Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
%% GFSK Fixed-point implementation
%% Transmission
%%% Transmission/modulation parameters
% fixed-point precision
prec_op_TX = 32; % precision to be used for the operations performed on the considered signal
prec_cst = 8; % precision for the constants
f_c = 2.45e09; % Carrier frequency
r_symb = 1e06; % Symbol rate
Ts = 1/r_symb; % Symbol period
m = 0.5; % Modulation index
BTb = 0.5; % Bandwidth - Symbol perdiod product
N_symb = 1e04; % Number of symbols used for the simulation
reso = 8; % Resolution factor (number of samples by symbol period)
dfppm = 20;
%%% For BER vs Eb/N0 plot and noise variance (N0) generation
Nsnr = 16; % Number of different values for the plot
Eb_N0_dB = linspace(0,Nsnr-1,Nsnr);
Eb_N0 = 10.^(Eb_N0_dB/10);
Eb = 1;
N0 = Eb./Eb_N0;
%%% Generation of the preamble
preamble = fi([1;-1;1;-1;1;-1;1;-1], 1, prec_cst, prec_cst-1);
Lpreamble = length(preamble);
N_symb = N_symb-Lpreamble;
Lnoisestart = 92;
N_symb = N_symb-Lnoisestart;
%%% Generation of the sequence of symbols (I)
bits = fi(round(rand(N_symb,1)), 1, prec_cst, prec_cst-1,'ProductMode','SpecifyPrecision','ProductFractionLength',16-1,'ProductWordLength',16,'SumMode', 'SpecifyPrecision','SumFractionLength',16-1,'SumWordLength',16);
I0 = bits-0.5;
I1 = I0*2;
I1(1) = fi(1, 1, prec_cst, prec_cst-1,'ProductMode','SpecifyPrecision','ProductFractionLength',16-1,'ProductWordLength',16,'SumMode', 'SpecifyPrecision','SumFractionLength',16-1,'SumWordLength',16);
I1(2) = fi(1, 1, prec_cst, prec_cst-1,'ProductMode','SpecifyPrecision','ProductFractionLength',16-1,'ProductWordLength',16,'SumMode', 'SpecifyPrecision','SumFractionLength',16-1,'SumWordLength',16);
I = fi([preamble;I1], 1, prec_cst, prec_cst-1,'ProductMode','SpecifyPrecision','ProductFractionLength',16-1,'ProductWordLength',16,'SumMode', 'SpecifyPrecision','SumFractionLength',16-1,'SumWordLength',16);
LI = length(I);
%%% Gaussian pulse-shape filter (g) generation
N_Ts = 3; % Number of symbol periods for the filter support
time = -N_Ts/2*Ts : Ts/reso : N_Ts/2*Ts; % Filter support
Tb = Ts; % Here, we will always have Tb=Ts
K = sqrt(log(2)); % Parameter for the filter amplitude
g = g_GMSK(time,K,Tb,BTb); % Filter generation, using my function "g_GMSK"
Lg = length(g);
% g_GMSK can be precomputed and tabled since it is constant, so it does not
% have to be calculated in fixed-point, only the final values are
% converted.
gfi = fi(g,1,16,16-1,'ProductMode','SpecifyPrecision','ProductFractionLength',16-1,'ProductWordLength',16,'SumMode', 'SpecifyPrecision','SumFractionLength',16-1,'SumWordLength',16);
%%% Convolution (convo) between the symbol sequence and the Gaussian filter
tmin = (reso*(LI-1)+Lg+1)/2 - (reso*LI)/2;
tmax = (reso*(LI-1)+Lg+1)/2 + (reso*LI)/2;
Iup = upsample(I, reso);
convfiIupgfi = convfi(Iup,gfi',16,prec_op_TX);
convofi = convfiIupgfi(tmin:tmax);
Lconvo = length(convofi);
%%% Integration (integfi) of the convolution (trapezium method)
% First, we divide everything by 256 as it is the max value the integral
% can output considering a packet of +-300 bits. This way, saturation is
% avoided.
