Skip to content
Extraits de code Groupes Projets
Valider d6e730f9 rédigé par Adrien Payen's avatar Adrien Payen
Parcourir les fichiers

Merge branch 'main' into Adrien

parents 3fa064c3 399700c8
Aucune branche associée trouvée
Aucune étiquette associée trouvée
Aucune requête de fusion associée trouvée
*.pyc
*.pyd
*.pyo
__pycache__
\ No newline at end of file
# MLP1
tmc.py, autrement dit TransitionMatrixCalculator est le fichier qui permet de calculer les différentes matrices de transitions
## Getting started
......
Fichier supprimé
......@@ -4,7 +4,7 @@ from tmc import TransitionMatrixCalculator as tmc
# testing our TransitionMatrix function based on random layout
# [0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 0]
def markovDecision(layout, circle) :
def markovDecision(layout : list, circle : bool) :
Numberk = 15 # Number of states k on the board
tmc_instance = tmc()
......
import numpy as np
import random as rd
import matplotlib.pyplot as plt
from tmc import TransitionMatrixCalculator as tmc
from markovDecision import markovDecision as mD
from validation import Validation
def plot_results(validation_instance):
results_markov = validation_instance.simulate_game('markov')
results_safe = validation_instance.simulate_game([1]*15)
results_normal = validation_instance.simulate_game([2]*15)
results_risky = validation_instance.simulate_game([3]*15)
results_random = validation_instance.simulate_game(np.random.randint(1, 4, size=15))
plt.figure(figsize=(12, 8))
plt.plot(range(len(validation_instance.layouts)), results_markov, label='Markov')
plt.plot(range(len(validation_instance.layouts)), results_safe, label='SafeDice')
plt.plot(range(len(validation_instance.layouts)), results_normal, label='NormalDice')
plt.plot(range(len(validation_instance.layouts)), results_risky, label='RiskyDice')
plt.plot(range(len(validation_instance.layouts)), results_random, label='Random')
plt.xticks(range(len(validation_instance.layouts)), range(len(validation_instance.layouts)))
plt.xlabel('Layout Number', fontsize=13)
plt.ylabel('Average Number of Turns', fontsize=13)
plt.legend(loc='upper left', bbox_to_anchor=(1, 1), ncol=1)
plt.show()
# Example usage
layouts = [
[0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 0],
# Add more layouts as needed
]
validation_instance = Validation(layouts, circle=False, n_iterations=10000)
plot_results(validation_instance)
\ No newline at end of file
import numpy as np
from tmc import TransitionMatrixCalculator as tmc
def markov_decision(layout: list, circle: bool):
Numberk = 15
tmc_instance = tmc()
safe_dice = tmc_instance._compute_safe_matrix(layout, circle)
normal_dice = tmc_instance._compute_normal_matrix(layout, circle)
risky_dice = tmc_instance._compute_risky_matrix(layout, circle)
jail = [i for i, x in enumerate(layout) if x == 3]
def compute_value(v, dice_matrix):
return np.sum(dice_matrix * v) + (0.5 if dice_matrix is normal_dice else 1) * np.sum(dice_matrix[jail])
value = np.zeros(Numberk)
dice_for_states = np.zeros(Numberk - 1)
while True:
new_value = np.zeros(Numberk)
for k in range(Numberk - 1):
vi_safe = compute_value(value, safe_dice[k])
vi_normal = compute_value(value, normal_dice[k])
vi_risky = compute_value(value, risky_dice[k])
new_value[k] = 1 + min(vi_safe, vi_normal, vi_risky)
dice_for_states[k] = 1 if new_value[k] == 1 + vi_safe else (2 if new_value[k] == 1 + vi_normal else 3)
if np.allclose(new_value, value):
value = new_value
break
value = new_value
return value[:-1], dice_for_states
layout = [0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 0]
print("\nWin as soon as land on or overstep the final square")
print(markov_decision(layout, False))
print("\nStopping on the square to win")
print(markov_decision(layout, True))
import numpy as np
import random as rd
class TransitionMatrixCalculator:
def __init__(self):
# Probabilités de transition pour les dés "safe", "normal" et "risky"
self.safe_dice = np.array([1/2, 1/2])
