Skip to content
Extraits de code Groupes Projets
prepro_private.py 25,8 ko
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    import numpy as np
    from netCDF4 import Dataset
    import urllib.request
    from datetime import datetime, timedelta
    import slimPre
    import os
    
    try:
        import cdsapi
    
        _have_cdsapi = True
    except:
        _have_cdsapi = False
    
    fmt = "%Y-%m-%d %H:%M:%S"
    
    
    # --- FUNCTIONS TO FILL MASKED VALUES --- #
    def fill_mask(tab, N=5):
        ma = tab.copy()
        if ma[0].mask.ndim != 2:
            return ma
        maskx, masky = np.where(ma[0, :, :].mask)
        for ipass in range(N):
            if maskx.shape[0] == 0:
                break
            # nok = number of neighbors that are not masked
            # isok = boolean stating whether neighbor is not masked
            nok = np.zeros((maskx.shape[0],), np.int32)
            v = np.zeros((ma.shape[0], maskx.shape[0]), np.float64)
            # loop through neighbors (diagonals could be added)
            for shiftx, shifty in ((-1, 0), (1, 0), (0, -1), (0, 1)):
                nx = maskx + shiftx
                ny = masky + shifty
                # check that neighbours are inside the table
                isok = (nx >= 0) & (nx < ma.shape[1]) & (ny >= 0) & (ny < ma.shape[2])
                # check that neighbours are not masked
                isok[isok] = ma[0, nx[isok], ny[isok]] != np.ma.masked
                v[:, isok] += ma[:, nx[isok], ny[isok]]
                nok += isok
            # mean of "ok" neighbors
            ma[:, maskx[nok > 0], masky[nok > 0]] = v[:, nok > 0] / nok[nok > 0]
            # we keep going with entries that did not have 'ok' neighbors
            maskx = maskx[nok == 0]
            masky = masky[nok == 0]
        return ma
    
    
    def fill_mask3(tab):
        """Fill masked entry in 4D tab[time, depth, x, y] based on nearest non-masked entries"""
        val = tab.copy()
        # Horizontal first
        for d in range(val.shape[1]):
            val[:, d, :, :] = fill_mask(tab[:, d, :, :])
        # Vertical afterwards
        for i in range(val.shape[2]):
            for j in range(val.shape[3]):
                if val[0, 0, i, j] is np.ma.masked or val[0, -1, i, j] is not np.ma.masked:
                    pass
                first_raw = val[0, :, i, j]
                ind_last_unmask = len(np.where(~first_raw.mask)[0])
                for idx in range(ind_last_unmask, val.shape[1]):
                    val[:, idx, i, j] = val[:, ind_last_unmask - 1, i, j]
        return val
    
    
    # --- USEFUL NETCDF FUNCTIONS --- #
    def find_nc_variables(nc_file):
        time_var = None
        lon_var = None
        lat_var = None
        depth_var = None
        with Dataset(nc_file, "r") as f:
            for var_name, var in f.variables.items():
                if hasattr(var, "standard_name"):
                    if var.standard_name == "longitude":
                        lon_var = var_name
                    elif var.standard_name == "latitude":
                        lat_var = var_name
                    elif var.standard_name == "time":
                        time_var = var_name
                    elif var.standard_name == "depth":
                        depth_var = var_name
                elif hasattr(var, "long_name"):
                    if var.long_name.lower() == "longitude":
                        lon_var = var_name
                    elif var.long_name.lower() == "latitude":
                        lat_var = var_name
                    elif (
                        var.long_name.lower() == "time"
                        or var.long_name.lower() == "valid time"
                    ):
                        time_var = var_name
                    elif var.long_name.lower() == "depth":
                        depth_var = var_name
                else:
                    if var_name[:3].lower() == "lon":
                        lon_var = var_name
                    elif var_name[:3].lower() == "lat":
                        lat_var = var_name
                    elif var_name.lower() == "depth":
                        depth_var = var_name
                    elif var_name.lower() == "time":
                        time_var = var_name
        if lon_var is None or lat_var is None:
            raise Exception("Data is not spatially dependent !!!")
        return time_var, lon_var, lat_var, depth_var
    
