Skip to content
Extraits de code Groupes Projets
Valider b3af2763 rédigé par Noé Pirlet's avatar Noé Pirlet
Parcourir les fichiers

Add new file

parent a7fdb1f2
Aucune branche associée trouvée
Aucune étiquette associée trouvée
Aucune requête de fusion associée trouvée
# This script takes Sea Ice data, and spot polynyas with a fixed threshold
# Authors: C. Pelletier edited by N. Pirlet
# Cite this paper for credits:
import numpy as np
import netCDF4 as nc
import os
import sys
import time
# Adapt------------
year_start = 2001
year_stop = 2017
siconc_thres = 1.00
sithic_thres = 0.25
lfi = False # If you want polynyas close to lfi to be coastal polynyas (True) (NO_LFI => False)
is_cyclic = True
if(is_cyclic):
n_ovlp = 1 # West-East bondary overlap
else:
n_ovlp = 0
# Contient and area files
input_geometry = "/cofast/npirlet/eANT_025/eANT025_mesh_mask_v2.nc"
input_cell_area = "/cofast/npirlet/eANT_025/eANT025_cell_area.nc"
#--------------------
fillv = -10
open_oce_value = 0
iced_value = 1
antarctica_pol_value = 2
island_pol_value = 3
ocean_pol_value = 4
fillv_float = -1.e20
geom = nc.Dataset(input_geometry, mode='r')
if(is_cyclic):
# Creation of "land" mask
tmaskutil = geom.variables['tmaskutil'][0,0:370,:-n_ovlp] == 0
isf_draft = geom.variables['isf_draft'][0,0:370,:-n_ovlp] > 0
msk_cont = np.full(np.shape(tmaskutil),False)
msk_cont[tmaskutil == True] = True
msk_cont[isf_draft == True] = True
is_cont = msk_cont
is_ant = msk_cont
print(np.shape(msk_cont))
if lfi == True:
mask_LFI = np.load("/cofast/npirlet/eANT_025/mask_LFI_MAMJJASO_2001-2017.npy")
mask_LFI = mask_LFI[:,:-n_ovlp]
msk_cont[mask_LFI >= 50] = True
else:
# Creation of "land" mask
tmaskutil = geom.variables['tmaskutil'][0,0:370,:] == 0
isf_draft = geom.variables['isf_draft'][0,0:370,:] > 0
msk_cont = np.full(np.shape(tmaskutil),False)
msk_cont[tmaskutil == True] = True
msk_cont[isf_draft == True] = True
is_cont = msk_cont
is_ant = msk_cont
print(np.shape(msk_cont))
if lfi == True:
mask_LFI = np.load("/cofast/npirlet/eANT_025/mask_LFI_MAMJJASO_2001-2017.npy")
msk_cont[mask_LFI >= 50] = True
lat = geom.variables['nav_lat'][0:370,:]
lon = geom.variables['nav_lon'][0:370,:]
geom.close()
areac = nc.Dataset(input_cell_area, mode='r')
if(is_cyclic):
cell_area = areac.variables['areacello'][0,0:370,:-n_ovlp]
print(np.shape(cell_area))
else:
cell_area = areac.variables['areacello'][0,0:370,:]
print(np.shape(cell_area))
areac.close()
ny, nx = np.shape(cell_area)
is_border = np.zeros(shape=[ny, nx], dtype=bool)
is_border[:1,:] = True
is_border[-1:,:] = True
if(not is_cyclic):
is_border[:,:1] = True
is_border[:,-1:] = True
is_cont_neigh = np.ndarray(shape=[ny, nx, 4], dtype=bool)
is_cont_neigh[:,:,0] = np.roll(is_cont, shift=+1, axis=-2)
is_cont_neigh[:,:,1] = np.roll(is_cont, shift=-1, axis=-2)
is_cont_neigh[:,:,2] = np.roll(is_cont, shift=+1, axis=-1)
is_cont_neigh[:,:,3] = np.roll(is_cont, shift=-1, axis=-1)
is_ant_neigh = np.ndarray(shape=[ny, nx, 4], dtype=bool)
is_ant_neigh[:,:,0] = np.roll(is_ant, shift=+1, axis=-2)
is_ant_neigh[:,:,1] = np.roll(is_ant, shift=-1, axis=-2)
is_ant_neigh[:,:,2] = np.roll(is_ant, shift=+1, axis=-1)