self.normal_dice = np.array([1/3, 1/3, 1/3])
self.risky_dice = np.array([1/4, 1/4, 1/4, 1/4])
def compute_transition_matrix(self, layout: list, circle: bool):
size = len(layout)
matrix_safe = self._compute_matrix(layout, self.safe_dice, size, circle, 'safe')
matrix_normal = self._compute_matrix(layout, self.normal_dice, size, circle, 'normal')
matrix_risky = self._compute_matrix(layout, self.risky_dice, size, circle, 'risky')
return matrix_safe, matrix_normal, matrix_risky
def _compute_matrix(self, layout: list, dice_probs: list, size: int, circle: bool, matrix_type: str):
transition_matrix = np.zeros((size, size))
dice_type = None
if matrix_type == 'safe':
dice_type = self.safe_dice
elif matrix_type == 'normal':
dice_type = self.normal_dice
elif matrix_type == 'risky':
dice_type = self.risky_dice
for k in range(size):
for s, p in enumerate(dice_probs):
k_prime = (k + s) % size if circle else min(size - 1, k + s)
if k == 9 and s == 1 and matrix_type == 'safe':
k_prime = size - 1
elif k == 2 and s > 0 and matrix_type == 'safe':
p /= 2
k_prime = 10 + s - 1
if layout[k_prime] == 1:
k_prime = 0
elif layout[k_prime] == 2:
k_prime = max(0, k_prime - 3)
elif k == 7 and s == 3 and matrix_type == 'risky':
k_prime = size - 1
elif k == 8 and s in [2, 3] and matrix_type == 'risky':
if circle or s == 2:
k_prime = size - 1
else:
k_prime = 0
elif k == 9 and s in [1, 2, 3] and matrix_type == 'risky':
if not circle or s == 1:
k_prime = size - 1
elif circle and s == 2:
k_prime = 0
elif circle and s == 3:
k_prime = 1
if layout[k_prime] in [1, 2]:
k_prime = max(0, k_prime - 3) if layout[k_prime] == 2 else 0
transition_matrix[k, k_prime] += p * dice_type[s]
return transition_matrix
def generate_arrays(self,n):
arrays = []
for _ in range(n):
array = np.zeros(15, dtype=int)
indices = rd.sample(range(1, 14), 3)
array[indices] = 1, 2, 3
arrays.append(array)
return arrays
def tst_transition_matrix(self):
layouts = self.generate_arrays(1000)
for array in layouts:
print(array)
self.compute_transition_matrix(array, False)
self.compute_transition_matrix(array, True)
#tmc = TransitionMatrixCalculator()
#tmc.tst_transition_matrix()
import numpy as np
import random as rd
from openpyxl import Workbook
class TransitionMatrixCalculator:
def __init__(self):
......@@ -9,12 +8,9 @@ class TransitionMatrixCalculator:
self.matrix_normal = np.zeros((15, 15))
self.matrix_risky = np.zeros((15, 15))
# Probability to go from state k to k'
safe_dice = np.array([1/2, 1/2])
normal_dice = np.array([1/3, 1/3, 1/3])
risky_dice = np.array([1/4, 1/4, 1/4, 1/4])
self.safe_dice = safe_dice
self.normal_dice = normal_dice
self.risky_dice = risky_dice
self.safe_dice = np.array([1/2, 1/2])
self.normal_dice = np.array([1/3, 1/3, 1/3])
self.risky_dice = np.array([1/4, 1/4, 1/4, 1/4])
def compute_transition_matrix(self, layout, circle=False):
self.matrix_safe.fill(0)
......@@ -179,7 +175,7 @@ class TransitionMatrixCalculator:
k_prime = k + s
k_prime = k_prime % 15 if circle else min(14, k_prime)
if layout[k_prime] in [1, 2, 4]:
if layout[k_prime] in [1, 2]:
if layout[k_prime] == 1:
k_prime = 0
self.matrix_risky[k,k_prime] += p
......@@ -208,10 +204,10 @@ class TransitionMatrixCalculator:
array = np.zeros(15, dtype=int)
# Generate 3 random indices between 1 and 13 (exclusive)
indices = rd.sample(range(1, 14), 4)
indices = rd.sample(range(1, 14), 3)
# Assign the values 1, 2 and 3 to the randomly generated indices
array[indices] = 1, 2, 3,4
array[indices] = 1, 2, 3
# Append the generated array to the list
arrays.append(array)
......@@ -221,7 +217,7 @@ class TransitionMatrixCalculator:
# create a function that test the transition matrix for different layout each time with one trap of each sort
def tst_transition_matrix(self):
# create a list of 100 different layouts
layouts = self.generate_arrays(1000)
layouts = self.generate_arrays(100)
for array in layouts:
print(array)
self.compute_transition_matrix(array, False)
......