    
    def merge_ncfiles(file_list, variables, out_file):
        if isinstance(variables, str):
            variables = [variables]
        attr_dict, grp_attrs = {}, {}
        time_var, lon_var, lat_var, depth_var = find_nc_variables(file_list[0])
        with Dataset(file_list[0], "r") as f:
            for attr_name in f.ncattrs():
                grp_attrs[attr_name] = f.getncattr(attr_name)
            for var_name, var in f.variables.items():
                if var_name in variables:
                    ndims = len(var.get_dims())
                    _3d = ndims == 4
                tmp = {}
                for attr_name in var.ncattrs():
                    tmp[attr_name] = var.getncattr(attr_name)
                attr_dict[var_name] = tmp
            lat = np.array(f.variables[lat_var][:])
            lon = np.array(f.variables[lon_var][:])
            if depth_var is not None:
                depth = np.array(f.variables[depth_var])
    
        dim_0 = (0, depth.size, lat.size, lon.size) if _3d else (0, lat.size, lon.size)
        val, _scaled = {}, {}
        for var_name in variables:
            _scaled[var_name] = "scale_factor" in attr_dict[var_name].keys()
            np_type = np.int if _scaled[var_name] else np.float32
            val[var_name] = np.empty(dim_0, dtype=np_type)
    
        time, tc = np.empty(0), -1e9
        for file_name in file_list:
            with Dataset(file_name, "r") as f:
                tf = np.array(f.variables[time_var][:])
                idx = tf > tc
                for var_name, arr in val.items():
                    if _scaled[var_name]:
                        np_type, sf = np.int, attr_dict[var_name]["scale_factor"]
                        offset = attr_dict[var_name]["add_offset"]
                    else:
                        np_type, sf = np.float32, 1
                        offset = 0
                    nc_var = f.variables[var_name]
                    ncarr = ((np.array(nc_var[:]) - offset) / sf).astype(np_type)
                    if np.ma.array(nc_var[0]).mask.ndim > 1 and _scaled[var_name]:
                        if _3d:
                            maskx, masky, maskz = np.where(np.ma.array(nc_var[0]).mask)
                            ncarr[:, maskx, masky, maskz] = attr_dict[var_name][
                                "_FillValue"
                            ]
                        else:
                            maskx, masky = np.where(np.ma.array(nc_var[0]).mask)
                            ncarr[:, maskx, masky] = attr_dict[var_name]["_FillValue"]
                    val[var_name] = np.row_stack([arr, ncarr[idx, :]])
            time = np.append(time, tf[idx])
            tc = time[-1]
    
        if "valid_min" in attr_dict[time_var].keys():
            attr_dict[time_var]["valid_min"] = time.min()
            attr_dict[time_var]["valid_max"] = time.max()
    
        var_dict = {}
        with Dataset(out_file, "w") as f:
            for attr_name, attr_value in grp_attrs.items():
                setattr(f, attr_name, attr_value)
            f.createDimension(lon_var, lon.size)
            f.createDimension(lat_var, lat.size)
            f.createDimension(time_var, time.size)
            var_dict[time_var] = f.createVariable(time_var, "f8", (time_var,))
            var_dict[time_var][:] = time[:]
            var_dict[lon_var] = f.createVariable(lon_var, "f8", (lon_var,))
            var_dict[lon_var][:] = lon[:]
            var_dict[lat_var] = f.createVariable(lat_var, "f8", (lat_var,))
            var_dict[lat_var][:] = lat[:]
            if depth_var is not None:
                f.createDimension(depth_var, depth.size)
                var_dict[depth_var] = f.createVariable(depth_var, "f8", (depth_var,))
                var_dict[depth_var][:] = depth[:]
    
