Skip to content
Extraits de code Groupes Projets
analog_BN_charge_model.py 13,50 Kio
# ////////////////////////////////////////////////////////////////////////////////////////////////////////////
# /////////////////////////// Custom batchnorm implementing actual hardware ABN //////////////////////////////
# ////////////////////////////////////////////////////////////////////////////////////////////////////////////

# Inspired from https://stackoverflow.com/questions/54101593/conditional-batch-normalization-in-keras

import numpy as np
import math

import tensorflow as tf
import keras.backend as K

from keras import regularizers, initializers, constraints
#from keras.legacy import interfaces
from keras.layers import Layer, Input, InputSpec
from keras.models import Model

from models.ABN_charge import round_through, floor_through

class Analog_BN(Layer):
    """ Analog batchnorm layer    
    """
    # /// Init layer ///
#    @interfaces.legacy_batchnorm_support
    def __init__(self, 
             axis=-1,
             momentum=0.99,
             epsilon=1e-5,
             center=True,
             scale=True,
             renorm = True,
             beta_initializer='zeros',
             gamma_initializer='ones',
             moving_mean_initializer='zeros',
             moving_variance_initializer='ones',
             beta_regularizer=None,
             gamma_regularizer=None,
             activity_regularizer=None,
             beta_constraint=None,
             gamma_constraint=None,
             hardware = None,
             NB = None,
             m_sigma = 1,
             **kwargs):
             
        super(Analog_BN, self).__init__(**kwargs)
        self.axis = axis
        self.momentum = momentum
        self.epsilon = epsilon
        self.center = center
        self.scale = scale
        self.renorm = renorm
        self.beta_initializer = initializers.get(beta_initializer)
        self.gamma_initializer = initializers.get(gamma_initializer)
        self.moving_mean_initializer = initializers.get(moving_mean_initializer)
        self.moving_variance_initializer = (initializers.get(moving_variance_initializer))
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.beta_constraint = constraints.get(beta_constraint)
        self.gamma_constraint = constraints.get(gamma_constraint)
        self.hardware = hardware;
        self.m_sigma_init = m_sigma;
        
    # /// Build layer ///
    def build(self,input_shape):
        dim = input_shape[self.axis];
        
        if dim is None:
            raise ValueError('Axis ' + str(self.axis) + ' of '
                             'input tensor should have a defined dimension '
                             'but the layer received an input with shape ' +
                             str(input_shape) + '.')
        shape = (dim,)

        if self.scale:
            # gamma_constraint = Clip(0.0,4.0)
        
            self.gamma = self.add_weight(shape = (1,),
                                         name = 'gamma',
                                         initializer = self.gamma_initializer,
                                         regularizer = self.gamma_regularizer,
                                         constraint = self.gamma_constraint)
        else:
            self.gamma = None
                
        if self.center:
            # beta_constraint = Clip(-100.0,100.0);
        
            self.beta = self.add_weight(shape = shape,
                                        name = 'beta',
                                        initializer = self.beta_initializer,
                                        regularizer = self.beta_regularizer,
                                        constraint = self.beta_constraint)
        else:
            self.beta = None
            
        if self.renorm:
            self.moving_mean_DP = self.add_weight(
                                    shape=shape,
                                    name='moving_mean_DP',
                                    initializer=self.moving_mean_initializer,
                                    trainable=False)
            self.moving_variance_DP = self.add_weight(
                                    shape=shape,
                                    name='moving_variance_DP',
                                    initializer=self.moving_variance_initializer,
                                    trainable=False)
        else:
            self.moving_mean_DP = K.variable(0.0)
            self.moving_variance_DP = K.variable(1.0)
            
        # Dummy value to match PL layer
        self.m_sigma = self.add_weight(shape = (1,),
             name = 'm_sigma',
             initializer = initializers.get(tf.keras.initializers.Constant(value=self.m_sigma_init)),
             trainable=False);

            
        super(Analog_BN, self).build(input_shape)

    # /// Call layer (train or inference) ///
    def call(self,inputs,training=None):
    
        input_shape = K.int_shape(inputs)

        # Prepare broadcasting shape.
        ndim = len(input_shape)
        reduction_axes = list(range(len(input_shape)))
        del reduction_axes[self.axis]
        broadcast_shape = [1] * len(input_shape)
        broadcast_shape[self.axis] = input_shape[self.axis]

