Skip to content
Extraits de code Groupes Projets
textanalysis.ipynb 22,1 ko
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    {
     "cells": [
      {
       "cell_type": "code",
       "execution_count": 2,
       "metadata": {},
       "outputs": [],
       "source": [
        "from typing import Dict, List, Optional\n",
        "import nltk\n",
        "import math\n",
        "import string\n",
        "import numpy\n",
        "from nltk.corpus import stopwords\n",
        "from gensim.models.doc2vec import TaggedDocument, Doc2Vec\n",
        "from sklearn.metrics.pairwise import cosine_similarity\n",
        "from os import walk, sep"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Ensure the needed nltk resources have been downloaded and are up to date\n",
        "nltk.download('punkt')\n",
        "nltk.download('stopwords')"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "class Token:\n",
        "    \"\"\"\n",
        "    Class representing a given token. It stores the string representing the token, its identifier and the number of\n",
        "    documents\n",
        "\n",
        "    |\n",
        "\n",
        "    The instance attributes are:\n",
        "\n",
        "    token_id:\n",
        "        Identifier of the token.\n",
        "    token:\n",
        "        String representing the token.\n",
        "    docs:\n",
        "        Identifiers of documents containing the token.\n",
        "    \"\"\"\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    token_id: int\n",
        "    token: str\n",
        "    docs: List[int]\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def __init__(self, token_id: int, token: str):\n",
        "        \"\"\"\n",
        "        Constructor.\n",
        "\n",
        "        :param token_id: Identifier of the token.\n",
        "        :param token: String representing the token.\n",
        "        \"\"\"\n",
        "        self.token_id = token_id\n",
        "        self.token = token\n",
        "        self.docs = []\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def get_idf(self, nb_docs: int) -> float:\n",
        "        \"\"\"\n",
        "        Compute the IDF factor of a token.\n",
        "\n",
        "        :param nb_docs: Total number of documents in the corpus.\n",
        "        :return: IDF factor.\n",
        "        \"\"\"\n",
        "\n",
        "        if len(self.docs) == 0:\n",
        "            return 0.0\n",
        "        return math.log(float(nb_docs) / float(len(self.docs)))\n"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "class Doc:\n",
        "    \"\"\"\n",
        "    This class represents an instance of a document.\n",
        "\n",
        "    |\n",
        "\n",
        "    The instance attributes are:\n",
        "\n",
        "    url:\n",
        "        URL of the document (if defined).\n",
        "    doc_id:\n",
        "        Identifier of the document.\n",
        "    text:\n",
        "        Text of the document to analyse.\n",
        "    vector:\n",
        "        Vector representing the document.\n",
        "    tokens:\n",
        "        List of tokens i order of appearances. A same token may appear several times.\n",
        "    \"\"\"\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    url: Optional[str]\n",
        "    doc_id: int\n",
        "    text: str\n",
        "    vector: numpy.ndarray\n",
        "    tokens: List[Token]\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def __init__(self, doc_id: int, text: str, url: Optional[str] = None):\n",
        "        \"\"\"\n",
        "        Constructor.\n",
        "\n",
        "        :param doc_id:\n",
        "        :param text: Text of the document (brut).\n",
        "        :param url: URL of the document (if any).\n",
        "        \"\"\"\n",
        "        self.url = url\n",
        "        self.doc_id = doc_id\n",
        "        self.text = text\n",
        "        self.vector = None\n",
        "        self.tokens = None\n",
        "\n"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "class DocCorpus:\n",
        "    \"\"\"\n",
        "    This class represents a corpus of documents and the corresponding dictionary of tokens contained.\n",
        "\n",
        "    |\n",
        "\n",
        "    The instance attributes are:\n",
        "\n",
        "    docs:\n",
        "        List of documents.\n",
        "    tokens:\n",