            dim = (
                (time_var, depth_var, lat_var, lon_var)
                if _3d
                else (time_var, lat_var, lon_var)
            )
            for var_name, arr in val.items():
                if _scaled[var_name]:
                    nc_type, sf = "i2", attr_dict[var_name]["scale_factor"]
                else:
                    nc_type, sf = "f4", 1
                if "_FillValue" in attr_dict[var_name].keys():
                    var_dict[var_name] = f.createVariable(
                        var_name, nc_type, dim, fill_value=attr_dict[var_name]["_FillValue"]
                    )
                else:
                    var_dict[var_name] = f.createVariable(var_name, nc_type, dim)
                var_dict[var_name][:] = arr[:]
            for var_name in attr_dict.keys():
                for attr_name, attr_value in attr_dict[var_name].items():
                    if attr_name not in ["_FillValue", "valid_range"]:
                        setattr(var_dict[var_name], attr_name, attr_value)
    
    
    # --- FUNCTIONS TO DOWNLOAD ERA, MERCATOR AND EREEFS FORCINGS --- #
    def cds_download(request, output_file):
        if _have_cdsapi:
            c = cdsapi.Client()
            c.retrieve("reanalysis-era5-single-levels", request, output_file)
        else:
            print(
                "Warning : cdsapi not found -> wind and atmospheric pressure cannot be downloaded :-("
            )
    
    
    def download_wind(
        lon_min, lon_max, lat_min, lat_max, initial_time, final_time, path_output
    ):
    
        d0 = datetime.strptime(initial_time, fmt)
        d1 = datetime.strptime(final_time, fmt)
    
        request_dict = {
            "product_type": "reanalysis",
            "format": "netcdf",
            "variable": [
                "10m_u_component_of_wind",
                "10m_v_component_of_wind",
                "mean_sea_level_pressure",
            ],
            "time": ["%02i:00" % i for i in range(24)],
            "area": [lat_max + 1, lon_min - 1, lat_min - 1, lon_max + 1],
        }
    
        year, month_from = d0.year, d0.month
        if d0.month == d1.month and d0.year == d1.year:
            request_dict["day"] = [i for i in range(d0.day, d1.day + 1)]
        else:
            request_dict["day"] = [i for i in range(1, 32)]
    
        file_list = []
        while year <= d1.year:
            request_dict["year"] = year
            month_to = d1.month if year == d1.year else 12
            request_dict["month"] = [i for i in range(month_from, month_to + 1)]
            filename = path_output + "/wind_tmp_%i.nc" % (year - d0.year)
            file_list += [filename]
            cds_download(request_dict, filename)
            month_from = 1
            year += 1
        outfile = path_output + "/wind_%s_%s.nc" % (
            d0.strftime("%Y%m%d"),
            d1.strftime("%Y%m%d"),
        )
    
        if len(file_list) == 1:
            os.rename(file_list[0], outfile)
        else:
            merge_ncfiles(file_list, ["msl", "u10", "v10"], outfile)
        os.system("rm " + path_output + "/wind_tmp*")
    
    
    def download_currents(
        lon_min,
        lon_max,
        lat_min,
        lat_max,
        initial_time,
        final_time,
        user,
        password,
        path_output,
    ):
        d = datetime.strptime("2018-12-25 00:00:00", fmt)
        di = datetime.strptime(initial_time, fmt)
        df = datetime.strptime(final_time, fmt)
        variables = ["zos", "uo", "vo", "so", "thetao"]
        file_name_fmt = (
            "mercator_%s_" + di.strftime("%Y%m%d") + "_" + df.strftime("%Y%m%d") + ".nc"
        )
        #    fmt_da = "mercator_%s_"+di.strftime("%Y%m%d")+"_"+ df.strftime("%Y%m%d")+"_DA.nc"
        delta = timedelta(days=1)
        if df > d:
            motu_address = "http://nrt.cmems-du.eu/motu-web/Motu"
            service_id = "GLOBAL_ANALYSIS_FORECAST_PHY_001_024-TDS"
            product_id = "global-analysis-forecast-phy-001-024"
        else:
            motu_address = "http://my.cmems-du.eu/motu-web/Motu"
            service_id = "GLOBAL_REANALYSIS_PHY_001_030-TDS"
            product_id = "global-reanalysis-phy-001-030-daily"
        request = (
            "python3 -m motuclient --motu %s --service-id %s --product-id %s --longitude-min %d --longitude-max %d --latitude-min %d --latitude-max %d --date-min '%s' --date-max '%s' --depth-min 0.0 --depth-max 6000.0 --variable %s --out-dir '%s' --out-name '%s' --user "
            + user
            + " --pwd "
            + password
        )
    
