Skip to content
GitLab
Explorer
Connexion
S'inscrire
Navigation principale
Rechercher ou aller à…
Projet
B
bootCI
Gestion
Activité
Membres
Labels
Programmation
Tickets
Tableaux des tickets
Jalons
Wiki
Code
Requêtes de fusion
Dépôt
Branches
Validations
Étiquettes
Graphe du dépôt
Comparer les révisions
Extraits de code
Compilation
Pipelines
Jobs
Planifications de pipeline
Artéfacts
Déploiement
Releases
Registre de conteneur
Registre de modèles
Opération
Environnements
Surveillance
Incidents
Analyse
Données d'analyse des chaînes de valeur
Analyse des contributeurs
Données d'analyse CI/CD
Données d'analyse du dépôt
Expériences du modèle
Aide
Aide
Support
Documentation de GitLab
Comparer les forfaits GitLab
Forum de la communauté
Contribuer à GitLab
Donner votre avis
Conditions générales et politique de confidentialité
Raccourcis clavier
?
Extraits de code
Groupes
Projets
Afficher davantage de fils d'Ariane
RShiny_UCLouvain
bootCI
Validations
15475fe8
Valider
15475fe8
rédigé
5 years ago
par
Eugen Pircalabelu
Parcourir les fichiers
Options
Téléchargements
Correctifs
Plain Diff
Add CHANGELOG
parent
83d8dd6c
Aucune branche associée trouvée
Branches contenant la validation
Aucune étiquette associée trouvée
Aucune requête de fusion associée trouvée
Pipeline
#31
en échec
5 years ago
Étape : build
Étape : test
Modifications
1
Pipelines
1
Masquer les modifications d'espaces
En ligne
Côte à côte
Affichage de
1 fichier modifié
app.R
+416
-0
416 ajouts, 0 suppression
app.R
avec
416 ajouts
et
0 suppression
app.R
0 → 100644
+
416
−
0
Voir le fichier @
15475fe8
###########################################################################
## bootCI Shiny/R app ui.R ##
## ##
## Author Eugen Pircalabelu https://perso.uclouvain.be/eugen.pircalabelu ##
## For RShiny@UCLouvain http://sites.uclouvain.be/rshiny ##
## ##
## Licences : CC-BY for http://sites.uclouvain.be/RShiny ##
## GPL for source code on ##
## https://forge.uclouvain.be/rshiny_uclouvain/bootCI ##
###########################################################################
library
(
shiny
)
library
(
shinyjs
)
library
(
RColorBrewer
)
library
(
shinyWidgets
)
library
(
shinycssloaders
)
library
(
xtable
)
library
(
shinyBS
)
shinyUI
(
fluidPage
(
headerPanel
(
"Non-parametric Bootstrap"
),
sidebarLayout
(
sidebarPanel
(
tags
$
head
(
tags
$
style
(
type
=
"text/css"
,
"label { display: inline; }"
),
tags
$
style
(
type
=
"text/css"
,
'.checkbox input[type="checkbox"],.radio input[type="radio"] { float: none; }'
)
),
HTML
(
"X~Exp(μ) with μ = <br>"
),
numericInput
(
"mu"
,
" "
,
min
=
0
,
max
=
100
,
value
=
50
,
step
=
10
),
HTML
(
"Sample size n = <br>"
),
numericInput
(
"n"
,
""
,
min
=
10
,
max
=
30
,
value
=
10
,
step
=
5
),
actionButton
(
inputId
=
"submit_model"
,
label
=
"Sample"
,
width
=
"150px"
),
hr
(),
HTML
(
"Number of bootstraap resamples B = <br>"
),
numericInput
(
"B"
,
""
,
value
=
25
,
min
=
1
,
max
=
50
,
step
=
1
),
HTML
(
"Results for b-th bootstraap sample where b = <br>"
),
sliderInput
(
"bb"
,
""
,
value
=
1
,
min
=
1
,
max
=
5
,
step
=
1
,
animate
=
T
),
actionButton
(
inputId
=
"refresh"
,
label
=
"Refresh"
,
width
=
"150px"
),
p
(
HTML
(
"<A HREF=\"javascript:history.go(0)\">Click here to restart the experiment</A>"
)),
HTML
(
'<hr style="border:1px solid #ccc;"/>'
),
HTML
(
'<a rel="license" href="http://creativecommons.org/licenses/by/2.0/be/"><img alt="Licence Creative Commons" style="border-width:0"
src="http://i.creativecommons.org/l/by/2.0/be/80x15.png" /></a> Ce(tte) oeuvre de <span xmlns:cc="http://creativecommons.org/ns#"
property="cc:attributionName"> <font face="Courier"> RShiny@UCLouvain </font> </span> est mise à disposition selon les termes de la <a rel="license"
href="http://creativecommons.org/licenses/by/2.0/be/">licence Creative Commons Attribution 2.0 Belgique</a>.'