        "        Dictionary of tokens (strings are the key).\n",
        "    ids:\n",
        "        Dictionary of tokens (identifiers are the key).\n",
        "    method:\n",
        "        String representing the method used for analysing (\"Bag of words\" or \"Doc2Vec\").\n",
        "    nb_dims:\n",
        "        Number of dimensions of the semantic space.\n",
        "    stopwords:\n",
        "        List of stopwords to eliminate from the analysis. By default, it's the classic English list.\n",
        "    \"\"\"\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    docs = List[Doc]\n",
        "    tokens: Dict[str, Token]\n",
        "    ids: Dict[int, Token]\n",
        "    method: str\n",
        "    nb_dims: int\n",
        "    stopwords: List[str]\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def __init__(self):\n",
        "        \"\"\"\n",
        "        Constructor.\n",
        "        \"\"\"\n",
        "        self.docs = []\n",
        "        self.tokens = dict()\n",
        "        self.ids = dict()\n",
        "        self.method = \"Doc2Vec\"\n",
        "        self.nb_dims = 0\n",
        "        self.stopwords = stopwords.words('english')\n",
        "        print(self.stopwords)\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def set_method(self, name) -> None:\n",
        "        \"\"\"\n",
        "        Change the parameter.\n",
        "\n",
        "        :param name: Name of the method.\n",
        "        \"\"\"\n",
        "        self.method = name\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def add_doc(self, new_doc: str, url: Optional[str] = None) -> None:\n",
        "        \"\"\"\n",
        "        Add a string representing a document to the corpus and provides an\n",
        "        identifier to the document.\n",
        "\n",
        "        :param new_doc: New document.\n",
        "        :param url: URL of the document (if any)\n",
        "        \"\"\"\n",
        "        new_id = len(self.docs)\n",
        "        self.docs.append(Doc(new_id, new_doc, url))\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def add_docs(self, docs: List[str]) -> None:\n",
        "        \"\"\"\n",
        "        Add a list of strings representing documents to the corpus. Each document receives an\n",
        "        identifier.\n",
        "\n",
        "        :param docs: List of documents.\n",
        "        \"\"\"\n",
        "        for cur_doc in docs:\n",
        "            self.add_doc(cur_doc)\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def build_vectors(self) -> None:\n",
        "        \"\"\"\n",
        "        Build the vectors for the documents of the corpus based on the current method.\n",
        "        \"\"\"\n",
        "\n",
        "        if self.method == \"Doc2Vec\":\n",
        "            self.build_doc2vec()\n",
        "        elif self.method == \"Bag of words\":\n",
        "            self.build_bag_of_words()\n",
        "        else:\n",
        "            raise ValueError(\"'\" + self.method + \"': Invalid building method\")\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def get_doc_token_matrix(self) -> numpy.ndarray:\n",
        "        \"\"\"\n",
        "        Build a document-token matrix with the weights as values.\n",
        "\n",
        "        :return: Document-token matrix.\n",
        "        \"\"\"\n",
        "\n",
        "        matrix = numpy.zeros(shape=(len(self.docs),self.nb_dims))\n",
        "        for cur_doc in self.docs:\n",
        "            i = 0\n",
        "            for token in cur_doc.vector:\n",
        "                matrix[cur_doc.doc_id, i] = token\n",
        "                i += 1\n",
        "        return matrix\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def extract_tokens(self) -> None:\n",
        "        \"\"\"\n",
        "        Extract the tokens from the text of the documents. In practice, for each document, the methods\n",
        "        do the following steps:\n",
        "\n",
        "        1. The text is transform in lowercase.\n",
        "\n",
        "        2. The text is tokenised.\n",
        "\n",
        "        3. Stopwords are removed.\n",
        "\n",
        "        The method words incrementally. Once a document is treated, it will not be re-treated in successive\n",
        "        calls.\n",
        "        \"\"\"\n",
        "\n",