        downloaded_files = {}
        for var in variables:
            file_name = file_name_fmt % (var)
            downloaded_files[var] = path_output + "/" + file_name
            os.system(
                request
                % (
                    motu_address,
                    service_id,
                    product_id,
                    np.floor(lon_min - 1),
                    np.ceil(lon_max + 1),
                    np.floor(lat_min - 1),
                    np.ceil(lat_max + 1),
                    (di - delta).strftime(fmt),
                    (df + delta).strftime(fmt),
                    var,
                    path_output,
                    file_name,
                )
            )
            if var in ["uo", "vo"]:
                os.system(
                    "ncwa -a depth %s %s"
                    % (
                        path_output + "/" + file_name,
                        path_output + "/" + file_name[:-3] + "_DA.nc",
                    )
                )
    
    
    def download_tpxo(path_tpxo_h, path_tpxo_u, user, password):
        if not os.path.isfile(path_tpxo_h):
            url = "ftp://geo07.elie.ucl.ac.be//export/miro/vvallaeys/slim_data/tides/h_tpxo9.nc"
            urllib.request.urlretrieve(url, path_tpxo_h)
        if not os.path.isfile(path_tpxo_u):
            url = "ftp://geo07.elie.ucl.ac.be//export/miro/vvallaeys/slim_data/tides/u_tpxo9.nc"
            urllib.request.urlretrieve(url, path_tpxo_u)
    
    
    def write_elapsed_time(seconds):
        m, s = divmod(seconds, 60)
        return "%3d min %02.3f sec" % (m, s)
    
    
    # --- FUNCTION TO COMPUTE TIDES COMPONENTS --- #
    def getTPXO9(lon_min, lon_max, lat_min, lat_max, full_H, full_U, path_output):
        if lon_min * lon_max < 0.0:
            print("Error : not working around Greenwich now !")
            exit(-1)
    
        # Info nx : j 0 10800 lon 0 180 puis -180 à 0
        # Info ny : i 0 5400 lat -90 90
    
        y_min = np.floor((lat_min + 90) * 30).astype("i8")
        y_max = np.ceil((lat_max + 90) * 30).astype("i8")
        if lon_min > 0.0:
            x_min = np.floor(lon_min * 30).astype("i8")
            x_max = np.ceil(lon_max * 30).astype("i8")
        else:
            x_min = np.floor((lon_min + 180) * 30).astype("i8") + 5400
            x_max = np.ceil((lon_max + 180) * 30).astype("i8") + 5400
    
        tmp_H = "h_tpxo9_raw.nc"
        tmp_U = "u_tpxo9_raw.nc"
    
        print("Step 1/8 : Cut the local area from global TPXO 9")
        os.system(
            "ncks -d nx,"
            + str(x_min)
            + ","
            + str(x_max)
            + " -d ny,"
            + str(y_min)
            + ","
            + str(y_max)
            + " "
            + full_H
            + " "
            + tmp_H
        )
        os.system(
            "ncks -d nx,"
            + str(x_min)
            + ","
            + str(x_max)
            + " -d ny,"
            + str(y_min)
            + ","
            + str(y_max)
            + " "
            + full_U
            + " "
            + tmp_U
        )
    
        with Dataset(tmp_H, "r") as topex:
            ha = np.ma.array(topex.variables["ha"][:])
            hp = np.ma.array(topex.variables["hp"][:])
            x = np.array(topex.variables["lon_z"][:])
            y = np.array(topex.variables["lat_z"][:])
            conc = np.array(topex.variables["con"][:])
    
        nx = x.shape[0]
        ny = y.shape[1]
        nc = ha.shape[0]
        nt = conc.shape[1]
    
