Skip to content
Extraits de code Groupes Projets
server.R 65,7 ko
Newer Older
Alain Guillet's avatar
Alain Guillet a validé
## simpleIC Shiny/R app server.R                                           
##                                                                      
## Author(s) :
## -----------
## J.J.
## Orginal version by Grégoire Vincke http://www.uclouvain.be/gregoire.vincke       
## For Statistical eLearning Tools http://sites.uclouvain.be/selt/      
##                                                                      
## Licences : 
## ---------
## CC-BY for the web page http://sites.uclouvain.be/selt/shiny/testhypic
## see http://creativecommons.org/licenses/by/2.0/be/ for more informations       
##
## GPLv2 for source code on https://github.com/uclouvain-selt/shiny  
## See LICENCE.tx or http://www.gnu.org/licenses/old-licenses/gpl-2.0.html for more informations

Sys.setlocale("LC_ALL", "de_DE.UTF-8")#to be sure that accents in text will be allowed in plots
library(shiny)
library(plotrix)
library(xtable)
library(ggplot2)

debug<-0

color.brown<-rgb(0.5,0.2,0)
color.blue<-rgb(0,0,0.9)
color.true<-rgb(0,0.7,0)
color.false<-rgb(1,0,0,0.9)
oui.color.false<-rgb(0.3,0.3,0.3)
oui.color.true<-rgb(.6,.6,.6)
text.color.false<-rgb(0.2,0.2,0.2)
text.color.true<-rgb(.5,.5,.5)
non.color.true<-rgb(0.8,0.8,0.8)
non.color.false<-rgb(0.93,0.93,0.93)


density.true<-10
density.false<-25

y.delta<-0.1 #factor to set delta between rows of datas in plots

hypoth.text.levels<-c(1,0.7,0.4,0.1)

x.lim.min<-0
x.lim.max<-60
x.amp<-x.lim.max-x.lim.min

# possible values for the mean, cf ui.R mx1, mx0, mx
mu.vec<-c(x.lim.min:x.lim.max)#c(25:75)

shinyServer(function(input, output,session){
  
  rv <- reactiveValues()# Create a reactiveValues object, to let us use settable reactive values
  
  rv$last.takesample.value<-0
  rv$samples.mat<-c() # matrix of all observations, each line one sample
  rv$new.sample<-c() # new matrix of observations, each line one sample
  rv$cv.ls<-list() # calculated values
  
  rv$lastAction <- 'none' # To start out, lastAction == NULL, meaning nothing clicked yet

  # Calculations only needed if one of these values are changed, so observe them
  rv$mx0.c<-0 # hypothesis mean
  rv$mx.c<-0 # population mean
  rv$sx.c<-0 # population deviation
  rv$IC.k.c<-0 # IC length
  rv$typIC.c<-'' # Type 'eCVk' empiric, 'vCVk' variance connue, 'sCVk' variance inconnue
  rv$test.c<-'' # Type '=' bilateral, '<=' unilateral, '=>' unilateral
  # Create all samples new if a change is made in sample size
  rv$n.c<-0 # sample size as in ui
  rv$tn.c<-0 # total numer of samples


  testicPl.choices.ls<- list("Choix" = "false",
                             "Indiquer couverture par les IC" = "cvPl", 
                                 "Indiquer la décision" = "testPl",
                                 "Afficher  % de rejet" = "rejFreqPl")
  
  observe({
      if(input$visM){
          js_string <- '$(".span8").width(500);'
          session$sendCustomMessage(type='jsCode', list(value = js_string))
      }
  })

  # reset option if IC off or Hypotheses off
  observe({
      if(!(input$icPl &&  input$hypPl!="false")){
          updateSelectInput(session, "testicPl","",testicPl.choices.ls, "false")
      }
  })

  # if IC Model with sigma known, show sigma
  observe({
      if(input$CVk == "vCVk"){
          updateCheckboxInput(session, "sigKn",value=TRUE)
      } else {
          updateCheckboxInput(session, "sigKn",value=FALSE)
      }
  })

  
  # if take sample
  observe({
      if (input$takesample != 0) {
          rv$lastAction <- 'takesample'
      }

      })

  # if reset all new
  observe({
      if(input$reset !=0){
          rv$lastAction <- 'reset'
          rv$last.takesample.value<-0

          rv$samples.mat<-c()
          rv$cv.ls<-list()
          rv$mx.c<-0 # population mean
          rv$sx.c<-0 # population deviation
          rv$IC.k.c<-0 # IC length
          rv$typIC.c<-'' # Type 'eCVk' empiric, 'vCVk' variance connue, 'sCVk' variance inconnue
          rv$n.c<-0 # sample size as in ui
          rv$tn.c<-0 # total numer of samples
          updateSliderInput(session, "mx1",value = sample(c(31:35),1))
          updateSliderInput(session, "sx",value = sample(seq(from = 2, to = 3.5, by = 0.5),1))
          updateCheckboxInput(session, "muKn",value=FALSE)
          updateCheckboxInput(session, "sigKn",value=FALSE)
      }
  })


  getSamples<-reactive({#créee n valeurs aléatoires N(0;1) quand input$takesample est implémenté (quand le bouton takesample est pressé)
      if(input$takesample > rv$last.takesample.value && rv$lastAction == "takesample"){
          return(isolate({#Now do the expensive stuff
              rv$new.sample<-matrix(rnorm(input$ns*input$n),ncol=input$n)
              return(TRUE)
          }))
      } else {
          return(FALSE)
      }
  })

