
    <ul></ul>
    </div>
    <ul id="index">
    <li><h3>Super-module</h3>
    <ul>
    <li><code><a title="dopes.data_analysis" href="index.html">dopes.data_analysis</a></code></li>
    </ul>
    </li>
    <li><h3><a href="#header-functions">Functions</a></h3>
    <ul class="">
    <li><code><a title="dopes.data_analysis.polytec.find_max" href="#dopes.data_analysis.polytec.find_max">find_max</a></code></li>
    <li><code><a title="dopes.data_analysis.polytec.medfilt_2D" href="#dopes.data_analysis.polytec.medfilt_2D">medfilt_2D</a></code></li>
    <li><code><a title="dopes.data_analysis.polytec.plot_1D_line_from_file" href="#dopes.data_analysis.polytec.plot_1D_line_from_file">plot_1D_line_from_file</a></code></li>
    <li><code><a title="dopes.data_analysis.polytec.plot_map" href="#dopes.data_analysis.polytec.plot_map">plot_map</a></code></li>
    <li><code><a title="dopes.data_analysis.polytec.plot_map_from_file" href="#dopes.data_analysis.polytec.plot_map_from_file">plot_map_from_file</a></code></li>
    <li><code><a title="dopes.data_analysis.polytec.unstructured_to_regular" href="#dopes.data_analysis.polytec.unstructured_to_regular">unstructured_to_regular</a></code></li>
    </ul>
    </li>
    </ul>
    </nav>
    </main>
    <footer id="footer">
    <p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.6</a>.</p>
    </footer>
    </body>
    </html>