import numpy as np
from tmc import TransitionMatrixCalculator
class Validation:
def __init__(self, layout, circle=False):
self.layout = layout
self.circle = circle
self.tmc_instance = TransitionMatrixCalculator()
def simulate_game(self, strategy='optimal', num_games=1000):
total_turns = 0
for _ in range(num_games):
if strategy == 'optimal':
turns = self.play_optimal_strategy()
elif strategy == 'dice1':
turns = self.play_dice_strategy(1)
elif strategy == 'dice2':
turns = self.play_dice_strategy(2)
elif strategy == 'dice3':
turns = self.play_dice_strategy(3)
elif strategy == 'random':
turns = self.play_random_strategy()
total_turns += turns
average_turns = total_turns / num_games
return average_turns
def play_optimal_strategy(self):
# Implement the optimal strategy using value iteration results
# Use TransitionMatrixCalculator to compute transitions and make decisions
# calculer la stratégie optimale pour ou un tour
pass
def play_dice_strategy(self, dice):
# Implement a strategy where only one type of dice is used (1, 2, or 3)
pass
def play_random_strategy(self):
# Implement a purely random strategy
pass
def compare_strategies(self, num_games=1000):
optimal_cost = self.simulate_game(strategy='optimal', num_games=num_games)
dice1_cost = self.simulate_game(strategy='dice1', num_games=num_games)
dice2_cost = self.simulate_game(strategy='dice2', num_games=num_games)
dice3_cost = self.simulate_game(strategy='dice3', num_games=num_games)
random_cost = self.simulate_game(strategy='random', num_games=num_games)
return {
'optimal': optimal_cost,
'dice1': dice1_cost,
'dice2': dice2_cost,
'dice3': dice3_cost,
'random': random_cost
}
# Example usage
layout = [0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 0]
validation = Validation(layout, circle=False)
results = validation.compare_strategies(num_games=10000)
print("Average Costs:")
for strategy, cost in results.items():
print(f"{strategy}: {cost}")
import numpy as np
from tmc import TransitionMatrixCalculator
import random
import matplotlib.pyplot as plt
from markovDecision import markovDecision
class Validation:
def __init__(self, layout, circle=False):
self.layout = layout
self.circle = circle
self.tmc_instance = TransitionMatrixCalculator()
def simulate_game(self, strategy='optimal', num_games=1000):
total_turns = 0
for _ in range(num_games):
if strategy == 'optimal':
turns = self.play_optimal_strategy()
elif strategy == 'dice1':
turns = self.play_dice_strategy(1)
elif strategy == 'dice2':
turns = self.play_dice_strategy(2)
elif strategy == 'dice3':
turns = self.play_dice_strategy(3)
elif strategy == 'random':
turns = self.play_random_strategy()
total_turns += turns
average_turns = total_turns / num_games
return average_turns
def play_optimal_strategy(self):
_, optimal_policy = markovDecision(self.layout, self.circle)
return self.empirical_results(optimal_policy.astype(int))
def play_dice_strategy(self, dice):
policy = np.ones(len(self.layout), dtype=int) * dice
return self.empirical_results(policy)
def play_random_strategy(self):
policy = np.zeros(len(self.layout), dtype=int)
for i in range(len(policy) - 1):
policy[i] = random.choice([1, 2, 3])
return self.empirical_results(policy)
def empirical_results(self, policy):
avgnTurnsPlayed = 0
nSimul = 10000
for _ in range(nSimul):
nTurns = self.playOneGame(policy)
avgnTurnsPlayed += nTurns
return avgnTurnsPlayed / nSimul
def playOneGame(self, policy):
nSquares = len(self.layout)
nTurns = 0
curPos = 0
jail = False
while curPos < nSquares - 1:
newPos, jail = self.playOneTurn(policy[curPos], curPos)
