Skip to content
Extraits de code Groupes Projets
deprecated_c_code.c 13,5 ko
Newer Older
  • Learn to ignore specific revisions
  • Michel Crucifix's avatar
    Michel Crucifix a validé
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    int fmft_real(int *localnfreq, double *localminfreq, double *localmaxfreq, int *localflag, 
    	 int *localndata, double *localxdata, 
       struct component *signal1, struct component *signal2, struct component *signal3);
    
    
    int fmft_real(int *localnfreq, double *localminfreq, double *localmaxfreq, int *localflag, 
    	 int *localndata, double *localxdata,
       struct component *signal1, struct component *signal2, struct component *signal3)
    
    /*  struct component signal1[nfreq];*/
    /*  struct component signal2[nfreq];*/
    /*  struct component signal3[nfreq];*/
    /*   struct component* signal1  = new struct component[localnfreq];*/
    /*   struct component* signal2  = new struct component[localnfreq];*/
    /*   struct component* signal3  = new struct component[localnfreq];*/
    
    /* 
    MC : signal1, signal2 and signal3 are now replacing the old output array
    In the output array **output: output[3*flag-2][i], output[3*flag-1][i] 
    and output[3*flag][i] are the i-th frequency, amplitude and phase; nfreq is the 
    number of frequencies to be computed (the units are rad/sep, where sep is the 
    `time' separation between i and i+1. The algorithm is  
    
    Basic Fourier Transform algorithm           if   flag = 0;   not implemented   
    Modified Fourier Transform                  if   flag = 1;
    Frequency Modified Fourier Transform        if   flag = 2;
    FMFT with additional non-linear correction  if   flag = 3
    
    (while the first algorithm is app. 3 times faster than the third one, 
    the third algorithm should be in general much more precise).  
    The computed frequencies are in the range given by minfreq and maxfreq.
    The function returns the number of determined frequencies or 0 in the case
    of error.
    
    The vectors input[1][j] and input[2][j], j = 1 ... ndata (ndata must
    be a power of 2), are the input data X(j-1) and Y(j-1).
    */   
         
    {
      int nearfreqflag;
      long i,j,k,l,m;
      float *powsd;
      double *xdata,  *x, *y;
      double centerf, leftf, rightf, facplus, facminus, fac,
             sinplus, cosplus, sinminus, cosminus, factemp,
             xsum, ysum;
      double **freq, **amp, **phase, *f, *A, *Ac, *As, *psi;
      double **Q, **alpha, *B;
    
      FILE *fp;
    
      int nfreq = *localnfreq;
      double minfreq = *localminfreq;
      double maxfreq = *localmaxfreq;
      int flag = *localflag;
      size_t ndata = *localndata;
      size_t ndata_real = (ndata+1)/2 ; 
      fastflag = isPowerofTwo(ndata) ;
    
      if (fastflag)
        (printf("ndata is power of two: we will be faster ! \n"));
      if (ndata <= 2){
        printf("at least 2 data needed - output non-reliable"); return(0);
      }
      if (ndata <= nfreq){
        printf("nfreq must be smaller than nata"); return(0);
      }
    
    /*  printf("prelimarg %d, %zu %d", nfreq, ndata, flag);*/
    
      /* ALLOCATION OF VARIABLES */
    
    /*  xdata = dvector(1,ndata);*/
    /*  ydata = dvector(1,ndata);*/
      x = dvector(1,ndata);
      y = dvector(1,ndata);
    
      powsd = vector(1, ndata);
      
      freq = dmatrix(1, 3*flag, 1, nfreq); 
      amp = dmatrix(1, 3*flag, 1, nfreq);
      phase = dmatrix(1, 3*flag, 1, nfreq);
    
      f = dvector(1, nfreq);
      A = dvector(1, nfreq);
      As = dvector(1, nfreq);
      Ac = dvector(1, nfreq);
      psi = dvector(1, nfreq);
    
      
      Q = dmatrix(1, 2*nfreq, 1, 2*nfreq); 
      alpha = dmatrix(1, 2*nfreq, 1, 2*nfreq);
      B = dvector(1, 2*nfreq);
     
