Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
marp: true
title: Introduction to structured programming with Fortran
author: P.Y. Barriat
description: https://dev.to/nikolab/complete-list-of-github-markdown-emoji-markup-5aia
backgroundImage: url('assets/back.png')
_backgroundImage: url('assets/garde.png')
footer: 09/11/2023 | Introduction to structured programming with Fortran
_footer: ""
paginate: true
_paginate: false
---
Introduction to structured programming with `Fortran`<!--fit-->
===
https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran

### Pierre-Yves Barriat
##### November 09, 2023
###### CISM/CÉCI Training Sessions
---
# Fortran : shall we start ?
- You know already one computer language ?
- You understand the very basic programming concepts :
- What is a variable, an assignment, function call, etc.?
- Why do I have to compile my code?
- What is an executable?
- You (may) already know some Fortran ?
- How to proceed from old Fortran, to much more modern languages like Fortran 90/2003 ?
---
# Why to learn Fortran ?
- Because of the execution `speed` of a program
- Well suited for numerical computations :
more than 45% of scientific applications are in Fortran
- `Fast` code : compilers can optimize well
- Optimized `numerical libraries` available
- Fortran is a `simple` langage and it is (kind-of) `easy to learn`
---
# Fortran is simple
- **We want to get our science done! Not learn languages!**
- How easy/difficult is it really to learn Fortran ?
- The concept is easy:
*variables, operators, controls, loops, subroutines/functions*
- **Invest some time now, gain big later!**
---
# History
**FOR**mula **TRAN**slation
> invented 1954-8 by John Backus and his team at IBM
- FORTRAN 66 (ISO Standard 1972)
- FORTRAN 77 (1978)
- Fortran 90 (1991)
- Fortran 95 (1997)
- Fortran 2003 (2004) → `"standard" version`
- Fortran 2008 (2010)
- Fortran 2018 (11/2018)
---
# Starting with Fortran 77
- Old Fortran provides only the absolute minimum!
- Basic features :
data containers (integer, float, ...), arrays, basic operators, loops, I/O, subroutines and functions
- But this version has flaws:
no dynamic memory allocation, old & obsolete constructs, “spaghetti” code, etc.
- Is that enough to write code ?
---
# Fortran 77 → Fortran >90
- If Fortran 77 is so simple, why is it then so difficult to write good code?
- Is simple really better?
⇒ Using a language allows us to express our thoughts (on a computer)
- A more sophisticated language allows for more complex thoughts
- More language elements to get organized
⇒ Fortran 90/95/2003 (recursive, OOP, etc)
---
# How to Build a FORTRAN Program
FORTRAN is a compiled language (like C) so the source code (what you write) must be converted into machine code before it can be executed (e.g. Make command)

> Fortran 77 source code [hello_world.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/00_hello_world.f)
---
# FORTRAN 77 Format
This version requires a fixed format for programs

- max length variable names is 6 characters
- alphanumeric only, must start with a letter
- character strings are case sensitive
---
# FORTRAN >90 Format
Versions >90 relaxe these requirements:
- comments following statements (! delimiter)
- long variable names (31 characters)
- containing only letters, digits or underscore
- max row length is 132 characters
- can be max 39 continuation lines
- if a line is ended with ampersand (&), the line continues onto the next line
- semicolon (;) as a separator between statements on a single line
---
# Program Organization
Most FORTRAN programs consist of a main program and one or more subprograms
