Skip to content
GitLab
Explorer
Connexion
S'inscrire
Navigation principale
Rechercher ou aller à…
Projet
M
Master Thesis Codes
Gestion
Activité
Membres
Labels
Programmation
Tickets
Tableaux des tickets
Jalons
Wiki
Code
Requêtes de fusion
Dépôt
Branches
Validations
Étiquettes
Graphe du dépôt
Comparer les révisions
Extraits de code
Compilation
Pipelines
Jobs
Planifications de pipeline
Artéfacts
Déploiement
Releases
Registre de conteneur
Registre de modèles
Opération
Environnements
Surveillance
Incidents
Analyse
Données d'analyse des chaînes de valeur
Analyse des contributeurs
Données d'analyse CI/CD
Données d'analyse du dépôt
Expériences du modèle
Aide
Aide
Support
Documentation de GitLab
Comparer les forfaits GitLab
Forum de la communauté
Contribuer à GitLab
Donner votre avis
Conditions générales et politique de confidentialité
Raccourcis clavier
?
Extraits de code
Groupes
Projets
Afficher davantage de fils d'Ariane
Renaud Gonce
Master Thesis Codes
Validations
e6940243
Valider
e6940243
rédigé
4 years ago
par
Renaud Gonce
Parcourir les fichiers
Options
Téléchargements
Correctifs
Plain Diff
Add new file
parent
Aucune branche associée trouvée
Aucune étiquette associée trouvée
Aucune requête de fusion associée trouvée
Modifications
1
Masquer les modifications d'espaces
En ligne
Côte à côte
Affichage de
1 fichier modifié
GFSK_FloatingPoint
+305
-0
305 ajouts, 0 suppression
GFSK_FloatingPoint
avec
305 ajouts
et
0 suppression
GFSK_FloatingPoint
0 → 100644
+
305
−
0
Voir le fichier @
e6940243
%% Simulates GFSK communication and plots the performance in terms of BER
%
% For the CFO correction, the samples are processed "one by one" to match
% the real behavior of the radio.
%
%% Transmission
%%% Transmission/modulation parameters
f_c = 2.45e09; % Carrier frequency
r_symb = 1e06; % Symbol rate
Ts = 1/r_symb; % Symbol period
m = 0.5; % Modulation index
BTb = 0.5; % Bandwidth - Symbol perdiod product
N_symb = 1e06; % Number of symbols used for the simulation
reso = 8; % Resolution factor (number of samples by symbol period at TX)
dfppm = 30; % CFO expressed in ppm wrt the carrier frequency
%%% For BER vs Eb/N0 plot and noise variance (N0) generation
Nsnr = 16; % Number of different values for the plot
Eb_N0_dB = linspace(0,Nsnr-1,Nsnr);
Eb_N0 = 10.^(Eb_N0_dB/10);
Eb = 1;
N0 = Eb./Eb_N0;
%%% Generation of the preamble + noise before packet parameter
preamble = [1;-1;1;-1;1;-1;1;-1];
Lpreamble = length(preamble);
Lnoisestart = 92; % Length of the noise portion preceding the packet
N_symb = N_symb-Lpreamble-Lnoisestart;
%%% Generation of the sequence of symbols (I)
M = 2;
N_bits_by_symb = log2(M);
I = pammod(N_symb,M); % "pammod" is a function I wrote for the PAM modulation
I(1) = 1; % Because the first bit of the Access Address is always the opposite of the last one of the preamble.
I = [preamble;I];
LI = length(I);
%%% Gaussian pulse-shape filter (g) generation
N_Ts = 3; % Number of symbol periods for the filter support
time = -N_Ts/2*Ts : Ts/reso : N_Ts/2*Ts; % Filter support
Tb = Ts/N_bits_by_symb; % Here, we will always have Tb=Ts since M=2
K = sqrt(log(2)); % Parameter for the filter amplitude, set to a value giving a unitary amplitude
g = g_GMSK(time,K,Tb,BTb); % Filter generation, using my function "g_GMSK"
Lg = length(g);
%%% Convolution (convo) between the symbol sequence and the Gaussian filter
Iup = upsample(I, reso);
convIupg = conv(Iup,g);
tmin = (reso*(LI-1)+Lg+1)/2 - (reso*LI)/2;
tmax = (reso*(LI-1)+Lg+1)/2 + (reso*LI)/2;
convo = convIupg(tmin:tmax);
Lconvo = length(convo);
%%% Integration (integ) of the convolution
integ = zeros(Lconvo-1,1);
incr = zeros(Lconvo-1,1);
integ(1) = (convo(1)+convo(2))/2 * (Ts/reso);
for i = 2:Lconvo-1
incr(i) = (convo(i)+convo(i+1))/2 * (Ts/reso);
integ(i) = integ(i-1) + incr(i);
end
% In practice the values in ak are tabled (they can be precomputed).