  getPlotHeight <- function() {
      if(input$display=="default") {
	unit.height<-250 #cannot be auto because height is already "auto" in ui and double auto = conflict
      }
      if(input$display=="1024") {
	unit.height<-180
      }
      if(input$display=="800") {
	unit.height<-140 #160 for real full page
      }
    return(3*unit.height)
  }
  
  getPlotWidth <- function() {
      if(input$display=="default") {
	full.plot.width<-1310-310#"auto"
      }
      if(input$display=="1024") {
	full.plot.width<-900-310
      }
      if(input$display=="800") {
	full.plot.width<-700-310
      }
      if(input$visM && input$display!="default"){
	full.plot.width<-full.plot.width+310
      }
    return(full.plot.width)
  }
    
  getInputValues<-reactive({
      return(input)#collect all inputs
  })
  
  getComputedValues<-reactive({
      # returns TRUE if new calculations other wise FALSE
      # results hold in rv$cv.ls
      # gives TRUE back if new values calculated otherwise FALSE
      calc.new<-FALSE # we do not want  to calculate all values again
      # did we create new samples?
      sample.new<-getSamples() # if TRUE then append new observations from rv$new.sample
      v<-getInputValues() # get all values of input list
      # check if sample size was changed
      if (v$n != rv$n.c){# if changed create a new observation matrix of correct size
          rv$n.c<-v$n
          if(rv$tn.c>0){
              rv$samples.mat<-matrix(rnorm(rv$tn.c*rv$n.c),ncol=rv$n.c)
          }
          calc.new<-TRUE # we have to calculate all values again
      }
      if(sample.new){#if new observations created, append them
          sample.mat<-mat.or.vec(rv$tn.c + v$ns,v$n)
          if(rv$tn.c>0){
              sample.mat[1:rv$tn.c,]<-rv$samples.mat
          }
          sample.mat[(rv$tn.c+1):(rv$tn.c+v$ns),]<-rv$new.sample
          rv$samples.mat<-sample.mat  # new observations
          rv$tn.c<-length(rv$samples.mat[,1]) # new total number of samples
Alain Guillet's avatar
Alain Guillet a validé
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
          calc.new<-TRUE # we have to calculate all values again
      }
         
      # check if caluations are needed due to parameter changes
      # could be still optimized since a change in rv$IC.k.c does not needs a whole new calcul 
      if (v$mx0 != rv$mx0.c){# hypothesis mean changed
          rv$mx0.c<-v$mx0 # update
          calc.new<-TRUE
      }

      if (v$mx != rv$mx.c){# population mean changed
          rv$mx.c<-v$mx # update
          calc.new<-TRUE
      }

      if (v$sx != rv$sx.c){# population sd changed
          rv$sx.c<-v$sx # update
          calc.new<-TRUE
      }

      if (v$k != rv$IC.k.c){# IC length changed
          rv$IC.k.c<-v$k # update
          calc.new<-TRUE
      }

      if (v$CVk != rv$typIC.c){# type IC  changed
          rv$typIC.c<-v$CVk # update
          calc.new<-TRUE
      }

      if (v$test != rv$test.c){# type test  changed
          rv$test.c<-v$test # update
          calc.new<-TRUE
      }

      # new calulations if new obsarvations or
      if(calc.new){
          cv<-list()#created empty computed values list
          ## Define reality parameters
          cv$vx<-v$sx^2#compute variance of Reality distribution
    
          ## Computation of x y coordinates for Normal curve of Reality
          z<-seq(-5,5,length=100)
          cv$xr<-(z*v$sx)+v$mx #x for Reality
          cv$yr<-dnorm(cv$xr,mean=v$mx,sd=v$sx)#y for Reality
	
        
          ## Computation of sample related values ##
          cv$samples.x.mat<-c() # matrix of observations, each line a sample
          cv$samples.x.m.vec<-c() # vector of mean values, each line a sample
          cv$samples.x.sd.vec<-c() # vector of sd values, each line a sample
          cv$ic.k.limit.mat<-c() # matrix of limits, columns lower and upper bound , lines by sample
          cv$ic.k.inc.allmu.mat<-c() # matrix of TRUE/FALSE if mu in IC columns all mu.vec=c(20:60) and lines by sample 
          cv$pc.ic.k.inc.allmu.vec<-c() # for all mu increment percentage covered by IC
          cv$n.ic.k.inc.allmu.vec<-c() # for all mu increment number covered by IC
        
