Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# %%
import os
import numpy as np
import datetime as dt
import geopandas as gpd
import pyproj
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.tri as tri
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes, mark_inset
from mpl_toolkits.axes_grid1 import AxesGrid
from pyproj import transformer
import abin
import param
import param_private as pp
# %%
def dt2ts(d):
return int(d.replace(tzinfo=dt.timezone.utc).timestamp())
# %% ----- Parameters ----------------------------------------------------------
print("Loading parameters")
# mesh_setup = "gbr_styx_coarse_with_rivers"
mesh_setup = "gbr_styx_with_rivers"
p = param.parameters(mesh_setup=mesh_setup)
base_path = p.local_base_dir
simu_name = ""
quiver_flag = False
stream_flag = True
eta_field_flag = False # field = eta if True, else uv
inset_flag = True
mean_flag = False
region = {
"full": {
"minlon": 148.5,
"maxlon": 153.1,
"minlat": -23,
"maxlat": -19.25,
"vmax": 0.7,
},
"bs": {
"minlon": 149.45,
"maxlon": 150.55,
"minlat": -22.7,
# "maxlat": -21.75,
"maxlat": -21.3,
"vmax": 2,
},
"styx": {
"minlon": 149.6235,
"maxlon": 149.8075,
"minlat": -22.54,
"maxlat": -22.3475,
"vmax": None,
"zoom_inset": 3,
},
"styx_mouth": {
"minlon": 149.6235,
"maxlon": 149.7,
"minlat": -22.54,
"maxlat": -22.47,
"vmax": None,
"zoom_inset": 7,
},
}
cmap = "YlGnBu"
region_base = "bs"
region_inset = "styx"
loc_inset = "upper right"
inset_ec = pp.colors["rose"]
inset_lw = 2
vmin = 0
vmax = region[region_base]["vmax"]
figsize = (20, 6)
fmt = "%Y-%m-%d %H:%M:%S"
initial_time_as_datetime = dt.datetime.strptime(p.initial_time, fmt)
dates = [
dt.datetime(2021, 1, 10, 22, 0, 0),
dt.datetime(2021, 1, 11, 1, 0, 0),
dt.datetime(2021, 1, 11, 4, 0, 0),
]
grid_res = 500
vec_res = 50
coast_shp_file = p.land_shapefile
df_coast = gpd.read_file(coast_shp_file)
fig_name = ""
fig_name = fig_name + "_quiver" if quiver_flag else fig_name
fig_name = fig_name + "_stream" if stream_flag else fig_name
fig_name = fig_name + f"_inset_{region_inset}" if inset_flag else fig_name
# %% ----- Domain definition ---------------------------------------------------
print("Initializing")
projutm = pyproj.CRS.from_string(p.mesh_proj)
projll = pyproj.CRS.from_string("+ellps=WGS84 +proj=latlong")
minlon_base = region[region_base]["minlon"]
maxlon_base = region[region_base]["maxlon"]
minlat_base = region[region_base]["minlat"]
maxlat_base = region[region_base]["maxlat"]
long = np.linspace(minlon_base, maxlon_base, grid_res)
latg = np.linspace(minlat_base, maxlat_base, grid_res)
(long, latg) = np.meshgrid(long, latg)
lonq = np.linspace(minlon_base, maxlon_base, vec_res)
latq = np.linspace(minlat_base, maxlat_base, vec_res)
(lonq, latq) = np.meshgrid(lonq, latq)
if inset_flag:
minlon_inset = region[region_inset]["minlon"]
maxlon_inset = region[region_inset]["maxlon"]
minlat_inset = region[region_inset]["minlat"]
maxlat_inset = region[region_inset]["maxlat"]
long_inset = np.linspace(minlon_inset, maxlon_inset, grid_res)
latg_inset = np.linspace(minlat_inset, maxlat_inset, grid_res)
(long_inset, latg_inset) = np.meshgrid(long_inset, latg_inset)
lonq_inset = np.linspace(minlon_inset, maxlon_inset, vec_res)
latq_inset = np.linspace(minlat_inset, maxlat_inset, vec_res)