There is a fixed order:
```Fortran90
Heading
Declarations
Variable initializations
Program code
Format statements
Subprogram definitions
(functions & subroutines)
```
---
# Data Type Declarations
Basic data types are :
- `INTEGER` : integer numbers (+/-)
- `REAL` : floating point numbers
- `DOUBLE PRECISION` : extended precision floating point
- `CHARACTER*n` : string with up to **n** characters
- `LOGICAL` : takes on values `.TRUE.` or `.FALSE.`
---
# Data Type Declarations
`INTEGER` and `REAL` can specify number of bytes to use
- Default is: `INTEGER*4` and `REAL*4`
- `DOUBLE PRECISION` is same as `REAL*8`
Arrays of any type must be declared:
- `DIMENSION A(3,5)` - declares a 3 x 5 array
- `CHARACTER*30 NAME(50)` - directly declares a `character` array with 30 `character` strings in each element
---
# Implicit vs Explicit Declarations
By default, an implicit type is assumed depending on the first letter of the variable name:
- `A-H, O-Z` define REAL variables
- `I-N` define INTEGER variables
Can use the IMPLICIT statement:
```fortran
IMPLICIT REAL (A-Z)
```
> makes all variables REAL if not declared
---
# Implicit vs Explicit Declarations
```fortran
IMPLICIT CHARACTER*2 (W)
```
> makes variables starting with W be 2-character strings
```fortran
IMPLICIT DOUBLE PRECISION (D)
```
> makes variables starting with D be double precision
**Good habit**: force explicit type declarations
```fortran
IMPLICIT NONE
```
> user must explicitly declare all variable types
---
# Assignment Statements
**Old** assignment statement: `<label>` `<variable>` = `<expression>`
- `<label>` : statement label number (1 to 99999)
- `<variable>` : FORTRAN variable
(max 6 characters, alphanumeric only for standard FORTRAN 77)
**Expression**:
- Numeric expressions: `VAR = 3.5*COS(THETA)`
- Character expressions: `DAY(1:3) = 'TUE'`
- Relational expressions: `FLAG = ANS .GT. 0`
- Logical expressions: `FLAG = F1 .OR. F2`
---
# Numeric Expressions
Arithmetic operators: precedence: `**` *(high)* → `-` *(low)*
| Operator | Function |
| ------------ | --------------- |
| `**` | exponentiation |
| `*` | multiplication |
| `/` | division |
| `+` | addition |
| `-` | subtraction |
---
# Numeric Expressions
Numeric expressions are up-cast to the highest data type in the expression according to the precedence:
*(low)* logical → integer → real → complex *(high)*
and smaller byte size *(low)* to larger byte size *(high)*
## Examples:
> Fortran 77 source code [arith.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/01_arith.f)
> Fortran 77 source code [sphere.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/02_sphere.f)
---
# Character Expressions
Only built-in operator is **Concatenation** defined by `//`
```fortran
'ILL'//'-'//'ADVISED'
```
`character` arrays are most commonly encountered
- treated like any array (indexed using : notation)
- fixed length (usually padded with blanks)
---
# Character Expressions
Example:
```fortran
CHARACTER FAMILY*16
FAMILY = ‘GEORGE P. BURDELL’
PRINT*,FAMILY(:6)
PRINT*,FAMILY(8:9)
PRINT*,FAMILY(11:)
PRINT*,FAMILY(:6)//FAMILY(10:)
```
```fortran
GEORGE
P.
BURDELL
GEORGE BURDELL
```
---
# Relational Expressions
Two expressions whose values are compared to determine whether the relation is true or false
- may be numeric (common) or non-numeric
`character` strings can be compared
- done character by character
- shorter string is padded with blanks for comparison
---
# Relational Expressions
| Operator | Relationship |
| ------------ | --------------- |
| `.LT.` or `<` | less than |
| `.LE.` or `<=` | less than or equal to |
| `.EQ.` or `==` | equal to |
| `.NE.` or `/=` | not equal to |