    
      /* 1 LOOP FOR MFT, 2 LOOPS FOR FMFT, 3 LOOPS FOR NON-LINEAR FMFT */
    
      for(l=1; l<=flag; l++){
     
        if(l==1){
          xdata = localxdata -1;  // -1 because dvector vs *double
    /*      ydata = localydata -1;*/
          /* SEPARATE REAL AND IMAGINERY PARTS */ 
    /*      for(j=1;j<=ndata;j++){*/
    /*  xdata[j] = localxdata[j-1];*/
    /*  ydata[j] = localydata[j-1];*/
    
        } else {
    
           /* GENERATE THE QUASIPERIODIC FUNCTION COMPUTED BY MFT */
          for(i=1;i<=ndata;i++){
    	xdata[i] = 0; 
    	for(k=1;k<=nfreq;k++){
    	  xdata[i] += amp[l-1][k]*cos(freq[l-1][k]*(i-1) + phase[l-1][k]);
    /*    ydata[i] += amp[l-1][k]*sin(freq[l-1][k]*(i-1) + phase[l-1][k]);*/
    	}
          }
    
        }
      
    
        /* MULTIPLY THE SIGNAL BY A WINDOW FUNCTION, STORE RESULT IN x AND y */
        window_real(x, xdata, ndata);
        
        /* COMPUTE POWER SPECTRAL DENSITY USING FAST FOURIER TRANSFORM */
        power_real(powsd, x, ndata);
    
    
        if(l==1)  {
    
    	printf("l=1 ; start the while loop \n");
          /* CHECK IF THE FREQUENCY IS IN THE REQUIRED RANGE */
          while((centerf = bracket_real(powsd, ndata)) < minfreq || centerf > maxfreq) {
    
    	printf("centerf = %.2f \n",centerf);
    	/* IF NO, SUBSTRACT IT FROM THE SIGNAL */
    	leftf = centerf - TWOPI / ndata;
    	rightf = centerf + TWOPI / ndata;
    	
    	f[1] = golden_real(phisqr_real, leftf, centerf, rightf, x, ndata);
    	
    	printf("f[1] = %.2f \n",centerf);
    	amph_real(&A[1], &Ac[1], &As[1], &psi[1], f[1], x, ndata);
    	printf("&A[1] = %.2f ; Ac = %.2f ; As = %.2f\n",&A[1], &Ac[1], &As[1]);
    	printf("------\n",centerf);
    	
    	for(j=1;j<=ndata;j++){
    /*    xdata[j] -= A[1]*cos( f[1]*(j-1) + psi[1] );*/
    	  xdata[j] -= Ac[1]*cos( f[1]*(j-1)  );
    	  xdata[j] -= As[1]*sin( f[1]*(j-1)  );
    	}
    
    
    	window_real(x, xdata, ndata);
    	power_real(powsd, x, ndata); 
          }   }
    
        else 
          centerf = freq[1][1];
    
        leftf = centerf - TWOPI / ndata;
        rightf = centerf + TWOPI / ndata;
    
        /* DETERMINE THE FIRST FREQUENCY */
        f[1] = golden_real(phisqr_real, leftf, centerf, rightf, x, ndata);
        
        /* COMPUTE AMPLITUDE AND PHASE */
        amph_real(&A[1], &Ac[1], &As[1], &psi[1], f[1], x, ndata);
        
        /* SUBSTRACT THE FIRST HARMONIC FROM THE SIGNAL */
        for(j=1;j<=ndata;j++){
          xdata[j] -= Ac[1]*cos( f[1]*(j-1)  );
          xdata[j] -= As[1]*sin( f[1]*(j-1)  );
        }    
        /* HERE STARTS THE MAIN LOOP  *************************************/ 
        
        printf("start the main loop \n");
        Q[1][1] = 1;
        alpha[1][1] = 1;
        
        for(m=2;m<=nfreq;m++){
        printf("m = %i \n", m );
          /* MULTIPLY SIGNAL BY WINDOW FUNCTION */
          window_real(x, xdata, ndata);
          
          /* COMPUTE POWER SPECTRAL DENSITY USING FAST FOURIER TRANSFORM */
          power_real(powsd, x, ndata);
          
          if(l==1){
    	
    	centerf = bracket_real(powsd, ndata);
    
    	leftf = centerf - TWOPI / ndata;
    	rightf = centerf + TWOPI / ndata;
    
    	f[m] = golden_real(phisqr_real, leftf, centerf, rightf, x, ndata);
    