(lonq_inset, latq_inset) = np.meshgrid(lonq_inset, latq_inset)
# %%
simdir = p.output_directory + "/slim/"
topo = abin.openread(simdir + "/mesh/topology")
geo = abin.openread(simdir + "/mesh/geometry")[0]
eta = abin.openread(simdir + "/data/eta")[:, :, 0]
uv = abin.openread(simdir + "/data/uv")
u = uv[:, :, 0]
v = uv[:, :, 1]
t = abin.openread(simdir + "/time")
topo = topo[:].reshape(-1, 4)[:, 1:]
transformer = pyproj.Transformer.from_crs(projutm, projll)
lon, lat = transformer.transform(geo[:, 0], geo[:, 1])
# %%
print("Selecting useful elements for interpolation")
lon_bool = np.logical_and(lon > minlon_base - 0.2, lon < maxlon_base + 0.2)
lat_bool = np.logical_and(lat > minlat_base - 0.2, lat < maxlat_base + 0.2)
coord_bool = np.logical_and(lon_bool, lat_bool)
# Find triangles to keep
topo_bool = coord_bool[topo]
tri_to_keep = np.any(topo_bool, axis=1)
# Keep included topo only
topo_to_keep = topo[tri_to_keep]
# Count number of times each node appears in topo
count_nodes = np.bincount(topo_to_keep.ravel(), minlength=np.max(topo) + 1)
# Included nodes = when appaers at least once
included_nodes = np.flatnonzero(count_nodes)
lon = lon[included_nodes]
lat = lat[included_nodes]
# node renumbering
corresp = np.ma.zeros(np.max(topo) + 1, dtype=int)
corresp[included_nodes] = np.arange(len(included_nodes))
corresp = np.ma.masked_where(count_nodes == 0, corresp)
topo_renumbered = corresp[topo_to_keep]
# %%
print("Initializing plot...")
out_dir = f"{p.output_directory}/fig/"
os.makedirs(out_dir, exist_ok=True)
time_for_name = [f"{d}_" for d in dates]
out_fig_file = f"{out_dir}hydro_{time_for_name}{region_base}{fig_name}"
fig = plt.figure(figsize=figsize)
ax = AxesGrid(
fig,
111,
nrows_ncols=(1, len(dates)),
axes_pad=0.0,
share_all=True,
label_mode="L",
cbar_mode="single",
)
for i, date_unique in enumerate(dates):
print(f"Select timestep data for {date_unique}")
ts_unique = int((date_unique - initial_time_as_datetime).total_seconds() / 3600)
posix_unique = dt2ts(date_unique)
eta_ts = eta[ts_unique, :]
u_ts = u[ts_unique, :]
v_ts = v[ts_unique, :]
eta_sel = eta_ts[included_nodes]
u_sel = u_ts[included_nodes]
v_sel = v_ts[included_nodes]
print("Interpolating...")
triangles = tri.Triangulation(lon, lat, topo_renumbered)
interp_eta = tri.LinearTriInterpolator(triangles, eta_sel.ravel())
interp_u = tri.LinearTriInterpolator(triangles, u_sel.ravel())
interp_v = tri.LinearTriInterpolator(triangles, v_sel.ravel())
etaq = interp_eta(lonq, latq)
uq = interp_u(lonq, latq)
vq = interp_v(lonq, latq)
uvq = np.sqrt(uq * uq + vq * vq)
etag = interp_eta(long, latg)
ug = interp_u(long, latg)
vg = interp_v(long, latg)
uvg = np.sqrt(ug * ug + vg * vg)
myfield = etag if eta_field_flag else uvg
if inset_flag:
etaq_inset = interp_eta(lonq_inset, latq_inset)
uq_inset = interp_u(lonq_inset, latq_inset)
vq_inset = interp_v(lonq_inset, latq_inset)
uvq_inset = np.sqrt(uq_inset * uq_inset + vq_inset * vq_inset)
etag_inset = interp_eta(long_inset, latg_inset)
ug_inset = interp_u(long_inset, latg_inset)
vg_inset = interp_v(long_inset, latg_inset)
uvg_inset = np.sqrt(ug_inset * ug_inset + vg_inset * vg_inset)
myfield_inset = etag_inset if eta_field_flag else uvg_inset
print("Plotting...")