        # Determines whether broadcasting is needed.
        needs_broadcasting = (sorted(reduction_axes) != list(range(ndim))[:-1])
        
        def normalize_inference():
            # Explicitely broadcast parameters when required.
            if needs_broadcasting:
                # Norm params
                if self.renorm:
                    broadcast_moving_mean_DP = K.reshape(self.moving_mean_DP,
                                                        broadcast_shape);
                    broadcast_moving_variance_DP = K.reshape(self.moving_variance_DP,
                                                        broadcast_shape);
                else:
                    broadcast_moving_mean_DP = None;
                    broadcast_moving_variance_DP = None;
                # Scale param
                if self.scale:
                    broadcast_gamma = K.reshape(self.gamma,broadcast_shape);
                else:
                    broadcast_gamma = None
                # Offset param
                if self.center:
                    broadcast_beta = K.reshape(self.beta,broadcast_shape);
                else:
                    broadcast_beta = None
                # Return batchnorm 
                return ABN(
                    inputs,
                    broadcast_moving_mean_DP,
                    broadcast_moving_variance_DP,
                    broadcast_beta,
                    broadcast_gamma,
                    axis = self.axis,
                    epsilon = self.epsilon,
                    m_sigma = self.m_sigma,
                    hardware = self.hardware,
                    training=training)
            else:
                return ABN(
                    inputs,
                    self.moving_mean_DP,
                    self.moving_variance_DP,
                    self.beta,
                    self.gamma,
                    axis = self.axis,
                    epsilon = self.epsilon,
                    m_sigma = self.m_sigma,
                    hardware = self.hardware,
                    training=training)

        # If the learning phase is *static* and set to inference:
        if training in {0, False}:
           return normalize_inference()


        # If the learning is either dynamic, or set to training:
        (normed_training,mean_DP,variance_DP) = \
                            norm_ABN_in_train(
                            inputs, self.beta, self.gamma, self.renorm, reduction_axes,
                            epsilon=self.epsilon,m_sigma=self.m_sigma,hardware=self.hardware,training=training);
        # ???
        if K.backend() != 'cntk':
            sample_size = K.prod([K.shape(inputs)[axis]
                                  for axis in reduction_axes])
            sample_size = K.cast(sample_size, dtype=K.dtype(inputs))
            if K.backend() == 'tensorflow' and sample_size.dtype != 'float32':
                sample_size = K.cast(sample_size, dtype='float32')

            # sample variance - unbiased estimator of population variance
            variance_DP *= sample_size / (sample_size - (1.0 + self.epsilon))

        # Update moving mean and variance during training
        self.add_update([K.moving_average_update(self.moving_mean_DP,
                                                 mean_DP,
                                                 self.momentum),
                         K.moving_average_update(self.moving_variance_DP,
                                                 variance_DP,
                                                 self.momentum)])
             
        # Pick ABN result for either training or inference
        return K.in_train_phase(normed_training,
                                normalize_inference,
                                training=training)


    def get_config(self):
        config = {
            'axis': self.axis,
            'momentum': self.momentum,
            'epsilon': self.epsilon,
            'center': self.center,
            'scale': self.scale,
            'renorm': self.renorm,
            'beta_initializer': initializers.serialize(self.beta_initializer),
            'gamma_initializer': initializers.serialize(self.gamma_initializer),
            'moving_mean_initializer':
                initializers.serialize(self.moving_mean_initializer),
            'moving_variance_initializer':
                initializers.serialize(self.moving_variance_initializer),
            'beta_regularizer': regularizers.serialize(self.beta_regularizer),
            'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
            'beta_constraint': constraints.serialize(self.beta_constraint),
            'gamma_constraint': constraints.serialize(self.gamma_constraint)
        }
        base_config = super(Analog_BN, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

    def compute_output_shape(self, input_shape):

        return input_shape[1]
############################################## Internal functions ##################################################