    	/* CHECK WHETHER THE NEW FREQUENCY IS NOT TOO CLOSE TO ANY PREVIOUSLY
    	   DETERMINED ONE */
    	nearfreqflag = 0;
    	for(k=1;k<=m-1;k++) if( fabs(f[m] - f[k]) < FMFT_NEAR*TWOPI/ndata )   nearfreqflag = k; 
    	    
    	/* CHECK IF THE FREQUENCY IS IN THE REQUIRED RANGE */
    	while(f[m] < minfreq || f[m] > maxfreq || nearfreqflag > 0){
    	  
    	  printf("centerf = %.2f \n",centerf);
    	  /* IF NO, SUBSTRACT IT FROM THE SIGNAL */
    	  leftf = centerf - TWOPI / ndata;
    	  rightf = centerf + TWOPI / ndata;
    	  
    	  f[m] = golden_real(phisqr_real, leftf, centerf, rightf, x, ndata);
    	  
    	printf("f[%i] = %.2f (minfreq= %.2f, maxfreq=%.2f) \n",m, f[m], minfreq, maxfreq);
    	  amph_real(&A[m], &Ac[m], &As[m], &psi[m], f[m], x,  ndata);
    	printf("&A[1] = %.2f ; Ac = %.2f ; As = %.2f\n",&A[1], &Ac[1], &As[1]);
    	printf("------\n",centerf);
    	  
    	  for(j=1;j<=ndata;j++){
    	    xdata[j] -= Ac[m]*cos( f[m]*(j-1)  );
    	    xdata[j] -= As[m]*sin( f[m]*(j-1)  );
    	  }
    	  
    	  /* AND RECOMPUTE THE NEW ONE */
    	  window_real(x, xdata, ndata);
    	  
    	  power_real(powsd, x, ndata); 
    	  
    	  centerf = bracket_real(powsd, ndata); 
    
    	  leftf = centerf - TWOPI / ndata;
    	  rightf = centerf + TWOPI / ndata;
    	  
    	  f[m] = golden_real(phisqr_real, leftf, centerf, rightf, x, ndata);
    	  
    	  nearfreqflag = 0.;
    	  for(k=1;k<=m-1;k++)
    	    if( fabs(f[m] - f[k]) < FMFT_NEAR*TWOPI/ndata )   nearfreqflag = 1; 
    
    	}   
    
          } else {  
    	
    	centerf = freq[1][m];
    	
    	leftf = centerf - TWOPI / ndata;
    	rightf = centerf + TWOPI / ndata;
    	
    	/* DETERMINE THE NEXT FREQUENCY */
    	f[m] = golden_real(phisqr_real, leftf, centerf, rightf, x,  ndata);
    	
          }
    
          /* COMPUTE ITS AMPLITUDE AND PHASE */
          amph_real(&A[m], &Ac[m], &As[m],  &psi[m], f[m], x, ndata);
          
          /* EQUATION (3) in Sidlichovsky and Nesvorny (1997) */
    	    facplus = (f[m] + f[m]) * (ndata - 1.) / 2.;
    	    facminus = 0.;
    
          facplus= sin(facplus)/facplus * PI*PI / (PI*PI - facplus*facplus);
          facminus= 1.;
    
          sinplus = 0.5 * sin(2*f[m]) * facplus;
          sinminus = 0.;
          cosplus = 0.5 * cos(2*f[m]) * facplus;
          cosminus =  facplus;
        	Q[2*m-1][2*m-1] = (cosminus + cosplus);
        	Q[2*m-1][2*m]   = sinplus;
        	Q[2*m][2*m-1]   = sinplus;
        	Q[2*m][2*m]     = (cosminus - cosplus);
    
    
          for(j=1;j<=m-1;j++){
    
    	facplus = (f[m] + f[j]) * (ndata - 1.) / 2.;
    	facminus = (f[m] - f[j]) * (ndata - 1.) / 2.;
      facminus= sin(facminus)/facminus * PI*PI / (PI*PI - facminus*facminus);
      facplus= sin(facplus)/facplus * PI*PI / (PI*PI - facplus*facplus);
    
    
      sinplus  = 0.5 * sin(f[m] + f[j]) * facplus ; 
      sinminus = 0.5 * sin(f[m] - f[j]) * facminus ; 
      cosplus  = 0.5 * sin(f[m] + f[j]) * facplus ; 
      cosminus = 0.5 * sin(f[m] + f[j]) * facminus ; 
    