          cv$n.samples<-rv$tn.c # number of samples
          cv$samples.x.n.toshow<-0
      
          if(cv$n.samples>0){
              cv$samples.x.mat<-mat.or.vec(cv$n.samples,v$n)
              cv$ic.k.limit.mat<-mat.or.vec(cv$n.samples,2)
              cv$vect.n.samples<-c(1:cv$n.samples)
              cv$samples.x.mat<-round((rv$samples.mat*v$sx)+v$mx,2)#Then sample values are compute with mx mean and standard deviation
              ## Computation of descriptives
              cv$samples.x.m.vec<-round(apply(cv$samples.x.mat,1,mean),2)#means of samples
              cv$samples.x.sd.vec<-round(apply(cv$samples.x.mat,1,sd),2)#sds of samples
              ## Computation of confidence intervals for the mean µ ##            
              if(v$CVk == 'vCVk'){#compute the CI limits with k value and known variance
                  cv$ic.k.limit.mat[,1]<-round(cv$samples.x.m.vec-v$k*v$sx*(v$n)^(-.5),2)
                  cv$ic.k.limit.mat[,2]<-round(cv$samples.x.m.vec+v$k*v$sx*(v$n)^(-.5),2)
              }
              if(v$CVk == 'sCVk'){#compute the CI limits with k value and unknown variance
                  cv$ic.k.limit.mat[,1]<-round(cv$samples.x.m.vec-v$k*cv$samples.x.sd.vec*(v$n)^(-.5),2)
                  cv$ic.k.limit.mat[,2]<-round(cv$samples.x.m.vec+v$k*cv$samples.x.sd.vec*(v$n)^(-.5),2)
              }
              if(v$CVk == 'eCVk'){#compute the CI limits with empiric k value 
                  cv$ic.k.limit.mat[,1]<-round(cv$samples.x.m.vec-v$k,2)
                  cv$ic.k.limit.mat[,2]<-round(cv$samples.x.m.vec+v$k,2)
              }

              ## test bilateral vs unilateral
              if(v$test == '='){
                  ## Check for all values in mu.vec if in IC
                  cv$ic.k.inc.allmu.mat<-sapply(mu.vec,function(x){return (cv$ic.k.limit.mat[,1] <=x & x<=cv$ic.k.limit.mat[,2])})
                  ## Check for mx0 if in IC changed for all values in mu.vec
                  cv$ic.k.mu0.inc.allmu.mat<-sapply((-mu.vec+v$mx+v$mx0),function(x){return (cv$ic.k.limit.mat[,1] <=x & x<=cv$ic.k.limit.mat[,2])})
              }
              if(v$test == '<='){
                  ## Check for all values in mu.vec if in IC
                  cv$ic.k.inc.allmu.mat<-sapply(mu.vec,function(x){return (cv$ic.k.limit.mat[,1] <=x)})
                  ## Check for mx0 if in IC changed for all values in mu.vec
                  cv$ic.k.mu0.inc.allmu.mat<-sapply((-mu.vec+v$mx+v$mx0),function(x){return (cv$ic.k.limit.mat[,1] <=x)})
              }
              if(v$test == '=>'){
                  ## Check for all values in mu.vec if in IC
                  cv$ic.k.inc.allmu.mat<-sapply(mu.vec,function(x){return (x<=cv$ic.k.limit.mat[,2])})
                  ## Check for mx0 if in IC changed for all values in mu.vec
                  cv$ic.k.mu0.inc.allmu.mat<-sapply((-mu.vec+v$mx+v$mx0),function(x){return (x<=cv$ic.k.limit.mat[,2])})
              }
              
              ## Calculate for all values in mu.vec frequencies absolute and relative
              cv$n.ic.k.inc.allmu.vec<-apply(matrix(cv$ic.k.inc.allmu.mat,ncol=length(mu.vec)),2,sum)
              cv$pc.ic.k.inc.allmu.vec<-round(cv$n.ic.k.inc.allmu.vec/cv$n.samples,3)*100
              ## Calculate for all values in mu.vec frequencies absolute and relative
              cv$n.ic.k.mu0.inc.allmu.vec<-apply(matrix(cv$ic.k.mu0.inc.allmu.mat,ncol=length(mu.vec)),2,sum)
              cv$pc.ic.k.mu0.inc.allmu.vec<-round(cv$n.ic.k.mu0.inc.allmu.vec/cv$n.samples,3)*100              
              ## Define colors
              cv$ic.k.inc.mu.color.mat<-matrix(ifelse(cv$ic.k.inc.allmu.mat,oui.color.true,oui.color.false),ncol=length(mu.vec))
              cv$ic.k.inc.mu0.color.mat<-matrix(ifelse(cv$ic.k.inc.allmu.mat,color.false,color.true),ncol=length(mu.vec))
              cv$ic.k.inc.mu1.color.mat<-matrix(ifelse(cv$ic.k.inc.allmu.mat,color.true,color.false),ncol=length(mu.vec))
              ## Define subset to plot
              cv$samples.x.from<-1
              if(cv$n.samples>v$nss){
                  cv$samples.x.from<-cv$n.samples-v$nss+1
              }
              cv$samples.x.to<-cv$n.samples
              cv$samples.x.mat.toshow<-matrix(cv$samples.x.mat[cv$samples.x.from:cv$samples.x.to,],ncol=v$n)
              cv$samples.x.m.vec.toshow<-cv$samples.x.m.vec[cv$samples.x.from:cv$samples.x.to]
              cv$samples.x.sd.vec.toshow<-cv$samples.x.sd.vec[cv$samples.x.from:cv$samples.x.to]
              cv$samples.x.i.vec.toshow<-c(cv$samples.x.from:cv$samples.x.to)
              cv$ic.k.limit.mat.toshow<-matrix(cv$ic.k.limit.mat[cv$samples.x.from:cv$samples.x.to,],ncol=2)
              cv$ic.k.inc.allmu.mat.toshow<-matrix(matrix(cv$ic.k.inc.allmu.mat,ncol=length(mu.vec))[cv$samples.x.from:cv$samples.x.to,],ncol=length(mu.vec))
              cv$samples.y.mat.toshow<-c() # plot line by line the values, here corresponding y-values 
              cv$samples.x.n.toshow<-length(cv$samples.x.mat.toshow[,1])
              cv$ic.k.inc.mu.color.vec.toshow<-c() # color the IC for mu
              cv$ic.k.inc.mu0.color.vec.toshow<-c() # color the IC for mu0
              cv$ic.k.inc.mu1.color.vec.toshow<-c() # color the IC for mu1