is_ant_neigh[:,:,3] = np.roll(is_ant, shift=-1, axis=-1)
old_age_polynya = np.zeros(shape=[ny, nx], dtype=int)
for year in range(year_start,year_stop+1):
# Data path to adapt
input_seaice_conc = "/cofast/npirlet/LUCIA/NO_LFI_40/NO_LFI_40_1d_siconc_y{}.nc".format(year)
input_seaice_thick = "/cofast/npirlet/LUCIA/NO_LFI_40/NO_LFI_40_1d_sivolu_y{}.nc".format(year)
outfile = "/cofast/npirlet/LUCIA/NO_LFI_40/polynyas/polynyas_NO_LFI_40_y{}_30cm.nc".format(year)
#-------------------
# Load sea ice concentration data
tmpdat = nc.Dataset(input_seaice_conc, mode='r')
if(is_cyclic):
siconc = tmpdat.variables['siconc'][:,0:370,:-n_ovlp]
else:
siconc = tmpdat.variables['siconc'][:,0:370,:]
tmpdat.close()
# Load sea ice thickness data
tmpdat = nc.Dataset(input_seaice_thick, mode='r')
if(is_cyclic):
sithic = tmpdat.variables['sivolu'][:,0:370,:-n_ovlp]
else:
sithic = tmpdat.variables['sivolu'][:,0:370,:]
time_var = tmpdat.variables['time_counter'][:]
long_name_time = tmpdat.variables['time_counter'].standard_name
units_time = tmpdat.variables['time_counter'].units
calendar_time = tmpdat.variables['time_counter'].calendar
tmpdat.close()
# Begin process
nt = (np.shape(sithic))[0]
idx_open_patch = fillv * np.ones(shape=[nt, ny, nx], dtype=int)
area_polynya = np.zeros(shape=[nt, ny, nx], dtype=float)
age_polynya = np.zeros(shape=[nt, ny, nx], dtype=int)
idx_polynya = np.zeros(shape=[nt,ny,nx], dtype=int)
for t in range(0,nt):
cnt_pol = 0
cnt_oce_pol = 0
cnt_island_pol = 0
cnt_ant_pol = 0
unsorted_idx_polynya = np.zeros(shape=[ny, nx], dtype=int)
all_poly_size = []
t_start = time.time()
is_open = np.logical_and(np.logical_not(is_cont), siconc[t,:,:] < siconc_thres, sithic[t,:,:] < sithic_thres)
idx_open_patch[t,:,:] = np.where(np.logical_and(np.logical_not(is_open), np.logical_not(is_cont)), iced_value, idx_open_patch[t,:,:])
is_open_neigh = np.ndarray(shape=[ny,nx,4], dtype=bool)
is_open_neigh[:,:,0] = np.roll(is_open, shift=+1, axis=-2)
is_open_neigh[:,:,1] = np.roll(is_open, shift=-1, axis=-2)
is_open_neigh[:,:,2] = np.roll(is_open, shift=+1, axis=-1)
is_open_neigh[:,:,3] = np.roll(is_open, shift=-1, axis=-1)
explored = np.zeros(shape=[ny, nx], dtype=bool)
candidates = np.transpose(np.nonzero(np.logical_and(is_open, np.logical_not(explored))))
curr_patch_idx = 0
sizes_patch = []
touched_cont = []
while(np.size(candidates) > 0):
curr_patch_idx+=1
is_in_currpatch = np.zeros(shape=[ny, nx], dtype=bool)
is_in_currpatch[candidates[0,0], candidates[0,1]] = True
keep_going = True
cnt_explore = 0
while(keep_going):
n_cp = np.count_nonzero(is_in_currpatch)
# add x+ neighbors
is_in_currpatch = np.logical_or(is_in_currpatch, np.roll(np.logical_and(is_open_neigh[:,:,0], is_in_currpatch), shift=-1, axis=0))
# add x- neighbors
is_in_currpatch = np.logical_or(is_in_currpatch, np.roll(np.logical_and(is_open_neigh[:,:,1], is_in_currpatch), shift=1, axis=0))
# add y+ neighbors
is_in_currpatch = np.logical_or(is_in_currpatch, np.roll(np.logical_and(is_open_neigh[:,:,2], is_in_currpatch), shift=-1, axis=1))
# add y- neighbors
is_in_currpatch = np.logical_or(is_in_currpatch, np.roll(np.logical_and(is_open_neigh[:,:,3], is_in_currpatch), shift=1, axis=1))
