Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from keras.models import Sequential, Model
from keras import regularizers
from keras.layers import Reshape, Activation, Conv2D, Input, MaxPooling2D, BatchNormalization, Flatten, Dense, Lambda, concatenate
from keras.layers.advanced_activations import LeakyReLU
from keras.regularizers import l2
import numpy as np
from layers.custom_regu import Reg_abn_out, Reg_l2_p
#from layers.analog_BN_current_model import Analog_BN
from layers.analog_BN_current_interp_PL import Analog_BN
from layers.binary_layers_IMC import BinaryConv2D,BinaryDense
from layers.quantized_layers_IMC import QuantizedConv2D,QuantizedDense
from layers.quantized_layers_IMC_ABN import QuantizedDenseABN
from layers.quantized_ops import my_quantized_relu as quantize_op
from layers.binary_ops import binary_tanh as binary_tanh_op
from layers.binary_ops import binary_sigmoid as binary_sigmoid_op
from layers.binary_ops import binary_sigmoid_abn, binary_sigmoid_p, binary_tanh, binary_tanh_p
from models.ADC import quant_uni,Quant_train
from models.makeModel import make_model
# Hardware parameters generation
from utils.config_hardware_model import genHardware
from copy import deepcopy
def build_model(cf,model_type,sramInfo,EN_NOISE,EN_QUANT,ABN_INC_ADC):
# Useful build variables
IAres = sramInfo.IAres;
Wres = sramInfo.Wres;
OAres = sramInfo.OAres;
dynRange = sramInfo.VDD.data-0.108-0.04; # To be updated --> incorporate quantization directly inside IMC layer, with an EN flag
H = 1.
print('###################################################')
print('########### BUILDING CIM-SRAM NETWORK #############')
print('###################################################')
def binary_sigmoid(x):
return binary_sigmoid_op(x)
def quant_relu(x,IAres):
return quantize_op(x=x,IAres=IAres)
if cf.network_type =='float':
Conv_ = lambda s, f, i, c: Conv2D(kernel_size=(s, s), filters=f, strides=(1, 1), padding='same', activation='linear',
kernel_regularizer=l2(cf.kernel_regularizer),input_shape = (i,i,c),use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Conv = lambda s, f: Conv2D(kernel_size=(s, s), filters=f, strides=(1, 1), padding='same', activation='linear',
kernel_regularizer=l2(cf.kernel_regularizer),use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Act = lambda: LeakyReLU()
Quant = lambda n: Activation(lambda x: quant_uni(x,maxVal=n,dynRange=dynRange,OAres=OAres,offset=0.5*dynRange/n))
Dens_FP = lambda n: Dense(n,use_bias=False)
Dens = lambda n: Dense(n,use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Dens_ = lambda n,i,c: Dense(n,use_bias=False,activation='linear',input_shape=(i*i*c,),sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
elif cf.network_type=='qnn':
Conv_ = lambda s,f,i,c,m,k: QuantizedConv2D(kernel_size=(s, s), H=1, m_T_DP=m, nRep=k, nb=Wres, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,input_shape = (i,i,c),use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Conv = lambda s,f,m,k: QuantizedConv2D(kernel_size=(s, s), H=1, m_T_DP=m, nRep=k, nb=Wres, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
if(EN_QUANT):
# Act = lambda: LeakyReLU()
Act = lambda: Activation(lambda x: quant_relu(x,IAres=IAres))
else:
# Act = lambda: Activation(lambda x: binary_sigmoid_abn(x,sramInfo.VDD.data))
Act = lambda: Quant_train(sramInfo)
# Act = lambda: Activation(lambda x: quant_uni(x,maxVal=0,dynRange=dynRange,VDD=sramInfo.VDD.data,OAres=OAres,offset=0,archType=sramInfo.arch.name));
Quant = lambda p: Activation('linear');
Dens_FP = lambda n: Dense(n,use_bias=False)
