Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
"""Implementation of gSpan."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import copy
import itertools
import time
from .graph import AUTO_EDGE_ID
from .graph import Graph
from .graph import VACANT_GRAPH_ID
from .graph import VACANT_VERTEX_LABEL
def record_timestamp(func):
"""Record timestamp before and after call of `func`."""
def deco(self):
self.timestamps[func.__name__ + '_in'] = time.time()
func(self)
self.timestamps[func.__name__ + '_out'] = time.time()
return deco
class DFSedge(object):
"""DFSedge class."""
def __init__(self, frm, to, vevlb):
"""Initialize DFSedge instance."""
self.frm = frm
self.to = to
self.vevlb = vevlb
def __eq__(self, other):
"""Check equivalence of DFSedge."""
return (self.frm == other.frm and
self.to == other.to and
self.vevlb == other.vevlb)
def __ne__(self, other):
"""Check if not equal."""
return not self.__eq__(other)
def __repr__(self):
"""Represent DFScode in string way."""
return '(frm={}, to={}, vevlb={})'.format(
self.frm, self.to, self.vevlb
)
class DFScode(list):
"""DFScode is a list of DFSedge."""
def __init__(self):
"""Initialize DFScode."""
super().__init__()
self.rmpath = list()
def __eq__(self, other):
"""Check equivalence of DFScode."""
la, lb = len(self), len(other)
if la != lb:
return False
for i in range(la):
if self[i] != other[i]:
return False
return True
def __ne__(self, other):
"""Check if not equal."""
return not self.__eq__(other)
def __repr__(self):
"""Represent DFScode in string way."""
return ''.join(['[', ','.join(
[str(dfsedge) for dfsedge in self]), ']']
)
def push_back(self, frm, to, vevlb):
"""Update DFScode by adding one edge."""
self.append(DFSedge(frm, to, vevlb))
return self
def to_graph(self, gid=VACANT_GRAPH_ID, is_undirected=True):
"""Construct a graph according to the dfs code."""
g = Graph(gid,
is_undirected=is_undirected,
eid_auto_increment=True)
for dfsedge in self:
frm, to, (vlb1, elb, vlb2) = dfsedge.frm, dfsedge.to, dfsedge.vevlb
if vlb1 != VACANT_VERTEX_LABEL:
g.add_vertex(frm, vlb1)
if vlb2 != VACANT_VERTEX_LABEL:
g.add_vertex(to, vlb2)
g.add_edge(AUTO_EDGE_ID, frm, to, elb)
return g
def from_graph(self, g):
"""Build DFScode from graph `g`."""
raise NotImplementedError('Not inplemented yet.')
def build_rmpath(self):
"""Build right most path."""
self.rmpath = list()
old_frm = None
for i in range(len(self) - 1, -1, -1):
dfsedge = self[i]
frm, to = dfsedge.frm, dfsedge.to
if frm < to and (old_frm is None or to == old_frm):
self.rmpath.append(i)
old_frm = frm
return self
def get_num_vertices(self):
"""Return number of vertices in the corresponding graph."""
return len(set(
[dfsedge.frm for dfsedge in self] +
[dfsedge.to for dfsedge in self]
))
class PDFS(object):
"""PDFS class."""
def __init__(self, gid=VACANT_GRAPH_ID, edge=None, prev=None):
"""Initialize PDFS instance."""
self.gid = gid
self.edge = edge
self.prev = prev
class Projected(list):
"""Projected is a list of PDFS.
Each element of Projected is a projection one frequent graph in one
original graph.
"""
def __init__(self):
"""Initialize Projected instance."""
super(Projected, self).__init__()
def push_back(self, gid, edge, prev):
"""Update this Projected instance."""
self.append(PDFS(gid, edge, prev))
return self
class History(object):
"""History class."""
def __init__(self, g, pdfs):
"""Initialize History instance."""
super(History, self).__init__()
self.edges = list()
self.vertices_used = collections.defaultdict(int)
self.edges_used = collections.defaultdict(int)
if pdfs is None:
return
while pdfs:
e = pdfs.edge
self.edges.append(e)
(self.vertices_used[e.frm],
self.vertices_used[e.to],
self.edges_used[e.eid]) = 1, 1, 1
pdfs = pdfs.prev
self.edges = self.edges[::-1]
def has_vertex(self, vid):
"""Check if the vertex with vid exists in the history."""
return self.vertices_used[vid] == 1
def has_edge(self, eid):
"""Check if the edge with eid exists in the history."""
return self.edges_used[eid] == 1
class gSpan(object):
"""`gSpan` algorithm."""
def __init__(self,
task,
min_num_vertices=1,
max_num_vertices=float('inf'),
is_undirected=True,
verbose=False,
visualize=False,
where=False):
"""Initialize gSpan instance."""
