Skip to content
Extraits de code Groupes Projets
plot_density_map_all_qatar.py 10,1 ko
Newer Older
  • Learn to ignore specific revisions
  • #!/usr/bin/env python3
    #  -*- coding: utf-8 -*-
    
    """
    Counts the number of oil particle trajectories intersecting the cells of a regular grid and computes the oil spill risk, defined as the probability of being impacted by an oil spill
    
    Author: Thomas Anselain, Earth and Life Institute, UCLouvain, Belgium
    Last modified: 4 April 2022
    """
    #%% Import packages and set up
    import numpy as np
    from math import *
    import matplotlib.pyplot as plt
    from matplotlib import colors
    import matplotlib
    from netCDF4 import Dataset
    import os
    from osgeo import osr, gdal
    import netCDF4 as nc
    import geopandas as gpd
    from shapely.geometry import Polygon
    from mpl_toolkits.axes_grid1.inset_locator import inset_axes
    
    basedir = "/export/miro/students/tanselain/OpenOil/"
    
    
    #%% Define colormap
    def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100):
        from matplotlib import colors 
        new_cmap = colors.LinearSegmentedColormap.from_list(
            'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval),
            cmap(np.linspace(minval, maxval, n)))
        return new_cmap
    
    
    #%% Define main function
    def plot_proba_map(list_source, list_year, list_mois, resolution, vmin, vmax, outfile, show=False) :
    
        # Concatenate data for the month 
        lats = np.empty((0,481))
        lons = np.empty(lats.shape)
        for mois in list_mois:
            print('mois is', mois)
            for source in list_source : 
                print('source is', source)
                for year in list_year :
                    print('year = ', year)
                    for date in range(1,32) :
                        print('date =', date )
                        path = basedir + f"Output_backward/{year}/{source}/{mois}/out_{mois}_{date}.nc" 
                        if not os.path.isfile(path):
                            continue
                            
                        with Dataset(path, "r") as ds:
                            lat_tmp = np.ma.filled(np.ma.array(ds.variables["lat"][:]), np.nan)
                            lon_tmp = np.ma.filled(np.ma.array(ds.variables["lon"][:]), np.nan)
                        
                        ntraj, ntime = lat_tmp.shape
                        #deals with the case when ntime < 121
                        lon = np.full((ntraj,481), np.nan)
                        lat = np.full((ntraj,481), np.nan)
                        lon[:,:ntime] = lon_tmp[:]
                        lat[:,:ntime] = lat_tmp[:]
                        
                        lats = np.row_stack([lats, lat])
                        lons = np.row_stack([lons, lon])
                        del lon_tmp, lat_tmp, lon, lat
    
        # Mask corresponds to nans   
        masked = np.isnan(lats)
        
        
    #%% Building grid and count trajectory that passed throught each mesh
        # Bounding box of particles coordinates 
        def myfloor(x, prec, base):
            return round(base * floor(float(x)/base),prec)
        def myceil(x, prec, base):
            return round(base * ceil(float(x)/base),prec)
        minlon, maxlon = lons[~masked].min()-resolution, lons[~masked].max()+resolution
        minlat, maxlat = lats[~masked].min()-resolution, lats[~masked].max()+resolution
        
        minlon, maxlon = myfloor(minlon, prec=2, base = resolution), myceil(maxlon, prec=2, base = resolution)
        minlat, maxlat = myfloor(minlat, prec=2, base = resolution), myceil(maxlat, prec=2, base = resolution) #set precision 2 to have always same pixel in the mesh with the 0.01 resolution
    
        # Build grid to count particles
        longr = np.arange(minlon, maxlon+resolution, resolution)
        latgr = np.arange(minlat, maxlat+resolution, resolution)
        ox, oy = longr[0], latgr[0]
        dx, dy = longr[1]-longr[0], latgr[1]-latgr[0]
        mlongr, mlatgr = np.meshgrid(longr, latgr)
        cntr = np.zeros((mlongr.shape[0]-1, mlongr.shape[1]-1))
    
        cntrx = []; cntry = []
        for i in range(lons.shape[0]):
            lon, lat = lons[i,~masked[i]], lats[i,~masked[i]]
            rx, ry = lon - ox, lat - oy
            ix = (rx / resolution).astype(int)
            iy = (ry / resolution).astype(int)
            indx = np.unique(np.column_stack([iy,ix]), axis=0)
            cntry.extend(indx[:,0].tolist())
            cntrx.extend(indx[:,1].tolist())
        np.add.at(cntr, (cntry,cntrx), np.ones(len(cntrx)))
    
