Skip to content
Extraits de code Groupes Projets
Valider ad5707cf rédigé par Adrien Payen's avatar Adrien Payen
Parcourir les fichiers

update readme

parent 2ee16de5
Aucune étiquette associée trouvée
Aucune requête de fusion associée trouvée
...@@ -84,7 +84,35 @@ Ceux-ci se trouvent dans le même dossier que chacun des jupyter notebook (.ipyn ...@@ -84,7 +84,35 @@ Ceux-ci se trouvent dans le même dossier que chacun des jupyter notebook (.ipyn
En complément des analyses mentionnées, une distribution des 'ratings' par films a été effectuée. Cette distribution offre un aperçu détaillé de la manière dont les différentes notes sont réparties entre les films, mettant en lumière les tendances de notation et les variations de popularité parmi les films. De plus, une matrice de sparsité a été calculée pour évaluer la densité des données. Cette matrice montre la proportion de cases vides ou non renseignées dans la matrice des notes, ce qui est crucial pour comprendre la disponibilité des données et leur potentiel pour l'analyse et la modélisation. En complément des analyses mentionnées, une distribution des 'ratings' par films a été effectuée. Cette distribution offre un aperçu détaillé de la manière dont les différentes notes sont réparties entre les films, mettant en lumière les tendances de notation et les variations de popularité parmi les films. De plus, une matrice de sparsité a été calculée pour évaluer la densité des données. Cette matrice montre la proportion de cases vides ou non renseignées dans la matrice des notes, ce qui est crucial pour comprendre la disponibilité des données et leur potentiel pour l'analyse et la modélisation.
2. **Evaluator_block** (à compléter) 2. **Evaluator_block**
- evaluator.ipynb
Importation des Packages et des Modules :
Les packages model_selection et accuracy de Surprise ont été importés pour effectuer une validation croisée et utiliser des métriques prédéfinies pour l'évaluation des modèles.
Adaptation des Chargeurs (Loaders) :
Une fonction load_ratings() a été modifiée pour permettre le chargement de données dans un format compatible avec Surprise. Un argument surprise_format a été ajouté pour conditionner le chargement en un objet Dataset compatible Surprise à partir d'un DataFrame Pandas.
Validation Croisée (Crossvalidation) :
Trois méthodes d'évaluation ont été mises en œuvre :
generate_split_predictions(): Cette fonction divise l'ensemble de données en un ensemble d'entraînement et un ensemble de test en utilisant train_test_split de Surprise.
generate_loo_top_n(): Ici, un processus "leave-one-out" (Laisser un élément de côté) est utilisé pour générer des recommandations top-N et évaluer les performances du modèle.
generate_full_top_n(): Cette fonction utilise l'ensemble complet de données pour générer des recommandations top-N sans division.
Nouvelles Métriques d'Évaluation :
Trois nouvelles métriques ont été ajoutées pour évaluer les modèles de recommandation :
rmse (split type): Racine carrée de l'erreur quadratique moyenne pour évaluer les prédictions.
hit rate (loo type): Taux de succès mesurant le pourcentage d'utilisateurs pour lesquels l'un des films recommandés est celui qu'ils ont noté dans l'ensemble de test.
novelty (full type): Mesure de la nouveauté des recommandations en fonction de la popularité des films recommandés.
Exportation du Rapport d'Évaluation :
Une fonction export_evaluation_report() a été mise en œuvre pour exporter le rapport d'évaluation vers un fichier CSV dans un répertoire spécifié.
3. **User_based** (à compléter) 3. **User_based** (à compléter)
...@@ -124,7 +152,16 @@ Nous tenons à exprimer notre gratitude envers plusieurs parties qui ont jouées ...@@ -124,7 +152,16 @@ Nous tenons à exprimer notre gratitude envers plusieurs parties qui ont jouées
- https://pandas.pydata.org/docs/reference/frame.html - https://pandas.pydata.org/docs/reference/frame.html
- https://www.jillcates.com/pydata-workshop/html/tutorial.html - https://www.jillcates.com/pydata-workshop/html/tutorial.html
2. **Evaluator_block** (à compléter) 2. **Evaluator_block**
- https://forge.uclouvain.be/cvandekerckh/mlsmm2156
- https://bit.ly/3qnwKXa
- https://bit.ly/4cBLxDM
- https://numpy.org/doc/stable/user/quickstart.html
- https://pandas.pydata.org/docs/getting_started/intro_tutorials/index.html
- https://pandas.pydata.org/docs/reference/frame.html
- https://surprise.readthedocs.io/en/stable/
3. **User_based** (à compléter) 3. **User_based** (à compléter)
......
