Skip to content
Extraits de code Groupes Projets
slides.md 28,3 ko
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    ---
    marp: true
    title: Introduction to structured programming with Fortran
    author: P.Y. Barriat
    description: https://dev.to/nikolab/complete-list-of-github-markdown-emoji-markup-5aia
    backgroundImage: url('assets/back.png')
    _backgroundImage: url('assets/garde.png')
    footer: 09/11/2023 | Introduction to structured programming with Fortran
    _footer: ""
    paginate: true
    _paginate: false
    ---
    
    Introduction to structured programming with `Fortran`<!--fit-->
    ===
    
    https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran
    
    ![h:150](assets/fortran_logo.png)
    
    ### Pierre-Yves Barriat
    
    ##### November 09, 2023
    
    ###### CISM/CÉCI Training Sessions
    
    ---
    
    # Fortran : shall we start ?
    
    - You know already one computer language ?
    - You understand the very basic programming concepts :
      - What is a variable, an assignment, function call, etc.?
      - Why do I have to compile my code?
      - What is an executable?
    - You (may) already know some Fortran ?
    - How to proceed from old Fortran, to much more modern languages like Fortran 90/2003 ?
    
    ---
    
    # Why to learn Fortran ?
    
    - Because of the execution `speed` of a program
    - Well suited for numerical computations :
    more than 45% of scientific applications are in Fortran
    - `Fast` code : compilers can optimize well
    - Optimized `numerical libraries` available
    - Fortran is a `simple` langage and it is (kind-of) `easy to learn`
    
    ---
    
    # Fortran is simple
    
    - **We want to get our science done! Not learn languages!**
    - How easy/difficult is it really to learn Fortran ?
    - The concept is easy:
    *variables, operators, controls, loops, subroutines/functions*
    - **Invest some time now, gain big later!**
    
    ---
    
    # History
    
    **FOR**mula **TRAN**slation
    > invented 1954-8 by John Backus and his team at IBM
    
    - FORTRAN 66 (ISO Standard 1972)
    - FORTRAN 77 (1978)
    - Fortran 90 (1991)
    - Fortran 95 (1997)
    - Fortran 2003 (2004) → `"standard" version`
    - Fortran 2008 (2010)
    - Fortran 2018 (11/2018)
    
    ---
    
    # Starting with Fortran 77
    
    - Old Fortran provides only the absolute minimum!
    - Basic features :
    data containers (integer, float, ...), arrays, basic operators, loops, I/O, subroutines and functions
    - But this version has flaws:
    no dynamic memory allocation, old & obsolete constructs, “spaghetti” code, etc.
    - Is that enough to write code ?
    
    ---
    
    # Fortran 77 → Fortran >90
    
    - If Fortran 77 is so simple, why is it then so difficult to write good code?
    - Is simple really better?
    ⇒ Using a language allows us to express our thoughts (on a computer)
    - A more sophisticated language allows for more complex thoughts
    - More language elements to get organized
    ⇒ Fortran 90/95/2003 (recursive, OOP, etc)
    
    ---
    
    # How to Build a FORTRAN Program
    
    FORTRAN is a compiled language (like C) so the source code (what you write) must be converted into machine code before it can be executed (e.g. Make command)
    
    ![h:350](assets/build_fortran.png)
    
    > Fortran 77 source code [hello_world.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/00_hello_world.f)
    
    ---
    
    # FORTRAN 77 Format
    
    This version requires a fixed format for programs
    
    ![h:300](assets/f77_format.png)
    
    - max length variable names is 6 characters
    - alphanumeric only, must start with a letter
    - character strings are case sensitive
    
    ---
    
    # FORTRAN >90 Format
    
    Versions >90 relaxe these requirements:
    
    - comments following statements (! delimiter)
    - long variable names (31 characters)
    - containing only letters, digits or underscore
    - max row length is 132 characters
    - can be max 39 continuation lines
    - if a line is ended with ampersand (&), the line continues onto the next line
    - semicolon (;) as a separator between statements on a single line
    
    ---
    
    # Program Organization
    
    Most FORTRAN programs consist of a main program and one or more subprograms
    
    There is a fixed order:
    
    ```Fortran90
    Heading
    Declarations
    Variable initializations
    Program code
    Format statements
    