),
HTML
(
'<p>Détails sur l\'utilisation de cette ressource sur <a href="http://sites.uclouvain.be/RShiny"
target="_blank"><font face="Courier"> RShiny@UCLouvain </font></a><br/>
Code source disponible sur <a href="https://forge.uclouvain.be/rshiny_uclouvain/bootCI" target="_blank">GitLab</a></p>'
)
),
mainPanel
(
plotOutput
(
"Plot"
,
height
=
800
,
width
=
"99%"
)
# fluidRow(withSpinner(
# tableOutput(outputId="res_table")))
)
)
)
)
# Define a server for the Shiny app
function
(
input
,
output
,
session
)
{
# Create values which will contain the changing values
myvalues
<-
reactiveValues
()
values
<-
reactiveValues
(
tx_star_b
=
c
())
values2
<-
reactiveValues
(
sigmax_star_b
=
c
())
values3
<-
reactiveValues
(
tx_star_bMINUStheta_fn
=
c
())
values4
<-
reactiveValues
(
u_star_b
=
c
())
values5
<-
reactiveValues
(
xbar
=
c
())
# Create an empty dataframe (within values) which will contain the generated data
myvalues
$
df
<-
data.frame
(
Low
=
integer
(
0
),
Up
=
numeric
(
0
),
stringsAsFactors
=
FALSE
)
res
<-
reactive
({
mu
=
input
$
mu
n
=
input
$
n
B
=
input
$
B
N
=
20
b
=
input
$
bb
xbar
=
NULL
tx_star_b
=
NULL
sigmax_star_b
=
NULL
u_star_b
=
NULL
tx_star_bMINUStheta_fn
=
NULL
nrow
=
N
;
ncol
=
N
;
lambda
=
1
/
mu
;
p.col
=
c
(
"deepskyblue"
,
"red"
);
p.cex
=
c
(
1
,
3
)
set.seed
(
2018
+
as.numeric
(
input
$
submit_model
))
population
<-
rexp
(
nrow
*
ncol
,
rate
=
lambda
)
population
<-
matrix
(
population
,
nrow
,
ncol
)
par
(
mar
=
c
(
0.5
,
0.5
,
0.5
,
0.5
))
x
=
cbind
(
rep
(
1
:
ncol
,
nrow
),
gl
(
nrow
,
ncol
))
populationIndex
=
cbind
(
rep
(
1
:
ncol
,
nrow
),
gl
(
nrow
,
ncol
))
set.seed
(
2018
+
as.numeric
(
input
$
submit_model
))
myx
=
x
[
sample
(
nrow
*
ncol
,
n
),
]
myxx
=
population
[
myx
]
set.seed
(
2018
+
as.numeric
(
input
$
submit_model
))
originalsampleIndex
=
x
[
sample
(
nrow
*
ncol
,
n
),
]
for
(
b
in
1
:
B
){
set.seed
(
2018
+
b
+
(
B
*
n
*
as.numeric
(
input
$
submit_model
)))
BootSampleIndex
=
sample
(
1
:
n
,
n
,
replace
=
T
)
mypcex
=
rep
(
p.cex
[
2
],
length
(
originalsampleIndex
))
mypcex2
=
seq
(
0
,
100
,
by
=
2
)
freq_vec
=
rep
(
NA
,
length
(
BootSampleIndex
))
mypcex3
=
rep
(
NA
,
length
(
BootSampleIndex
))
for
(
j
in
1
:
length
(
unique
(
BootSampleIndex
))){
mylength
=
length
(
freq_vec
[
which
(
BootSampleIndex
==
unique
(
BootSampleIndex
)[
j
])])
freq_vec
[
which
(
BootSampleIndex
==
unique
(
BootSampleIndex
)[
j
])]
=
1
:
mylength
mypcex3
[
which
(
BootSampleIndex
==
unique
(
BootSampleIndex
)[
j
])]
=
mypcex2
[
1
:
mylength
]
}
mypcex4
=
mypcex
+
mypcex3
mypcex4
BootSampleIndexMatrix
=
originalsampleIndex
[
BootSampleIndex
,
]
BootSample
=
population
[
BootSampleIndexMatrix
]
# cat(file=stderr(), " ", as.numeric(guessInput5()), " ", "\n")
orig.mean