%% Cell type:markdown id:a665885b tags: %% Cell type:markdown id:a665885b tags:
# Evaluator Module # Evaluator Module
The Evaluator module creates evaluation reports. The Evaluator module creates evaluation reports.
Reports contain evaluation metrics depending on models specified in the evaluation config. Reports contain evaluation metrics depending on models specified in the evaluation config.
%% Cell type:code id:6aaf9140 tags: %% Cell type:code id:6aaf9140 tags:
``` python ``` python
# reloads modules automatically before entering the execution of code # reloads modules automatically before entering the execution of code
%load_ext autoreload %load_ext autoreload
%autoreload 2 %autoreload 2
# third parties imports # imports
import numpy as np import numpy as np
import pandas as pd import pandas as pd
# -- add new imports here --
# local imports # local imports
from configs import EvalConfig from configs import EvalConfig
from constants import Constant as C from constants import Constant as C
from loaders import export_evaluation_report from loaders import export_evaluation_report
from loaders import load_ratings from loaders import load_ratings
# -- add new imports here --
# New imports
from surprise.model_selection import train_test_split from surprise.model_selection import train_test_split
from surprise import accuracy from surprise import accuracy
from surprise.model_selection import LeaveOneOut from surprise.model_selection import LeaveOneOut
from collections import Counter from collections import Counter
``` ```
%% Cell type:markdown id:d47c24a4 tags: %% Cell type:markdown id:d47c24a4 tags:
# 1. Model validation functions # 1. Model validation functions
Validation functions are a way to perform crossvalidation on recommender system models. Validation functions are a way to perform crossvalidation on recommender system models.
%% Cell type:code id:d6d82188 tags: %% Cell type:code id:d6d82188 tags:
``` python ``` python
# -- implement the function generate_split_predictions --
def generate_split_predictions(algo, ratings_dataset, eval_config): def generate_split_predictions(algo, ratings_dataset, eval_config):
"""Generate predictions on a random test set specified in eval_config""" """Generate predictions on a random test set specified in eval_config"""
# -- implement the function generate_split_predictions --
# Spliting the data into train and test sets # Spliting the data into train and test sets
trainset, testset = train_test_split(ratings_dataset, test_size=eval_config.test_size) trainset, testset = train_test_split(ratings_dataset, test_size=eval_config.test_size)
# Training the algorithm on the train data set # Training the algorithm on the train data set
algo.fit(trainset) algo.fit(trainset)
# Predict ratings for the testset # Predict ratings for the testset
predictions = algo.test(testset) predictions = algo.test(testset)
return predictions
return predictions
# -- implement the function generate_loo_top_n --
def generate_loo_top_n(algo, ratings_dataset, eval_config): def generate_loo_top_n(algo, ratings_dataset, eval_config):
"""Generate top-n recommendations for each user on a random Leave-one-out split (LOO)""" """Generate top-n recommendations for each user on a random Leave-one-out split (LOO)"""
# -- implement the function generate_loo_top_n --
# Create a LeaveOneOut split # Create a LeaveOneOut split
loo = LeaveOneOut(n_splits=1) loo = LeaveOneOut(n_splits=1)
for trainset, testset in loo.split(ratings_dataset): for trainset, testset in loo.split(ratings_dataset):
algo.fit(trainset) # Train the algorithm on the training set algo.fit(trainset) # Train the algorithm on the training set
anti_testset = trainset.build_anti_testset() # Build the anti test-set anti_testset = trainset.build_anti_testset() # Build the anti test-set
predictions = algo.test(anti_testset) # Get predictions on the anti test-set predictions = algo.test(anti_testset) # Get predictions on the anti test-set
top_n = {} top_n = {}
for uid, iid, _, est, _ in predictions: for uid, iid, _, est, _ in predictions:
if uid not in top_n: if uid not in top_n:
top_n[uid] = [] top_n[uid] = []
top_n[uid].append((iid, est)) top_n[uid].append((iid, est))
for uid, user_ratings in top_n.items(): for uid, user_ratings in top_n.items():
user_ratings.sort(key=lambda x: x[1], reverse=True) user_ratings.sort(key=lambda x: x[1], reverse=True)
top_n[uid] = user_ratings[:eval_config.top_n_value] # Get top-N recommendations top_n[uid] = user_ratings[:eval_config.top_n_value] # Get top-N recommendations
anti_testset_top_n = top_n anti_testset_top_n = top_n
return anti_testset_top_n, testset return anti_testset_top_n, testset
def generate_full_top_n(algo, ratings_dataset, eval_config): def generate_full_top_n(algo, ratings_dataset, eval_config):
"""Generate top-n recommendations for each user with full training set (LOO)""" """Generate top-n recommendations for each user with full training set (LOO)"""
full_trainset = ratings_dataset.build_full_trainset() # Build the full training set full_trainset = ratings_dataset.build_full_trainset() # Build the full training set
algo.fit(full_trainset) # Train the algorithm on the full training set algo.fit(full_trainset) # Train the algorithm on the full training set
anti_testset = full_trainset.build_anti_testset() # Build the anti test-set anti_testset = full_trainset.build_anti_testset() # Build the anti test-set
predictions = algo.test(anti_testset) # Get predictions on the anti test-set predictions = algo.test(anti_testset) # Get predictions on the anti test-set
top_n = {} top_n = {}
for uid, iid, _, est, _ in predictions: for uid, iid, _, est, _ in predictions:
if uid not in top_n: if uid not in top_n:
top_n[uid] = [] top_n[uid] = []
top_n[uid].append((iid, est)) top_n[uid].append((iid, est))
for uid, user_ratings in top_n.items(): for uid, user_ratings in top_n.items():
user_ratings.sort(key=lambda x: x[1], reverse=True) user_ratings.sort(key=lambda x: x[1], reverse=True)
top_n[uid] = user_ratings[:eval_config.top_n_value] # Get top-N recommendations top_n[uid] = user_ratings[:eval_config.top_n_value] # Get top-N recommendations
anti_testset_top_n = top_n anti_testset_top_n = top_n
return anti_testset_top_n return anti_testset_top_n
def precomputed_information(movie_data): def precomputed_information(movie_data):
""" Returns a dictionary that precomputes relevant information for evaluating in full mode """ Returns a dictionary that precomputes relevant information for evaluating in full mode
Dictionary keys: Dictionary keys:
- precomputed_dict["item_to_rank"] : contains a dictionary mapping movie ids to rankings - precomputed_dict["item_to_rank"] : contains a dictionary mapping movie ids to rankings
- (-- for your project, add other relevant information here -- ) - (-- for your project, add other relevant information here -- )
""" """
# Initialize an empty dictionary to store item_id to rank mapping # Initialize an empty dictionary to store item_id to rank mapping
item_to_rank = {} item_to_rank = {}
# Calculate popularity rank for each movie # Calculate popularity rank for each movie
ratings_count = movie_data.groupby('movieId').size().sort_values(ascending=False) ratings_count = movie_data.groupby('movieId').size().sort_values(ascending=False)
# Assign ranks to movies based on their popularity # Assign ranks to movies based on their popularity
for rank, (movie_id, _) in enumerate(ratings_count.items(), start=1): for rank, (movie_id, _) in enumerate(ratings_count.items(), start=1):
item_to_rank[movie_id] = rank item_to_rank[movie_id] = rank
# Create the precomputed dictionary # Create the precomputed dictionary
precomputed_dict = {} precomputed_dict = {}
precomputed_dict["item_to_rank"] = item_to_rank precomputed_dict["item_to_rank"] = item_to_rank
return precomputed_dict return precomputed_dict
def create_evaluation_report(eval_config, sp_ratings, precomputed_dict, available_metrics): def create_evaluation_report(eval_config, sp_ratings, precomputed_dict, available_metrics):
""" Create a DataFrame evaluating various models on metrics specified in an evaluation config. """ Create a DataFrame evaluating various models on metrics specified in an evaluation config.