      // coscos, cossin, sincos, sinsin
    	Q[2*m-1][2*j-1] = (cosminus + cosplus);
    	Q[2*m-1][2*j] =   (sinplus - sinminus);
    	Q[2*m][2*j-1] =   (sinplus + sinminus);
    	Q[2*m][2*j] =     (cosminus - cosplus);
    
      // the symmetrics are, indeed, symmetric
      //
    	Q[2*m-1][2*j-1] = Q[2*j-1][2*m-1];
    	Q[2*m-1][2*j  ] = Q[2*j-1][2*m  ];
    	Q[2*m  ][2*j-1] = Q[2*j  ][2*m-1];
    	Q[2*m  ][2*j  ] = Q[2*j  ][2*m  ];
    
          }
          
          /* EQUATION (17) */
          for(k=1;k<=2*m-1;k++){
    	B[k] = 0;
    	for(j=1;j<=k;j++)
    	  B[k] += -alpha[k][j]*Q[m][j];
          }
    
          /* EQUATION (18) */
          alpha[m][m] = 1;
          for(j=1;j<=2*m-1;j++)
    	alpha[m][m] -= B[j]*B[j];
          alpha[m][m] = 1. / sqrt(alpha[m][m]);
          
          
          /* EQUATION (19) */
          for(k=1;k<=2*m-1;k++){
    	alpha[m][k] = 0;
    	for(j=k;j<=2*m-1;j++)
    	  alpha[m][k] += B[j]*alpha[j][k];
    	alpha[m][k] = alpha[m][m]*alpha[m][k];
          }
     
    /* ICICICICICI */ 
    
          /* EQUATION (22) */
          for(i=1;i<=ndata;i++){
    	xsum=0; ysum=0;
      /* on est a l'equation 21
       * la difficulte est que f_m est en fait f_(2m)
       * il faut retnancher deux composantet
       * f[2m] = f_[2m-1] - a(2m)(2m) f_[2m-1]*sum1
       * f_[2m-1] = f_[2m-2] - a(2m-1)(2m-1) f_[2m-2]*sum2 */
    	for(j=1;j<=2*m;j=j+2){
        fac = f[j]*(i-1) ;
    	  xsum += alpha[2*m-1][2*j-1]*cos(fac);
    	  xsum += alpha[2*m-1][2*j]*sin(fac);
    	  ysum += alpha[2*m][2*j-1]*cos(fac);
    	  ysum += alpha[2*m][2*j]*sin(fac);
    	}
    	xdata[i] -= alpha[2*m-1][2*m-1]*Ac[m]*xsum;
    	xdata[i] -= alpha[2*m][2*m]*As[m]*ysum;
    	xdata[i] -= alpha[2*m][2*m-1]*As[m]*sin(fac);
          }
        }
        
        /* EQUATION (26) */
        for(k=1;k<=nfreq;k++){
          xsum=0; ysum=0;
          for(j=k;j<=nfreq;j++){
          	xsum += alpha[2*j-1][2*j-1]*alpha[2*j-1][2*k-1]*Ac[j];
          	xsum += alpha[2*j-1][2*j-1]*alpha[2*j-1][2*k]*Ac[j];
          	ysum += alpha[2*j][2*j]*alpha[2*j][2*k-1]*As[j];
          	ysum += alpha[2*j][2*j]*alpha[2*j][2*k]*As[j];
          }
            xsum += alpha[2*k-1][2*k-1]*alpha[2*k-1][2*k]*Ac[k];
           A[k] = sqrt(xsum*xsum + ysum*ysum);
           Ac[k] = xsum;
           As[k] = ysum;
           psi[k] = -atan2(ysum,xsum);
        }
        