| `.GT.` or `>` | greater than |
| `.GE.` or `>=` | greater than or equal to |
---
# Logical Expressions
Consists of one or more logical operators and logical, numeric or relational operands
- values are `.TRUE.` or `.FALSE.`
- need to consider overall operator precedence
> can combine logical and integer data with logical operators but this is tricky (**avoid!**)
---
# Logical Expressions
| F77 Operator | >F90 Operator | Example | Meaning |
| --------------- | --------------- | ------------ | --------------- |
| `.AND.` | `&&` | `A .AND. B` | logical `AND` |
| `.OR.` | `\|\|` | `A .OR. B` | logical `OR` |
| `.EQV.` | `==` | `A .EQV. B` | logical equivalence |
| `.NEQV.` | `/=` | `A .NEQV. B` | logical inequivalence |
| `.XOR.` | `/=` | `A .XOR. B` | exclusive `OR` (same as `.NEQV.`) |
| `.NOT.` | `!` | `.NOT. A` | logical negation |
---
# Arrays in FORTRAN
Arrays can be multi-dimensional (up to 7 in F77) and are indexed using `( )`:
- `TEST(3)` or `FORCE(4,2)`
> Indices are by default defined as `1...N`
We can specify index range in declaration
- `INTEGER K(0:11)` : `K` is dimensioned from `0-11` (12 elements)
Arrays are stored in column order (1st column, 2nd column, etc) so accessing by **incrementing row index first** usually is **fastest** (see later)
Whole array reference (only in >F90): `K(:)=-8` assigns 8 to all elements in K
> Avoid `K=-8` assignement
---
# Unconditional `GO TO` in F77
This is the only GOTO in FORTRAN 77
- Syntax: `GO TO label`
- Unconditional transfer to labeled statement
```fortran
10 -code-
GO TO 30
-code that is bypassed-
30 -code that is target of GOTO-
-more code-
GO TO 10
```
- **Problem** : leads to confusing *"spaghetti code"* :boom:
---
# `IF ELSE IF` Statement
Basic version:
```fortran
IF (KSTAT.EQ.1) THEN
CLASS='FRESHMAN'
ELSE IF (KSTAT.EQ.2) THEN
CLASS='SOPHOMORE'
ELSE IF (KSTAT.EQ.3) THEN
CLASS='JUNIOR'
ELSE IF (KSTAT.EQ.4) THEN
CLASS='SENIOR'
ELSE
CLASS='UNKNOWN'
ENDIF
```
---
# Spaghetti Code in F77 (and before)
Use of `GO TO` and arithmetic `IF`'s leads to bad code that is very hard to maintain
Here is the equivalent of an `IF-THEN-ELSE` statement:
```fortran
10 IF (KEY.LT.0) GO TO 20
TEST=TEST-1
THETA=ATAN(X,Y)
GO TO 30
20 TEST=TEST+1
THETA=ATAN(-X,Y)
30 CONTINUE
```
Now try to figure out what a complex `IF ELSE IF` statement would look like coded with this kind of simple `IF`...
---
# Loop Statements (old versions)
`DO` loop: structure that executes a specified number of times
*Spaghetti Code Version*
```fortran
K=2
10 PRINT*,A(K)
K=K+2
IF (K.LE.11) GO TO 10
20 CONTINUE
```
*F77 Version*
```fortran
DO 100 K=2,10,2
PRINT*,A(K)
100 CONTINUE
```
---
# Loop Statements (>F90)
```fortran
DO K=2,10,2
WRITE(*,*) A(K)
END DO
```
- `loop_control` can include variables and a third parameter to specify increments, including negative values
- loop always executes ONCE before testing for end condition
```fortran
READ(*,*) R
DO WHILE (R.GE.0)
VOL=2*PI*R**2*CLEN
READ(*,*) R
END DO
```
- Loop will not execute at all if `logical_expr` is not true at start
---
# Comments on Loop Statements
In old versions:
- to transfer out (exit loop), use a `GO TO`
- to skip to next loop, use `GO TO` terminating statement (this is a good reason to always make this a `CONTINUE` statement)
In new versions:
- to transfer out (exit loop), use `EXIT` statement and control is transferred to statement following loop end. This means you cannot transfer out of multiple nested loops with a single `EXIT` statement (use named loops if needed - `myloop : do i=1,n`). This is much like a `BREAK` statement in other languages.
- to skip to next loop cycle, use `CYCLE` statement in loop.