=
mean
(
population
[
originalsampleIndex
])
orig.var
=
var
(
population
[
originalsampleIndex
])
*
((
n
-1
)
/
n
)
# cat(file=stderr(), " ", as.numeric(orig.mean), " ", "\n")
tx_star_b
<-
c
(
tx_star_b
,
mean
(
population
[
BootSampleIndexMatrix
]))
sigmax_star_b
=
c
(
sigmax_star_b
,
sqrt
(
var
(
population
[
BootSampleIndexMatrix
])
*
(
n
-1
)
/
n
))
tx_star_bMINUStheta_fn
=
c
(
tx_star_bMINUStheta_fn
,
mean
(
population
[
BootSampleIndexMatrix
])
-
mean
(
population
[
originalsampleIndex
]))
u_star_b
=
c
(
u_star_b
,
sqrt
(
n
)
*
(
mean
(
population
[
BootSampleIndexMatrix
])
-
mean
(
population
[
originalsampleIndex
]))
/
sqrt
(
var
(
population
[
BootSampleIndexMatrix
])
*
(
n
-1
)
/
n
))
xbar
=
c
(
xbar
,
as.numeric
(
mean
(
BootSample
)))
}
cat
(
file
=
stderr
(),
" "
,
as.numeric
(
tx_star_b
),
" "
,
"\n"
)
CIboot
=
c
(
orig.mean
-
quantile
(
tx_star_bMINUStheta_fn
,
1-0.05
/
2
),
orig.mean
-
quantile
(
tx_star_bMINUStheta_fn
,
0.05
/
2
))
CIboot2
=
c
(
2
*
orig.mean
-
quantile
(
tx_star_b
,
1-0.05
/
2
),
2
*
orig.mean
-
quantile
(
tx_star_b
,
0.05
/
2
))
CItboot
=
c
(
orig.mean
-
sqrt
(
orig.var
)
*
quantile
(
u_star_b
,
1-0.05
/
2
)
/
sqrt
(
n
),
orig.mean
-
sqrt
(
orig.var
)
*
quantile
(
u_star_b
,
0.05
/
2
)
/
sqrt
(
n
))
CIpboot
=
c
(
orig.mean
+
quantile
(
tx_star_bMINUStheta_fn
,
0.05
/
2
),
orig.mean
+
quantile
(
tx_star_bMINUStheta_fn
,
1-0.05
/
2
))
CIasymp
=
c
(
orig.mean
-
qnorm
(
1-0.05
/
2
,
mean
=
0
,
sd
=
sqrt
(
orig.var
))
/
sqrt
(
n
),
orig.mean
-
qnorm
(
0.05
/
2
,
mean
=
0
,
sd
=
sqrt
(
orig.var
))
/
sqrt
(
n
))
return
(
c
(
as.numeric
(
CIboot
[
1
]),
as.numeric
(
CIboot
[
2
]),
as.numeric
(
b
)))
})
newEntry
<-
observe
({
if
(
input
$
submit_model
>=
0
)
{
isolate
(
myvalues
$
df
[
nrow
(
myvalues
$
df
)
+
1
,]
<-
c
(
isolate
(
res
())[
1
],
isolate
(
res
())[
2
])
)}
})
output
$
res_table
<-
renderTable
({
myvalues
$
df
})
observeEvent
(
input
$
refresh
,
{
updateSliderInput
(
session
,
"bb"
,
label
=
""
,
value
=
1
,
min
=
1
,
max
=
input
$
B
,
step
=
1
)
set.seed
(
2018
+
as.numeric
(
input
$
submit_model
))
tx_star_b
=
c
()
sigmax_star_b
=
c
()
tx_star_bMINUStheta_fn
=
c
()
u_star_b
=
c
()
xbar
=
c
()
})
observeEvent
(
input
$
submit_model
,
{
tx_star_b
=
c
()
sigmax_star_b
=
c
()
tx_star_bMINUStheta_fn
=
c
()
u_star_b
=
c
()
xbar
=
c
()
})
# Fill in the spot we created for a plot
output
$
Plot
<-
renderPlot
({
par
(
mfrow
=
c
(
4
,
2
))
mu
=
input
$
mu
n
=
input
$
n
B
=
input
$
B
b
=
input
$
bb
N
=
20
xbar
=
NULL
tx_star_b
=
NULL
sigmax_star_b
=
NULL
u_star_b
=
NULL
tx_star_bMINUStheta_fn
=
NULL
nrow
=
N
;
ncol
=
N
;
lambda
=
1
/
mu
;
p.col
=
c
(
"deepskyblue"
,
"red"
);
p.cex
=
c
(
1
,
3
)
set.seed
(
2018
+
as.numeric
(
input
$