% They are used for the CFO correction.
integ2 = integ(1+reso:end) - integ(1:end-reso);
a = integ2 * pi*m/Tb;
ak = a(reso:reso+2*reso-1);
%%% Phase (phi) generation
phi = pi*m/Tb * integ;
Lphi = length(phi);
%%% Transmitted signal (s) generation
s = exp(1j*phi);
Ls = length(s);
%% Reception
OSF = 8; % Oversampling factor (number of samples by symbol period at RX)
BERcorr = zeros(Nsnr,1);
BER = zeros(Nsnr,1);
df_hat = zeros(Nsnr,1);
ind_trig = zeros(Nsnr,1);
SFindi = zeros(Nsnr,1);
% Loop for each different value of the noise variance
% Since the non-idealities mitigations are sized for a SNR value of 13 or
% 14 dB, the loop should only take those values.
% for i = 1:Nsnr
SNR = 13;
for i = SNR+1
%%% AWGN (n) generation
N = N0(i)*OSF;
n = awgn(Lnoisestart*OSF+Ls, 1, N);
%%% Received signal (r) generation
r = [zeros(Lnoisestart*OSF, 1) ; s] + n;
Lr = length(r);
%%% CFO
df = dfppm/1e06 * f_c;
time = (1/(r_symb*OSF) : 1/(r_symb*OSF) : (Lr)/(r_symb*OSF))';
rcfo = exp(1j*2*pi*df*time).*r;
%%% Filtering of the received CFO'ed signal
fcut = 0.6e06;
Nper = 8;
[h0] = LPF('Hamming', fcut, OSF, Nper);
Lh0 = length(h0);
rconvh00 = conv(rcfo,h0);
rconvh0 = rconvh00(1+Nper/2*OSF:end-Nper/2*OSF);
rcfof = rconvh0;
%%% Preamble detection
% Hermitian product
OSR = OSF;
Hprod = rcfof(1+OSR:end).*conj(rcfof(1:end-OSR));
% IIR filter
IIRb = 1;
IIRa = zeros(OSR+1,1);
IIRa(1) = 1;
IIRa(OSR+1) = 0.875;
IIRHprod = filter(IIRb,IIRa,Hprod);
absIIRHprod = abs(IIRHprod);
LabsIIRHprod = length(absIIRHprod);
% Search for preamble
if (SNR == 13)
thresh = 37.5;
elseif (SNR == 14)
thresh = 32.5;
end
p = 1;
booly = false;
while(booly == false)
if (absIIRHprod(p) > thresh)
booly = true;
elseif (p >= LabsIIRHprod)
booly = true;
fprintf('Error, after 1000 iterations, there is still no value that has reached the threshold!');
else
p = p+1;
end
end
ind_trig(i) = p; % This is the index that triggered the detection.
%%% Symbol timing recovery
Noffset = 5; % We need to wait for 5 periods after the
% preamble detection in order to target the
% max of the 6th preamble period.
offset = Noffset*OSF;
maxxtemp = absIIRHprod(ind_trig(i)+offset);
indtemp = ind_trig(i)+offset;
kk = 1;
while (kk < 1*OSF)
if (absIIRHprod(ind_trig(i)+offset+kk) > maxxtemp)
maxxtemp = absIIRHprod(ind_trig(i)+offset+kk);
indtemp = ind_trig(i)+offset+kk;
end
kk = kk+1;
end
SFindi(i) = indtemp;
%%% CFO correction
df_hat_temp1 = 0;
Nperiod = 6;
b = 1;
counter = 1;
symbr = zeros(Nperiod*OSF,1);
symbrold = zeros(Nperiod*OSF,1);
dfh = zeros(Nperiod*OSF,1);
dfh1 = zeros(Nperiod*OSF,1);
demodsymbrrold = zeros(Nperiod*OSF,1);
dk = zeros(Nperiod*OSF,1);
akind = zeros(Nperiod*OSF,1);
hermi_unnorm = zeros(Nperiod*OSF, 1);
hermi = zeros(Nperiod*OSF, 1);
while(b <= Nperiod*OSF)
% The first sample used for the CFO correction is the one 1
% period after the preamble detection.