""" """
evaluation_dict = {} evaluation_dict = {}
for model_name, model, arguments in eval_config.models: for model_name, model, arguments in eval_config.models:
print(f'Handling model {model_name}') print(f'Handling model {model_name}')
algo = model(**arguments) algo = model(**arguments)
evaluation_dict[model_name] = {} evaluation_dict[model_name] = {}
# Type 1 : split evaluations # Type 1 : split evaluations
if len(eval_config.split_metrics) > 0: if len(eval_config.split_metrics) > 0:
print('Training split predictions') print('Training split predictions')
predictions = generate_split_predictions(algo, sp_ratings, eval_config) predictions = generate_split_predictions(algo, sp_ratings, eval_config)
for metric in eval_config.split_metrics: for metric in eval_config.split_metrics:
print(f'- computing metric {metric}') print(f'- computing metric {metric}')
assert metric in available_metrics['split'] assert metric in available_metrics['split']
evaluation_function, parameters = available_metrics["split"][metric] evaluation_function, parameters = available_metrics["split"][metric]
evaluation_dict[model_name][metric] = evaluation_function(predictions, **parameters) evaluation_dict[model_name][metric] = evaluation_function(predictions, **parameters)
# Type 2 : loo evaluations # Type 2 : loo evaluations
if len(eval_config.loo_metrics) > 0: if len(eval_config.loo_metrics) > 0:
print('Training loo predictions') print('Training loo predictions')
anti_testset_top_n, testset = generate_loo_top_n(algo, sp_ratings, eval_config) anti_testset_top_n, testset = generate_loo_top_n(algo, sp_ratings, eval_config)
for metric in eval_config.loo_metrics: for metric in eval_config.loo_metrics:
assert metric in available_metrics['loo'] assert metric in available_metrics['loo']
evaluation_function, parameters = available_metrics["loo"][metric] evaluation_function, parameters = available_metrics["loo"][metric]
evaluation_dict[model_name][metric] = evaluation_function(anti_testset_top_n, testset, **parameters) evaluation_dict[model_name][metric] = evaluation_function(anti_testset_top_n, testset, **parameters)
# Type 3 : full evaluations # Type 3 : full evaluations
if len(eval_config.full_metrics) > 0: if len(eval_config.full_metrics) > 0:
print('Training full predictions') print('Training full predictions')
anti_testset_top_n = generate_full_top_n(algo, sp_ratings, eval_config) anti_testset_top_n = generate_full_top_n(algo, sp_ratings, eval_config)
for metric in eval_config.full_metrics: for metric in eval_config.full_metrics:
assert metric in available_metrics['full'] assert metric in available_metrics['full']
evaluation_function, parameters = available_metrics["full"][metric] evaluation_function, parameters = available_metrics["full"][metric]
evaluation_dict[model_name][metric] = evaluation_function( evaluation_dict[model_name][metric] = evaluation_function(
anti_testset_top_n, anti_testset_top_n,
**precomputed_dict, **precomputed_dict,
**parameters **parameters
) )
return pd.DataFrame.from_dict(evaluation_dict).T return pd.DataFrame.from_dict(evaluation_dict).T
``` ```
%% Cell type:markdown id:f7e83d1d tags: %% Cell type:markdown id:f7e83d1d tags:
# 2. Evaluation metrics # 2. Evaluation metrics
Implement evaluation metrics for either rating predictions (split metrics) or for top-n recommendations (loo metric, full metric) Implement evaluation metrics for either rating predictions (split metrics) or for top-n recommendations (loo metric, full metric)
%% Cell type:code id:f1849e55 tags: %% Cell type:code id:f1849e55 tags:
``` python ``` python
# -- implement the function get_hit_rate --
def get_hit_rate(anti_testset_top_n, testset): def get_hit_rate(anti_testset_top_n, testset):
"""Compute the average hit over the users (loo metric) """Compute the average hit over the users (loo metric)
A hit (1) happens when the movie in the testset has been picked by the top-n recommender A hit (1) happens when the movie in the testset has been picked by the top-n recommender
A fail (0) happens when the movie in the testset has not been picked by the top-n recommender A fail (0) happens when the movie in the testset has not been picked by the top-n recommender
""" """
# -- implement the function get_hit_rate --
hits = 0 hits = 0
total_users = len(testset) total_users = len(testset)
for uid, true_iid, _ in testset: for uid, true_iid, _ in testset:
if uid in anti_testset_top_n and true_iid in {iid for iid, _ in anti_testset_top_n[uid]}: if uid in anti_testset_top_n and true_iid in {iid for iid, _ in anti_testset_top_n[uid]}:
hits += 1 hits += 1
hit_rate = hits / total_users hit_rate = hits / total_users
return hit_rate return hit_rate