n_old = n_cp
n_cp = np.count_nonzero(is_in_currpatch)
n_new = n_cp - n_old
keep_going = (n_new > 0)
cnt_explore+=1
if( np.any( np.logical_and(is_in_currpatch, is_border))):
# patch touching border: open ocean
idx_open_patch[t,:,:] = np.where( is_in_currpatch, open_oce_value, idx_open_patch[t,:,:] )
else:
# patch doesn't touch border: polynya
cnt_pol+=1
curr_area_pol = np.sum(np.ma.array(data = cell_area, mask = np.logical_not(is_in_currpatch)))
all_poly_size.append(curr_area_pol)
area_polynya[t,:,:] = np.where(is_in_currpatch, curr_area_pol, area_polynya[t,:,:])
unsorted_idx_polynya = np.where(is_in_currpatch, cnt_pol, unsorted_idx_polynya)
# polynya age
if(np.any( np.logical_and( old_age_polynya > 0, is_in_currpatch ) ) ):
# polynya previously existed: its age is the maximum age of any of the current polynya node taken from the old time step
prev_age_tmp = np.ma.array(data = old_age_polynya, mask = np.logical_not(is_in_currpatch))
age_polynya[t,:,:] = np.where(is_in_currpatch, np.ma.amax(prev_age_tmp) + 1, age_polynya[t,:,:])
else:
# new polynya: aged 1
age_polynya[t,:,:] = np.where(is_in_currpatch, 1, age_polynya[t,:,:])
tmp_mask = is_in_currpatch[:,:,None] * (np.ones(shape=[4], dtype=bool))[None,None,:]
check_cont = np.logical_and(is_cont_neigh, tmp_mask)
if(np.any(check_cont)):
# coastal polynya: Antarctica or island
check_ant = np.logical_and(is_ant_neigh, tmp_mask)
if(np.any(check_ant)):
# polynya touches Antarctica
idx_open_patch[t,:,:] = np.where(is_in_currpatch, antarctica_pol_value, idx_open_patch[t,:,:])
cnt_ant_pol+=1
else:
# insular (non-Antarctica) polynya
idx_open_patch[t,:,:] = np.where(is_in_currpatch, island_pol_value, idx_open_patch[t,:,:])
cnt_island_pol+=1
else: # np.any(check_cont))
# the polynya doesn't touch masked cell: it's an ocean polynya
idx_open_patch[t,:,:] = np.where(is_in_currpatch, ocean_pol_value, idx_open_patch[t,:,:])
cnt_oce_pol+=1
sizes_patch.append(n_cp)
# we have explored the current patch
explored = np.where(is_in_currpatch, True, explored)
# the remaining polynya candidates are the ice-free cells which have not been explored
candidates = np.transpose(np.nonzero(np.logical_and(is_open, np.logical_not(explored))))
# age: fillvalue over continent, 0 over free-ocean or sea-ice cover
age_polynya[t,:,:] = np.where(is_cont, fillv, np.where( np.logical_or(idx_open_patch[t,:,:] == open_oce_value, idx_open_patch[t,:,:] == iced_value),0, age_polynya[t,:,:]))
# area polynya: fillvalue over continent
area_polynya[t,:,:] = np.where(is_cont, fillv_float, area_polynya[t,:,:])
# sort the polynya index by decreasing polynya extent
idx_polynya[t,:,:] = unsorted_idx_polynya
argsort = (np.argsort(all_poly_size))[::-1]
for i in range(0,cnt_pol):
idx_polynya[t,:,:] = np.where(unsorted_idx_polynya == argsort[i]+1, i + 1, idx_polynya[t,:,:])
idx_polynya[t,:,:] = np.where(is_cont, fillv, idx_polynya[t,:,:])
walltime_ts = time.time() - t_start
print('Time step %d'%t+': spotted %d'%cnt_pol+' polynya: %d'%cnt_ant_pol+' attached to Antarctica, %d'%cnt_island_pol+' attached to an island and %d'%cnt_oce_pol+' oceanic (walltime %.1f'%walltime_ts+' sec.)')
