Skip to content
GitLab
Explorer
Connexion
S'inscrire
Navigation principale
Rechercher ou aller à…
Projet
M
MLP1
Gestion
Activité
Membres
Labels
Programmation
Tickets
Tableaux des tickets
Jalons
Wiki
Code
Requêtes de fusion
Dépôt
Branches
Validations
Étiquettes
Graphe du dépôt
Comparer les révisions
Extraits de code
Compilation
Pipelines
Jobs
Planifications de pipeline
Artéfacts
Déploiement
Releases
Registre de paquets
Registre de conteneur
Registre de modèles
Opération
Environnements
Modules Terraform
Surveillance
Incidents
Analyse
Données d'analyse des chaînes de valeur
Analyse des contributeurs
Données d'analyse CI/CD
Données d'analyse du dépôt
Expériences du modèle
Aide
Aide
Support
Documentation de GitLab
Comparer les forfaits GitLab
Forum de la communauté
Contribuer à GitLab
Donner votre avis
Conditions générales et politique de confidentialité
Raccourcis clavier
?
Extraits de code
Groupes
Projets
Afficher davantage de fils d'Ariane
machine_learning
MLP1
Validations
9f373841
Valider
9f373841
rédigé
1 year ago
par
Adrien Payen
Parcourir les fichiers
Options
Téléchargements
Correctifs
Plain Diff
commit Adrien
parent
c682c832
Aucune branche associée trouvée
Aucune étiquette associée trouvée
Aucune requête de fusion associée trouvée
Modifications
2
Masquer les modifications d'espaces
En ligne
Côte à côte
Affichage de
2 fichiers modifiés
simulation.py
+0
-75
0 ajout, 75 suppressions
simulation.py
tmc.py
+3
-3
3 ajouts, 3 suppressions
tmc.py
avec
3 ajouts
et
78 suppressions
simulation.py
supprimé
100644 → 0
+
0
−
75
Voir le fichier @
c682c832
import
numpy
as
np
import
random
as
rd
import
matplotlib.pyplot
as
plt
from
tmc
import
TransitionMatrixCalculator
as
tmc
from
markovDecision
import
MarkovDecisionSolver
as
mD
class
Validation
:
def
__init__
(
self
):
self
.
tmc_instance
=
tmc
()
def
simulate_games
(
self
,
layout
,
circle
,
num_games
):
results
=
[]
for
_
in
range
(
num_games
):
result
=
mD
(
layout
,
circle
)
# Assuming result is a tuple (costs, path) and you want the last element of 'costs'
results
.
append
(
result
[
0
][
-
1
])
# Append the number of turns to reach the goal
return
results
def
compare_strategies
(
self
,
layout
,
circle
,
num_games
):
optimal_results
=
self
.
simulate_games
(
layout
,
circle
,
num_games
)
suboptimal_strategies
=
{
"
Dice 1 Only
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
),
# Replace with Dice 1 simulation
"
Dice 2 Only
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
),
# Replace with Dice 2 simulation
"
Dice 3 Only
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
),
# Replace with Dice 3 simulation
"
Mixed Random Strategy
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
),
# Replace with mixed random strategy simulation
"
Purely Random Choice
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
)
# Replace with purely random choice simulation
}
self
.
plot_results
(
optimal_results
,
suboptimal_strategies
)
def
plot_results
(
self
,
optimal_results
,
suboptimal_results
):
strategies
=
[
"
Optimal Strategy
"
]
+
list
(
suboptimal_results
.
keys
())
avg_costs
=
[
np
.
mean
(
optimal_results
)]
+
[
np
.
mean
(
suboptimal_results
[
strategy
])
for
strategy
in
suboptimal_results
]
plt
.
figure
(
figsize
=
(
10
,
6
))
plt
.
bar
(
strategies
,
avg_costs
,
color
=
[
'
blue
'
]
+
[
'
orange
'
]
*
len
(
suboptimal_results
))
plt
.
xlabel
(
"
Strategies
"
)
plt
.
ylabel
(
"
Average Cost
"
)
plt
.
title
(
"
Comparison of Strategy Performance
"
)
plt
.
show
()
def
run_validation
(
self
,
layout
,
circle
,
num_games
):
solver
=
mD
(
layout
,
circle
)
theoretical_cost
,
optimal_dice_strategy
=
solver
.