              if(cv$samples.x.n.toshow>0){
                  cv$samples.y.mat.toshow<-matrix(rep(y.delta/(v$nss+1)*c(1:cv$samples.x.n.toshow),length(cv$samples.x.mat.toshow[1,])),nrow=length(cv$samples.x.mat.toshow[,1]))
                  ##     ## Define colors if IC covers µ or µ0 or µ1
                  cv$ic.k.inc.mu.color.vec.toshow<-cv$ic.k.inc.mu.color.mat[cv$samples.x.from:cv$samples.x.to,v$mx0-mu.vec[1]+1]
                  cv$ic.k.inc.mu0.color.vec.toshow<-cv$ic.k.inc.mu0.color.mat[cv$samples.x.from:cv$samples.x.to,v$mx0-mu.vec[1]+1]
                  cv$ic.k.inc.mu1.color.vec.toshow<-cv$ic.k.inc.mu1.color.mat[cv$samples.x.from:cv$samples.x.to,v$mx0-mu.vec[1]+1]
              }
          }
          rv$cv.ls<-cv # set new values
      }
      
    ## Last takesample value
          rv$last.takesample.value<-v$takesample
    return(calc.new)
  })
    
  output$plotEmp <- renderPlot({
      v<-getInputValues()
      calc.new<-getComputedValues() # TRUE if new values have been calculated
      cv<-rv$cv.ls # holds calculated values
      # if graphic values of parameter are changed without new calculus, so here calculate new values
      if(v$display=="default") {
          cex.samples<-2.2 	#size of text describing samples (2.2)
          cex.param<-3.5 		#size of text of parameter µ µ'', etc (3.5)
          cex.title<-2.2
          y.delta<-0.1 		#factor to set delta between rows of datas in plots
          ic.bar.half.height<-0.004
      }
      if(v$display=="1024") {
          cex.samples<-1.7	#size of text describing samples (2.2)
          cex.param<-2.5		#size of text of parameter µ µ'', etc (3.5)
          cex.title<-1.7
          y.delta<-0.1 		#factor to set delta between rows of datas in plots
          ic.bar.half.height<-0.004
      }
      if(v$display=="800") {
          cex.samples<-1.5		#size of text describing samples (2.2)
          cex.param<-2		#size of text of parameter µ µ'', etc (3.5)
          cex.title<-1.7
          y.delta<-0.1 		#factor to set delta between rows of datas in plots
          ic.bar.half.height<-0.004
      }
      ## Define subset to plot
      if(cv$n.samples>0){
          cv$samples.x.from<-1
          if(cv$n.samples>v$nss){
              cv$samples.x.from<-cv$n.samples-v$nss+1
          }
          cv$samples.x.to<-cv$n.samples
          cv$samples.x.mat.toshow<-matrix(cv$samples.x.mat[cv$samples.x.from:cv$samples.x.to,],ncol=v$n)
          cv$samples.x.m.vec.toshow<-cv$samples.x.m.vec[cv$samples.x.from:cv$samples.x.to]
          cv$samples.x.sd.vec.toshow<-cv$samples.x.sd.vec[cv$samples.x.from:cv$samples.x.to]
          cv$samples.x.i.vec.toshow<-c(cv$samples.x.from:cv$samples.x.to)
          cv$ic.k.limit.mat.toshow<-matrix(cv$ic.k.limit.mat[cv$samples.x.from:cv$samples.x.to,],ncol=2)
          cv$samples.y.mat.toshow<-c() # plot line by line the values, here corresponding y-values 
          cv$samples.x.n.toshow<-length(cv$samples.x.mat.toshow[,1])
          cv$ic.k.inc.mu.color.vec.toshow<-c() # color the IC for mu
          cv$ic.k.inc.mu0.color.vec.toshow<-c() # color the IC for mu0
          cv$ic.k.inc.mu1.color.vec.toshow<-c() # color the IC for mu1
          
          if(cv$samples.x.n.toshow>0){
              cv$samples.y.mat.toshow<-matrix(rep(y.delta/(v$nss+1)*c(1:cv$samples.x.n.toshow),length(cv$samples.x.mat.toshow[1,])),nrow=length(cv$samples.x.mat.toshow[,1]))
              ##     ## Define colors if IC covers µ or µ0 or µ1
              cv$ic.k.inc.mu.color.vec.toshow<-cv$ic.k.inc.mu.color.mat[cv$samples.x.from:cv$samples.x.to,v$mx0-mu.vec[1]+1]
              cv$ic.k.inc.mu0.color.vec.toshow<-cv$ic.k.inc.mu0.color.mat[cv$samples.x.from:cv$samples.x.to,v$mx0-mu.vec[1]+1]
              cv$ic.k.inc.mu1.color.vec.toshow<-cv$ic.k.inc.mu1.color.mat[cv$samples.x.from:cv$samples.x.to,v$mx0-mu.vec[1]+1] #?????
          }
      }