curPos = newPos
nTurns += 1
return nTurns
def playOneTurn(self, diceChoice, curPos):
nSquares = len(self.layout)
if curPos == nSquares - 1:
return nSquares - 1, False
if jail :
return curPos, False
listDiceResults = [i for i in range(diceChoice + 1)]
result = random.choice(listDiceResults)
if curPos == 2 and result != 0:
slowLane = random.choice([0, 1])
if slowLane:
newPos = curPos + result
else:
newPos = curPos + result + 7
elif ((curPos == 9 and result != 0) or ((curPos in [7, 8, 9]) and (curPos + result >= 10))):
newPos = curPos + result + 4
else:
newPos = curPos + result
if newPos > nSquares - 1:
if self.circle:
newPos -= nSquares
else:
return nSquares - 1, True
newSquare = self.layout[newPos]
if diceChoice == 1:
return newPos, False
elif diceChoice == 2:
newSquare = random.choice([0, newSquare])
if newSquare == 0:
return newPos, False
elif newSquare == 1:
return 0, False
elif newSquare == 2:
if newPos - 3 < 0:
return 0, False
return newPos - 3, False
elif newSquare == 3:
return newPos, True
elif newSquare == 4:
newSquare = random.choice([1, 2, 3])
if newSquare == 1:
return 0, False
elif newSquare == 2:
if newPos - 3 < 0:
return 0, False
return newPos - 3, False
elif newSquare == 3:
return newPos, True
def compare_strategies(self, num_games=1000):
optimal_cost = self.simulate_game(strategy='optimal', num_games=num_games)
dice1_cost = self.simulate_game(strategy='dice1', num_games=num_games)
dice2_cost = self.simulate_game(strategy='dice2', num_games=num_games)
dice3_cost = self.simulate_game(strategy='dice3', num_games=num_games)
random_cost = self.simulate_game(strategy='random', num_games=num_games)
return {
'optimal': optimal_cost,
'dice1': dice1_cost,
'dice2': dice2_cost,
'dice3': dice3_cost,
'random': random_cost
}
# Example usage
layout = [0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 0]
validation = Validation(layout, circle=False)
results = validation.compare_strategies(num_games=10000)
print("Average Costs:")
for strategy, cost in results.items():
print(f"{strategy}: {cost}")
import random as rd
import numpy as np
import matplotlib.pyplot as plt
from tmc import TransitionMatrixCalculator as tmc
from markovDecision import markovDecision as mD
class EmpiricalComparision :
def __init__(self) :
return
def simulation(strategy, layout : list, circle, nIter : int) :
tmc_instance = tmc()
safe_dice = tmc_instance._compute_safe_matrix(layout, circle)
normal_dice = tmc_instance._compute_normal_matrix(layout, circle)
risky_dice = tmc_instance._compute_risky_matrix(layout, circle)
matrices_transition = [safe_dice, normal_dice, risky_dice]
nTurns = []
turns = 0
for _ in range(nIter) :
turns = 0
k = 0
while k < len(layout)-1 :
action = strategy[k]
transitionMatrix = matrices_transition[int(action -1)]
k = np.rd.choice(len(layout), p = transitionMatrix[k])
if layout[k] == 3 and action == 2 :
turns +=1 if np.rd.uniform(0,1) < 0.5 else 2
elif layout[k] == 3 and action == 3 :
turns += 2
else :
turns += 1
nTurns.append(turns)
return np.mean(nTurns)
def plot(layouts : list, circle, nIter : int) :
Markov = []
Safe = []
Normal = []
Risky = []
Random = []
for layout in layouts :
expec, policy = mD(layout, circle)
# Simulate the game
return
layout = [0,0,3,0,0,0,2,0,0,0,3,0,0,1,0]
results(layout, False, 1000000)
results(layout, True, 1000000)
\ No newline at end of file
0% Chargement en cours ou .
You are about to add 0 people to the discussion. Proceed with caution.
Terminez d'abord l'édition de ce message.
Veuillez vous inscrire ou vous pour commenter