        ha = np.ma.masked_where(ha <= 1e-6, ha)
        hp = np.ma.masked_where(np.abs(hp) <= 1e-6, hp)
    
        print("Step 2/8 : Fix masked elevation amplitude")
        ha_new = fill_mask(ha)
        print("Step 3/8 : Fix masked elevation phase (cos)")
        cos = np.cos(hp * np.pi / 180.0)
        cos_new = fill_mask(cos)
        print("Step 4/8 : Fix masked elevation phase (sin)")
        sin = np.sin(hp * np.pi / 180.0)
        sin_new = fill_mask(sin)
        hp_new = np.arctan2(sin_new, cos_new) * 180.0 / np.pi
    
        with Dataset(path_output + "/h_tpxo9_zone.nc", "w") as new_topex:
            new_topex.createDimension("nx", nx)
            new_topex.createDimension("ny", ny)
            new_topex.createDimension("nc", nc)
            new_topex.createDimension("nt", nt)
            longitude = new_topex.createVariable("lon_z", "f4", ("nx", "ny"))
            latitude = new_topex.createVariable("lat_z", "f4", ("nx", "ny"))
            Ha = new_topex.createVariable(
                "ha", "f8", ("nc", "nx", "ny"), fill_value=-9999.0
            )
            Hp = new_topex.createVariable(
                "hp", "f8", ("nc", "nx", "ny"), fill_value=-9999.0
            )
            C = new_topex.createVariable("con", "c", ("nc", "nt"))
    
            longitude[:] = x
            latitude[:] = y
            Ha[:] = ha_new
            Hp[:] = hp_new
            C[:] = conc
    
        with Dataset(tmp_U, "r") as topex:
            up = np.ma.array(topex.variables["up"][:])
            vp = np.ma.array(topex.variables["vp"][:])
            ua = np.array(topex.variables["ua"][:])
            Ua = np.array(topex.variables["Ua"][:])
            va = np.array(topex.variables["va"][:])
            Va = np.array(topex.variables["Va"][:])
            xu = np.array(topex.variables["lon_u"][:])
            yu = np.array(topex.variables["lat_u"][:])
            xv = np.array(topex.variables["lon_v"][:])
            yv = np.array(topex.variables["lat_v"][:])
            conc = np.array(topex.variables["con"][:])
    
        nx = xu.shape[0]
        ny = yu.shape[1]
        nc = ua.shape[0]
        nt = conc.shape[1]
    
        up = np.ma.masked_where(np.abs(up) <= 1e-6, up)
        vp = np.ma.masked_where(np.abs(vp) <= 1e-6, vp)
    
        print("Step 5/8 : Fix masked eastward velocity phase (cos)")
        cos = np.cos(up * np.pi / 180.0)
        cos_new = fill_mask(cos)
        print("Step 6/8 : Fix masked eastward velocity phase (sin)")
        sin = np.sin(up * np.pi / 180.0)
        sin_new = fill_mask(sin)
        up_new = np.arctan2(sin_new, cos_new) * 180.0 / np.pi
        print("Step 7/8 : Fix masked northward velocity phase (cos)")
        cos = np.cos(vp * np.pi / 180.0)
        cos_new = fill_mask(cos)
        print("Step 8/8 : Fix masked northward velocity phase (sin)")
        sin = np.sin(vp * np.pi / 180.0)
        sin_new = fill_mask(sin)
        vp_new = np.arctan2(sin_new, cos_new) * 180.0 / np.pi
    