      # color the population mean green if H0 is true otherwise red
      if(v$test == "="){#bilateral
          if(v$mx0 == v$mx){
              color.mx<-color.true
          } else {
              color.mx<-color.false
          }
      }
      if(v$test == "<="){#unilateral
          if(v$mx <= v$mx0){
              color.mx<-color.true
          } else {
              color.mx<-color.false
          }
      }
      if(v$test == "=>"){#unilateral
          if(v$mx0 <= v$mx){
              color.mx<-color.true
          } else {
              color.mx<-color.false
          }
      }
      m<-matrix(c(1,2,3,4,5,6),3,2,byrow=TRUE)
      layout(m,width=c(3,1))
      ##-------------------------------------------    
      ## Plot always Reality ##
      ##-------------------------------------------    
      cv$maxdmx=0.05
      par(mai=c(0.3,0.6,0.5,0))
      label<-""
      if(v$showreality){
          label<-"Density"
      }
      plot(c(0),c(-5),lty=1,lwd=1,col="black",yaxt="n",bty="n",las=1,xaxs="i",yaxs="i",cex.lab=1,cex.axis=1.5,xlim=c(x.lim.min,x.lim.max),ylim=c(0,cv$maxdmx*2.1),xlab="",ylab=label,xaxp=c(x.lim.min,x.lim.max,20),main=bquote(paste("Echantillons prélevés :")),cex.main=cex.title)
      if(debug){
          box(which="outer",lty = 'dotted', col = 'red')
          box(which="figure",lty = 'dotted', col = 'blue')
          box(which="plot",lty = 'dotted', col = 'blue')
      }
      if(cv$samples.x.n.toshow>0){
          for(i in 1:cv$samples.x.n.toshow){
              points(cv$samples.x.mat.toshow[i,],cv$samples.y.mat.toshow[i,],cex=cex.samples*0.8)
              text(cv$samples.x.m.vec.toshow[i],cv$samples.y.mat.toshow[i,1],labels=bquote(bar(x)[.(cv$samples.x.i.vec.toshow[i])]),cex=cex.samples*1.2,col=color.blue)
          }
      }
      
      if(v$showreality){
          axis(2,las=2,yaxp=c(0,signif(cv$maxdmx,1),5),cex.axis=1.2)
          points(cv$xr,cv$yr,type="l")
          text(1,signif(cv$maxdmx,1)*0.75,labels=bquote(paste(N *"~"* ( mu *","* sigma^2 ) ," ", N *"~"* (.(v$mx)*","*.(cv$vx)) ,sep='')),cex=1.4, pos=4)
      }

      if(v$hypPl == "realite"){
          ## Plot true mean only if known
          lines(x<-c(v$mx,v$mx),y <- c(0,cv$maxdmx*1.8),lty=1,lwd=2,col=color.mx)
          text(v$mx,cv$maxdmx*1.95,labels=bquote(mu),cex=cex.param,col=color.mx)
      }
      
      ## empty plot for layout
      par(mai=c(0.3,0,0.5,0))
      plot(c(0,1),c(0,0),col="white",xaxt="n",yaxt="n",xlab="",ylab="",ylim=c(0,cv$maxdmx*2.1),bty="n",las=1)
      if(debug){
          box(which="figure",lty = 'dotted', col = 'blue')
          box(which="plot",lty = 'dotted', col = 'blue')
      }
      if(v$empPl){
          mtext(bquote(paste("Descriptives : ", N == .(cv$n.samples), sep="")),side=1,line=1,at=0.05,adj=0)
          if(cv$samples.x.n.toshow>0){
              for(i in 1:cv$samples.x.n.toshow){
                  text(0,cv$samples.y.mat.toshow[i,1],labels=bquote(paste(bar(x)[.(cv$samples.x.i.vec.toshow[i])] == .(sprintf("%.2f",cv$samples.x.m.vec.toshow[i])),sep="")),cex=cex.samples,col=color.blue,pos=4)
                  text(0.5,cv$samples.y.mat.toshow[i,1],labels=bquote(paste(s[.(cv$samples.x.i.vec.toshow[i])] == .(sprintf("%.2f",cv$samples.x.sd.vec.toshow[i])),sep="")),cex=cex.samples,pos=4)
              }
          }
      }
      
      if(v$icPl || (v$hypPl != "false")){
          ##-------------------------------------------    
          ## Plot IC  or Hyportheis    ##
          ##-------------------------------------------              
          cv$maxdmx=0.05
          par(mai=c(0.3,0.6,0.5,0))
          if(v$icPl && !(v$hypPl != "false")){
              plot(c(0),c(-5),lty=1,lwd=1,col="black",yaxt="n",bty="n",las=1,xaxs="i",yaxs="i",cex.lab=1,cex.axis=1.5,xlim=c(x.lim.min,x.lim.max),ylim=c(0,cv$maxdmx*2.1),ylab="",xlab="",xaxp=c(x.lim.min,x.lim.max,20),main=bquote(paste("Intervalles de confiance:")),cex.main=cex.title)
         }
          