symbr(b) = rcfof(b+ind_trig(i)+OSF-1);
symbrold(b) = rcfof(b+ind_trig(i)+OSF-1-OSF);
hermi_unnorm(b) = symbr(b)*conj(symbrold(b));
hermi(b) = hermi_unnorm(b)/abs(hermi_unnorm(b));
dk(b) = imag(hermi(b));
% Simulates the index used to fetch the tabled values from the
% LUTs.
akind(b) = mod(b,2*OSF);
if (akind(b) == 0)
akind(b) = 2*OSF;
end
sinak = sin(ak(akind(b)));
cosak = cos(ak(akind(b)));
dfh1(b) = (dk(b)-sinak)/cosak /(2*pi*Tb); % CFO estimate
df_hat_temp1 = df_hat_temp1+dfh1(b);
dfh(b) = df_hat_temp1/counter; % Averaging of the estimate
counter = counter + 1;
b = b+1;
end
df_hat(i) = dfh(end); % Final CFO estimate.
rcorr = exp(-1j*2*pi*df_hat(i)*time((Lnoisestart+Lpreamble)*OSF+1 : end)).*rcfo((Lnoisestart+Lpreamble)*OSF+1 : end);
% Filtering of the corrected signal
rcorrconvh0 = conv(rcorr,h0);
rcorrconvh0 = rcorrconvh0(1+Nper/2*OSF:end-Nper/2*OSF);
rcorrf = rcorrconvh0;
Lrcorrf = length(rcorrf);
%%% Filtering of the received signal (to simulate the case without CFO)
rconvh0 = conv(r,h0);
rconvh0 = rconvh0(1+Nper/2*OSF:end-Nper/2*OSF);
rf = rconvh0;
Lrf = length(rf);
%%% Demodulation
% Index for the decimation prior to the demodulation
indidown = mod(SFindi(i)+2,OSF);
if (indidown == 0)
indidown = OSF;
end
rcorrfdown = downsample(rcorrf(indidown:end),OSF/2);
Lrcorrfdown = length(rcorrfdown);
if (mod(Lrcorrfdown,2)==0)
demodcorr = imag(rcorrfdown(2:2:end).*conj(rcorrfdown(1:2:end-1)));
else
demodcorr = imag(rcorrfdown(2:2:end-1).*conj(rcorrfdown(1:2:end-2)));
end
Ldemodcorr = length(demodcorr);
rfdown = downsample(rf(indidown:end),OSF/2);
Lrfdown = length(rfdown);
if (mod(Lrfdown,2)==0)
demod = imag(rfdown(2:2:end).*conj(rfdown(1:2:end-1)));
else
demod = imag(rfdown(2:2:end-1).*conj(rfdown(1:2:end-2)));
end
demod = demod(1+Lpreamble+Lnoisestart:end);
Ldemod = length(demod);
%%% Decision
Icorr_hat = sign(demodcorr);
BERcorr(i) = sum(I(1+Lpreamble:Lpreamble+Ldemodcorr)~=Icorr_hat)/N_symb;
I_hat = sign(demod);
BER(i) = sum(I(1+Lpreamble:Lpreamble+Ldemodcorr)~=I_hat)/N_symb;
end
% BER vs Eb/N0 plot
figure;
semilogy(Eb_N0_dB,BERcorr,'xg','LineWidth',1.5,'MarkerSize',8);
hold on;
semilogy(Eb_N0_dB,BER,'xk','LineWidth',1.5,'MarkerSize',8);
axis([0 Nsnr 10/N_symb 1]);
grid;
legend('After CFO correction', 'Without CFO');
title( strcat('BER -- CFO = ', num2str(df)) );
xlabel('E_{b}/N_{0} [dB]');
ylabel('BER');
Ce diff est replié.
Cliquez pour l'agrandir.
Aperçu
0%
Chargement en cours
Veuillez réessayer
ou
joindre un nouveau fichier
.
Annuler
You are about to add
0
people
to the discussion. Proceed with caution.
Terminez d'abord l'édition de ce message.
Enregistrer le commentaire
Annuler
Veuillez vous
inscrire
ou vous
se connecter
pour commenter