Skip to content
Extraits de code Groupes Projets
analog_BN.py 14,5 ko
Newer Older
  • Learn to ignore specific revisions
  • # ////////////////////////////////////////////////////////////////////////////////////////////////////////////
    # /////////////////////////// Custom batchnorm implementing actual hardware ABN //////////////////////////////
    # ////////////////////////////////////////////////////////////////////////////////////////////////////////////
    
    # Inspired from https://stackoverflow.com/questions/54101593/conditional-batch-normalization-in-keras
    
    import numpy as np
    import math
    
    import tensorflow as tf
    import keras.backend as K
    
    from keras import regularizers, initializers, constraints
    #from keras.legacy import interfaces
    from keras.layers import Layer, Input, InputSpec
    from keras.models import Model
    
    class Analog_BN(Layer):
        """ Analog batchnorm layer    
        """
        # /// Init layer ///
    #    @interfaces.legacy_batchnorm_support
        def __init__(self, 
                 axis=-1,
                 momentum=0.99,
                 epsilon=1e-5,
                 center=True,
                 scale=True,
                 renorm = True,
                 beta_initializer='zeros',
                 gamma_initializer='ones',
                 moving_mean_initializer='zeros',
                 moving_variance_initializer='ones',
                 beta_regularizer=None,
                 gamma_regularizer=None,
                 activity_regularizer=None,
                 beta_constraint=None,
                 gamma_constraint=None,
                 hardware = None,
                 NB = None,
                 **kwargs):
                 
            super(Analog_BN, self).__init__(**kwargs)
            self.axis = axis
            self.momentum = momentum
            self.epsilon = epsilon
            self.center = center
            self.scale = scale
            self.renorm = renorm
            self.beta_initializer = initializers.get(beta_initializer)
            self.gamma_initializer = initializers.get(gamma_initializer)
            self.moving_mean_initializer = initializers.get(moving_mean_initializer)
            self.moving_variance_initializer = (initializers.get(moving_variance_initializer))
            self.beta_regularizer = regularizers.get(beta_regularizer)
            self.gamma_regularizer = regularizers.get(gamma_regularizer)
            self.activity_regularizer = regularizers.get(activity_regularizer)
            self.beta_constraint = constraints.get(beta_constraint)
            self.gamma_constraint = constraints.get(gamma_constraint)
            self.DRlim = (hardware.sramInfo.GND.data,hardware.sramInfo.VDD.data);
            self.gamma_range = 4*math.sqrt(NB)
            self.ABNstates = (2**hardware.sramInfo.r_gamma,2**hardware.sramInfo.r_beta)
            self.IS_DIFF = (hardware.sramInfo.arch.name == '6T'); # Update with other arch types
        
        # /// Build layer ///
        def build(self,input_shape):
            dim = input_shape[self.axis];
            
            if dim is None:
                raise ValueError('Axis ' + str(self.axis) + ' of '
                                 'input tensor should have a defined dimension '
                                 'but the layer received an input with shape ' +
                                 str(input_shape) + '.')
            shape = (dim,)
    
            if self.scale:
                # gamma_constraint = Clip(0.0,4.0)
            
                self.gamma = self.add_weight(shape = shape,
                                             name = 'gamma',
                                             initializer = self.gamma_initializer,
                                             regularizer = self.gamma_regularizer,
                                             constraint = self.gamma_constraint)
            else:
                self.gamma = None
                    
            if self.center:
                # beta_constraint = Clip(-100.0,100.0);
            
                self.beta = self.add_weight(shape = shape,
                                            name = 'beta',
                                            initializer = self.beta_initializer,
                                            regularizer = self.beta_regularizer,
                                            constraint = self.beta_constraint)
            else:
                self.beta = None
                
            if self.renorm:
                self.moving_mean_DP = self.add_weight(
                                        shape=shape,
                                        name='moving_mean_DP',
                                        initializer=self.moving_mean_initializer,
                                        trainable=False)
                self.moving_variance_DP = self.add_weight(
                                        shape=shape,
                                        name='moving_variance_DP',
                                        initializer=self.moving_variance_initializer,
                                        trainable=False)
            else:
                self.moving_mean_DP = K.variable(0.0)
                self.moving_variance_DP = K.variable(1.0)
    
            super(Analog_BN, self).build(input_shape)
    
        # /// Call layer (train or inference) ///
        def call(self,inputs,training=None):
        
            input_shape = K.int_shape(inputs[0])
    
            # Prepare broadcasting shape.
            ndim = len(input_shape)
            reduction_axes = list(range(len(input_shape)))
            del reduction_axes[self.axis]
            broadcast_shape = [1] * len(input_shape)
            broadcast_shape[self.axis] = input_shape[self.axis]
    