        # Normalization by total number of trajectories
        cntr /= lons.shape[0]
        print(lons.shape[0])
        print(lons.shape)
        sumdensity = round(cntr.sum(),1)     
        cntr[cntr <= 0] = np.nan
      
         
    #%% Plot map
        # Main axis
        fig = plt.figure(figsize = (12,12))
        ax = fig.add_subplot(111)
        
        # Second axis to draw cbbox
        fc = colors.to_rgba('white')
        ec = colors.to_rgba('gray')
        fc = fc[:-1] + (0.7,)
        cbbox = inset_axes(ax, '15%', '35%',loc=1, bbox_to_anchor=(0, 0, 0.98, 0.98), bbox_transform=ax.transAxes, borderpad=0)
        cbbox.spines['bottom'].set_color(ec)
        cbbox.spines['top'].set_color(ec) 
        cbbox.spines['right'].set_color(ec)
        cbbox.spines['left'].set_color(ec)
        cbbox.tick_params(axis='both', left='off', top='off', right='off', bottom='off', labelleft='off', labeltop='off', labelright='off', labelbottom='off')
        cbbox.set_facecolor(fc)
        
        # Subaxis to add colorbar to cbbox
        subax = inset_axes(cbbox,
                        width="35%", # width = 30% of parent_bbox
                        height="82%", # height : 1 inch
                        loc = 6,
                        bbox_to_anchor=(0.1,0,1,0.9),
                        bbox_transform=cbbox.transAxes,
                        borderpad=0,
                        )
        
        # Set and identify sensitive areas + additionnal texts
        list_source2 = []
        for j in range(len(list_source)) :
            src = list_source[j].split("_")
            for i in range(len(src)):
                if src[i] == "al": continue
                if src[i] == "port": continue
                src[i] = src[i][0].upper() + src[i][1:]
            source2 = " ".join(src)
            list_source2.append(source2)
        mois = mois[0].upper() + mois[1:]
        
        #ax.text(50.05, 24.1, f'{mois}', fontsize=18, horizontalalignment = 'left', verticalalignment = 'center', zorder=6)
        #ax.text(50.05, 24.25, f'Total risk: {sumdensity}' , fontsize=20, horizontalalignment = 'left', verticalalignment = 'center', zorder=6)
        
        ax.scatter(51.55, 25.9464, s=50, c='#1f77b4' ,zorder=5)
        ax.text(51.355, 25.89, list_source2[0], color = 'k', fontsize=12, fontweight='bold',horizontalalignment = 'center', verticalalignment = 'center',zorder=5)
    
        ax.scatter(51.6269, 25.2061, s=50, c='#1f77b4' ,zorder=5)
        ax.text(51.385, 25.2, list_source2[1], color = 'k', fontsize=12, fontweight='bold' , horizontalalignment = 'center', verticalalignment = 'center',zorder=5)
    
        ax.scatter(51.633, 25.1135, s=50, c='#1f77b4' ,zorder=5)
        ax.text(51.355, 25.1135, list_source2[2], color = 'k', fontsize=12, fontweight='bold', horizontalalignment = 'center', verticalalignment = 'center',zorder=5)
        
        ax.scatter(51.6682, 25.9204, s=100, color ='limegreen', marker = '*' ,zorder=5)
    
        # Put land, border and eez in background
        bgdir = basedir + "Indicators/Background_map/"
        gpd_landp  = gpd.read_file(bgdir+"PG_layer_poly_new/PG_layer_poly_new.shp")
        gpd_bordl  = gpd.read_file(bgdir+"natural_earth/ne_10m_admin_0_boundary_lines_land.shp")
        gpd_eezl  = gpd.read_file(bgdir+"qatar_eez/qatar_eez_line.shp")
        gpd_landp.plot(ax=ax, linewidth=0.5, edgecolors="k", color='lightgray',zorder=4)
        gpd_bordl.plot(ax=ax, linewidth=0.5, linestyle='-', color="k", zorder=4)
        gpd_eezl.plot(ax=ax, linewidth=2, color="darkgreen",zorder=4)
        