Dens = lambda n,m: QuantizedDense(n,nb=Wres,m_T_DP=m,use_bias=False,activation='linear',sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Dens_ = lambda n,i,c,m: QuantizedDense(n,nb=Wres,m_T_DP=m,use_bias=False,activation='linear',input_shape=(i*i*c,),sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
elif cf.network_type=='full-qnn':
Conv_ = lambda s,f,i,c,m,k: QuantizedConv2D(kernel_size=(s, s), H=1, m_T_DP=m, nRep=k, nb=Wres, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,input_shape = (i,i,c),use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Conv = lambda s,f,m,k: QuantizedConv2D(kernel_size=(s, s), H=1, m_T_DP=m, nRep=k, nb=Wres, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Conv_FP_ = lambda s, f, i, c: Conv2D(kernel_size=(s, s), filters=f, strides=(1, 1), padding='same', activation='linear',
kernel_regularizer=l2(cf.kernel_regularizer),input_shape = (i,i,c),use_bias=False)
if(EN_QUANT):
Act = lambda: Activation(lambda x: quant_relu(x,IAres=IAres))
else:
# Act = lambda: Activation(lambda x: binary_sigmoid_abn(x,sramInfo.VDD.data))
Act = lambda: Quant_train(sramInfo,ABN_INC_ADC)
# Act = lambda: Activation(lambda x: quant_uni(x,maxVal=0,dynRange=dynRange,VDD=sramInfo.VDD.data,OAres=OAres,offset=0,archType=sramInfo.arch.name));
# Quant = lambda n: Activation(lambda x: quant_uni(x,maxVal=n,dynRange=dynRange,VDD=sramInfo.VDD.data,OAres=OAres,offset=0.5*dynRange/n,archType=sramInfo.arch.name))
Quant = lambda n: Activation(lambda x: quant_uni(x,maxVal=n,dynRange=dynRange,VDD=sramInfo.VDD.data,OAres=OAres,offset=0.,archType=sramInfo.arch.name))
Dens_FP = lambda n: Dense(n,use_bias=False)
Dens = lambda n,m: QuantizedDense(n,nb=Wres,m_T_DP=m,use_bias=False,activation='linear',sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Dens_ = lambda n,i,c,m: QuantizedDense(n,nb=Wres,m_T_DP=m,use_bias=False,activation='linear',input_shape=(i*i*c,),sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
elif cf.network_type=='full-qnn-embedded':
Conv_ = lambda s,f,i,c,m,k: QuantizedConv2D(kernel_size=(s, s), H=1, m_T_DP=m, nRep=k, nb=Wres, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,input_shape = (i,i,c),use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Conv = lambda s,f,m,k: QuantizedConv2D(kernel_size=(s, s), H=1, m_T_DP=m, nRep=k, nb=Wres, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
if(EN_QUANT):
Act = lambda: Activation(lambda x: quant_relu(x,IAres=IAres))
else:
# Act = lambda: Activation(lambda x: binary_sigmoid_abn(x,sramInfo.VDD.data))
Act = lambda: Quant_train(sramInfo)
# Act = lambda: Activation(lambda x: quant_uni(x,maxVal=0,dynRange=dynRange,VDD=sramInfo.VDD.data,OAres=OAres,offset=0,archType=sramInfo.arch.name));
# Quant = lambda n: Activation(lambda x: quant_uni(x,maxVal=n,dynRange=dynRange,VDD=sramInfo.VDD.data,OAres=OAres,offset=0.5*dynRange/n,archType=sramInfo.arch.name))
Quant = lambda n: Activation(lambda x: quant_uni(x,maxVal=n,dynRange=dynRange,VDD=sramInfo.VDD.data,OAres=OAres,offset=0.,archType=sramInfo.arch.name))
Dens_FP = lambda n: Dense(n,use_bias=False)
Dens = lambda n,m: QuantizedDenseABN(n,nb=Wres,m_T_DP=m,use_bias=False,activation='linear',sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT,m_sigma=4)
Dens_ = lambda n,i,c,m: QuantizedDenseABN(n,nb=Wres,m_T_DP=m,use_bias=False,activation='linear',input_shape=(i*i*c,),sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT,m_sigma=4)
elif cf.network_type=='bnn':
Conv_ = lambda s, f,i,c: BinaryConv2D(kernel_size=(s, s), H=1, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,input_shape = (i,i,c),use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Conv = lambda s, f: BinaryConv2D(kernel_size=(s, s), H=1, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Act = lambda: LeakyReLU()
# Quant = lambda n: Activation(lambda x: quant_uni(x,maxVal=n,dynRange=dynRange,OAres=OAres,offset=0.5*dynRange/n))
Quant = lambda p: Activation('linear');