ax[i].set_aspect("equal")
im = ax[i].imshow(
myfield,
origin="lower",
extent=[minlon_base, maxlon_base, minlat_base, maxlat_base],
zorder=1,
)
im.set_cmap(cmap)
im.set_clim(vmin=vmin, vmax=vmax)
if quiver_flag:
ax[i].quiver(lonq, latq, uq, vq, uvq, cmap="gray", zorder=3)
if stream_flag:
ax[i].streamplot(
long,
latg,
np.reshape(ug, (grid_res, grid_res)),
np.reshape(vg, (grid_res, grid_res)),
linewidth=1,
color="k",
density=2,
zorder=4,
)
if "polygon" in str(type(df_coast.iloc[0, -1])):
df_coast.plot(
ax=ax[i], linewidth=0.5, edgecolors="k", color=pp.colors["gris"], zorder=2
)
else:
df_coast.plot(ax=ax, linewidth=0.5, color="k", zorder=4)
ax[i].set_xlim(minlon_base, maxlon_base)
ax[i].set_ylim(minlat_base, maxlat_base)
if inset_flag:
axins = zoomed_inset_axes(
ax[i], region[region_inset]["zoom_inset"], loc=loc_inset
)
axins.set_aspect("equal")
im = axins.imshow(
myfield_inset,
origin="lower",
extent=[minlon_inset, maxlon_inset, minlat_inset, maxlat_inset],
zorder=1,
)
im.set_cmap(cmap)
im.set_clim(vmin=vmin, vmax=vmax)
if quiver_flag:
axins.quiver(
lonq_inset,
latq_inset,
uq_inset,
vq_inset,
uvq_inset,
cmap="gray",
zorder=3,
)
if stream_flag:
axins.streamplot(
long_inset,
latg_inset,
np.reshape(ug_inset, (grid_res, grid_res)),
np.reshape(vg_inset, (grid_res, grid_res)),
color="k",
linewidth=1,
arrowsize=0.8,
density=1.5,
zorder=4,
)
if "polygon" in str(type(df_coast.iloc[0, -1])):
df_coast.plot(
ax=axins,
linewidth=0.5,
edgecolors="k",
color=pp.colors["gris"],
zorder=2,
)
else:
df_coast.plot(ax=axins, linewidth=0.5, color="k", zorder=4)
axins.set_xlim(minlon_inset, maxlon_inset)
axins.set_ylim(minlat_inset, maxlat_inset)
# Remove ticks and labels
axins.axes.xaxis.set_ticklabels([])
axins.axes.yaxis.set_ticklabels([])
[axins.spines[i].set_color(inset_ec) for i in axins.spines]
[axins.spines[i].set_linewidth(inset_lw) for i in axins.spines]
[axins.spines[i].set_zorder(5) for i in axins.spines]
mark_inset(
ax[i], axins, loc1=2, loc2=4, fc="none", ec=inset_ec, lw=inset_lw, zorder=5
)
# Colorbar
ax.cbar_axes[0].colorbar(im)
plt.savefig(f"{out_fig_file}.png", bbox_inches="tight")
plt.savefig(f"{out_fig_file}.jpeg", bbox_inches="tight", dpi=1000)
plt.savefig(f"{out_fig_file}.pdf", bbox_inches="tight")
plt.show()
plt.close("all")
# %%