convofi = bitsra(convofi, 8);
integfi = fi(zeros(Lconvo-1,1),1,32,32-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_TX-1,'ProductWordLength',prec_op_TX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_TX-1,'SumWordLength',prec_op_TX);
integfi(1) = bitsra(convofi(1)+convofi(2), log2(2*reso)); % Division is performed via arithmetic shift right
for i = 2:Lconvo-1
integfi(i) = integfi(i-1) + bitsra(convofi(i)+convofi(i+1), log2(2*reso));
end
% To avoid saturation resulting from multiplication by pi/2, the signal
% should be divided by 2.
integfi = bitsra(integfi, 1);
%%% Phase (phi) generation
fipi_2 = fi(pi/2, 1, prec_cst, prec_cst-2,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_TX-1,'ProductWordLength',prec_op_TX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_TX-1,'SumWordLength',prec_op_TX);
phifi = fipi_2 * integfi;
Lphifi = length(phifi);
%%% Transmitted signal (s) generation
s = exp(1j*double(phifi)*2^9);
Ls = length(s);
%% Reception
% Fixed-point precision
prec_op_RX = 16;
precRX = 16;
% Table of values for the CFO correction:
ak = [-0.894221291841193;...
-0.823171345055248;...
-0.624515667660133;...
-0.335010157734548;...
0;...
0.335010157734548;...
0.624515667660133;...
0.823171345055248;...
0.894221291841193;...
0.823171345055248;...
0.624515667660133;...
0.335010157734548;...
0;...
-0.335010157734548;...
-0.624515667660133;...
-0.823171345055248];
sinak = sin(ak);
cosak = cos(ak);
sinakfi = fi(sinak,1,prec_cst,prec_cst-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
cosakfi = fi(cosak,1,prec_cst,prec_cst-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
pow_cosak2pifi_m1 = fi(1./(cosak*2*pi),1,prec_cst,prec_cst-1);
BERcorrfi = zeros(Nsnr,1);
BERfi = zeros(Nsnr,1);
df_hatfi = zeros(Nsnr,1);
ind_trig = zeros(Nsnr,1);
SFindi = zeros(Nsnr,1);
% Loop for each different value of the noise variance
% for i = 1:Nsnr
SNR = 13;
for i = SNR+1
%%% AWGN (n) generation
% noise can remain in floating-point, it doesn't matter as it will be
% converted as soon as it will be added to the signal.
N = N0(i)*reso;
n = awgn(Lnoisestart*reso+Ls, 1, N);
%%% Received signal (r) generation
r = [zeros(Lnoisestart*reso, 1) ; s] + n;
Lr = length(r);
%%% CFO
df = dfppm/1e06 * f_c;
time = (1/(r_symb*reso) : 1/(r_symb*reso) : (Lr)/(r_symb*reso))';
rcfo = exp(1j*2*pi*df*time).*r;
rcfofi0 = fi(rcfo,1,precRX,precRX-4,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
% /!\ abs(rcfof) can go up to 13 (result from 100000 iterations
% with 300 bits and SNR=13dB) => a normalization by 16 should be
% performed.
rcfofi = fi(bitsra(rcfofi0,4),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
Lrcfo = length(rcfo);
%%% Filtering of the received CFO'ed signal
% This is done in digital, so from now on signals must be in
% fixed-point. But the filter can be precomputed, so only its final
% coefficient values have to be converted.
% Moreover, as the filter coefficients are <= 1, there is no need
% for normalization. But one is done nonetheless as rcfo needs one.
fcut = 0.6e06;
Nper = 12;
h0 = LPF('Hamming', fcut, reso, Nper);
h0fi = fi(h0,1,prec_cst,prec_cst-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
rconvfih0fi0 = convfi(rcfofi,h0fi',prec_op_RX,prec_op_RX);
rconvfih0fi = rconvfih0fi0(1+Nper/2*reso:end-Nper/2*reso);
rficfof = rconvfih0fi;
%%% Preamble detection
% Hermitian product
OSR = reso;
Hprodfi0 = rficfof(1+OSR:end).*conj(rficfof(1:end-OSR));
% IIR filter
IIRb = 1;
IIRa = zeros(OSR+1,1);
IIRa(1) = 1;
IIRa(OSR+1) = 0.875;
impu = eye(500,1);
impuresp = filter(IIRb, IIRa, impu);
% impuresp can be precomputed and tabled, so only the final values
% need to be converted into fixed-point.
impurespfi = fi(impuresp,1,prec_cst,prec_cst-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
% /!\ abs(IIRHprod) can go up to 350 (result from 100000 iterations
% with 300 bits and SNR=13dB) => a normalization by 512 should be
% performed, normalization of Hprodfi. But it is already 16*16 =
% 256 times smaller due to the previous normalization, so it needs
% an additional normalization factor of only 2 to reach 512!