---
# File-Directed Input and Output
Much of early FORTRAN was devoted to reading input data
from "cards" and writing to a line printer
Today, most I/O is to and from a file: it requires more extensive I/O capabilities standardized until FORTRAN 77
**I/O** = communication between a program and the outside world
- opening and closing a file with `OPEN` & `CLOSE`
- data reading & writing with `READ` & `WRITE`
- can use **unformatted** `READ` & `WRITE` if no human readable data are involved (much faster access, smaller files)
> Fortran 77 source code [plot.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/03_plot.f)
---
# `READ` Statement
- syntax: `READ(dev_no, format_label) variable_list`
- read a record from `dev_no` using `format_label` and assign results to variables in `variable_list`
```fortran
READ(105,1000) A,B,C
1000 FORMAT(3F12.4)
```
> device numbers 1-7 are defined as standard I/O devices
- each `READ` reads one or more lines of data and any remaining data in a line that is read is dropped if not translated to one of the variables in the `variable_list`
- `variable_list` can include implied `DO` such as: `READ(105,1000)(A(I),I=1,10)`
---
# `READ` Statement - cont'd
- input items can be integer, real or character
- characters must be enclosed in `' '` (or `" "`)
- input items are separated by commas
- input items must agree in type with variables in `variable_list`
- each `READ` processes a new record (line)
```fortran
INTEGER K
REAL(8) A,B
OPEN(105,FILE='path_to_existing_file')
READ(105,*) A,B,K
```
> read one line and look for floating point values for A and B and an integer for K
---
# `WRITE` Statement
- syntax: `WRITE(dev_no, format_label) variable_list`
- write variables in `variable_list` to output `dev_no` using format specified in format statement with `format_label`
```fortran
WRITE(*,1000) A,B,KEY
1000 FORMAT(F12.4,E14.5,I6)
```
```fortran
|----+----o----+----o----+----o----+----|
1234.5678 -0.12345E+02 12
```
- device number `*` is by default the screen (or *standard output* - also 6)
- each `WRITE` produces one or more output lines as needed to write out `variable_list` using `format` statement
- `variable_list` can include implied `DO` such as: `WRITE(*,2000)(A(I),I=1,10)`
<!-- _footer: "" -->
---
# `FORMAT` Statement
| data type | format descriptors | example |
| --------------- | --------------- | ------------ |
| `integer` | `iw` | `write(*,'(i5)') int` |
| `real` (*decimal*) | `fw.d` | `write(*,'(f7.4)') x` |
| `real` (*exponential*) | `ew.d` | `write(*,'(e12.3)') y` |
| `character` | `a, aw` | `write(*,'(a)') string` |
| `logical` | `lw` | `write(*,'(l2)') test` |
| spaces & tabs | `wx` & `tw` | `write (*,'(i3,2x,f6.3)') i, x` |
| linebreak | `/` | `write (*,'(f6.3,/,f6.3)') x, y` |
---
# `OPEN` & `CLOSE` example (>F90)
Once opened, file is referred to by an assigned device number (a unique id)
```fortran
character(len=*) :: x_name
integer :: ierr, iSize, guess_unit
logical :: itsopen, itexists
!
inquire(file=trim(x_name), size=iSize, number=guess_unit, opened=itsopen, exist=itexists)
if ( itsopen ) close(guess_unit, status='delete')
!
open(902,file=trim(x_name),status='new',iostat=ierr)
!
if (iSize <= 0 .OR. .NOT.itexists) then
open(902,file=trim(x_name),status='new',iostat=ierr)
if (ierr /= 0) then
...
close(902)
endif
...
endif
```
---
# `NAMELIST`
It is possible to pre-define the structure of input and output data using `NAMELIST` in order to make it easier to process with `READ` and `WRITE` statements
- Use `NAMELIST` to define the data structure
- Use `READ` or `WRITE` with reference to `NAMELIST` to handle the data in the specified format
> This is not part of standard F77 but it is included in >F90
---
# `NAMELIST` - cont'd
On input, the `NAMELIST` data must be structured as follows:
```fortran
&INPUT
THICK=0.245,
LENGTH=12.34,
WIDTH=2.34,
DENSITY=0.0034
/
```
> Fortran 90 source code [namelist.f90](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/04_namelist.f90)
> Namelist file [namelist.def](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/04_namelist.def)
---
# Internal `WRITE` Statement
Internal `WRITE` does same as `ENCODE` in F77 : **a cast to string**
> `WRITE (dev_no, format_label) var_list`
> write variables in `var_list` to internal storage defined by character variable used as `dev_no` = default character variable (not an array)
```fortran
INTEGER*4 J,K
CHARACTER*50 CHAR50
DATA J,K/1,2/
...
WRITE(CHAR50,*) J,K
```
Results:
```fortran
CHAR50=' 1 2'
```
---
# Internal `READ` Statement
Internal `READ` does same as `DECODE` in F77 : **a cast from string**
> `READ (dev_no, format_label) var_list`
> read variables from internal storage specified by character variable used as `dev_no` = default character variable (not an array)
```fortran
INTEGER K
REAL A,B
CHARACTER*80 REC80
DATA REC80/'1.2, 2.3, -5'/
...