submit_model
))
population
<-
rexp
(
nrow
*
ncol
,
rate
=
lambda
)
population
<-
matrix
(
population
,
nrow
,
ncol
)
par
(
mar
=
c
(
0.5
,
0.5
,
0.5
,
0.5
))
x
=
cbind
(
rep
(
1
:
ncol
,
nrow
),
gl
(
nrow
,
ncol
))
populationIndex
=
cbind
(
rep
(
1
:
ncol
,
nrow
),
gl
(
nrow
,
ncol
))
set.seed
(
2018
+
as.numeric
(
input
$
submit_model
))
myx
=
x
[
sample
(
nrow
*
ncol
,
n
),
]
myxx
=
population
[
myx
]
mycol
<-
NULL
mycol
<-
c
(
mycol
,
"red"
)
mycol
[]
<-
"gray"
mycol
[
1
]
<-
"red"
plot
(
x
,
pch
=
19
,
col
=
"deepskyblue"
,
cex
=
p.cex
[
1
],
axes
=
FALSE
,
ann
=
FALSE
,
xlab
=
""
,
ylab
=
""
,
bty
=
"n"
)
points
(
myx
,
col
=
p.col
[
1
],
pch
=
19
,
cex
=
p.cex
[
1
])
points
(
myx
,
col
=
p.col
[
2
],
cex
=
p.cex
[
2
])
set.seed
(
2018
+
as.numeric
(
input
$
submit_model
))
originalsampleIndex
=
x
[
sample
(
nrow
*
ncol
,
n
),
]
orig.mean
=
mean
(
population
[
originalsampleIndex
])
par
(
mar
=
c
(
0
,
0
,
0
,
0
))
plot
(
x
,
pch
=
19
,
col
=
"white"
,
cex
=
p.cex
[
1
],
axes
=
FALSE
,
ann
=
FALSE
,
xlab
=
""
,
ylab
=
""
,
bty
=
"n"
)
points
(
originalsampleIndex
,
col
=
p.col
[
1
],
pch
=
19
,
cex
=
p.cex
[
1
])
set.seed
(
2018
+
b
+
(
B
*
n
*
as.numeric
(
input
$
submit_model
)))
BootSampleIndex
=
sample
(
1
:
n
,
n
,
replace
=
T
)
mypcex
=
rep
(
p.cex
[
2
],
length
(
originalsampleIndex
))
mypcex2
=
seq
(
0
,
100
,
by
=
2
)
freq_vec
=
rep
(
NA
,
length
(
BootSampleIndex
))
mypcex3
=
rep
(
NA
,
length
(
BootSampleIndex
))
for
(
j
in
1
:
length
(
unique
(
BootSampleIndex
))){
mylength
=
length
(
freq_vec
[
which
(
BootSampleIndex
==
unique
(
BootSampleIndex
)[
j
])])
freq_vec
[
which
(
BootSampleIndex
==
unique
(
BootSampleIndex
)[
j
])]
=
1
:
mylength
mypcex3
[
which
(
BootSampleIndex
==
unique
(
BootSampleIndex
)[
j
])]
=
mypcex2
[
1
:
mylength
]
}
mypcex4
=
mypcex
+
mypcex3
mypcex4
BootSampleIndexMatrix
=
originalsampleIndex
[
BootSampleIndex
,
]
BootSample
=
population
[
BootSampleIndexMatrix
]
points
(
BootSampleIndexMatrix
,
col
=
p.col
[
2
],
cex
=
mypcex4
)
# xb[b,]=BootSample
guessInput
<-
reactive
({
isolate
({
values
$
tx_star_b
<-
c
(
values
$
tx_star_b
,
as.numeric
(
mean
(
population
[
BootSampleIndexMatrix
])))
return
(
values
$
tx_star_b
)
})
})
guessInput2
<-
reactive
({
isolate
({
values2
$
sigmax_star_b
<-
c
(
values2
$
sigmax_star_b
,
as.numeric
(
sqrt
(
var
(
population
[
BootSampleIndexMatrix
])
*
(
n
-1
)
/
n
)))
return
(
values2
$
sigmax_star_b
)
})
})
guessInput3
<-
reactive
({
isolate
({
values3
$
tx_star_bMINUStheta_fn
<-
c
(
values3
$
tx_star_bMINUStheta_fn
,
as.numeric
(
mean
(
population
[
BootSampleIndexMatrix
])
-
mean
(
population
[
originalsampleIndex
])))
return
(
values3
$
tx_star_bMINUStheta_fn
)
})
})
guessInput4
<-
reactive
({
isolate
({