Hprodfi = fi(bitsra(Hprodfi0,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
IIRHprodfi0 = convfi(Hprodfi,impurespfi,precRX,prec_op_RX);
IIRHprodfi = IIRHprodfi0(1:end-(length(impu)-1));
absIIRHprodfi = abs(IIRHprodfi);
LabsIIRHprodfi = length(absIIRHprodfi);
% Search for preamble
if (SNR==13)
thresh = 37.5;
elseif (SNR==14)
thresh = 32.5;
end
% Due to the normalization, the comparison must be done wrt a
% threshold that has undergone the same normalization.
threshfi = fi(thresh/2^(4+4+1),1,prec_cst,prec_cst-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_cst-1,'ProductWordLength',prec_cst,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_cst-1,'SumWordLength',prec_cst);
p = 1;
booly = false;
while(booly == false)
if (absIIRHprodfi(p) > threshfi)
booly = true;
elseif (p >= LabsIIRHprodfi)
booly = true;
fprintf('Error, after 1000 iterations, there is still no value that has reached the threshold!');
else
p = p+1;
end
end
ind_trig(i) = p;
%%% Symbol timing recovery
Noffset = 5;
offset = Noffset*reso;
maxxtemp = absIIRHprodfi(ind_trig(i)+offset);
indtemp = ind_trig(i)+offset;
kk = 1;
while (kk < 1*reso)
if (absIIRHprodfi(ind_trig(i)+offset+kk) > maxxtemp)
maxxtemp = absIIRHprodfi(ind_trig(i)+offset+kk);
indtemp = ind_trig(i)+offset+kk;
end
kk = kk+1;
end
SFindi(i) = indtemp;
%%% CFO correction
df_hat_temp1 = 0;
Nperiod = 6;
b = 1;
counter = 1;
afikind = zeros(Nperiod*reso,1);
symbrfi = fi(zeros(Nperiod*reso,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
symbrfiold = fi(zeros(Nperiod*reso,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
hermifi_unnorm = fi(zeros(Nperiod*reso,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
hermifi = fi(zeros(Nperiod*reso,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
demodsymbrfirfiold = fi(zeros(Nperiod*reso,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
dkfi = fi(zeros(Nperiod*reso,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
dfhfi = fi(zeros(Nperiod*reso,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
dfh1fi0 = fi(zeros(Nperiod*reso,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
dfh1fi = fi(zeros(Nperiod*reso,1),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
while(b <= Nperiod*reso)
symbrfi(b) = rficfof(b+ind_trig(i)+reso-1);
symbrfiold(b) = rficfof(b+ind_trig(i)+reso-1-reso);
hermifi_unnorm(b) = symbrfi(b)*conj(symbrfiold(b));
% The division for the normalization is somehow problematic,
% as I don't know how to handle this in Matlab, I "cheat" by
% using a double value for the divider.
hermifi(b) = hermifi_unnorm(b)/double(abs(hermifi_unnorm(b)));
demodsymbrfirfiold(b) = imag(hermifi(b));
dkfi0 = demodsymbrfirfiold(b);
% Must be divided by 2 to avoid saturation when subtracting it
% with sinakfik
dkfi(b) = bitsra(dkfi0,1);
% Simulated the index to fetch the values from the LUTs.
afikind(b) = mod(b,2*reso);
if (afikind(b) == 0)
afikind(b) = 2*reso;
end
sinakfik0 = sinakfi(afikind(b));
% Must be divided by 2 to avoid saturation when subtracting it
% from dkfi
sinakfik = bitsra(sinakfik0,1);
dfh1fi0(b) = (dkfi(b)-sinakfik)*pow_cosak2pifi_m1(afikind(b));
% Here, I accumulate Nperiod*reso (48) values, so I have to
% normalize by this value beforehand (48->64).