    Subprogram definitions
    (functions & subroutines)
    ```
    
    ---
    
    # Data Type Declarations
    
    Basic data types are :
    
    - `INTEGER` : integer numbers (+/-)
    - `REAL` : floating point numbers
    - `DOUBLE PRECISION` : extended precision floating point
    - `CHARACTER*n` : string with up to **n** characters
    - `LOGICAL` : takes on values `.TRUE.` or `.FALSE.`
    
    ---
    
    # Data Type Declarations
    
    `INTEGER` and `REAL` can specify number of bytes to use
    
    - Default is: `INTEGER*4` and `REAL*4`
    - `DOUBLE PRECISION` is same as `REAL*8`
    
    Arrays of any type must be declared:
    
    - `DIMENSION A(3,5)` - declares a 3 x 5 array
    - `CHARACTER*30 NAME(50)` - directly declares a `character` array with 30 `character` strings in each element
    
    ---
    
    # Implicit vs Explicit Declarations
    
    By default, an implicit type is assumed depending on the first letter of the variable name:
    
    - `A-H, O-Z` define REAL variables
    - `I-N` define INTEGER variables
    
    Can use the IMPLICIT statement:
    
    ```fortran
    IMPLICIT REAL (A-Z) 
    ```
    
    > makes all variables REAL if not declared
    
    ---
    
    # Implicit vs Explicit Declarations
    
    ```fortran
    IMPLICIT CHARACTER*2 (W)
    ```
    
    > makes variables starting with W be 2-character strings
    
    ```fortran
    IMPLICIT DOUBLE PRECISION (D)
    ```
    
    > makes variables starting with D be double precision
    
    **Good habit**: force explicit type declarations
    
    ```fortran
    IMPLICIT NONE
    ```
    
    > user must explicitly declare all variable types
    
    ---
    
    # Assignment Statements
    
    **Old** assignment statement: `<label>` `<variable>` = `<expression>`
    
    - `<label>` : statement label number (1 to 99999)
    - `<variable>` : FORTRAN variable
    (max 6 characters, alphanumeric only for standard FORTRAN 77)
    
    **Expression**:
    
    - Numeric expressions: `VAR = 3.5*COS(THETA)`
    - Character expressions: `DAY(1:3) = 'TUE'`
    - Relational expressions: `FLAG = ANS .GT. 0`
    - Logical expressions: `FLAG = F1 .OR. F2`
    
    ---
    
    # Numeric Expressions
    
    Arithmetic operators: precedence: `**` *(high)*`-` *(low)*
    
    |   Operator   | Function        |
    | ------------ | --------------- |
    |     `**`     |  exponentiation |
    |     `*`     |  multiplication |
    |     `/`     |  division |
    |     `+`     |  addition |
    |     `-`     |  subtraction |
    
    ---
    
    # Numeric Expressions
    
    Numeric expressions are up-cast to the highest data type in the expression according to the precedence:
    
    *(low)* logical → integer → real → complex *(high)*
    
    and smaller byte size *(low)* to larger byte size *(high)*
    
    ## Examples:
    
    > Fortran 77 source code [arith.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/01_arith.f)
    > Fortran 77 source code [sphere.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/02_sphere.f)
    
    ---
    
    # Character Expressions
    
    Only built-in operator is **Concatenation** defined by `//`
    
    ```fortran
    'ILL'//'-'//'ADVISED'
    ```
    
    `character` arrays are most commonly encountered
    
    - treated like any array (indexed using : notation)
    - fixed length (usually padded with blanks)
    
    ---
    
    # Character Expressions
    
    Example:
    
    ```fortran
    CHARACTER FAMILY*16
    FAMILY = GEORGE P. BURDELL
    
    PRINT*,FAMILY(:6)
    PRINT*,FAMILY(8:9)
    PRINT*,FAMILY(11:)
    PRINT*,FAMILY(:6)//FAMILY(10:)
    ```
    
    ```fortran
    GEORGE
    P.
    BURDELL
    GEORGE BURDELL
    ```
    
    ---
    
    # Relational Expressions
    
    Two expressions whose values are compared to determine whether the relation is true or false
    
    - may be numeric (common) or non-numeric
    
    `character`  strings can be compared
    
    - done character by character
    - shorter string is padded with blanks for comparison
    