        "        stem = nltk.stem.SnowballStemmer(\"english\")\n",
        "        for cur_doc in self.docs:\n",
        "            if cur_doc.tokens is not None:\n",
        "                continue\n",
        "            cur_doc.tokens = []\n",
        "            text = cur_doc.text.lower()\n",
        "            for extracted_token in nltk.word_tokenize(text):\n",
        "\n",
        "                # Retains only the stem of non stopwords and punctuation\n",
        "                if extracted_token in string.punctuation: continue\n",
        "                if extracted_token in self.stopwords: continue\n",
        "                token_str=stem.stem(extracted_token)\n",
        "\n",
        "                # Find the identifier of the current token in the dictionary\n",
        "                if token_str not in self.tokens.keys():\n",
        "                    token_id = len(self.tokens)\n",
        "                    token = Token(token_id, token_str)\n",
        "                    self.tokens[token_str] = token\n",
        "                    self.ids[token_id] = token\n",
        "                    self.nb_dims = len(self.tokens)\n",
        "                else:\n",
        "                    token = self.tokens[token_str]\n",
        "\n",
        "                # Add the token\n",
        "                cur_doc.tokens.append(token)\n",
        "\n",
        "                # Add a reference count if necessary\n",
        "                if cur_doc.doc_id not in token.docs:\n",
        "                    token.docs.append(cur_doc.doc_id)\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def build_bag_of_words(self) -> None:\n",
        "        \"\"\"\n",
        "        Build the vectors of the corpus using the bag of words approach.\n",
        "        \"\"\"\n",
        "\n",
        "        vectors = []\n",
        "        self.extract_tokens()\n",
        "\n",
        "        # Step 1: For each document, compute the relative frequencies of each token (TF).\n",
        "        for cur_doc in self.docs:\n",
        "\n",
        "            vector = dict()  # Dictionary representing a vector of pairs (token_id,nb_occurrences)\n",
        "            nb_occurrences = 0\n",
        "\n",
        "            for token in cur_doc.tokens:\n",
        "                nb_occurrences += 1\n",
        "\n",
        "                # Add an occurrence of the current token in the vector\n",
        "                if token.token_id not in vector.keys():\n",
        "                    vector[token.token_id] = 1\n",
        "                else:\n",
        "                    vector[token.token_id] += 1\n",
        "\n",
        "            # Compute the relative frequencies\n",
        "            for coord in vector:\n",
        "                coord /= float(nb_occurrences)\n",
        "            vectors.append(vector)\n",
        "\n",
        "        # Step 2: Build the vectors by multiplying the relative frequencies by the IDF factor.\n",
        "        for cur_doc in self.docs:\n",
        "            cur_doc.vector = numpy.zeros(shape=self.nb_dims)\n",
        "            vector = vectors[cur_doc.doc_id]\n",
        "            for token_id in vector:\n",
        "                weight = vector[token_id] * self.ids[token_id].get_idf(len(self.docs))\n",
        "                cur_doc.vector[token_id] = weight\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def build_doc2vec(self) -> None:\n",
        "        \"\"\"\n",
        "        Build the vectors using the doc2vec approach.\n",
        "        \"\"\"\n",
        "\n",
        "        self.extract_tokens()\n",
        "        corpus = []\n",
        "        for doc in self.docs:\n",
        "            tokens = []\n",
        "            for token in doc.tokens:\n",
        "                tokens.append(token.token)\n",
        "            corpus.append(tokens)\n",
        "        corpus = [\n",
        "            TaggedDocument(words, ['d{}'.format(idx)])\n",
        "            for idx, words in enumerate(corpus)\n",
        "        ]\n",
        "\n",
        "        self.nb_dims = 5\n",
        "        model = Doc2Vec(corpus, vector_size=self.nb_dims, min_count=1)\n",
        "        for i in range(0, len(self.docs)):\n",
        "            self.docs[i].vector = model.docvecs[i]"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "class TokenSorter:\n",
