Skip to content
Extraits de code Groupes Projets
Valider d3808ebe rédigé par Adrian Kneip's avatar Adrian Kneip
Parcourir les fichiers

Upload New File

parent ceea735c
Aucune branche associée trouvée
Aucune étiquette associée trouvée
Aucune requête de fusion associée trouvée
# -*- coding: utf-8 -*-
import numpy as np
import math
from keras import backend as K
import tensorflow as tf
from keras.layers import InputSpec, Layer, Dense, Conv2D
from keras import constraints
from keras import initializers
# Binarization functions
from layers.binary_ops import binarize, binarize_exp, binarize_ssb
from layers.binary_ops import binary_sigmoid_p
# Analog MAC operator
from models.MAC_current import MAC_op_se_ana as MAC_op_se
from models.MAC_current import MAC_op_diff_ana as MAC_op_diff
from models.CONV_current import CONV_op_se_ana as CONV_op_se
from models.CONV_current import CONV_op_diff_ana as CONV_op_diff
# ADC model
from models.ADC import quant_uni
# Hardware parameters generation
from utils.config_hardware_model import genHardware
# Temporary dir
import tempfile
import sys
import subprocess
import time
# Modeling files
import os
scriptpath = "../lib_modelcim/"
sys.path.append(os.path.abspath(scriptpath));
from preProc_wrapper import preProcSat as getHardwareData
from fit_spice import DP_fit
class Clip(constraints.Constraint):
def __init__(self, min_value, max_value=None):
self.min_value = min_value
self.max_value = max_value
if not self.max_value:
self.max_value = -self.min_value
if self.min_value > self.max_value:
self.min_value, self.max_value = self.max_value, self.min_value
def __call__(self, p):
return K.clip(p, self.min_value, self.max_value)
def get_config(self):
return {"name": self.__call__.__name__,
"min_value": self.min_value,
"max_value": self.max_value}
class BinaryDense(Dense):
''' Binarized Dense layer
References:
"BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1" [http://arxiv.org/abs/1602.02830]
'''
def __init__(self, units, H=1.,sramInfo=None, EN_NOISE=0, EN_QUANT=1, kernel_lr_multiplier='Glorot', bias_lr_multiplier=None, **kwargs):
super(BinaryDense, self).__init__(units, **kwargs)
self.H = H
self.kernel_lr_multiplier = kernel_lr_multiplier
self.bias_lr_multiplier = bias_lr_multiplier
self.EN_NOISE = EN_NOISE
self.EN_QUANT = EN_QUANT
self.sramInfo = sramInfo
self.hardware = None
self.Vt_noise = None
self.input_dim = None
super(BinaryDense, self).__init__(units, **kwargs)
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[1]
self.input_dim = input_dim;
if self.H == 'Glorot':
self.H = np.float32(np.sqrt(1.5 / (input_dim + self.units)))
#print('Glorot H: {}'.format(self.H))
if self.kernel_lr_multiplier == 'Glorot':
self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5 / (input_dim + self.units)))
#print('Glorot learning rate multiplier: {}'.format(self.kernel_lr_multiplier))
# Retrieve architecture type (diff or se) and derive flag
archType = self.sramInfo.arch.name;
# if(archType == '6T'):
self.kernel_constraint = Clip(-self.H, self.H)
self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
# elif(archType == '8T'):
# self.kernel_constraint = Clip(0, self.H)
# self.kernel_initializer = initializers.RandomUniform(0, self.H)
# else:
# error('Unsupported cell type during binary weights initialization !');
self.kernel = self.add_weight(shape=(input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
self.bias = self.add_weight(shape=(self.output_dim,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.lr_multipliers = [self.kernel_lr_multiplier]
self.bias = None
# Get DP electrical quantities for this layer
Nrows = self.sramInfo.Nrows.data