            # Determines whether broadcasting is needed.
            needs_broadcasting = (sorted(reduction_axes) != list(range(ndim))[:-1])
            
            def normalize_inference():
                # Explicitely broadcast parameters when required.
                if needs_broadcasting:
                    # Norm params
                    if self.renorm:
                        broadcast_moving_mean_DP = K.reshape(self.moving_mean_DP,
                                                            broadcast_shape);
                        broadcast_moving_variance_DP = K.reshape(self.moving_variance_DP,
                                                            broadcast_shape);
                    else:
                        broadcast_moving_mean_DP = None;
                        broadcast_moving_variance_DP = None;
                    # Scale param
                    if self.scale:
                        broadcast_gamma = K.reshape(self.gamma,broadcast_shape);
                    else:
                        broadcast_gamma = None
                    # Offset param
                    if self.center:
                        broadcast_beta = K.reshape(self.beta,broadcast_shape);
                    else:
                        broadcast_beta = None
                    # Return batchnorm 
                    return ABN(
                        inputs,
                        broadcast_moving_mean_DP,
                        broadcast_moving_variance_DP,
                        broadcast_beta,
                        broadcast_gamma,
                        axis = self.axis,
                        epsilon = self.epsilon,
                        DR_tuple = self.DRlim,
                        gamma_range = self.gamma_range,
                        ABNstates = self.ABNstates,
                        IS_DIFF = self.IS_DIFF,
                        training=training)
                else:
                    return ABN(
                        inputs,
                        self.moving_mean_DP,
                        self.moving_variance_DP,
                        self.beta,
                        self.gamma,
                        axis = self.axis,
                        epsilon = self.epsilon,
                        DR_tuple = self.DRlim,
                        gamma_range = self.gamma_range,
                        ABNstates = self.ABNstates,
                        IS_DIFF = self.IS_DIFF,
                        training=training)
    
            # If the learning phase is *static* and set to inference:
            if training in {0, False}:
               return normalize_inference()
    
    
            # If the learning is either dynamic, or set to training:
            (normed_training,mean_DP,variance_DP) = \
                                norm_ABN_in_train(
                                inputs, self.beta, self.gamma, self.renorm, reduction_axes,
                                epsilon=self.epsilon,DR_tuple=self.DRlim,gamma_range=self.gamma_range,ABNstates=self.ABNstates,IS_DIFF=self.IS_DIFF,training=training)
            # ???
            if K.backend() != 'cntk':
                sample_size = K.prod([K.shape(inputs[0])[axis]
                                      for axis in reduction_axes])
                sample_size = K.cast(sample_size, dtype=K.dtype(inputs[0]))
                if K.backend() == 'tensorflow' and sample_size.dtype != 'float32':
                    sample_size = K.cast(sample_size, dtype='float32')
    
                # sample variance - unbiased estimator of population variance
                variance_DP *= sample_size / (sample_size - (1.0 + self.epsilon))
    
            # Update moving mean and variance during training
            self.add_update([K.moving_average_update(self.moving_mean_DP,
                                                     mean_DP,
                                                     self.momentum),
                             K.moving_average_update(self.moving_variance_DP,
                                                     variance_DP,
                                                     self.momentum)])
                 
            # Pick ABN result for either training or inference
            return K.in_train_phase(normed_training,
                                    normalize_inference,
                                    training=training)
    
    
        def get_config(self):
            config = {
                'axis': self.axis,
                'momentum': self.momentum,
                'epsilon': self.epsilon,
                'center': self.center,
                'scale': self.scale,
                'renorm': self.renorm,
                'beta_initializer': initializers.serialize(self.beta_initializer),
                'gamma_initializer': initializers.serialize(self.gamma_initializer),
                'moving_mean_initializer':
                    initializers.serialize(self.moving_mean_initializer),
                'moving_variance_initializer':
                    initializers.serialize(self.moving_variance_initializer),
                'beta_regularizer': regularizers.serialize(self.beta_regularizer),
                'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
                'beta_constraint': constraints.serialize(self.beta_constraint),
                'gamma_constraint': constraints.serialize(self.gamma_constraint),
                'DRlim': self.DRlim,
                'IS_DIFF': self.IS_DIFF
            }
            base_config = super(Analog_BN, self).get_config()
            return dict(list(base_config.items()) + list(config.items()))
    
        def compute_output_shape(self, input_shape):
    
            return input_shape[1]
    ############################################## Internal functions ##################################################
    
    # Perform ABN
    def ABN(x_in,mov_mean_DP=0.0,mov_variance_DP=1.0,beta=0.0,gamma=0.0,axis=-1,epsilon=1e-5,DR_tuple=None,gamma_range=None,ABNstates=None,IS_DIFF=True,training=False):
        # Retrieve differential or se output
        if(IS_DIFF):
            V_BL  = x_in[0];
            V_BLB = x_in[1];
        else:
            V_BL = x_in;
            # tf.print("V_RBL",V_BL[0],summarize=10)
    