        "    \"\"\"\n",
        "    Class to sort a list of tokens by a certain value.\n",
        "    |\n",
        "\n",
        "    The instance attributes are:\n",
        "\n",
        "    tokens:\n",
        "        List of tokens to sort.\n",
        "    reverse:\n",
        "        Must the token be ranked descending (False) or ascending (True)\n",
        "    \"\"\"\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    class TokenRef:\n",
        "        \"\"\"\n",
        "        Class to represent a reference to a token.\n",
        "        \"\"\"\n",
        "\n",
        "        # ---------------------------------------------------------------------\n",
        "        token: Token\n",
        "        value: float\n",
        "\n",
        "        # ---------------------------------------------------------------------\n",
        "        def __init__(self, token: Token, value: float):\n",
        "            self.token = token\n",
        "            self.value = value\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    tokens: List[TokenRef]\n",
        "    reverse: bool\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def __init__(self):\n",
        "        \"\"\"\n",
        "        Constructor.\n",
        "        \"\"\"\n",
        "\n",
        "        self.tokens = []\n",
        "        self.reverse = False\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def build(self, tokens, value, reverse: bool) -> None:\n",
        "        \"\"\"\n",
        "        Build the list of token to sort.\n",
        "\n",
        "        :param tokens: Tokens to sort.\n",
        "        :param value: Lambda function that will be used to build the value associated to each token to sort.\n",
        "        :param reverse: Should the token be sorted in descending (True) of ascending (False) order.\n",
        "        \"\"\"\n",
        "\n",
        "        for token in tokens.values():\n",
        "            self.add_token(token, value(token))\n",
        "        self.reverse = reverse\n",
        "        self.sort()\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def add_token(self, token: Token, value: float) -> None:\n",
        "        \"\"\"\n",
        "        Add a token to the list.\n",
        "\n",
        "        :param token: Token to add.\n",
        "        :param value: Value that will be used to sort the tokens.\n",
        "        \"\"\"\n",
        "\n",
        "        self.tokens.append(TokenSorter.TokenRef(token=token, value=float(value)))\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def sort(self) -> None:\n",
        "        \"\"\"\n",
        "        Sort the tokens.\n",
        "        \"\"\"\n",
        "\n",
        "        self.tokens.sort(reverse=self.reverse, key=lambda token: token.value)\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def get_token(self, pos: int) -> str:\n",
        "        \"\"\"\n",
        "        Get a given token of the list.\n",
        "\n",
        "        :param pos: Position of the token in the list.\n",
        "        :return: String representing the token.\n",
        "        \"\"\"\n",
        "\n",
        "        return self.tokens[pos].token.token\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def get_value(self, pos: int) -> str:\n",
        "        \"\"\"\n",
        "        Get a value of a given token in the list.\n",
        "\n",
        "        :param pos: Position of the token in the list.\n",
        "        :return: String representing the value of the token used for the sorting.\n",
        "        \"\"\"\n",
        "\n",
        "        return str(self.tokens[pos].value)\n",
        "\n",
        "    # -------------------------------------------------------------------------\n",
        "    def print(self, title: str, nb : int) -> None:\n",
        "        \"\"\"\n",
        "        Print a given number of top ranked tokens with a title and their values.\n",
        "\n",
        "        :param title: Title to print.\n",
        "        :param nb:  Number of tokens to print.\n",
        "        \"\"\"\n",
        "        print(title)\n",
        "        if nb > len(self.tokens):\n",
        "            nb = len(self.tokens)\n",
        "        for i in range(0,nb):\n",
        "            print(\"  Token: '\" + self.get_token(i) + \"' (\" + self.get_value(i) + \")\")\n"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "def print_matrix(name:str, matrix: numpy.ndarray) -> None:\n",