N_cim = int(math.ceil((input_dim-1)/Nrows));
self.sramInfo.NB.data = int(input_dim/N_cim);
print(f'######## FC layer with {self.sramInfo.NB.data} cells/op supplied at {self.sramInfo.VDD.data:.2f}V ######## ')
path_dir = '/export/home/adkneip/Documents/PhD/ELDO/IMC_PYTHON/CURRENT_MAC/'+self.sramInfo.arch.name+'_CELL/'
################################################# USE TEMPORARY SIM DIRECTORY #####################################################
with tempfile.TemporaryDirectory(dir=path_dir,prefix='SimFolder_') as path_to_file:
#print(path_to_file)
# Copy .cir files into temporary simu folder -- '*' sumbol bugs for some reason
if(self.sramInfo.simulator == "eldo"):
file_table = np.array(['MAC_DC.cir','MAC_NL.cir','MAC_satCal.cir','MAC_time.cir','MAC_train_MC.cir']);
elif(self.sramInfo.simulator == "spectre"):
file_table = np.array(['MAC_DC.scs','MAC_satCal.scs','MAC_time.scs',
'MAC_DC.mdl','MAC_satCal.mdl','MAC_time.mdl']);
else:
sys.exit('Error: selected simulator not supported !\n');
for file_temp in file_table:
commandLine = ['cp',path_dir+'RefFolder/'+file_temp,path_to_file+'/'];
proc = subprocess.run(commandLine);
if(proc.returncode != 0):
sys.exit('Error: could not copy reference files into temporary sim folder !\n');
# Create temporary data file
commandLine = ['mkdir',path_to_file+'/data'];
proc = subprocess.run(commandLine);
if(proc.returncode != 0):
sys.exit('Error: could not copy reference files into temporary sim folder !\n');
# Perform Spice simulations
self.sramInfo = getHardwareData(path_to_file,self.sramInfo)
# time.sleep(300); # For debug
###################################################################################################################################
# Generate hardware parameters
hardware = genHardware(self.sramInfo)
# Compute the appropriate curve-fitting factors
# hardware.a1 = 1; hardware.a2 = 1; hardware.b1 = 1;
# self.hardware = hardware
print(f'######## Performing three-parametric best curve-fitting ######## ')
self.hardware = DP_fit(path_dir,'early',hardware)
# Create V_th distribution
mu_Vth = self.hardware.mu_Vth
sig_Vth = self.hardware.sig_Vth
# self.Vt_noise = K.random_normal(shape=(self.units,),mean=0,stddev=sig_Vth)
self.Vt_noise = K.random_normal(shape=(self.units,),mean=0,stddev=0)
# Perform build
self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def call(self, inputs):
# Binarize weights
W_bin = binarize(self.kernel, H=self.H);
# Check if a single CIM-SRAM is sufficient, or ideal charge-share of their analog outputs
Nrows = self.hardware.sramInfo.Nrows.data
N_cim = int(math.ceil((self.input_dim-1)/Nrows));
# Retrieve architecture type (diff or se) and derive flag
archType = self.hardware.sramInfo.arch.name;
IS_SE_OUT = (archType == '8T') or self.EN_QUANT;
# Wrap correct MAC_op function
if(archType == '6T'):
MAC_op = MAC_op_diff;
elif(archType == '8T'):
MAC_op = MAC_op_se;
else:
raise NameError('Error: selected architecture (cell type) not supported during FC layer compute !\n');
# Emulate 6T-based CIM-SRAM analog MAC operation, possibly with parallel macros
if(N_cim > 1):
# Separate inputs and weights in sub-matrices
inputs = tf.unstack(K.reshape(inputs,(-1,int(self.input_dim/N_cim),N_cim)),axis=-1)
W_bin = K.permute_dimensions(K.reshape(K.permute_dimensions(W_bin,(1,0)),(-1,int(self.input_dim/N_cim),N_cim)),(1,2,0))
W_bin = tf.unstack(W_bin,axis=1)
# Perform CIM-SRAM operations over all sub-matrices (i.e. different CIM-SRAMs)
V_DP = [];
for i in range(N_cim):
V_DP.append(MAC_op(self.hardware,inputs[i],W_bin[i],self.Vt_noise,self.EN_NOISE,self.EN_QUANT))