READ(REC80,*) A,B,K
```
Results:
```fortran
A=1.2, B=2.3, K=-5
```
<!-- _footer: "" -->
---
# Structured programming
Structured programming is based on subprograms (functions and subroutines) and control statements (like `IF` statements or loops) :
- structure the control-flow of your programs (e.g. give up the `GO TO`)
- improved readability
- lower level aspect of coding in a smart way
It is a **programming paradigm** aimed at improving the quality, clarity, and access time of a computer program
---
# Functions and Subroutines
`FUNCTION` & `SUBROUTINE` are subprograms that allow structured coding
- `FUNCTION`: returns a single explicit function value for given function arguments
It’s also a variable → so must be declared !
- `SUBROUTINE`: any values returned must be returned through the arguments (no explicit subroutine value is returned)
- functions and subroutines are **not recursive in F77**
Subprograms use a separate namespace for each subprogram so that variables are local to the subprogram
- variables are passed to subprogram through argument list and returned in function value or through arguments
- variables stored in `COMMON` may be shared between namespaces
<!-- _footer: "" -->
---
# Functions and Subroutines - cont'd
Subprograms must (should) include at least one `RETURN` (can have more) and be terminated by an `END` statement
`FUNCTION` example:
```fortran
REAL FUNCTION AVG3(A,B,C)
AVG3=(A+B+C)/3
RETURN
END
```
Use:
```fortran
AV = WEIGHT*AVG3(A1,F2,B2)
```
> `FUNCTION` type is implicitly defined as REAL
---
# Functions and Subroutines - cont'd
Subroutine is invoked using the `CALL` statement
```fortran
SUBROUTINE AVG3S(A,B,C,AVERAGE)
AVERAGE=(A+B+C)/3
RETURN
END
```
Use:
```fortran
CALL AVG3S(A1,F2,B2,AVR)
RESULT = WEIGHT*AVR
```
Any returned values must be returned through argument list
> Fortran 90 source code [newton.f90](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/05_newton.f90)
---
# Arguments
Arguments in subprogram are `dummy` arguments used in place of the real arguments
- arguments are passed by **reference** (memory address) if given as *symbolic*
>the subprogram can then alter the actual argument value since it can access it by reference
- arguments are passed by **value** if given as *literal* (so cannot be modified)
```fortran
CALL AVG3S(A1,3.4,C1,QAV)
```
> 2nd argument is passed by value - QAV contains result
```fortran
CALL AVG3S(A,C,B,4.1)
```
> no return value is available since "4.1" is a value and not a reference to a variable!
---
# Arguments - cont'd
- `dummy` arguments appearing in a subprogram declaration cannot be an individual array element reference, e.g., `A(2)`, or a *literal*, for obvious reasons!
- arguments used in invocation (by calling program) may be *variables*, *subscripted variables*, *array names*, *literals*, *expressions* or *function names*
- using symbolic arguments (variables or array names) is the **only way** to return a value (result) from a `SUBROUTINE`
> It is considered **BAD coding practice**, but functions can return values by changing the value of arguments
This type of use should be strictly **avoided**!
---
# Arguments - cont'd
The `INTENT` keyword (>F90) increases readability and enables better compile-time error checking
```fortran
SUBROUTINE AVG3S(A,B,C,AVERAGE)
IMPLICIT NONE
REAL, INTENT(IN) :: A, B
REAL, INTENT(INOUT) :: C ! default
REAL, INTENT(OUT) :: AVERAGE
A = 10 ! Compilation error
C = 10 ! Correct
AVERAGE=(A+B+C)/3 ! Correct
END
```
> Compiler uses `INTENT` for error checking and optimization
---
# `FUNCTION` versus Array
`REMAINDER(4,3)` could be a 2D array or it could be a reference to a function
If the name, including arguments, **matches an array declaration**, then it is taken to be an array, **otherwise**, it is assumed to be a `FUNCTION`
Be careful about `implicit` versus `explicit` type declarations with `FUNCTION`
```fortran
PROGRAM MAIN
INTEGER REMAINDER
...
KR = REMAINDER(4,3)
...
END
INTEGER FUNCTION REMAINDER(INUM,IDEN)
...
