@@ -32,7 +32,7 @@ Si tous les mois avaient 30 jours, est-ce qu'il y a des jours de la semaine qui
Reformulation: pour tout nombre ``0 \le j < 7``, existe-t-il ``x`` et ``y`` tels que ``30x = j + 7y``. Notation modulo : ``30x \equiv j \pmod{7}``.
Si tous les ans avaient 365 jours, est-ce qu'il y a des jours de la semaine qui ne seront jamais le jours de Noël ? Est si tous les ans avaient 366 jours ? Et s'ils avaient 364 jours ?
Si tous les ans avaient 365 jours, est-ce qu'il y a des jours de la semaine qui ne seront jamais le 25 Décembre ? Est si tous les ans avaient 366 jours ? Et s'ils avaient 364 jours ?
Reformulation: pour tout nombre ``0 \le j < 7``, existe-t-il ``x`` et ``y`` tels que ``365x = j + 7y``. Notation modulo : ``365x \equiv j \pmod{7}``.
"""
...
...
@@ -187,6 +187,8 @@ md"""
```math
xb + yr = g \quad \text{et} \quad r = a - qb \quad \Rightarrow \quad (x - yq)b + ya = g
qa(md"Quelle est la complexité temporelle ?",md"Si ``n`` est impair, au coup suivant, il est pair donc il n'est impair qu'au pire une fois sur deux. En ``l`` multiplication, on divise ``m`` au moins par ``2^{l/2}`` donc on a une complexité logarithmique ``\Theta(\log(m))`` en supposant que `prod_func` a une complexité ``\Theta(1)``.")
qa(md"Comment savoir si `prime_list` contient assez de nombres pour avoir la bonne réponse ?",md"On a la bonne réponse modulo `prod(prime_list)` donc si `prod(prime_list) > 2^power`, on a la bonne réponse.")