# Combine the result as if ideal charge-sharing (--> could implement actual charge-sharing !)
if(IS_SE_OUT):
V_DP = K.sum(tf.stack(V_DP,axis=2),axis=2)/N_cim;
else:
V_BL = K.sum(tf.stack(V_DP[0],axis=2),axis=2)/N_cim;
V_BLB = K.sum(tf.stack(V_DP[1],axis=2),axis=2)/N_cim;
else:
if(IS_SE_OUT):
V_DP = MAC_op(self.hardware,inputs,W_bin,self.Vt_noise,self.EN_NOISE,self.EN_QUANT);
else:
(V_BL,V_BLB) = MAC_op(self.hardware,inputs,W_bin,self.Vt_noise,self.EN_NOISE,self.EN_QUANT);
# Add bias to PA
if self.use_bias:
if(IS_SE_OUT):
V_DP = K.bias_add(V_DP, self.bias)
else:
V_BL = K.bias_add(V_BL,self.bias)
V_BLB = K.bias_add(V_BLB,self.bias)
# Quantify the PA to get the digitized OA
IAres = self.hardware.sramInfo.IAres;
OAres = self.hardware.sramInfo.OAres;
NB = self.hardware.sramInfo.NB.data;
PAmax = (2**IAres-1)*NB;
DRval = self.hardware.sramInfo.DR.data;
VDD = self.hardware.sramInfo.VDD.data;
if(self.EN_QUANT):
DO = quant_uni(V_DP,PAmax,DRval,VDD,OAres,0.5*DRval/PAmax,archType);
# Return quantized output
return DO
elif(archType == '8T'):
return V_DP
else:
# Return unquantized differential output
return K.concatenate([V_BL[np.newaxis,...],V_BLB[np.newaxis,...]],axis=0)
def get_config(self):
config = {'H': self.H,
'kernel_lr_multiplier': self.kernel_lr_multiplier,
'bias_lr_multiplier': self.bias_lr_multiplier}
base_config = super(BinaryDense, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class BinaryConv2D(Conv2D):
'''Binarized Convolution2D layer
References:
"BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1" [http://arxiv.org/abs/1602.02830]
'''
def __init__(self, filters, kernel_regularizer=None,activity_regularizer=None, kernel_lr_multiplier='Glorot',
bias_lr_multiplier=None, H=1.,sramInfo=None, EN_NOISE=0, EN_QUANT=1, **kwargs):
super(BinaryConv2D, self).__init__(filters, **kwargs)
self.H = H
self.kernel_lr_multiplier = kernel_lr_multiplier
self.bias_lr_multiplier = bias_lr_multiplier
self.activity_regularizer = activity_regularizer
self.kernel_regularizer = kernel_regularizer
self.sramInfo = sramInfo
self.hardware = None
self.Vt_noise = None
self.EN_NOISE = EN_NOISE
self.EN_QUANT = EN_QUANT
def build(self, input_shape):
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
if input_shape[channel_axis] is None:
raise ValueError('The channel dimension of the inputs '
'should be defined. Found `None`.')
input_dim = input_shape[channel_axis]
kernel_shape = self.kernel_size + (input_dim, self.filters)
#kernel_shape = self.kernel_size + (self.filters,)
base = self.kernel_size[0] * self.kernel_size[1]
if self.H == 'Glorot':
nb_input = int(input_dim * base)
nb_output = int(self.filters * base)
self.H = np.float32(np.sqrt(1.5 / (nb_input + nb_output)))
#print('Glorot H: {}'.format(self.H))
if self.kernel_lr_multiplier == 'Glorot':
nb_input = int(input_dim * base)
nb_output = int(self.filters * base)
self.kernel_lr_multiplier = np.float32(1. / np.sqrt(1.5/ (nb_input + nb_output)))
#print('Glorot learning rate multiplier: {}'.format(self.lr_multiplier))
self.kernel_constraint = Clip(-self.H, self.H)
self.kernel_initializer = initializers.RandomUniform(-self.H, self.H)
#self.bias_initializer = initializers.RandomUniform(-self.H, self.H)
self.kernel = self.add_weight(shape=kernel_shape,
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
# print(K.int_shape(self.kernel))
if self.use_bias:
self.lr_multipliers = [self.kernel_lr_multiplier, self.bias_lr_multiplier]
self.bias = self.add_weight((self.filters,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.lr_multipliers = [self.kernel_lr_multiplier]
self.bias = None
# Get DP electrical quantities for this layer
self.sramInfo.NB.data = base*input_dim;
print(f'######## 2D-CONV layer with {self.sramInfo.NB.data} cells/op supplied at {self.sramInfo.VDD.data:.2f}V ######## ')
path_dir = '/export/home/adkneip/Documents/PhD/ELDO/IMC_PYTHON/CURRENT_MAC/'+self.sramInfo.arch.name+'_CELL/'
################################################# USE TEMPORARY SIM DIRECTORY #####################################################
with tempfile.TemporaryDirectory(dir=path_dir,prefix='SimFolder_') as path_to_file:
#print(path_to_file)
# Copy .cir files into temporary simu folder -- '*' sumbol bugs for some reason
if(self.sramInfo.simulator == "eldo"):
file_table = np.array(['MAC_DC.cir','MAC_NL.cir','MAC_satCal.cir','MAC_time.cir','MAC_train_MC.cir']);
elif(self.sramInfo.simulator == "spectre"):
file_table = np.array(['MAC_DC.scs','MAC_satCal.scs','MAC_time.scs',
'MAC_DC.mdl','MAC_satCal.mdl','MAC_time.mdl']);
else:
sys.exit('Error: selected simulator not supported !\n');
for file_temp in file_table:
commandLine = ['cp',path_dir+'RefFolder/'+file_temp,path_to_file+'/'];
proc = subprocess.run(commandLine);
if(proc.returncode != 0):
sys.exit('Error: could not copy reference files into temporary sim folder !\n');
# Create temporary data file
commandLine = ['mkdir',path_to_file+'/data'];
proc = subprocess.run(commandLine);
if(proc.returncode != 0):
sys.exit('Error: could not copy reference files into temporary sim folder !\n');
# Perform Spice simulations
self.sramInfo = getHardwareData(path_to_file,self.sramInfo)
###################################################################################################################################
# Generate hardware parameters
hardware = genHardware(self.sramInfo)
# Compute the appropriate curve-fitting factors
# hardware.a1 = 1; hardware.a2 = 1; hardware.b1 = 1;
# self.hardware = hardware
print(f'######## Performing three-parametric best curve-fitting ######## ')
self.hardware = DP_fit(path_dir,'early',hardware)
# Create V_th distribution
sig_Vth = self.hardware.sig_Vth
#self.Vt_noise = K.random_normal(shape=(input_dim,),mean=0,stddev=sig_Vth)
self.Vt_noise = K.random_normal(shape=(input_dim,),mean=0,stddev=0)