    ---
    
    # Relational Expressions
    
    |   Operator   | Relationship        |
    | ------------ | --------------- |
    |     `.LT.` or `<`    |  less than |
    |     `.LE.` or `<=`    |  less than or equal to |
    |     `.EQ.` or `==`    |  equal to |
    |     `.NE.` or `/=`    |  not equal to |
    |     `.GT.` or `>`    |  greater than |
    |     `.GE.` or `>=`    |  greater than or equal to |
    
    ---
    
    # Logical Expressions
    
    Consists of one or more logical operators and logical, numeric or relational operands
    
    - values are `.TRUE.` or `.FALSE.`
    - need to consider overall operator precedence
    
    > can combine logical and integer data with logical operators but this is tricky (**avoid!**)
    
    ---
    
    # Logical Expressions
    
    |   F77 Operator  |   >F90 Operator |   Example   | Meaning        |
    | --------------- | --------------- | ------------ | --------------- |
    |     `.AND.`     |     `&&`     |     `A .AND. B`     |  logical `AND` |
    |     `.OR.`      |     `\|\|`      |     `A .OR. B`      |  logical `OR` |
    |     `.EQV.`     |     `==`     |     `A .EQV. B`      |  logical equivalence |
    |     `.NEQV.`    |     `/=`    |     `A .NEQV. B`      |  logical inequivalence |
    |     `.XOR.`     |     `/=`     |     `A .XOR. B`      |  exclusive `OR` (same as `.NEQV.`) |
    |     `.NOT.`     |     `!`     |     `.NOT. A`      |  logical negation |
    
    ---
    
    # Arrays in FORTRAN
    
    Arrays can be multi-dimensional (up to 7 in F77) and are indexed using `( )`:
    
    - `TEST(3)` or `FORCE(4,2)`
    
    > Indices are by default defined as `1...N`
    
    We can specify index range in declaration
    
    - `INTEGER K(0:11)` : `K` is dimensioned from `0-11` (12 elements)
    
    Arrays are stored in column order (1st column, 2nd column, etc) so accessing by **incrementing row index first** usually is **fastest** (see later)
    
    Whole array reference (only in >F90): `K(:)=-8` assigns 8 to all elements in K
    
    > Avoid `K=-8` assignement
    
    ---
    
    # Unconditional `GO TO` in F77
    
    This is the only GOTO in FORTRAN 77
    
    - Syntax: `GO TO label`
    - Unconditional transfer to labeled statement
    
    ```fortran
      10  -code-
          GO TO 30
          -code that is bypassed-
      30  -code that is target of GOTO-
          -more code-
          GO TO 10
    ```
    
    - **Problem** : leads to confusing *"spaghetti code"* :boom:
    
    ---
    
    # `IF ELSE IF` Statement
    
    Basic version:
    
    ```fortran
    IF (KSTAT.EQ.1) THEN
      CLASS='FRESHMAN'
    ELSE IF (KSTAT.EQ.2) THEN
      CLASS='SOPHOMORE'
    ELSE IF (KSTAT.EQ.3) THEN
      CLASS='JUNIOR'
    ELSE IF (KSTAT.EQ.4) THEN
      CLASS='SENIOR'
    ELSE
      CLASS='UNKNOWN'
    ENDIF
    ```
    
    ---
    
    # Spaghetti Code in F77 (and before)
    
    Use of `GO TO` and arithmetic `IF`'s leads to bad code that is very hard to maintain
    
    Here is the equivalent of an `IF-THEN-ELSE` statement:
    
    ```fortran
      10  IF (KEY.LT.0) GO TO 20
          TEST=TEST-1
          THETA=ATAN(X,Y)
          GO TO 30
      20  TEST=TEST+1
          THETA=ATAN(-X,Y)
      30  CONTINUE
    ```
    
    Now try to figure out what a complex `IF ELSE IF` statement would look like coded with this kind of simple `IF`...
    