         if(v$hypPl != "false"){
             if(v$test == "="){# bilateral
                 plot(c(0),c(-5),lty=1,lwd=1,col="black",yaxt="n",bty="n",las=1,xaxs="i",yaxs="i",cex.lab=1,cex.axis=1.5,xlim=c(x.lim.min,x.lim.max),ylim=c(0,cv$maxdmx*2.1),ylab="",xlab="",xaxp=c(x.lim.min,x.lim.max,20),main=bquote(paste("Hypothèses ",H[0]," : ",mu," = ",.(v$mx0)," vs ",H[1]," : ",.(v$mx0)," ≠ ",mu,sep="")),cex.main=cex.title)
                 lines(x<-c(x.lim.min,x.lim.max),y<-c(.0025,+.0025),lty=1,lwd=3,col="gray")
                 points(v$mx0,.0025, pch=22,cex=2, col="black",bg="black")
             }
             if(v$test == "<="){#unilateral
                 plot(c(0),c(-5),lty=1,lwd=1,col="black",yaxt="n",bty="n",las=1,xaxs="i",yaxs="i",cex.lab=1,cex.axis=1.5,xlim=c(x.lim.min,x.lim.max),ylim=c(0,cv$maxdmx*2.1),ylab="",xlab="",xaxp=c(x.lim.min,x.lim.max,20),main=bquote(paste("Hypothèses ",H[0]," : ",mu," ≤ ",.(v$mx0)," vs ",H[1]," : ",.(v$mx0)," < ",mu,sep="")),cex.main=cex.title)
                 lines(x<-c(v$mx0,x.lim.max),y<-c(.0025,+.0025),lty=1,lwd=3,col="gray")
                 lines(x<-c(x.lim.min,v$mx0),y<-c(.0025,+.0025),lty=1,lwd=7,col="black")
                 points(v$mx0,.0025, pch=22,cex=2, col="black",bg="black")
             }
             if(v$test == "=>"){#unilateral
                 plot(c(0),c(-5),lty=1,lwd=1,col="black",yaxt="n",bty="n",las=1,xaxs="i",yaxs="i",cex.lab=1,cex.axis=1.5,xlim=c(x.lim.min,x.lim.max),ylim=c(0,cv$maxdmx*2.1),ylab="",xlab="",xaxp=c(x.lim.min,x.lim.max,20),main=bquote(paste("Hypothèses ",H[0]," : ",.(v$mx0)," ≤ ",mu," vs ",H[1]," : ",mu," < ",.(v$mx0),sep="")),cex.main=cex.title)
                 lines(x<-c(x.lim.min,v$mx0),y<-c(.0025,+.0025),lty=1,lwd=3,col="gray")
                 lines(x<-c(v$mx0,x.lim.max),y<-c(.0025,+.0025),lty=1,lwd=7,col="black")
                 points(v$mx0,.0025, pch=22,cex=2, col="black",bg="black")
             }
             if(v$hypPl == "true"){
                  lines(x<-c(v$mx0,v$mx0),y <- c(0,cv$maxdmx*1.8),lty=1,lwd=2,col=oui.color.true)
                  text(v$mx0,cv$maxdmx*1.95,labels=bquote(mu[.0]),cex=cex.param*0.75,col=oui.color.true)
              }
             if(v$hypPl == "realite" && v$mx0 == v$mx){
                 lines(x<-c(v$mx,v$mx),y <- c(0,cv$maxdmx*1.8),lty=1,lwd=2,col=color.mx)
                 text(v$mx,cv$maxdmx*1.95,labels=bquote(paste(mu[0],'=',mu)),cex=cex.param*0.75,col=color.true)
             }
             if(v$hypPl == "realite" && v$mx0 != v$mx){
                 lines(x<-c(v$mx0,v$mx0),y <- c(0,cv$maxdmx*1.8),lty=1,lwd=3,col=oui.color.true)
                 lines(x<-c(v$mx,v$mx),y <- c(0,cv$maxdmx*1.8),lty=1,lwd=3,col=color.mx)               
                 text(v$mx0,cv$maxdmx*1.95,labels=bquote(mu[0]),cex=cex.param,col=oui.color.true)
                 text(v$mx,cv$maxdmx*1.95,labels=bquote(mu),cex=cex.param,col=color.mx) 
             }     
         }
          if(debug){
              box(which="figure",lty = 'dotted', col = 'blue')
              box(which="plot",lty = 'dotted', col = 'blue')
          }
      }
      
      if(v$icPl){
          ##-------------------------------------------    
          ## Plot IC   ##
          ##-------------------------------------------              
          help.color.vec<-ifelse(cv$ic.k.inc.mu0.color.vec.toshow,"black","black")
          if(v$testicPl != "false"){
              if(v$hypPl == "true"){
                  help.color.vec<-cv$ic.k.inc.mu.color.vec.toshow
              }
              if(v$test == "="){#bilateral
                  if(v$hypPl == "realite" && v$mx0 == v$mx){
                      help.color.vec<-cv$ic.k.inc.mu1.color.vec.toshow
                  }
                  if(v$hypPl == "realite" && v$mx0 != v$mx){  
                      help.color.vec<-cv$ic.k.inc.mu0.color.vec.toshow
                  }
              }
              if(v$test == "<="){#unilateral
                  if(v$hypPl == "realite" && v$mx <= v$mx0){
                      help.color.vec<-cv$ic.k.inc.mu1.color.vec.toshow
                  }
                  if(v$hypPl == "realite" && v$mx0 < v$mx){  
                      help.color.vec<-cv$ic.k.inc.mu0.color.vec.toshow
                  }
              }
              if(v$test == "=>"){#unilateral
                  if(v$hypPl == "realite" && v$mx0 <= v$mx){
                      help.color.vec<-cv$ic.k.inc.mu1.color.vec.toshow
                  }
                  if(v$hypPl == "realite" && v$mx < v$mx0){  
                      help.color.vec<-cv$ic.k.inc.mu0.color.vec.toshow
                  }
              }
              