# Set input spec.
self.input_spec = InputSpec(ndim=4, axes={channel_axis: input_dim})
self.built = True
def call(self, inputs):
binary_kernel = binarize(self.kernel, H=self.H)
# Retrieve architecture type (diff or se) and derive flag
archType = self.hardware.sramInfo.arch.name;
IS_SE_OUT = (archType == '8T') or self.EN_QUANT;
# Wrap correct CONV_op function
if(archType == '6T'):
CONV_op = CONV_op_diff;
elif(archType == '8T'):
CONV_op = CONV_op_se;
else:
raise NameError('Error: selected architecture (cell type) not supported during 2DCONV layer compute !\n');
inverse_kernel_lr_multiplier = 1./self.kernel_lr_multiplier
inputs_bnn_gradient = (inputs - (1. - 1./inverse_kernel_lr_multiplier) * K.stop_gradient(inputs))\
* inverse_kernel_lr_multiplier
outputs_bnn_gradient = CONV_op(
self.hardware,
inputs_bnn_gradient,
binary_kernel,
self.Vt_noise,
self.data_format,
self.EN_NOISE,
self.EN_QUANT)
if(IS_SE_OUT):
V_DP = (outputs_bnn_gradient - (1. - 1./self.kernel_lr_multiplier) * K.stop_gradient(outputs_bnn_gradient))\
* self.kernel_lr_multiplier
else:
V_BL = (outputs_bnn_gradient[0] - (1. - 1./self.kernel_lr_multiplier) * K.stop_gradient(outputs_bnn_gradient[0]))\
* self.kernel_lr_multiplier
V_BLB = (outputs_bnn_gradient[1] - (1. - 1./self.kernel_lr_multiplier) * K.stop_gradient(outputs_bnn_gradient[1]))\
* self.kernel_lr_multiplier
if self.use_bias:
if(IS_SE_OUT):
V_DP = K.bias_add(V_DP,self.bias,data_format=self.data_format);
else:
V_BL = K.bias_add(V_BL,self.bias,data_format=self.data_format);
V_BLB = K.bias_add(V_BLB,self.bias,data_format=self.data_format);
# Quantify the PA to get the digitized OA
IAres = self.hardware.sramInfo.IAres
OAres = self.hardware.sramInfo.OAres
NB = self.hardware.sramInfo.NB.data
PAmax = (2**IAres-1)*NB
DRval = self.hardware.sramInfo.DR.data;
VDD = self.hardware.sramInfo.VDD.data;
if(self.EN_QUANT):
DO = quant_uni(V_DP,PAmax,DRval,VDD,OAres,0.5*DRval/PAmax,archType);
# Return digitized output
return DO
elif(archType == '8T'):
return V_DP
else:
# Return unquantized differential output
return (V_BL,V_BLB)
def get_config(self):
config = {'H': self.H,
'kernel_lr_multiplier': self.kernel_lr_multiplier,
'bias_lr_multiplier': self.bias_lr_multiplier}
base_config = super(BinaryConv2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
# Aliases
BinaryConvolution2D = BinaryConv2D
0% Chargement en cours ou .
You are about to add 0 people to the discussion. Proceed with caution.
Terminez d'abord l'édition de ce message.
Veuillez vous inscrire ou vous pour commenter