END
```
<!-- _footer: "" -->
---
# Arrays with Subprograms
Arrays present special problems in subprograms
- must pass by reference to subprogram since there is no way to list array values explicitly as literals
- how do you tell subprogram how large the array is ?
> Answer varies with FORTRAN version and vendor (dialect)...
When an array element, e.g. `A(1)`, is used in a subprogram invocation (in calling program), it is passed as a reference (address), just like a simple variable
When an array is used by name in a subprogram invocation (in calling program), it is passed as a reference to the entire array. In this case the array must be appropriately dimensioned in the subroutine (and this can be tricky...)
---
# Arrays - cont'd
### Data layout in multi-dimensional arrays
- always increment the left-most index of multi-dimensional arrays in the innermost loop (i.e. fastest)
- **column major** ordering in Fortran vs. **row major** ordering in C
- a compiler (with sufficient optimization flags) may re-order loops automatically
```fortran
do j=1,M
do i=1,N ! innermost loop
y(i) = y(i)+ a(i,j)*x(j) ! left-most index is i
end do
end do
```
---
# Arrays - cont'd
- dynamically allocate memory for arrays using `ALLOCATABLE` on declaration
- memory is allocated through `ALLOCATE` statement in the code and is deallocated through `DEALLOCATE` statement
```fortran
integer :: m, n
integer, allocatable :: idx(:)
real, allocatable :: mat(:,:)
m = 100 ; n = 200
allocate( idx(0:m-1))
allocate( mat(m, n))
...
deallocate(idx , mat)
```
> It exists many array intrinsic functions: SIZE, SHAPE, SUM, ANY, MINVAL, MAXLOC, RESHAPE, DOT_PRODUCT, TRANSPOSE, WHERE, FORALL, etc
---
# `COMMON` & `MODULE` Statement
The `COMMON` statement allows variables to have a more extensive scope than otherwise
- a variable declared in a `Main Program` can be made accessible to subprograms (without appearing in argument lists of a calling statement)
- this can be selective (don't have to share all everywhere) with `ONLY`
- **placement**: among type declarations, after `IMPLICIT` or `EXPLICIT`, before `DATA` statements
- can group into **labeled** `COMMON`
With > F90, it's better to use the `MODULE` subprogram instead of the `COMMON` statement
> Fortran 77 source code [common.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/06_common.f) - Fortran 90 source code [module.f90](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/06_module.f90)
---
# Modular programming (>F90)
Modular programming is about separating parts of programs into independent and interchangeable modules :
- improve testability
- improve maintainability
- re-use of code
- higher level aspect of coding in a smart way
- *separation of concerns*
The principle is that making significant parts of the code independent, replaceable and independently testable makes your programs **more maintainable**
---
# Data Type Declarations
FORTRAN >90 allows user derived types
```fortran
TYPE my_variable
character(30) :: name
integer :: id
real(8) :: value
integer, dimension(3,3) :: dimIndex
END TYPE variable
type(my_variable) var
var%name = "salinity"
var%id = 1
```
---
# Subprograms type
`MODULE` are subprograms that allow modular coding and data encapsulation
The interface of a subprogram type is **explicit** or **implicit**
Several types of subprograms:
- `intrinsic`: explicit - defined by Fortran itself (trignonometric functions, etc)
- `module`: explicit - defined with `MODULE` statement and used with `USE`
- `internal`: explicit - defined with `CONTAINS` statement inside (sub)programs
- `external`: implicit (but can be manually (re)defined explicit) - e.g. **libraries**
Differ with the **scope**: what data and other subprograms a subprogram can access
---
# `MODULE` type
```fortran
MODULE example
IMPLICIT NONE
INTEGER, PARAMETER :: index = 10
REAL(8), SAVE :: latitude
CONTAINS
FUNCTION check(x) RESULT(z)
INTEGER :: x, z
...
END FUNCTION check
END MODULE example
```
```fortran
PROGRAM myprog
USE example, ONLY: check, latitude
IMPLICIT NONE
...
test = check(a)
...
END PROGRAM myprog
```
<!-- _footer: "" -->
<!-- Notes for presenter. -->
<!--
```fortran
module subs
contains
subroutine asub (i, control)
implicit none
integer, intent (in) :: i