# Perform ABN
def ABN(V_DP,mov_mean_DP=0.0,mov_variance_DP=1.0,beta=0.0,gamma=0.0,axis=-1,epsilon=1e-5,m_sigma=1,hardware=None,training=False):
    # Get min and max DR limits
    VDD = hardware.sramInfo.VDD.data;
    
    r_gamma = hardware.sramInfo.r_gamma;
    r_beta  = hardware.sramInfo.r_beta;
    OAres   = hardware.sramInfo.OAres;
    
    Vmax_beta = hardware.sramInfo.Vmax_beta;
    Vlsb_beta = Vmax_beta/2**(r_beta-1);
    Vadc_step = VDD/(2**OAres);

    # Set 'None' parameters to their initial values
    if gamma is None:
        gamma = K.constant(1.0);
    if beta is None:
        beta = K.constant(0.0);
    if mov_mean_DP is None:
        mov_mean_DP  = K.constant(DR_tuple[1]);
    if mov_variance_DP is None:
        mov_variance_DP  = K.constant(1.0);

    # Specify non-centernormalized correction factors
#    mu_goal  = VDD/2;
    sigma_goal = VDD/m_sigma; var_goal = sigma_goal*sigma_goal;

#    # Get custom renorm factors
#    sigma_DP = K.sqrt(mov_variance_DP);
#    mov_mean_DP_t = mov_mean_DP - mu_goal/sigma_goal*sigma_DP;
#    # mov_mean_DP_t = K.zeros_like(mov_mean_DP);
    mov_variance_DP_t = K.mean(mov_variance_DP)/var_goal;
#    mov_variance_DP_t = mov_variance_DP/var_goal;
#    # Get equivalent coefficients
#    sigma_DP_t = K.sqrt(mov_variance_DP_t); 

    gamma_eq = gamma/(K.sqrt(mov_variance_DP_t) + epsilon);
    beta_eq  = beta/gamma_eq - mov_mean_DP;
    
    # Restrict gain factor to power-of-2
    log_gamma_eq = round_through(tf.math.log(gamma_eq)/tf.math.log(2.));
    gamma_eq = K.pow(2.,log_gamma_eq);
    
    # Quantize results
    gamma_eq = K.clip(round_through(gamma_eq),1,2**r_gamma);
    V_beta  = K.clip(round_through(beta_eq/Vlsb_beta)*Vlsb_beta,-Vmax_beta,Vmax_beta);
       
    # Model transfer function
    V_ABN_temp = K.mean(gamma_eq)*((V_DP-VDD/2)+V_beta);
    V_ABN = V_ABN_temp + VDD/2;
        
    # Quantize output
    D_OUT = K.clip(floor_through(V_ABN/Vadc_step),0,2**OAres-1);
    
    # Debug
    # tf.print("V_DP",V_DP[0:8,0]);
    # tf.print("gamma",gamma);
    # tf.print("gamma_eq",gamma_eq);
    # tf.print("beta_eq",beta_eq[0:8]);
    # tf.print("log_gamma",log_gamma_eq);
    # tf.print("V_ABN",V_ABN[0:8,0]);
    # tf.print("D_OUT",D_OUT[0:8,0]);
    
        
    # Return (unclipped) result
    return D_OUT;
    # return V_ABN
        
# Compute mean and variance of the batch then perform ABN with it, when enabled
def norm_ABN_in_train(V_DP,beta=0.0,gamma=1.0,renorm=True,axis=-1,epsilon=1e-5,m_sigma=1,hardware=None,training=False):
    # Get min and max DR limits
    VDD = hardware.sramInfo.VDD.data;
    
    # Compute mean and variance of each batch when desired
    if(renorm):
        # Eventually reshape V_DP in case of CONV2D operation
        Ncols = K.int_shape(V_DP)[-1];
        V_DP_flat = tf.reshape(V_DP,(-1,Ncols));
        # Model transfer function
        V_out = V_DP_flat-VDD/2;
        # Get mean and variance
        mean_DP = K.mean(V_out,axis=0);
        variance_DP = K.var(V_DP_flat,axis=0);
    else:
        mean_DP = K.constant(0.0);
        variance_DP = K.constant(1.0);
    # Compute ABN with specified mean and variance
    V_DP_BN = ABN(V_DP,mean_DP,variance_DP,beta,gamma,axis,epsilon,m_sigma,hardware,training);
    # Return a tuple of BN_result, mean and variance
    return (V_DP_BN,mean_DP,variance_DP);