        "    \"\"\"\n",
        "    Simple method to print a little matrix nicely.\n",
        "\n",
        "    :param name:  Name of the matrix.\n",
        "    :param matrix:  Matrix to print.\n",
        "    \"\"\"\n",
        "    nb_lines = matrix.shape[0]\n",
        "    nb_cols = matrix.shape[1]\n",
        "    spaces = \" \" * (len(name) + 1)\n",
        "    title_line = nb_lines % 2\n",
        "    for i in range(0, nb_lines):\n",
        "        if i == title_line:\n",
        "            print(name + \"=\", end=\"\")\n",
        "        else:\n",
        "            print(spaces, end=\"\")\n",
        "        print(\"( \", end=\"\")\n",
        "        for j in range(0, nb_cols):\n",
        "            print( \"{:.3f}\".format(matrix[i,j]), end=\" \")\n",
        "        print(\")\",)\n",
        "\n"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Create a corpus instance\n",
        "the_corpus = DocCorpus()\n",
        "\n",
        "# Look for all the files in a directory\n",
        "files = []\n",
        "dir_to_analyse = \"./docs\"\n",
        "for (_, _, file_names) in walk(dir_to_analyse):\n",
        "    files.extend(file_names)\n",
        "    break\n",
        "\n",
        "# Add the context to the corpus\n",
        "for doc_to_analyse in files:\n",
        "    # Treat only files beginning with \"doc\"\n",
        "    if doc_to_analyse[:3] != \"doc\":\n",
        "        continue\n",
        "\n",
        "    filename = dir_to_analyse + sep + doc_to_analyse\n",
        "    file = open(file=filename, mode=\"r\", encoding=\"utf-8\")\n",
        "    the_corpus.add_doc(file.read(), filename)\n",
        "\n",
        "# Extract the tokens\n",
        "the_corpus.extract_tokens()\n",
        "\n",
        "\n",
        "# ----------------------------------------------------------------------------------------------------------------------\n",
        "# Sort the tokens by the number of documents in which they appear\n",
        "sort_by_docs = TokenSorter()\n",
        "sort_by_docs.build(tokens=the_corpus.tokens, value=lambda token: len(token.docs), reverse=True)\n",
        "sort_by_docs.print(title=\"Most appearing tokens (Nb Documents):\",nb=5)\n",
        "\n",
        "# Sort the tokens by their idf factor\n",
        "sort_by_iDF = TokenSorter()\n",
        "sort_by_iDF.build(tokens=the_corpus.tokens, value=lambda token: token.get_idf(len(the_corpus.docs)), reverse=True)\n",
        "sort_by_iDF.print(title=\"Most discriminant  tokens (idf):\",nb=5)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "def corpus_analysis(corpus: DocCorpus, method: str) -> None:\n",
        "    \"\"\"\n",
        "    MAke a little analysis of a corpus.\n",
        "\n",
        "    :param corpus: Corpus to analyse.\n",
        "    :param method: Method to use for the analysis.\n",
        "    \"\"\"\n",
        "    print(\"\\n---- \" + method + \" ----\")\n",
        "    corpus.set_method(method)\n",
        "    corpus.build_vectors()\n",
        "    matrix = corpus.get_doc_token_matrix()\n",
        "    print_matrix(\"Docs\", matrix)\n",
        "    for i in range(0, len(corpus.docs) - 1):\n",
        "        # Take a vector and build a two dimension matrix needed by cosine_similarity\n",
        "        vec1 = matrix[i].reshape(1, -1)\n",
        "\n",
        "        for j in range(i + 1, len(corpus.docs)):\n",
        "            # Take a vector and build a two dimension matrix needed by cosine_similarity\n",
        "            vec2 = matrix[j].reshape(1, -1)\n",
        "\n",
        "            # Compute and display the similarity\n",
        "            print(\"\\tSim(doc\" + str(i) + \",doc\" + str(j) + \")=\" + \"{:.3f}\".format(cosine_similarity(vec1, vec2)[0, 0]))\n",
        "\n",
        "\n",
        "# ----------------------------------------------------------------------------------------------------------------------\n",
        "corpus_analysis(corpus=the_corpus, method=\"Bag of words\")\n",
        "corpus_analysis(corpus=the_corpus, method=\"Doc2Vec\")\n"
       ]
      }
     ],
     "metadata": {
      "kernelspec": {
       "display_name": "Python 3",
       "language": "python",
       "name": "python3"
      },
      "language_info": {
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
       "version": "3.7.6"
      }
     },
     "nbformat": 4,
     "nbformat_minor": 4
    }