        # Plot mesh
        cmap = plt.get_cmap('YlOrRd')
        new_cmap = truncate_colormap(cmap, 0.2, 1) #set colormap
        
        vmax2 = np.nanmax(cntr)
        print(vmax2)
        vmax2 = round(vmax2,2)
        bounds = np.array([0, 0.001, 0.005, 0.01, 0.02, vmax2]) #0.0001, 0.001, 0.005, 0.01, 0.02, vmax2
        stretched_bounds = np.interp(np.linspace(0, 1, 257), np.linspace(0, 1, len(bounds)), bounds)
        norm = matplotlib.colors.BoundaryNorm(stretched_bounds, ncolors=256)
        
        pcm = ax.pcolormesh(longr, latgr, cntr, cmap=new_cmap, norm=norm, vmin=0.0001, vmax=vmax2,zorder=3)
    
        # Set up axis
        ax.set_xlim(50, 53.2)
        ax.set_ylim(24, 27.5)
        yticks = np.arange(24, 28, .5)
        ax.set_yticks(yticks)
        ax.set_yticklabels([f"{y}°N" for y in yticks])
        ax.tick_params(labelleft=True, labelbottom = True) 
        xticks = np.arange(50,53.5,0.5)
        ax.set_xticks(xticks)
        ax.set_xticklabels([f"{x}°E" for x in xticks])
        
        # Set colorbar
        #tick_step = vmax*0.2
        #cticks = np.arange(tick_step, vmax+tick_step, tick_step)
        #cticks= np.insert(cticks, 0, 0) #add vmin to ticks
        cticks = np.array([0, 0.001, 0.005, 0.01, 0.02, vmax2])
        cbar = fig.colorbar(pcm, cax= subax, orientation='vertical', ticks=[cticks], pad=.05, aspect=30, shrink=.7, fraction=0.04) 
        ctickslab1 = cticks*100
        ctickslab= np.round(ctickslab1,2)
        cbar.ax.set_yticklabels([str(int(ctickslab1[0]))+'%', str(float(ctickslab[1]))+'%', str(float(ctickslab[2]))+'%', str(float(ctickslab[3]))+'%', str(float(ctickslab[4]))+'%', '>'+str(int(ctickslab1[5]))+'%'])
        cbar.set_label(label = 'Probability', labelpad=-32, y=1.15, rotation=0, fontsize = 14)
        ax.set_aspect("equal")
        
        # Final save
        plt.savefig(outfile, dpi=300, bbox_inches="tight")
        if show:
            plt.show()
        plt.close(fig)
     
        
    #%% Conversion to geodataframe and save in shp
        print("Building geodataframe...")
        data = []
        for i in range(cntr.shape[0]):
            for j in range(cntr.shape[1]):
                X = longr[[j,   j, j+1, j+1]]
                Y = latgr[[i, i+1, i+1,   i]]
                data.append( (cntr[i,j], Polygon(np.column_stack([X,Y]))) )
        df = gpd.GeoDataFrame(data, columns=["proba", "geometry"], crs="EPSG:4326")
        name, ext = os.path.splitext(outfile)
        df.to_file(name)
    
    
    #%% Beginning of loops
    # Give combinations station/month/year assessed
    list_source = ['ras_laffan', 'abu_fontas', 'umm_al_houl', 'ras_laffan_port']  
    list_year = ['2016', '2017', '2018', '2019', '2020']
    list_mois = ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december']
    #list_mois = ['march']
    
    # Start loops for main function
    outdir = basedir + f"Indicators/Proba_map/all_qatar/"
    fname = outdir + f"proba_risk_map_all_qatar.png"
    plot_proba_map(list_source, list_year, list_mois, 0.01, 0.0003, 0.03, fname, show=False)