        with Dataset(path_output + "/u_tpxo9_zone.nc", "w") as new_topex:
            new_topex.createDimension("nx", nx)
            new_topex.createDimension("ny", ny)
            new_topex.createDimension("nc", nc)
            new_topex.createDimension("nt", nt)
            lonU = new_topex.createVariable("lon_u", "f4", ("nx", "ny"))
            latU = new_topex.createVariable("lat_u", "f4", ("nx", "ny"))
            lonV = new_topex.createVariable("lon_v", "f4", ("nx", "ny"))
            latV = new_topex.createVariable("lat_v", "f4", ("nx", "ny"))
            uA = new_topex.createVariable(
                "ua", "f8", ("nc", "nx", "ny"), fill_value=-9999.0
            )
            UA = new_topex.createVariable(
                "Ua", "f8", ("nc", "nx", "ny"), fill_value=-9999.0
            )
            uP = new_topex.createVariable(
                "up", "f8", ("nc", "nx", "ny"), fill_value=-9999.0
            )
            vA = new_topex.createVariable(
                "va", "f8", ("nc", "nx", "ny"), fill_value=-9999.0
            )
            VA = new_topex.createVariable(
                "Va", "f8", ("nc", "nx", "ny"), fill_value=-9999.0
            )
            vP = new_topex.createVariable(
                "vp", "f8", ("nc", "nx", "ny"), fill_value=-9999.0
            )
            C = new_topex.createVariable("con", "c", ("nc", "nt"))
    
            lonU[:] = xu
            latU[:] = yu
            lonV[:] = xv
            latV[:] = yv
            uA[:] = ua
            UA[:] = Ua
            uP[:] = up_new
            vA[:] = va
            VA[:] = Va
            vP[:] = vp_new
            C[:] = conc
    
        os.system("rm " + tmp_H + " " + tmp_U)
    
    
    # --- FETCH FORCINGS --- #
    def fetch_forcings(
        lon_min,
        lon_max,
        lat_min,
        lat_max,
        initial_time,
        final_time,
        path_output,
        forcings=[],
        path_to_tpxo=None,
        path_to_gebco=None,
        user="ehanert",
        password="merc@tor4SLIM",
        on_geo_server=False,
    ):
        known_forcings = [
            "tides",
            "wind",
            "mercator",
        ]
        if isinstance(forcings, str):
            forcings = [forcings]
        if len(forcings) == 0:
            forcings = known_forcings
        else:
            unknown = []
            for i in range(len(forcings)):
                forcings[i] = forcings[i].lower()
                if forcings[i] not in known_forcings:
                    unknown += [forcings[i]]
            if len(unknown) == len(forcings):
                forcings = known_forcings
                print(
                    "Warning : No known forcing name found in argument 'forcings', dowloading all forcings by default ..."
                )
            elif len(unknown) > 0:
                print(
                    "Warning : Unknown forcing names: "
                    + ", ".join(["'%s'" % i for i in unknown])
                )
                print(
                    "Info    : Known forcing names are: "
                    + ", ".join(["'%s'" % i for i in known_forcings])
                )
    
        slimPre.make_directory(path_output)
    
        if "wind" in forcings:
            print("Info    : Importing wind...")
            download_wind(
                lon_min, lon_max, lat_min, lat_max, initial_time, final_time, path_output
            )
    
        if "tides" in forcings:
            print("Info    : Importing tides...")
            if on_geo_server:
                path_tpxo_h = "/export/miro/vvallaeys/slim_data/tides/h_tpxo9.nc"
                path_tpxo_u = "/export/miro/vvallaeys/slim_data/tides/u_tpxo9.nc"
            else:
                path_tpxo_h = (
                    path_output if path_to_tpxo is None else path_to_tpxo
                ) + "/h_tpxo.nc"
                path_tpxo_u = (
                    path_output if path_to_tpxo is None else path_to_tpxo
                ) + "/u_tpxo.nc"
    
            download_tpxo(path_tpxo_h, path_tpxo_u, user, password)
            getTPXO9(
                lon_min, lon_max, lat_min, lat_max, path_tpxo_h, path_tpxo_u, path_output
            )
    
        if "mercator" in forcings:
            # download mercator files
            print("Info    : Importing Mercator...")
            download_currents(
                lon_min,
                lon_max,
                lat_min,
                lat_max,
                initial_time,
                final_time,
                user,
                password,
                path_output,
            )
        print("fetching forcings -> done")
    