    ---
    
    # Loop Statements (old versions)
    
    `DO` loop: structure that executes a specified number of times
    
    *Spaghetti Code Version*
    
    ```fortran
          K=2
      10  PRINT*,A(K)
          K=K+2
          IF (K.LE.11) GO TO 10
      20  CONTINUE
    ```
    
    *F77 Version*
    
    ```fortran
          DO 100 K=2,10,2
          PRINT*,A(K)
     100  CONTINUE
    ```
    
    ---
    
    # Loop Statements (>F90)
    
    ```fortran
    DO K=2,10,2
      WRITE(*,*) A(K)
    END DO
    ```
    
    - `loop_control` can include variables and a third parameter to specify increments, including negative values
    - loop always executes ONCE before testing for end condition
    
    ```fortran
    READ(*,*) R
    DO WHILE (R.GE.0) 
      VOL=2*PI*R**2*CLEN
      READ(*,*) R
    END DO
    ```
    
    - Loop will not execute at all if `logical_expr` is not true at start
    
    ---
    
    # Comments on Loop Statements
    
    In old versions:
    
    - to transfer out (exit loop), use a `GO TO`
    - to skip to next loop, use `GO TO` terminating statement (this is a good reason to always make this a `CONTINUE` statement)
    
    In new versions:
    
    - to transfer out (exit loop), use `EXIT` statement and control is transferred to statement following loop end. This means you cannot transfer out of multiple nested loops with a single `EXIT` statement (use named loops if needed - `myloop : do i=1,n`). This is much like a `BREAK` statement in other languages.
    - to skip to next loop cycle, use `CYCLE` statement in loop.
    
    ---
    
    # File-Directed Input and Output
    
    Much of early FORTRAN was devoted to reading input data
    from "cards" and writing to a line printer
    
    Today, most I/O is to and from a file: it requires more extensive I/O capabilities standardized until FORTRAN 77
    
    **I/O** = communication between a program and the outside world
    
    - opening and closing a file with `OPEN` & `CLOSE`
    - data reading & writing with `READ` & `WRITE`
    - can use **unformatted** `READ` & `WRITE` if no human readable data are involved (much faster access, smaller files)
    
    > Fortran 77 source code [plot.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/03_plot.f)
    
    ---
    
    # `READ` Statement
    
    - syntax: `READ(dev_no, format_label) variable_list`
    - read a record from `dev_no` using `format_label` and assign results to variables in `variable_list`
    
    ```fortran
          READ(105,1000) A,B,C
     1000 FORMAT(3F12.4)
    ```
    
    > device numbers 1-7 are defined as standard I/O devices
    
    - each `READ` reads one or more lines of data and any remaining data in a line that is read is dropped if not translated to one of the variables in the `variable_list`
    - `variable_list` can include implied `DO` such as: `READ(105,1000)(A(I),I=1,10)`
    
    ---
    
    # `READ` Statement - cont'd
    
    - input items can be integer, real or character
    - characters must be enclosed in `' '` (or `" "`)
    - input items are separated by commas
    - input items must agree in type with variables in `variable_list`
    - each `READ` processes a new record (line)
    
    ```fortran
    INTEGER K
    REAL(8) A,B
    OPEN(105,FILE='path_to_existing_file')
    READ(105,*) A,B,K
    ```
    
    > read one line and look for floating point values for A and B and an integer for K
    
    ---
    
    # `WRITE` Statement
    
    - syntax: `WRITE(dev_no, format_label) variable_list`
    - write variables in `variable_list` to output `dev_no` using format specified in format statement with  `format_label`
    
    ```fortran
          WRITE(*,1000) A,B,KEY
     1000 FORMAT(F12.4,E14.5,I6)
    ```
    
    ```fortran
    |----+----o----+----o----+----o----+----|
        1234.5678  -0.12345E+02    12
    ```
    
    - device number `*` is by default the screen (or *standard output* - also 6)
    - each `WRITE` produces one or more output lines as needed to write out `variable_list` using `format` statement
    - `variable_list` can include implied `DO` such as: `WRITE(*,2000)(A(I),I=1,10)`
    
    <!-- _footer: "" -->
    
    ---
    
    # `FORMAT` Statement
    
    |   data type  |   format descriptors |   example   |
    | --------------- | --------------- | ------------ |
    |     `integer`     |     `iw`     |     `write(*,'(i5)') int`     |
    |     `real` (*decimal*)      |     `fw.d`      |     `write(*,'(f7.4)') x`      |
    |     `real` (*exponential*)     |     `ew.d`     |     `write(*,'(e12.3)') y`      |
    |     `character`    |     `a, aw`    |     `write(*,'(a)') string`      |
    |     `logical`     |     `lw`     |     `write(*,'(l2)') test`      |
    |     spaces & tabs     |     `wx` & `tw`     |     `write (*,'(i3,2x,f6.3)') i, x`      |
    |     linebreak     |     `/`     |     `write (*,'(f6.3,/,f6.3)') x, y`      |
    