values4
$
u_star_b
<-
c
(
values4
$
u_star_b
,
as.numeric
(
sqrt
(
n
)
*
(
mean
(
population
[
BootSampleIndexMatrix
])
-
mean
(
population
[
originalsampleIndex
]))
/
sqrt
(
var
(
population
[
BootSampleIndexMatrix
])
*
(
n
-1
)
/
n
)))
return
(
values4
$
u_star_b
)
})
})
# cat(file=stderr(), " ", as.numeric(guessInput()), " ", "\n")
# cat(file=stderr(), " ", as.numeric(guessInput2()), " ", "\n")
# cat(file=stderr(), " ", as.numeric(guessInput3()), " ", "\n")
# cat(file=stderr(), " ", as.numeric(guessInput4()), " ", "\n")
tx_star_b
<-
c
(
tx_star_b
,
mean
(
population
[
BootSampleIndexMatrix
]))
sigmax_star_b
=
c
(
sigmax_star_b
,
sqrt
(
var
(
population
[
BootSampleIndexMatrix
])
*
(
n
-1
)
/
n
))
tx_star_bMINUStheta_fn
=
c
(
tx_star_bMINUStheta_fn
,
mean
(
population
[
BootSampleIndexMatrix
])
-
mean
(
population
[
originalsampleIndex
]))
u_star_b
=
c
(
u_star_b
,
sqrt
(
n
)
*
(
mean
(
population
[
BootSampleIndexMatrix
])
-
mean
(
population
[
originalsampleIndex
]))
/
sqrt
(
var
(
population
[
BootSampleIndexMatrix
])
*
(
n
-1
)
/
n
))
mycol2
<-
c
(
rep
(
"gray"
,
length
(
as.numeric
(
guessInput
()))
-1
),
"red"
)
plot
(
0
,
type
=
"n"
,
main
=
""
,
ylab
=
''
,
yaxt
=
'n'
,
xaxt
=
'n'
,
bty
=
'n'
)
plot
(
0
,
type
=
"n"
,
main
=
""
,
ylab
=
''
,
yaxt
=
'n'
,
xaxt
=
'n'
,
bty
=
'n'
)
par
(
mar
=
c
(
2
,
3
,
0
,
1
),
mgp
=
c
(
5
,
1
,
0
))
hist
(
as.numeric
(
guessInput
()),
freq
=
TRUE
,
xlim
=
c
(
0
,
mu
+100
),
main
=
""
,
ylab
=
''
,
xaxt
=
'n'
,
bty
=
'n'
,
cex.axis
=
2
)
points
(
as.numeric
(
guessInput
()),
rep
(
0
,
length
(
as.numeric
(
guessInput
()))),
cex.lab
=
2.2
,
xlim
=
c
(
0
,
mu
+100
),
xlab
=
''
,
ylab
=
''
,
pch
=
17
,
col
=
mycol2
,
cex
=
1.4
,
xaxt
=
'n'
,
bty
=
'n'
)
axis
(
1
,
seq
(
0
,
mu
+100
,
length
=
5
),
cex.axis
=
2
,
tck
=
-.01
)
mtext
(
"Frequency"
,
at
=
-100
,
side
=
1
,
line
=
-22
,
cex
=
2
,
las
=
2
)
points
(
50
,
0
,
cex.lab
=
2.2
,
xlim
=
c
(
1
,
3
),
ylim
=
c
(
0
,
150
),
xlab
=
''
,
ylab
=
''
,
pch
=
15
,
col
=
"blue"
,
cex
=
1.4
,
yaxt
=
'n'
,
xaxt
=
'n'
,
bty
=
'n'
)
points
(
mean
(
population
[
originalsampleIndex
]),
0
,
cex.lab
=
2.2
,
xlim
=
c
(
1
,
3
),
xlab
=
''
,
ylab
=
''
,
pch
=
18
,
col
=
"magenta"
,
cex
=
1.8
,
yaxt
=
'n'
,
xaxt
=
'n'
,
bty
=
'n'
)
points
(
mean
(
as.numeric
(
guessInput
())),
0
,
cex.lab
=
2.2
,
xlim
=
c
(
1
,
3
),
xlab
=
''
,
ylab
=
''
,
pch
=
19
,
col
=
"green"
,
cex
=
1.4
,
yaxt
=
'n'
,
xaxt
=
'n'
,
bty
=
'n'
)
CIboot
=
c
(
orig.mean
-
quantile
(
as.numeric
(
guessInput3
()),
1-0.05
/
2
),
orig.mean
-
quantile
(
as.numeric
(
guessInput3
()),
0.05
/
2
))
plot
(
0
,
type
=
"n"
,
main
=
""
,
ylab
=
''
,
yaxt
=
'n'
,
xaxt
=
'n'
,
bty
=
'n'
)
legend
(
"center"
,
legend
=
c
(
as.expression
(
bquote
(
mu
*
"="
*
.