self._is_undirected = is_undirected
self._task = task
self._database = task.database
self._min_num_vertices = min_num_vertices
self._max_num_vertices = max_num_vertices
self._DFScode = DFScode()
self._support = 0
self._frequent_size1_subgraphs = list()
# Include subgraphs with
# any num(but >= 2, <= max_num_vertices) of vertices.
self._counter = itertools.count()
self._verbose = verbose
self._visualize = visualize
self._where = where
self.timestamps = dict()
if self._max_num_vertices < self._min_num_vertices:
print('Max number of vertices can not be smaller than '
'min number of that.\n'
'Set max_num_vertices = min_num_vertices.')
self._max_num_vertices = self._min_num_vertices
def time_stats(self):
"""Print stats of time."""
func_names = ['run']
time_deltas = collections.defaultdict(float)
for fn in func_names:
time_deltas[fn] = round(
self.timestamps[fn + '_out'] - self.timestamps[fn + '_in'],
2
)
print('Total:\t{} s'.format(time_deltas['run']))
return self
def _get_gid_subsets(self, projected):
subsets = [[] for _ in self._task.gid_subsets]
gids = set([g.gid for g in projected])
for gid in gids:
subsets[self._gid_subset_ids[gid]].append(gid)
return subsets
@record_timestamp
def run(self):
"""Run the gSpan algorithm."""
root = collections.defaultdict(Projected)
gids = set([gid for gid_subset in self._task.gid_subsets for gid in gid_subset])
self._gid_subset_ids = {}
for i, gid_subset in enumerate(self._task.gid_subsets):
for gid in gid_subset:
self._gid_subset_ids[gid] = i
for gid in gids:
g = self._database._graphs[gid]
for vid, v in g.vertices.items():
edges = self._get_forward_root_edges(g, vid)
for e in edges:
root[(v.vlb, e.elb, g.vertices[e.to].vlb)].append(
PDFS(gid, e, None)
)
for vevlb, projected in root.items():
self._DFScode.append(DFSedge(0, 1, vevlb))
self._subgraph_mining(projected)
self._DFScode.pop()
def _report(self, projected):
self._frequent_subgraphs.append(copy.copy(self._DFScode))
if self._DFScode.get_num_vertices() < self._min_num_vertices:
return
g = self._DFScode.to_graph(gid=next(self._counter),
is_undirected=self._is_undirected)
display_str = g.display()
print('\nSupport: {}'.format(self._support))
if self._visualize:
g.plot()
if self._where:
print('where: {}'.format(list(set([p.gid for p in projected]))))
print('\n-----------------\n')
def print_results(self):
for i, subgraph in enumerate(self._frequent_subgraphs):
g = subgraph.to_graph(gid=next(self._counter),
is_undirected=self._is_undirected)
g.display()
print(self._subgraph_occurrences[i])
def _get_forward_root_edges(self, g, frm):
result = []
v_frm = g.vertices[frm]
for to, e in v_frm.edges.items():
if (not self._is_undirected) or v_frm.vlb <= g.vertices[to].vlb:
result.append(e)
return result
def _get_backward_edge(self, g, e1, e2, history):
if self._is_undirected and e1 == e2:
return None
for to, e in g.vertices[e2.to].edges.items():
if history.has_edge(e.eid) or e.to != e1.frm:
continue
# if reture here, then self._DFScodep[0] != dfs_code_min[0]
# should be checked in _is_min(). or:
if self._is_undirected:
if e1.elb < e.elb or (
e1.elb == e.elb and
g.vertices[e1.to].vlb <= g.vertices[e2.to].vlb):
return e
else:
if g.vertices[e1.frm].vlb < g.vertices[e2.to] or (
g.vertices[e1.frm].vlb == g.vertices[e2.to] and
e1.elb <= e.elb):
return e
# if e1.elb < e.elb or (e1.elb == e.elb and
# g.vertices[e1.to].vlb <= g.vertices[e2.to].vlb):
# return e
return None
def _get_forward_pure_edges(self, g, rm_edge, min_vlb, history):
result = []
for to, e in g.vertices[rm_edge.to].edges.items():
if min_vlb <= g.vertices[e.to].vlb and (
not history.has_vertex(e.to)):
result.append(e)
return result
def _get_forward_rmpath_edges(self, g, rm_edge, min_vlb, history):
result = []
to_vlb = g.vertices[rm_edge.to].vlb
for to, e in g.vertices[rm_edge.frm].edges.items():
new_to_vlb = g.vertices[to].vlb
if (rm_edge.to == e.to or
min_vlb > new_to_vlb or
history.has_vertex(e.to)):
continue
if rm_edge.elb < e.elb or (rm_edge.elb == e.elb and
to_vlb <= new_to_vlb):
result.append(e)
return result
def _is_min(self):
if self._verbose:
print('is_min: checking {}'.format(self._DFScode))
if len(self._DFScode) == 1:
return True
g = self._DFScode.to_graph(gid=VACANT_GRAPH_ID,
is_undirected=self._is_undirected)
dfs_code_min = DFScode()
root = collections.defaultdict(Projected)
for vid, v in g.vertices.items():
edges = self._get_forward_root_edges(g, vid)
for e in edges:
root[(v.vlb, e.elb, g.vertices[e.to].vlb)].append(
PDFS(g.gid, e, None))
min_vevlb = min(root.keys())
dfs_code_min.append(DFSedge(0, 1, min_vevlb))
