Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import random as rd
import numpy as np
import matplotlib.pyplot as plt
from tmc import TransitionMatrixCalculator as tmc
from markovDecision import MarkovDecisionSolver as mD
class validation:
def __init__(self, layout, circle=False):
# import from other .PY
self.layout = layout
self.circle = circle
self.tmc_instance = tmc()
self.safe_dice = self.tmc_instance._compute_safe_matrix()
self.normal_dice = self.tmc_instance._compute_normal_matrix(layout, circle)
self.risky_dice = self.tmc_instance._compute_risky_matrix(layout, circle)
solver = mD(self.layout, self.circle)
self.expec, self.optimal_policy = solver.solve()
# Define all the strategy
self.optimal_strategy = self.optimal_policy
self.safe_strategy = [1]*15
self.normal_strategy = [2]*15
self.risky_strategy = [3]*15
self.random_strategy = [rd.choice([0,1,2,3]) for _ in range(15)]
def simulate_game(self, strategy, n_iterations=10000):
transition_matrices = [self.safe_dice, self.normal_dice, self.risky_dice]
number_turns = []
for _ in range(n_iterations):
total_turns = 0
k = 0 # état initial
while k < len(self.layout) - 1:
action = strategy[k] # action selon la stratégie
# Convertir action en entier pour accéder à l'indice correct dans transition_matrices
action_index = int(action) - 1
transition_matrix = transition_matrices[action_index]
#print(f"Current state (k): {k}, Action chosen: {action}")
#print(f"Transition matrix: {transition_matrix}")
# Aplatir la matrice de transition en une distribution de probabilité 1D
flattened_probs = transition_matrix[k]
flattened_probs /= np.sum(flattened_probs) # Normalisation des probabilités
# Mise à jour de l'état (k) en fonction de la distribution de probabilité aplatie
k = np.random.choice(len(self.layout), p=flattened_probs)
# Mise à jour du nombre de tours en fonction de l'état actuel
if self.layout[k] == 3 and action == 2:
total_turns += 1 if np.random.uniform(0, 1) < 0.5 else 2
elif self.layout[k] == 3 and action == 3:
total_turns += 2
else:
total_turns += 1
number_turns.append(total_turns)
return np.mean(number_turns)
def play_optimal_strategy(self, n_iterations=10000):
return self.simulate_game(self.optimal_policy, n_iterations)
def play_dice_strategy(self, dice_choice, n_iterations=10000):
if dice_choice == 'SafeDice':
strategy = self.safe_strategy
elif dice_choice == 'NormalDice':
strategy = self.normal_strategy
elif dice_choice == 'RiskyDice':
strategy = self.risky_strategy
else:
raise ValueError("Invalid dice choice")
return self.simulate_game(strategy, n_iterations)
def play_random_strategy(self, n_iterations=10000):
return self.simulate_game(self.random_strategy, n_iterations)
def compare_strategies(self, num_games=1000):
optimal_cost = self.simulate_game(self.optimal_strategy, n_iterations=num_games)
dice1_cost = self.simulate_game(self.safe_strategy, n_iterations=num_games)
dice2_cost = self.simulate_game(self.normal_strategy, n_iterations=num_games)
dice3_cost = self.simulate_game(self.risky_strategy, n_iterations=num_games)
random_cost = self.simulate_game(self.random_strategy, n_iterations=num_games)
return {
'Optimal': optimal_cost,
'SafeDice': dice1_cost,
'NormalDice': dice2_cost,
'RiskyDice': dice3_cost,
'Random': random_cost
}
# Utilisation d'exemple
layout = [0, 0, 3, 0, 2, 0, 2, 0, 2, 0, 3, 0, 0, 1, 0]
validation = validation(layout, circle=False)
circle = False # Example circle value
"""
# Create an instance of validation
validator = validation(layout, circle)
# Use the methods
validator.simulate_game(validator.optimal_strategy, n_iterations=10000)
results = validation.compare_strategies(num_games=10000)
print("Coûts moyens :")
for strategy, cost in results.items():
print(f"{strategy}: {cost}")"""
optimal_cost = validation.play_optimal_strategy(n_iterations=10000)
print("Optimal Strategy Cost:", optimal_cost)
dice2_cost = validation.play_dice_strategy('NormalDice', n_iterations=10000)
print("Normal Dice Strategy Cost:", dice2_cost)
random_cost = validation.play_random_strategy(n_iterations=10000)
print("Random Strategy Cost:", random_cost)
strategy_comparison = validation.compare_strategies(num_games=10000)
print("Strategy Comparison Results:", strategy_comparison)