# -- implement the function get_novelty --
def get_novelty(anti_testset_top_n, item_to_rank): def get_novelty(anti_testset_top_n, item_to_rank):
"""Compute the average novelty of the top-n recommendation over the users (full metric) """Compute the average novelty of the top-n recommendation over the users (full metric)
The novelty is defined as the average ranking of the movies recommended The novelty is defined as the average ranking of the movies recommended
""" """
# -- implement the function get_novelty --
total_rank_sum = 0 total_rank_sum = 0
total_recommendations = 0 total_recommendations = 0
for uid, recommendations in anti_testset_top_n.items(): for uid, recommendations in anti_testset_top_n.items():
for iid, _ in recommendations: for iid, _ in recommendations:
if iid in item_to_rank: if iid in item_to_rank:
total_rank_sum += item_to_rank[iid] total_rank_sum += item_to_rank[iid]
total_recommendations += 1 total_recommendations += 1
if total_recommendations == 0: if total_recommendations == 0:
return 0 # Avoid division by zero return 0 # Avoid division by zero
average_rank_sum = total_rank_sum / total_recommendations average_rank_sum = total_rank_sum / total_recommendations
return average_rank_sum return average_rank_sum
``` ```
%% Cell type:markdown id:1a9855b3 tags: %% Cell type:markdown id:1a9855b3 tags:
# 3. Evaluation workflow # 3. Evaluation workflow
Load data, evaluate models and save the experimental outcomes Load data, evaluate models and save the experimental outcomes
%% Cell type:code id:704f4d2a tags: %% Cell type:code id:704f4d2a tags:
``` python ``` python
AVAILABLE_METRICS = { AVAILABLE_METRICS = {
"split": { "split": {
"mae": (accuracy.mae, {'verbose': False}), "mae": (accuracy.mae, {'verbose': False}),
"rmse": (accuracy.rmse, {'verbose': False}) "rmse": (accuracy.rmse, {'verbose': False})
# Add new split metrics here if needed
}, },
"loo": { "loo": {
"hit_rate": (get_hit_rate, {}), "hit_rate": (get_hit_rate, {}),
# Add new loo metrics here if needed
}, },
"full": { "full": {
"novelty": (get_novelty, {}), "novelty": (get_novelty, {}),
# Add new full metrics here if needed
} }
} }
sp_ratings = load_ratings(surprise_format=True) sp_ratings = load_ratings(surprise_format=True)
precomputed_dict = precomputed_information(pd.read_csv("data/tiny/evidence/ratings.csv")) precomputed_dict = precomputed_information(pd.read_csv("data/tiny/evidence/ratings.csv"))
evaluation_report = create_evaluation_report(EvalConfig, sp_ratings, precomputed_dict, AVAILABLE_METRICS) evaluation_report = create_evaluation_report(EvalConfig, sp_ratings, precomputed_dict, AVAILABLE_METRICS)
export_evaluation_report(evaluation_report) export_evaluation_report(evaluation_report)
``` ```
%% Output %% Output
Handling model baseline_1 Handling model baseline_1
Training split predictions Training split predictions
- computing metric mae - computing metric mae
- computing metric rmse - computing metric rmse
Training loo predictions Training loo predictions
Training full predictions Training full predictions
Handling model baseline_2 Handling model baseline_2
Training split predictions Training split predictions
- computing metric mae - computing metric mae
- computing metric rmse - computing metric rmse
Training loo predictions Training loo predictions
Training full predictions Training full predictions
Handling model baseline_3 Handling model baseline_3
Training split predictions Training split predictions
- computing metric mae - computing metric mae
- computing metric rmse - computing metric rmse
Training loo predictions Training loo predictions
Training full predictions Training full predictions
Handling model baseline_4 Handling model baseline_4
Training split predictions Training split predictions
- computing metric mae - computing metric mae
- computing metric rmse - computing metric rmse
Training loo predictions Training loo predictions
Training full predictions Training full predictions
The data has been exported to the evaluation report The data has been exported to the evaluation report
mae rmse hit_rate novelty mae rmse hit_rate novelty
baseline_1 1.567221 1.788369 0.074766 99.405607 baseline_1 1.582704 1.804503 0.112150 99.405607
baseline_2 1.502872 1.840696 0.056075 429.942991 baseline_2 1.466382 1.801990 0.009346 429.942991
baseline_3 0.873993 1.076982 0.065421 99.405607 baseline_3 0.881285 1.091226 0.084112 99.405607
baseline_4 0.730657 0.938814 0.186916 57.465421 baseline_4 0.721899 0.910186 0.084112 58.874766
......
0% Chargement en cours ou .
You are about to add 0 people to the discussion. Proceed with caution.
Terminez d'abord l'édition de ce message.
Veuillez vous inscrire ou vous pour commenter