          }
          if(cv$samples.x.n.toshow>0){
              for(i in 1:cv$samples.x.n.toshow){
                  polygon(c(cv$ic.k.limit.mat.toshow[i,1],cv$ic.k.limit.mat.toshow[i,1],cv$ic.k.limit.mat.toshow[i,2],cv$ic.k.limit.mat.toshow[i,2]),c(cv$samples.y.mat.toshow[i,1]-0.0025,cv$samples.y.mat.toshow[i,1]+0.0025,cv$samples.y.mat.toshow[i,1]+0.0025,cv$samples.y.mat.toshow[i,1]-0.0025),col=help.color.vec[i])
                  text(cv$samples.x.m.vec.toshow[i],cv$samples.y.mat.toshow[i,1],labels=bquote(bar(x)[.(cv$samples.x.i.vec.toshow[i])]),cex=cex.samples*1.2,col="blue")
                  lines(x<-c(cv$ic.k.limit.mat.toshow[i,1],cv$samples.x.m.vec.toshow[i]-1),y <- c(cv$samples.y.mat.toshow[i,1],cv$samples.y.mat.toshow[i,1]),lwd=1,lty=2,col="black")
                  lines(x<-c(cv$samples.x.m.vec.toshow[i]+1,cv$ic.k.limit.mat.toshow[i,2]),y <- c(cv$samples.y.mat.toshow[i,1],cv$samples.y.mat.toshow[i,1]),lwd=1,lty=2,col="black")
              }
          }
      }

      if(v$icPl || (v$hypPl != "false")){
          ##-------------------------------------------    
          ## Plot IC  or Hyportheis    ##
          ##-------------------------------------------              
          ## empty plot for layout
          par(mai=c(0.3,0,0.5,0))
          if((v$testicPl == "testPl" ||  v$testicPl == "rejFreqPl") && v$empPl){
                  plot(c(0,1),c(0,0),col="white",xaxt="n",yaxt="n",xlab="",ylab="",ylim=c(0,cv$maxdmx*2.1),bty="n",las=1,main=bquote(paste("Rejet de ",H[0]," ? ",sep="")),cex.main=cex.title)
          } else {
              plot(c(0,1),c(0,0),col="white",xaxt="n",yaxt="n",xlab="",ylab="",ylim=c(0,cv$maxdmx*2.1),bty="n",las=1)
          }
          if(debug){
              box(which="figure",lty = 'dotted', col = 'blue')
              box(which="plot",lty = 'dotted', col = 'blue')
          }
      }
      if(v$empPl && v$icPl){
          if(!v$testicPl == "testPl" || v$testicPl == "rejFreqPl"){
              mtext(bquote(paste("Intervalles : ", N == .(cv$n.samples), sep="")),side=1,line=1,at=0.05,adj=0)
          } else {
              mtext(bquote(paste("Décisions : ", N == .(cv$n.samples), sep="")),side=1,line=1,at=0.05,adj=0)
          }
          if(cv$samples.x.n.toshow>0){
              for(i in 1:cv$samples.x.n.toshow){ 
                  help.color.vec<-ifelse(cv$ic.k.inc.mu0.color.vec.toshow,"black","black")
                  if(v$testicPl != "false"){
                      if(v$hypPl == "true"){
                          help.color.vec<-cv$ic.k.inc.mu.color.vec.toshow
                      }
                      if(v$test == "="){#bilateral
                          if(v$hypPl == "realite" && v$mx == v$mx0){
                              help.color.vec<-cv$ic.k.inc.mu1.color.vec.toshow
                          }
                          if(v$hypPl == "realite" && v$mx != v$mx0){
                              help.color.vec<-cv$ic.k.inc.mu0.color.vec.toshow
                          }
                      }
                      if(v$test == "<="){#unilateral
                          if(v$hypPl == "realite" && v$mx <= v$mx0){
                              help.color.vec<-cv$ic.k.inc.mu1.color.vec.toshow
                          }
                          if(v$hypPl == "realite" && v$mx0 < v$mx){
                              help.color.vec<-cv$ic.k.inc.mu0.color.vec.toshow
                          }
                      }
                      if(v$test == "=>"){#unilateral
                          if(v$hypPl == "realite" && v$mx0 <= v$mx){
                              help.color.vec<-cv$ic.k.inc.mu1.color.vec.toshow
                          }
                          if(v$hypPl == "realite" && v$mx < v$mx0){
                              help.color.vec<-cv$ic.k.inc.mu0.color.vec.toshow
                          }
                      }
                      
                  }
                  if(v$thresholds == "formula"){
                      if(v$CVk == 'eCVk'){
                          if(v$testicPl == "testPl" || v$testicPl == "rejFreqPl"){
                             if(cv$ic.k.inc.allmu.mat.toshow[i,v$mx0-mu.vec[1]+1]){
                                 if(v$test == "="){#bilateral
                                     text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0] %in% group("[",list(bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c,bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c),"]") %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                 }
                                 if(v$test == "<="){#unilateral
                                     text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c<=mu[0] %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                 }
                                 if(v$test == "=>"){#unilateral
                                     text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0]<=bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                 }

                             } else {
                                 if(v$test == "="){#bilateral
                                     text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0] %notin% group("[",list(bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c,bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c),"]") %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                 }
                                 if(v$test == "=>"){#unilateral
                                     text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c<mu[0] %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                 }
                                 if(v$test == "<="){#unilateral
                                     text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0]<bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                 }
 