(
50
))),
as.expression
(
bquote
(
theta
*
"("
*
F
[
n
]
*
")"
*
"="
*
.
(
format
(
mean
(
population
[
originalsampleIndex
]),
digits
=
0
)))),
as.expression
(
bquote
(
T
({{
chi
^
"*("
}
^
.
(
format
(
b
,
digits
=
0
))}
^
")"
)
*
"="
*
.
(
format
(
mean
(
population
[
BootSampleIndexMatrix
]),
digits
=
0
)))),
as.expression
(
bquote
(
T
(
chi
^
"*"
)
*
"="
*
.
(
format
(
mean
(
as.numeric
(
guessInput
())),
digits
=
0
)))),
paste
(
"["
,
round
(
CIboot
[
1
],
2
),
" ; "
,
round
(
CIboot
[
2
],
2
),
"]"
,
sep
=
""
)
),
col
=
c
(
"blue"
,
"magenta"
,
"red"
,
"green"
),
pch
=
c
(
15
,
18
,
17
,
19
,
NA
),
bty
=
"n"
,
cex
=
1.8
)
})
observeEvent
(
input
$
refresh
,
{
updateSliderInput
(
session
,
"bb"
,
label
=
""
,
value
=
1
,
min
=
1
,
max
=
input
$
B
,
step
=
1
)
set.seed
(
2018
+
as.numeric
(
input
$
submit_model
))
values
$
tx_star_b
=
c
()
values2
$
sigmax_star_b
=
c
()
values3
$
tx_star_bMINUStheta_fn
=
c
()
values4
$
u_star_b
=
c
()
values5
$
xbar
=
c
()
})
observeEvent
(
input
$
submit_model
,
{
values
$
tx_star_b
=
c
()
values2
$
sigmax_star_b
=
c
()
values3
$
tx_star_bMINUStheta_fn
=
c
()
values4
$
u_star_b
=
c
()
values5
$
xbar
=
c
()
})
observeEvent
(
input
$
n
,
{
values
$
tx_star_b
=
c
()
values2
$
sigmax_star_b
=
c
()
values3
$
tx_star_bMINUStheta_fn
=
c
()
values4
$
u_star_b
=
c
()
values5
$
xbar
=
c
()
})
observeEvent
(
input
$
B
,
{
updateSliderInput
(
session
,
"bb"
,
label
=
""
,
value
=
1
,
min
=
1
,
max
=
input
$
B
,
step
=
1
)
values
$
tx_star_b
=
c
()
values2
$
sigmax_star_b
=
c
()
values3
$
tx_star_bMINUStheta_fn
=
c
()
values4
$
u_star_b
=
c
()
values5
$
xbar
=
c
()
})
}
Ce diff est replié.
Cliquez pour l'agrandir.
Aperçu
0%
Chargement en cours
Veuillez réessayer
ou
joindre un nouveau fichier
.
Annuler
You are about to add
0
people
to the discussion. Proceed with caution.
Terminez d'abord l'édition de ce message.
Enregistrer le commentaire
Annuler
Veuillez vous
inscrire
ou vous
se connecter
pour commenter