solve
()
optimal_results
=
self
.
simulate_games
(
layout
,
circle
,
num_games
)
optimal_average_cost
=
np
.
mean
(
optimal_results
)
suboptimal_strategies
=
{
"
Dice 1 Only
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
),
# Replace with Dice 1 simulation
"
Dice 2 Only
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
),
# Replace with Dice 2 simulation
"
Dice 3 Only
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
),
# Replace with Dice 3 simulation
"
Mixed Random Strategy
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
),
# Replace with mixed random strategy simulation
"
Purely Random Choice
"
:
self
.
simulate_games
(
layout
,
circle
,
num_games
)
# Replace with purely random choice simulation
}
self
.
plot_results
(
optimal_results
,
suboptimal_strategies
)
print
(
"
Theoretical Expected Cost (Value Iteration):
"
,
theoretical_cost
)
print
(
"
Empirical Average Cost (Optimal Strategy):
"
,
optimal_average_cost
)
for
strategy
,
results
in
suboptimal_strategies
.
items
():
avg_cost
=
np
.
mean
(
results
)
print
(
f
"
Empirical Average Cost (
{
strategy
}
):
"
,
avg_cost
)
# Exemple d'utilisation de la classe Validation
layout
=
[
0
,
0
,
3
,
0
,
0
,
0
,
2
,
0
,
0
,
0
,
3
,
0
,
0
,
1
,
0
]
circle
=
True
num_games
=
1000
validation
=
Validation
()
validation
.
run_validation
(
layout
,
circle
,
num_games
)
Ce diff est replié.
Cliquez pour l'agrandir.
tmc.py
+
3
−
3
Voir le fichier @
9f373841
...
@@ -25,7 +25,7 @@ class TransitionMatrixCalculator:
...
@@ -25,7 +25,7 @@ class TransitionMatrixCalculator:
def
_compute_safe_matrix
(
self
):
def
_compute_safe_matrix
(
self
):
for
k
in
range
(
0
,
15
):
for
k
in
range
(
15
):
for
s
,
p
in
enumerate
(
self
.
safe_dice
):
for
s
,
p
in
enumerate
(
self
.
safe_dice
):
if
k
==
9
and
s
==
1
:
if
k
==
9
and
s
==
1
:
k_prime
=
14
k_prime
=
14
...
@@ -44,7 +44,7 @@ class TransitionMatrixCalculator:
...
@@ -44,7 +44,7 @@ class TransitionMatrixCalculator:
return
self
.
matrix_safe
return
self
.
matrix_safe
def
_compute_normal_matrix
(
self
,
layout
,
circle
):
def
_compute_normal_matrix
(
self
,
layout
,
circle
):
for
k
in
range
(
0
,
15
):
for
k
in
range
(
15
):
for
s
,
p
in
enumerate
(
self
.
normal_dice
):
for
s
,
p
in
enumerate
(
self
.
normal_dice
):
if
k
==
8
and
s
==
2
:
if
k
==
8
and
s
==
2
:
k_prime
=
14
k_prime
=
14
...
@@ -116,7 +116,7 @@ class TransitionMatrixCalculator:
...
@@ -116,7 +116,7 @@ class TransitionMatrixCalculator:
return
self
.
matrix_normal
return
self
.
matrix_normal
def
_compute_risky_matrix
(
self
,
layout
,
circle
):
def
_compute_risky_matrix
(
self
,
layout
,
circle
):
for
k
in
range
(
0
,
15
):
for
k
in
range
(
15
):
for
s
,
p
in
enumerate
(
self
.
risky_dice
):
for
s
,
p
in
enumerate
(
self
.
risky_dice
):
if
k
==
7
and
s
==
3
:
if
k
==
7
and
s
==
3
:
k_prime
=
14
k_prime
=
14
...
...
Ce diff est replié.
Cliquez pour l'agrandir.
Aperçu
0%
Chargement en cours
Veuillez réessayer
ou
joindre un nouveau fichier
.
Annuler
You are about to add
0
people
to the discussion. Proceed with caution.
Terminez d'abord l'édition de ce message.
Enregistrer le commentaire
Annuler
Veuillez vous
inscrire
ou vous
se connecter
pour commenter