dfh1fi(b) = bitsra(dfh1fi0(b),6);
df_hat_temp1 = df_hat_temp1+dfh1fi(b);
dfhfi(b) = df_hat_temp1/counter;
counter = counter + 1;
b = b+1;
end
df_hatfi(i) = dfhfi(end);
normfact = 2^7/Tb;
% Correction is done in RF, and the denormalization is performed at
% the same time using the factor normfact.
rcorr = exp(-1j*2*pi*(double(df_hatfi(i))*normfact)*time((Lnoisestart+Lpreamble)*reso+1 : end)).*rcfo((Lnoisestart+Lpreamble)*reso+1 : end);
rcorrfi0 = fi(rcorr, 1, precRX);
% Looks like convfi(rcorrfi,h0fi) can go up to 10, so it seems
% appropriate to normalize by 16.
rcorrfi = fi(bitsra(rcorrfi0, 4),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
rcorrficonvfih0fi0 = convfi(rcorrfi,h0fi',precRX,prec_op_RX);
rcorrficonvfih0fi = rcorrficonvfih0fi0(1+Nper/2*reso:end-Nper/2*reso);
rcorrfif = rcorrficonvfih0fi;
%%% Filtering of the received signal (for the CFO-free case)
rfi0 = fi(r, 1, precRX);
% Looks like convfi(rfi,h0fi) can go up to 12, so it seems appropriate
% to normalize by 16.
rfi = fi(bitsra(rfi0, 4),1,precRX,precRX-1,'ProductMode','SpecifyPrecision','ProductFractionLength',prec_op_RX-1,'ProductWordLength',prec_op_RX,'SumMode', 'SpecifyPrecision','SumFractionLength',prec_op_RX-1,'SumWordLength',prec_op_RX);
rficonvfih0fi0 = convfi(rfi,h0fi',precRX,prec_op_RX);
rficonvfih0fi = rficonvfih0fi0(1+Nper/2*reso:end-Nper/2*reso);
rfif = rficonvfih0fi;
%%% Demodulation
indidown = mod(SFindi(i)+2,reso);
if (indidown == 0)
indidown = reso;
end
rcorrfifdown = downsample(rcorrfif(indidown:end),reso/2);
Lrcorrfifdown = length(rcorrfifdown);
if (mod(Lrcorrfifdown,2)==0)
demodficorr = imag(rcorrfifdown(2:2:end).*conj(rcorrfifdown(1:2:end-1)));
else
demodficorr = imag(rcorrfifdown(2:2:end-1).*conj(rcorrfifdown(1:2:end-2)));
end
Ldemodficorr = length(demodficorr);
rfifdown = downsample(rfif(indidown:end),reso/2);
Lrfifdown = length(rfifdown);
if (mod(Lrfifdown,2)==0)
demodfi = imag(rfifdown(2:2:end).*conj(rfifdown(1:2:end-1)));
else
demodfi = imag(rfifdown(2:2:end-1).*conj(rfifdown(1:2:end-2)));
end
demodfi = demodfi(1+Lpreamble+Lnoisestart:end);
Ldemodfi = length(demodfi);
%%% Decision
Icorrfi_hat = sign(demodficorr);
BERcorrfi(i) = sum(sign(I(1+Lpreamble:Lpreamble+Ldemodficorr))~=Icorrfi_hat)/N_symb;
Ifi_hat = sign(demodfi);
BERfi(i) = sum(sign(I(1+Lpreamble:Lpreamble+Ldemodfi))~=Ifi_hat)/N_symb;
end
% BER vs Eb/N0 plot
figure;
semilogy(Eb_N0_dB,BERcorrfi,'xg','LineWidth',1.5,'MarkerSize',8);
hold on;
semilogy(Eb_N0_dB,BERfi,'xk','LineWidth',1.5,'MarkerSize',8);
axis([0 Nsnr 10/N_symb 1]);
grid;
title( strcat('BER -- df = ', num2str(df)) );
xlabel('E_{b}/N_{0} [dB]');
ylabel('BER');