Dens_FP = lambda n: Dense(n,use_bias=False)
Dens = lambda n: BinaryDense(n,use_bias=False,activation='linear',sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Dens_ = lambda n,i,c: BinaryDense(n,use_bias=False,activation='linear',input_shape=(i*i*c,),sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
elif cf.network_type=='full-bnn':
Conv_ = lambda s, f,i,c: BinaryConv2D(kernel_size=(s, s), H=1, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,input_shape = (i,i,c),use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Conv = lambda s, f: BinaryConv2D(kernel_size=(s, s), H=1, filters=f, strides=(1, 1), padding='same',
activation='linear', kernel_regularizer=l2(cf.kernel_regularizer),
kernel_lr_multiplier=cf.kernel_lr_multiplier,use_bias=False,sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
if(EN_QUANT):
Act = lambda: Activation(lambda x: binary_sigmoid(x))
else:
# Act = lambda: Activation(lambda x: binary_sigmoid_abn(x,sramInfo.VDD.data))
Act = lambda: Quant_train(sramInfo)
# Act = lambda: Activation(lambda x: quant_uni(x,maxVal=0,dynRange=dynRange,VDD=sramInfo.VDD.data,OAres=OAres,offset=0,archType=sramInfo.arch.name));
# Quant = lambda n: Activation(lambda x: quant_uni(x,maxVal=n,dynRange=dynRange,OAres=OAres,offset=0.5*dynRange/n));
Quant = lambda n: Activation(lambda x: quant_uni(x,maxVal=n,dynRange=dynRange,VDD=sramInfo.VDD.data,OAres=OAres,offset=0.,archType=sramInfo.arch.name))
Dens_FP = lambda n: Dense(n,use_bias=False)
Dens = lambda n: BinaryDense(n,use_bias=False,activation='linear',sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
Dens_ = lambda n,i,c: BinaryDense(n,use_bias=False,activation='linear',input_shape=(i*i*c,),sramInfo=deepcopy(sramInfo),EN_NOISE=EN_NOISE,EN_QUANT=EN_QUANT)
else:
print('wrong network type, the supported network types in this repo are float, qnn, full-qnn, bnn and full-bnn')
if(EN_QUANT):
BatchNorm = lambda: BatchNormalization(momentum=0.1,epsilon=1e-5)
else:
if(cf.network_type == 'full-qnn-embedded'):
BatchNorm = lambda n,m: Activation('linear');
else:
BatchNorm = lambda n,m: Analog_BN(momentum=0.1,epsilon=1e-5,renorm=True,hardware=genHardware(sramInfo),NB=n,m_sigma=m,EN_NOISE=EN_NOISE
# center=False,scale=False,
# gamma_regularizer=l2(0.001),beta_regularizer=l2(0.001))
# activity_regularizer=Reg_abn_out(1e-5,sramInfo.VDD.data))
# activity_regularizer=Reg_l2_p(0.,0.5)
);
BatchNorm_FP = lambda: BatchNormalization(momentum=0.1,epsilon=1e-5)
model = make_model(model_type,cf,Conv_,Conv,Dens_,Dens,Act,Quant,BatchNorm,Dens_FP,BatchNorm_FP,Conv_FP_);
return model
def load_weights(model, weight_reader):
weight_reader.reset()
for i in range(len(model.layers)):
if 'conv' in model.layers[i].name:
if 'batch' in model.layers[i + 1].name:
norm_layer = model.layers[i + 1]
size = np.prod(norm_layer.get_weights()[0].shape)
beta = weight_reader.read_bytes(size)
gamma = weight_reader.read_bytes(size)
mean = weight_reader.read_bytes(size)
var = weight_reader.read_bytes(size)
weights = norm_layer.set_weights([gamma, beta, mean, var])
conv_layer = model.layers[i]
if len(conv_layer.get_weights()) > 1:
bias = weight_reader.read_bytes(np.prod(conv_layer.get_weights()[1].shape))
kernel = weight_reader.read_bytes(np.prod(conv_layer.get_weights()[0].shape))
kernel = kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape)))
kernel = kernel.transpose([2, 3, 1, 0])
conv_layer.set_weights([kernel, bias])
else:
kernel = weight_reader.read_bytes(np.prod(conv_layer.get_weights()[0].shape))
kernel = kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape)))
kernel = kernel.transpose([2, 3, 1, 0])
conv_layer.set_weights([kernel])
return model