    ---
    
    # `OPEN` & `CLOSE` example (>F90)
    
    Once opened, file is referred to by an assigned device number (a unique id)
    
    ```fortran
    character(len=*) :: x_name
    integer          :: ierr, iSize, guess_unit
    logical          :: itsopen, itexists
    !
    inquire(file=trim(x_name), size=iSize, number=guess_unit, opened=itsopen, exist=itexists)
    if ( itsopen ) close(guess_unit, status='delete')
    !
    open(902,file=trim(x_name),status='new',iostat=ierr)
    !
    if (iSize <= 0 .OR. .NOT.itexists) then
      open(902,file=trim(x_name),status='new',iostat=ierr)
      if (ierr /= 0) then
        ...
        close(902)
      endif
      ...
    endif
    ```
    
    ---
    
    # `NAMELIST`
    
    It is possible to pre-define the structure of input and output data using `NAMELIST` in order to make it easier to process with `READ` and `WRITE` statements
    
    - Use `NAMELIST` to define the data structure
    - Use `READ` or `WRITE` with reference to `NAMELIST` to handle the data in the specified format
    
    > This is not part of standard F77 but it is included in >F90
    
    ---
    
    # `NAMELIST` - cont'd
    
    On input, the `NAMELIST` data must be structured as follows:
    
    ```fortran
    &INPUT
      THICK=0.245,
      LENGTH=12.34,
      WIDTH=2.34,
      DENSITY=0.0034
    /
    ```
    
    > Fortran 90 source code [namelist.f90](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/04_namelist.f90)
    > Namelist file [namelist.def](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/04_namelist.def)
    
    ---
    
    # Internal `WRITE` Statement
    
    Internal `WRITE` does same as `ENCODE` in F77 : **a cast to string**
    > `WRITE (dev_no, format_label) var_list`
    > write variables in `var_list` to internal storage defined by character variable used as `dev_no` = default character variable (not an array)
    
    ```fortran
    INTEGER*4 J,K
    CHARACTER*50 CHAR50
    DATA J,K/1,2/
    ...
    WRITE(CHAR50,*) J,K
    ```
    
    Results:
    
    ```fortran
    CHAR50='    1     2'
    ```
    
    ---
    
    # Internal `READ` Statement
    
    Internal `READ` does same as `DECODE` in F77 : **a cast from string**
    > `READ (dev_no, format_label) var_list`
    > read variables from internal storage specified by character variable used as `dev_no` = default character variable (not an array)
    
    ```fortran
    INTEGER K
    REAL A,B
    CHARACTER*80 REC80
    DATA REC80/'1.2, 2.3, -5'/
    ...
    READ(REC80,*) A,B,K
    ```
    
    Results:
    
    ```fortran
    A=1.2, B=2.3, K=-5
    ```
    
    <!-- _footer: "" -->
    
    ---
    
    # Structured programming
    
    Structured programming is based on subprograms (functions and subroutines) and control statements (like `IF` statements or loops) :
    
    - structure the control-flow of your programs (e.g. give up the `GO TO`)
    - improved readability
    - lower level aspect of coding in a smart way
    
    It is a **programming paradigm** aimed at improving the quality, clarity, and access time of a computer program
    
    ---
    
    # Functions and Subroutines
    
    `FUNCTION` & `SUBROUTINE` are subprograms that allow structured coding
    
    - `FUNCTION`: returns a single explicit function value for given function arguments
      It’s also a variable → so must be declared !
    - `SUBROUTINE`: any values returned must be returned through the arguments (no explicit subroutine value is returned)
    - functions and subroutines are **not recursive in F77**
    
    Subprograms use a separate namespace for each subprogram so that variables are local to the subprogram
    
    - variables are passed to subprogram through argument list and returned in function value or through arguments
    - variables stored in `COMMON` may be shared between namespaces
    
