Skip to content
Extraits de code Groupes Projets
Non vérifiée Valider d264ffcf rédigé par Martin Braquet's avatar Martin Braquet Validation de GitHub
Parcourir les fichiers

Merge pull request #797 from defrenned3238/patch-2

Correction erreur dans ex2
parents 262043b3 4103a3b6
Aucune branche associée trouvée
Aucune étiquette associée trouvée
Aucune requête de fusion associée trouvée
...@@ -90,13 +90,13 @@ A wireless horizontal link is established over a 100 meter distance at \SI{2.4}{ ...@@ -90,13 +90,13 @@ A wireless horizontal link is established over a 100 meter distance at \SI{2.4}{
\item $ P_T = \SI{-30}{dB} $ \item $ P_T = \SI{-30}{dB} $
\item The impedance matching factor is \item The impedance matching factor is
\[ \[
\abs{1-\Gamma}^2 = \abs{1-\frac{Z_L-Z_c}{Z_L+Z_c}}^2 = \abs{1-\frac{50 - 20 j}{150 - 20 j}}^2 = 0.437. 1-\abs{\Gamma}^2 = 1-\abs{\frac{Z_L-Z_c}{Z_L+Z_c}}^2 = 1-\abs{\frac{50 - 20 j}{150 - 20 j}}^2 = 0.873.
\] \]
The transmitter polarization is $ \Vect{i} = \frac{1}{\sqrt{2}} \left( 1 + \e^{j\pi\sin(\SI{20}{\degree}}\right) \Base{x} $ and the receiver polarization is $ \Base{p} = \frac{1}{\sqrt{2}} \left( \Base{x} + j \Base{y} \right)$. The polarization matching factor is The transmitter polarization is $ \Vect{i} = \frac{1}{\sqrt{2}} \left( 1 + \e^{j\pi\sin(\SI{20}{\degree}}\right) \Base{x} $ and the receiver polarization is $ \Base{p} = \frac{1}{\sqrt{2}} \left( \Base{x} + j \Base{y} \right)$. The polarization matching factor is
\[ \[
\abs{\mathbf{\Vect{i}\cdot\Base{p}}}^2 = \abs{\frac{1}{\sqrt{2}} \left( 1 + \e^{j\pi\sin(\SI{20}{\degree}}\right)\frac{1}{\sqrt{2}}}^2 = 0.74. \abs{\mathbf{\Vect{i}\cdot\Base{p}}}^2 = \abs{\frac{1}{\sqrt{2}} \left( 1 + \e^{j\pi\sin(\SI{20}{\degree}}\right)\frac{1}{\sqrt{2}}}^2 = 0.74.
\] \]
$ L_R = \abs{1-\Gamma}^2\abs{\mathbf{\Base{i}\cdot\Base{p}}}^2 = 0.323 = \SI{-4.89}{dB}$. $ L_R = (1-\abs{\Gamma}^2)\abs{\mathbf{\Base{i}\cdot\Base{p}}}^2 = 0.646 = \SI{-1.90}{dB}$.
\item $L_T = 1$. \item $L_T = 1$.
\item Since $\theta_{\SI{3}{dB}} = \frac{\SI{160}{\degree}}{\sqrt{G_R(u_0)}}$, $G_R(u_0) = \left(\frac{\SI{160}{\degree}}{25}\right)^2 = \SI{16.12}{dB}$. The gain of 10 dB has to be added: $G_R = \SI{26.12}{dB}$. \item Since $\theta_{\SI{3}{dB}} = \frac{\SI{160}{\degree}}{\sqrt{G_R(u_0)}}$, $G_R(u_0) = \left(\frac{\SI{160}{\degree}}{25}\right)^2 = \SI{16.12}{dB}$. The gain of 10 dB has to be added: $G_R = \SI{26.12}{dB}$.
\item $G_T = \SI{2.15}{dB}$ for a dipole. \item $G_T = \SI{2.15}{dB}$ for a dipole.
...@@ -105,12 +105,12 @@ A wireless horizontal link is established over a 100 meter distance at \SI{2.4}{ ...@@ -105,12 +105,12 @@ A wireless horizontal link is established over a 100 meter distance at \SI{2.4}{
The received power is thus The received power is thus
\[ \[
P_R = -30 - 4.89 + 26.12 + 2.15 - 80.05 = \SI{-86.67}{dB}. P_R = -30 - 1.9 + 26.12 + 2.15 - 80.05 = \SI{-83.67}{dB}.
\] \]
The noise power is $N = kBT = \SI{-130.97}{dB}$. The noise power is $N = kBT = \SI{-130.97}{dB}$.
The output SNR is The output SNR is
\[ \[
\mathrm{SNR}_o = \mathrm{SNR}_i / F = -86.67 + 130.97 -4 = \SI{40.3}{dB}. \mathrm{SNR}_o = \mathrm{SNR}_i / F = -83.67 + 130.97 -4 = \SI{43.3}{dB}.
\] \]
\item The angle of propagation for the reflected wave is $\theta = \arctan(20/50) = \SI{21.8}{\degree}$. It will create a wave being the sum of the waves from the two dipole. Taking into account the initial phase difference from the dipoles, the total phase shift is $ \pi (\sin(\SI{20}{\degree}) - \sin(\SI{21.8}{\degree}))$. The reflected wave is thus proportional to \item The angle of propagation for the reflected wave is $\theta = \arctan(20/50) = \SI{21.8}{\degree}$. It will create a wave being the sum of the waves from the two dipole. Taking into account the initial phase difference from the dipoles, the total phase shift is $ \pi (\sin(\SI{20}{\degree}) - \sin(\SI{21.8}{\degree}))$. The reflected wave is thus proportional to
\[ \[
......
0% Chargement en cours ou .
You are about to add 0 people to the discussion. Proceed with caution.
Terminez d'abord l'édition de ce message.
Veuillez vous inscrire ou vous pour commenter