    
    # --- INTERPOLATION OF FORCINGS ON MESH --- #
    def convert_time(time, time_units):
        unit_name = time_units.split(" since ")[0]
        ref_date = time_units.split(" since ")[-1].split(".")[0]
        t0 = slimPre.slim_private._parse_time(ref_date)
        dt = None
        if unit_name == "days":
            dt = 86400.0
        elif unit_name == "hours":
            dt = 3600.0
        elif unit_name == "minutes":
            dt = 60.0
        elif unit_name == "seconds":
            dt = 1
        else:
            raise Exception("Unknown units: %s !!!" % unit_name)
        return t0 + dt * time
    
    
    def interpolate_on_mesh(coords, time_obj, nc_file, var_name):
        """temporal and spatial interpolation on mesh
    
        arguments:
            * coord
                array of coordinates
            * time_obj
                slimPre.Time at which data must be interpolated
            * nc_file
                path to netcdf file containing the data to be treated for preprocessing
            * var_name
                string of the name of the variable to be preprocessed
        """
        # check coords
        coords = np.array(coords)
        if coords.ndim != 2:
            raise ValueError("Arguments 'coords' must have 2 dimensions !!!")
        elif coords.shape[0] == 0:
            return np.empty((time_obj._time.size, 0))
        elif coords.shape[1] == 2:
            x, y = coords[:, 0], coords[:, 1]
            z = None
        elif coords.shape[1] == 3:
            x, y, z = coords[:, 0], coords[:, 1], coords[:, 2]
        else:
            raise ValueError(
                "Wrong dimension for argument 'coords': it must have 2 (2d mesh) 3 (3d mesh) columns !!!"
            )
        time_var, lon_var, lat_var, depth_var = find_nc_variables(nc_file)
    
        # read file
        with Dataset(nc_file, "r") as f:
            u_arr = np.ma.array(f.variables[var_name][:])
            if time_var:
                time = np.array(f.variables[time_var][:])
                time_units = f.variables[time_var].units
                time[:] = convert_time(time[:], time_units)
            else:
                u_arr = u_arr[None, :]
            depth_dependent = depth_var is not None and u_arr.ndim == 4
            if not depth_dependent:
                u = fill_mask(u_arr)
            else:
                print("interpolation of depth-dependent variable")
                depths = np.array(f.variables[depth_var][:])
                u = fill_mask3(u_arr)
            lon = np.array(f.variables[lon_var][:])
            lat = np.array(f.variables[lat_var][:])
    
        if depth_dependent and z is None:
            raise ValueError("z coordinates must be given for 3d interpolation !!!")
        ox, dx = lon[0], lon[1] - lon[0]
        oy, dy = lat[0], lat[1] - lat[0]
    
        # some sanity checks...
        if x.max() < lon.min():
            x[:] += 360.0
        if (
            lon.min() > x.min()
            or lon.max() < x.max()
            or lat.min() > y.min()
            or lat.max() < y.max()
        ):
            raise Exception("data doesn't fully cover mesh geographic extent !!!")
        if time_var is None or time_obj is None:
            if not depth_dependent:
                return slimPre.interpolate_from_structured_grid(
                    x, y, ox, oy, dx, dy, u[0], fill_value=0
                )
            else:
                return slimPre.interpolate_from_structured_grid_3D(
                    x, y, -z, ox, oy, dx, dy, depths, u[0]
                )
        # some sanity checks again...
        time_vector = time_obj._time
        if time[0] > time_vector[0] or time[-1] < time_vector[-1]:
            raise Exception("time range of data doesn't fully cover time_vector !!!")
        # temporal  and spatial interpolation
        ur = np.empty((time_vector.size, x.size))
        for j in range(time_vector.size):
            i = time[time <= time_vector[j]].size - 1
            xi = (
                (time_vector[j] - time[i]) / (time[i + 1] - time[i])
                if i + 1 < time.size
                else 0
            )
            U = xi * u[(i + 1) % time.size, :] + (1 - xi) * u[i]
            if not depth_dependent:
                ur[j, :] = slimPre.interpolate_from_structured_grid(
                    x, y, ox, oy, dx, dy, U, fill_value=0
                )
            else:
                ur[j, :] = slimPre.interpolate_from_structured_grid_3D(
                    x, y, -z, ox, oy, dx, dy, depths, U
                )
        return ur