    <!-- _footer: "" -->
    
    ---
    
    #  Functions and Subroutines - cont'd
    
    Subprograms must (should) include at least one `RETURN` (can have more) and be terminated by an `END` statement
    
    `FUNCTION` example:
    
    ```fortran
    REAL FUNCTION AVG3(A,B,C)
    AVG3=(A+B+C)/3
    RETURN
    END
    ```
    
    Use:
    
    ```fortran
    AV = WEIGHT*AVG3(A1,F2,B2)
    ```
    
    > `FUNCTION` type is implicitly defined as REAL
    
    ---
    
    # Functions and Subroutines - cont'd
    
    Subroutine is invoked using the `CALL` statement
    
    ```fortran
    SUBROUTINE AVG3S(A,B,C,AVERAGE)
    AVERAGE=(A+B+C)/3
    RETURN
    END
    ```
    
    Use:
    
    ```fortran
    CALL AVG3S(A1,F2,B2,AVR)
    RESULT = WEIGHT*AVR
    ```
    
    Any returned values must be returned through argument list
    
    > Fortran 90 source code [newton.f90](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/05_newton.f90)
    
    ---
    
    # Arguments
    
    Arguments in subprogram are `dummy` arguments used in place of the real arguments
    
    - arguments are passed by **reference** (memory address) if given as *symbolic*
      >the subprogram can then alter the actual argument value since it can access it by reference
    - arguments are passed by **value** if given as *literal* (so cannot be modified)
    
    ```fortran
    CALL AVG3S(A1,3.4,C1,QAV)
    ```
    
    > 2nd argument is passed by value - QAV contains result
    
    ```fortran
    CALL AVG3S(A,C,B,4.1)
    ```
    
    > no return value is available since "4.1" is a value and not a reference to a variable!
    
    ---
    
    # Arguments - cont'd
    
    - `dummy` arguments appearing in a subprogram declaration cannot be an individual array element reference, e.g., `A(2)`, or a *literal*, for obvious reasons!
    - arguments used in invocation (by calling program) may be *variables*, *subscripted variables*, *array names*, *literals*, *expressions* or *function names*
    - using symbolic arguments (variables or array names) is the **only way** to return a value (result) from a  `SUBROUTINE`
    
    > It is considered **BAD coding practice**, but functions can return values by changing the value of arguments
      This type of use should be strictly **avoided**!
    
    ---
    
    # Arguments - cont'd
    
    The `INTENT` keyword (>F90) increases readability and enables better compile-time error checking
    
    ```fortran
    SUBROUTINE AVG3S(A,B,C,AVERAGE)
      IMPLICIT NONE
      REAL, INTENT(IN)    :: A, B
      REAL, INTENT(INOUT) :: C        ! default
      REAL, INTENT(OUT)   :: AVERAGE
      
      A = 10                          ! Compilation error
      C = 10                          ! Correct
      AVERAGE=(A+B+C)/3               ! Correct
    END
    ```
    
    > Compiler uses `INTENT` for error checking and optimization
    
    ---
    
    # `FUNCTION` versus Array
    
    `REMAINDER(4,3)` could be a 2D array or it could be a reference to a function
    
    If the name, including arguments, **matches an array declaration**, then it is taken to be an array, **otherwise**, it is assumed to be a `FUNCTION`
    
    Be careful about `implicit` versus `explicit` type declarations with `FUNCTION`
    
    ```fortran
    PROGRAM MAIN
      INTEGER REMAINDER
      ...
      KR = REMAINDER(4,3)
      ...
    END
    
    INTEGER FUNCTION REMAINDER(INUM,IDEN)
      ...
    END
    ```
    
    <!-- _footer: "" -->
    
    ---
    
    # Arrays with Subprograms
    
    Arrays present special problems in subprograms
    
    - must pass by reference to subprogram since there is no way to list array values explicitly as literals
    - how do you tell subprogram how large the array is ?
    
    > Answer varies with FORTRAN version and vendor (dialect)...
    
    When an array element, e.g. `A(1)`, is used in a subprogram invocation (in calling program), it is passed as a reference (address), just like a simple variable
    
    When an array is used by name in a subprogram invocation (in calling program), it is passed as a reference to the entire array. In this case the array must be appropriately dimensioned in the subroutine (and this can be tricky...)
    