# No need to check if is min code because of pruning in get_*_edge*.
def project_is_min(projected):
dfs_code_min.build_rmpath()
rmpath = dfs_code_min.rmpath
min_vlb = dfs_code_min[0].vevlb[0]
maxtoc = dfs_code_min[rmpath[0]].to
backward_root = collections.defaultdict(Projected)
flag, newto = False, 0,
end = 0 if self._is_undirected else -1
for i in range(len(rmpath) - 1, end, -1):
if flag:
break
for p in projected:
history = History(g, p)
e = self._get_backward_edge(g,
history.edges[rmpath[i]],
history.edges[rmpath[0]],
history)
if e is not None:
backward_root[e.elb].append(PDFS(g.gid, e, p))
newto = dfs_code_min[rmpath[i]].frm
flag = True
if flag:
backward_min_elb = min(backward_root.keys())
dfs_code_min.append(DFSedge(
maxtoc, newto,
(VACANT_VERTEX_LABEL,
backward_min_elb,
VACANT_VERTEX_LABEL)
))
idx = len(dfs_code_min) - 1
if self._DFScode[idx] != dfs_code_min[idx]:
return False
return project_is_min(backward_root[backward_min_elb])
forward_root = collections.defaultdict(Projected)
flag, newfrm = False, 0
for p in projected:
history = History(g, p)
edges = self._get_forward_pure_edges(g,
history.edges[rmpath[0]],
min_vlb,
history)
if len(edges) > 0:
flag = True
newfrm = maxtoc
for e in edges:
forward_root[
(e.elb, g.vertices[e.to].vlb)
].append(PDFS(g.gid, e, p))
for rmpath_i in rmpath:
if flag:
break
for p in projected:
history = History(g, p)
edges = self._get_forward_rmpath_edges(g,
history.edges[
rmpath_i],
min_vlb,
history)
if len(edges) > 0:
flag = True
newfrm = dfs_code_min[rmpath_i].frm
for e in edges:
forward_root[
(e.elb, g.vertices[e.to].vlb)
].append(PDFS(g.gid, e, p))
if not flag:
return True
forward_min_evlb = min(forward_root.keys())
dfs_code_min.append(DFSedge(
newfrm, maxtoc + 1,
(VACANT_VERTEX_LABEL, forward_min_evlb[0], forward_min_evlb[1]))
)
idx = len(dfs_code_min) - 1
if self._DFScode[idx] != dfs_code_min[idx]:
return False
return project_is_min(forward_root[forward_min_evlb])
res = project_is_min(root[min_vevlb])
return res
def _subgraph_mining(self, projected):
gid_subsets = self._get_gid_subsets(projected)
if self._task.prune(gid_subsets):
return
if not self._is_min():
return
self._task.store(repr(self._DFScode), gid_subsets)
num_vertices = self._DFScode.get_num_vertices()
self._DFScode.build_rmpath()
rmpath = self._DFScode.rmpath
maxtoc = self._DFScode[rmpath[0]].to
min_vlb = self._DFScode[0].vevlb[0]
forward_root = collections.defaultdict(Projected)
backward_root = collections.defaultdict(Projected)
for p in projected:
g = self._database._graphs[p.gid]
history = History(g, p)
# backward
for rmpath_i in rmpath[::-1]:
e = self._get_backward_edge(g,
history.edges[rmpath_i],
history.edges[rmpath[0]],
history)
if e is not None:
backward_root[
(self._DFScode[rmpath_i].frm, e.elb)
].append(PDFS(g.gid, e, p))
# pure forward
if num_vertices >= self._max_num_vertices:
continue
edges = self._get_forward_pure_edges(g,
history.edges[rmpath[0]],
min_vlb,
history)
for e in edges:
forward_root[
(maxtoc, e.elb, g.vertices[e.to].vlb)
].append(PDFS(g.gid, e, p))
# rmpath forward
for rmpath_i in rmpath:
edges = self._get_forward_rmpath_edges(g,
history.edges[rmpath_i],
min_vlb,
history)
for e in edges:
forward_root[
(self._DFScode[rmpath_i].frm,
e.elb, g.vertices[e.to].vlb)
].append(PDFS(g.gid, e, p))
# backward
for to, elb in backward_root:
self._DFScode.append(DFSedge(
maxtoc, to,
(VACANT_VERTEX_LABEL, elb, VACANT_VERTEX_LABEL))
)
self._subgraph_mining(backward_root[(to, elb)])
self._DFScode.pop()
# forward
# No need to check if num_vertices >= self._max_num_vertices.
# Because forward_root has no element.
for frm, elb, vlb2 in forward_root:
self._DFScode.append(DFSedge(
frm, maxtoc + 1,
(VACANT_VERTEX_LABEL, elb, vlb2))
)
self._subgraph_mining(forward_root[(frm, elb, vlb2)])
self._DFScode.pop()
return self