out_nc = nc.Dataset(outfile, mode='w')
out_nc.createDimension('time_counter', 0)
out_nc.createDimension('axis_nbounds', 2)
out_nc.createDimension('y', ny)
out_nc.createDimension('x', nx+n_ovlp)
tmp = out_nc.createVariable(varname="time_counter", datatype='f8', dimensions=['time_counter'])
tmp.standard_name = long_name_time
tmp.long_name = long_name_time
tmp.units = units_time
tmp.calendar = calendar_time
tmp[:] = time_var[:]
tmp = out_nc.createVariable(varname="latitude", datatype='f8', dimensions=['y', 'x'])
tmp.standard_name = "latitude"
tmp.units = "degrees North"
tmp[:] = lat
tmp = out_nc.createVariable(varname="longitude", datatype='f8', dimensions=['y', 'x'])
tmp.standard_name = "longitude"
tmp.units = "degrees East"
tmp[:] = lon
tmp = out_nc.createVariable(varname='polynya_status', datatype='f8', dimensions=['time_counter', 'y', 'x'], fill_value=fillv)
tmp.coordinates = 'time_counter latitude longitude'
tmp.description = "polnynya status. masked = continent; %d"%open_oce_value+' = open ocean; %d'%iced_value+" = sea-ice cover; %d"%antarctica_pol_value+" = polynya attached to Antarctica; %d"%island_pol_value+" = polynya attached to an island; %d"%ocean_pol_value+" = oceanic polynya"
if(is_cyclic):
tmp[:] = np.dstack((idx_open_patch, idx_open_patch[:,:,:n_ovlp]))
else:
tmp[:] = idx_open_patch
tmp = out_nc.createVariable(varname='area_polynya', datatype='f4', dimensions=['time_counter', 'y', 'x'], fill_value = fillv_float)
if(is_cyclic):
tmp[:] = np.dstack((area_polynya, area_polynya[:,:,:n_ovlp]))
else:
tmp[:] = area_polynya
tmp.coordinates = 'time_counter latitude longitude'
tmp.units = 'm2'
tmp = out_nc.createVariable(varname='age_polynya', datatype='i2', dimensions=['time_counter', 'y', 'x'], fill_value = fillv)
tmp.coordinates = 'time_counter latitude longitude'
tmp.units = 'time step (days)'
if(is_cyclic):
tmp[:] = np.dstack((age_polynya, age_polynya[:,:,:n_ovlp]))
else:
tmp[:] = age_polynya
tmp = out_nc.createVariable(varname='idx_polynya', datatype='i2', dimensions=['time_counter', 'y', 'x'], fill_value = fillv)
tmp.coordinates = 'time_counter latitude longitude'
tmp.description = 'index counting polynyas (in decreasing order of extent)'
if(is_cyclic):
tmp[:] = np.dstack((idx_polynya, idx_polynya[:,:,:n_ovlp]))
else:
tmp[:] = idx_polynya
out_nc.close()
0% Chargement en cours ou .
You are about to add 0 people to the discussion. Proceed with caution.
Terminez d'abord l'édition de ce message.
Veuillez vous inscrire ou vous pour commenter