    ---
    
    # Arrays - cont'd
    
    ### Data layout in multi-dimensional arrays
    
    - always increment the left-most index of multi-dimensional arrays in the innermost loop (i.e. fastest)
    - **column major** ordering in Fortran vs. **row major** ordering in C
    - a compiler (with sufficient optimization flags) may re-order loops automatically
    
    ```fortran
    do j=1,M
      do i=1,N ! innermost loop
        y(i) = y(i)+ a(i,j)*x(j) ! left-most index is i
      end do
    end do
    ```
    
    ---
    
    # Arrays - cont'd
    
    - dynamically allocate memory for arrays using `ALLOCATABLE` on declaration
    - memory is allocated through `ALLOCATE` statement in the code and is deallocated through `DEALLOCATE` statement
    
    ```fortran
    integer :: m, n
    integer, allocatable :: idx(:)
    real, allocatable :: mat(:,:)
    m = 100 ; n = 200
    allocate( idx(0:m-1))
    allocate( mat(m, n))
    ...
    deallocate(idx , mat)
    ```
    
    > It exists many array intrinsic functions: SIZE, SHAPE, SUM, ANY, MINVAL, MAXLOC, RESHAPE, DOT_PRODUCT, TRANSPOSE, WHERE, FORALL, etc
    
    ---
    
    # `COMMON` & `MODULE` Statement
    
    The `COMMON` statement allows variables to have a more extensive scope than otherwise
    
    - a variable declared in a `Main Program` can be made accessible to subprograms (without appearing in argument lists of a calling statement)
    - this can be selective (don't have to share all everywhere) with `ONLY`
    - **placement**: among type declarations, after `IMPLICIT` or `EXPLICIT`, before `DATA` statements
    - can group into **labeled** `COMMON`
    
    With > F90, it's better to use the `MODULE` subprogram instead of the `COMMON` statement
    
    > Fortran 77 source code [common.f](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/06_common.f) - Fortran 90 source code [module.f90](https://gogs.elic.ucl.ac.be/pbarriat/learning-fortran/src/master/src/06_module.f90)
    
    ---
    
    # Modular programming (>F90)
    
    Modular programming is about separating parts of programs into independent and interchangeable modules :
    
    - improve testability
    - improve maintainability
    - re-use of code
    - higher level aspect of coding in a smart way
    - *separation of concerns*
    
    The principle is that making significant parts of the code independent, replaceable and independently testable makes your programs **more maintainable**
    
    ---
    
    # Data Type Declarations
    
    FORTRAN >90 allows user derived types
    
    ```fortran
    TYPE my_variable
      character(30)           :: name
      integer                 :: id
      real(8)                 :: value
      integer, dimension(3,3) :: dimIndex
    END TYPE variable
    
    type(my_variable) var
    var%name = "salinity"
    var%id   = 1
    ```
    
    ---
    
    # Subprograms type
    
    `MODULE` are subprograms that allow modular coding and data encapsulation
    
    The interface of a subprogram type is **explicit** or **implicit**
    
    Several types of subprograms:
    
    - `intrinsic`: explicit - defined by Fortran itself (trignonometric functions, etc)
    - `module`: explicit - defined with `MODULE` statement and used with `USE`
    - `internal`: explicit - defined with `CONTAINS` statement inside (sub)programs
    - `external`: implicit (but can be manually (re)defined explicit) - e.g. **libraries**
    
    Differ with the **scope**: what data and other subprograms a subprogram can access
    
    ---
    
    # `MODULE` type
    
    ```fortran
    MODULE example
      IMPLICIT NONE
      INTEGER, PARAMETER :: index = 10
      REAL(8), SAVE      :: latitude
    CONTAINS
      FUNCTION check(x) RESULT(z)
      INTEGER :: x, z
      ...
      END FUNCTION check
    END MODULE example
    ```
    
    ```fortran
    PROGRAM myprog
      USE example, ONLY: check, latitude
      IMPLICIT NONE
      ...
      test = check(a)
      ...
    END PROGRAM myprog
    ```
    
    <!-- _footer: "" -->
    
    <!-- Notes for presenter. -->
    <!-- 
    ```fortran
    module subs
    
    contains
    
    subroutine asub (i, control)
    
       implicit none
    
       integer, intent (in) :: i