        /* REMEMBER THE COMPUTED VALUES FOR THE FMFT */
        for(k=1;k<=nfreq;k++){
          freq[l][k] = f[k];
          amp[l][k] = A[k];
          phase[l][k] = psi[k];
      }
      }
      /* RETURN THE FINAL FREQUENCIES, AMPLITUDES AND PHASES */ 
    
      
       for(k=1;k<=nfreq;k++){
         signal1[k-1].freq = freq[1][k];            
         signal1[k-1].amp = amp[1][k];
         signal1[k-1].phase = phase[1][k];
     
         if(signal1[k-1].phase < -PI) signal1[k-1].phase += TWOPI;
         if(signal1[k-1].phase >= PI) signal1[k-1].phase -= TWOPI;
       }
       
       if(flag==2 || flag==3){
     
     
         for(k=1;k<=nfreq;k++){
           signal2[k-1].freq = freq[1][k] + (freq[1][k] - freq[2][k]);            
           signal2[k-1].amp = amp[1][k] + (amp[1][k] - amp[2][k]);
           signal2[k-1].phase = phase[1][k] + (phase[1][k] - phase[2][k]);
           
           if(signal2[k-1].phase < -PI) signal2[k-1].phase += TWOPI;
           if(signal2[k-1].phase >= PI) signal2[k-1].phase -= TWOPI;
         }
       
       if(flag==3){
         for(k=1;k<=nfreq;k++){
           
           signal3[k-1].amp = freq[1][k];
           if(fabs((fac = freq[2][k] - freq[3][k])/freq[2][k]) > FMFT_TOL)
     	signal3[k-1].freq += DSQR(freq[1][k] - freq[2][k]) / fac;
           else 
     	signal3[k-1].freq += freq[1][k] - freq[2][k]; 
     
           signal3[k-1].amp = amp[1][k];
           if(fabs((fac = amp[2][k] - amp[3][k])/amp[2][k]) > FMFT_TOL)
     	signal3[k-1].amp += DSQR(amp[1][k] - amp[2][k]) / fac;
           else
     	signal3[k-1].amp += amp[1][k] - amp[2][k]; 
     
           signal3[k].phase = phase[1][k];
           if(fabs((fac = phase[2][k] - phase[3][k])/phase[2][k]) > FMFT_TOL)
     	signal3[k-1].phase += DSQR(phase[1][k] - phase[2][k]) / fac;
           else
     	signal3[k-1].phase += phase[1][k] - phase[2][k]; 
     
           if(signal3[k-1].phase < -PI) signal3[k-1].phase += TWOPI;
           if(signal3[k-1].phase >= PI) signal3[k-1].phase -= TWOPI;
         }
       }
       }
     
       /* SORT THE FREQUENCIES IN DECREASING ORDER OF AMPLITUDE */
     
       int cmpfunc (const void * a, const void * b){
        return ( (*(struct component *)b).amp > (*(struct component *)a).amp);
       }
     
    /*   if(flag==1) */
         qsort(signal1,nfreq,sizeof(struct component), cmpfunc);
       
    /*   if(flag > 1){*/
         qsort(signal2,nfreq,sizeof(struct component), cmpfunc);
    /*   }*/
     
    /*   if(flag==3){*/
         qsort(signal3,nfreq,sizeof(struct component), cmpfunc);
    /*   }*/
      /* FREE THE ALLOCATED VARIABLES */
    /*  free_dvector(xdata, 1, ndata);*/
    /*  free_dvector(ydata, 1, ndata);*/
    
      free_dvector(x, 1, ndata);
      free_dvector(y, 1, ndata);
      free_vector(powsd, 1, ndata);
      
      free_dmatrix(freq, 1, 3*flag, 1, nfreq); 
      free_dmatrix(amp, 1, 3*flag, 1, nfreq);
      free_dmatrix(phase, 1, 3*flag, 1, nfreq);
    
      free_dvector(f, 1, nfreq);
      free_dvector(A, 1, nfreq);
      free_dvector(Ac, 1, nfreq);
      free_dvector(As, 1, nfreq);
      free_dvector(psi, 1, nfreq);
     
      free_dmatrix(Q, 1, 2*nfreq, 1, 2*nfreq); 
      free_dmatrix(alpha, 1, 2*nfreq, 1, 2*nfreq);
      free_dvector(B, 1, 2*nfreq);
    
      return 1;
    }