        # Get min and max DR limits
        minDR = DR_tuple[0];
        maxDR = DR_tuple[1];
    
        # Set 'None' parameters to their initial values
        if gamma is None:
            gamma = K.constant(1.0);
        if beta is None:
            beta = K.constant(0.0);
        if mov_mean_DP is None:
            mov_mean_DP  = K.constant(DR_tuple[1]);
        if mov_variance_DP is None:
            mov_variance_DP  = K.constant(1.0);
    
        # Specify non-centernormalized correction factors
        mu_goal  = maxDR/2;
        sigma_goal = maxDR; var_goal = sigma_goal*sigma_goal;
        
        # Compute differential or single-ended DP with switched-cap unit
        if(IS_DIFF):
            V_DP = maxDR/2 + (V_BL-V_BLB)/2
        else:
            V_DP = V_BL;
        # Get custom renorm factors
        sigma_DP = K.sqrt(mov_variance_DP);
        mov_mean_DP_t = mov_mean_DP - mu_goal/sigma_goal*sigma_DP;
        mov_variance_DP_t = mov_variance_DP/var_goal;
        # Get equivalent coefficients
        sigma_DP_t = K.sqrt(mov_variance_DP_t); 
        gamma_eq = gamma/(sigma_DP_t + epsilon);
        beta_eq  = beta - gamma*mov_mean_DP_t/(sigma_DP_t + epsilon);
        beta_eq_norm = beta_eq/gamma_eq + maxDR/2;
        # Quantize gamma and beta
        Ns_gamma = ABNstates[0];
        Ns_beta = ABNstates[1];
        gamma_eq = K.clip(floor_through(gamma_eq),0,Ns_gamma-1);
        # beta_eq_norm = K.clip(floor_through(beta_eq_norm/(2*maxDR/5)*256)*(maxDR)/256,-maxDR/2,maxDR/2) - maxDR/2;
        beta_eq_norm = beta_eq_norm - maxDR/2
        # Apply (ideal, for now) equivalent coefficient to get ABN result.
        V_ABN = gamma_eq*(V_DP+beta_eq_norm);
        # Return (unclipped) result
        return V_ABN;
            
    # Compute mean and variance of the batch then perform ABN with it, when enabled
    def norm_ABN_in_train(x_tuple,beta=0.0,gamma=1.0,renorm=True,axis=-1,epsilon=1e-5,DR_tuple=None,gamma_range=None,ABNstates=None,IS_DIFF=True,training=False):
        # Retrieve differential tensors
        V_BL  = x_tuple[0];
        V_BLB = x_tuple[1];
        # Retrieve max DR (VDD by default)
        maxDR = DR_tuple[1];
        # Compute mean and variance of each batch when desired
        if(renorm):
            # Compute differential or single-ended DP with switched-cap unit
            if(IS_DIFF):
                V_DP = maxDR/2 + (V_BL-V_BLB)/2
            else:
                V_DP = V_BL;
            # Get mean and variance
            mean_DP = K.mean(V_DP,axis=0);
            variance_DP = K.var(V_DP,axis=0);
        else:
            mean_DP = K.constant(0.0);
            variance_DP = K.constant(1.0);
        # Compute ABN with specified mean and variance
        V_DP_BN = ABN(x_tuple,mean_DP,variance_DP,beta,gamma,axis,epsilon,DR_tuple,gamma_range,ABNstates,IS_DIFF,training);
        # Return a tuple of BN_result, mean and variance
        return (V_DP_BN,mean_DP,variance_DP);
        
    # Gamma & Beta constaints
    
    class Clip(constraints.Constraint):
        def __init__(self, min_value, max_value=None):
            self.min_value = min_value
            self.max_value = max_value
            if not self.max_value:
                self.max_value = -self.min_value
            if self.min_value > self.max_value:
                self.min_value, self.max_value = self.max_value, self.min_value
    
        def __call__(self, p):
            return K.clip(p, self.min_value, self.max_value)
    
        def get_config(self):
            return {"name": self.__call__.__name__,
                    "min_value": self.min_value,
                    "max_value": self.max_value}
    
    
    # Truncated normal phi function
    def phi_exp(x):
        return 1/math.sqrt(2*math.pi)*K.exp(-0.5*(x*x));
    def phi_erf(x):
        return 0.5*(1+tf.math.erf(x/math.sqrt(2)));
        
    def floor_through(x):
        '''Element-wise rounding to the closest integer with full gradient propagation.
        A trick from [Sergey Ioffe](http://stackoverflow.com/a/36480182)
        '''
        floored = tf.math.floor(x);
        floored_through = x + K.stop_gradient(floored - x);
        return floored_through;