                             }
                         } else {
                             text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(group("[",list(bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c,bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c),"]"),sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                         }
                      }
                      if(v$CVk == 'vCVk'){
                          if(v$testicPl == "testPl" || v$testicPl == "rejFreqPl"){
                              if(cv$ic.k.inc.allmu.mat.toshow[i,v$mx0-mu.vec[1]+1]){
                                  if(v$test == "="){#bilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0] %in% group("[",list(bar(x)[.(cv$samples.x.i.vec.toshow[i])]%+-%c*'*'*sigma/sqrt(n)),"]") %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c*'*'*sigma/sqrt(n)<=mu[0] %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0]<=bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c*'*'*sigma/sqrt(n) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }                                  
                              } else {
                                  if(v$test == "="){#bilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0]%notin% group("[",list(bar(x)[.(cv$samples.x.i.vec.toshow[i])]%+-%c*'*'*sigma/sqrt(n)),"]") %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c*'*'*sigma/sqrt(n)<mu[0] %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0]<bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c*'*'*sigma/sqrt(n) %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }                                                                    
                              }
                          } else {
                              text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(group("[",list(bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c*'*'*sigma/sqrt(n),bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c*'*'*sigma/sqrt(n)),"]"),sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                          }
                      }
                      if(v$CVk == 'sCVk'){
                          if(v$testicPl == "testPl" || v$testicPl == "rejFreqPl"){
                              if(cv$ic.k.inc.allmu.mat.toshow[i,v$mx0-mu.vec[1]+1]){
                                  if(v$test == "="){#bilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0] %in% group("[",list(bar(x)[.(cv$samples.x.i.vec.toshow[i])]%+-%c*'*'*s[.(cv$samples.x.i.vec.toshow[i])]/sqrt(n)),"]") %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c*'*'*s[.(cv$samples.x.i.vec.toshow[i])]/sqrt(n)<=mu[0] %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0]<=bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c*'*'*s[.(cv$samples.x.i.vec.toshow[i])]/sqrt(n) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }                                  
                              } else {
                                  if(v$test == "="){#bilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0] %notin% group("[",list(bar(x)[.(cv$samples.x.i.vec.toshow[i])]%+-%c*'*'*s[.(cv$samples.x.i.vec.toshow[i])]/sqrt(n)),"]") %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c*'*'*s[.(cv$samples.x.i.vec.toshow[i])]/sqrt(n)<mu[0] %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(mu[0]<bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c*'*'*s[.(cv$samples.x.i.vec.toshow[i])]/sqrt(n) %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }                                                                    
                              }
                          } else {
                              text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(group("[",list(bar(x)[.(cv$samples.x.i.vec.toshow[i])]-c*'*'*s[.(cv$samples.x.i.vec.toshow[i])]/sqrt(n),bar(x)[.(cv$samples.x.i.vec.toshow[i])]+c*'*'*s[.(cv$samples.x.i.vec.toshow[i])]/sqrt(n)),"]"),sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                          }
                      }
                  }
                  if(v$thresholds == "calcul"){
                      if(v$CVk == 'eCVk'){
                          if(v$testicPl == "testPl" || v$testicPl == "rejFreqPl"){
                              if(cv$ic.k.inc.allmu.mat.toshow[i,v$mx0-mu.vec[1]+1]){
                                  if(v$test == "="){#bilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0) %in% group("[",list(.(sprintf("%.2f",cv$samples.x.m.vec.toshow[i]))%+-%.(v$k)),"]") %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(sprintf("%.2f",cv$samples.x.m.vec.toshow[i]))-.(v$k)<=.(v$mx0) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0)<=.(sprintf("%.2f",cv$samples.x.m.vec.toshow[i]))+.(v$k) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }                                  
                              } else {
                                  if(v$test == "="){#bilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0) %notin% group("[",list(.(sprintf("%.2f",cv$samples.x.m.vec.toshow[i]))%+-%.(v$k)),"]") %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(sprintf("%.2f",cv$samples.x.m.vec.toshow[i]))+.(v$k)<.(v$mx0) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0)<.(sprintf("%.2f",cv$samples.x.m.vec.toshow[i]))-.(v$k) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }                                  
                              }
                          } else {
                              text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(group("[",list(.(sprintf("%.2f",cv$samples.x.m.vec.toshow[i]))-.(v$k),.(sprintf("%.2f",cv$samples.x.m.vec.toshow[i]))+.(v$k)),"]"),sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                          }
                      }
                      if(v$CVk == 'vCVk'){
                          if(v$testicPl == "testPl" || v$testicPl == "rejFreqPl"){
                              if(cv$ic.k.inc.allmu.mat.toshow[i,v$mx0-mu.vec[1]+1]){
                                  if(v$test == "="){#bilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0) %in% group("[",list(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))%+-%.(v$k)*'*'*.(v$sx)/.(sprintf("%.1f",v$n^.5))),"]") %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))-.(v$k)*'*'*.(v$sx)/.(sprintf("%.1f",v$n^.5))<=.(v$mx0) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0)<=.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))+.(v$k)*'*'*.(v$sx)/.(sprintf("%.1f",v$n^.5)) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }                                 
                              } else {
                                  if(v$test == "="){#bilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0) %notin% group("[",list(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))%+-%.(v$k)*'*'*.(v$sx)/.(sprintf("%.1f",v$n^.5))),"]") %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))+.(v$k)*'*'*.(v$sx)/.(sprintf("%.1f",v$n^.5))<.(v$mx0) %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0)<.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))-.(v$k)*'*'*.(v$sx)/.(sprintf("%.1f",v$n^.5)) %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                                  }                                                                   
                              }
                          } else {
                              text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(group("[",list(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))%+-%.(v$k)*'*'*.(v$sx)/.(sprintf("%.1f",v$n^.5))),"]"),sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                          }
                      }
                      if(v$CVk == 'sCVk'){
                          if(v$testicPl == "testPl" || v$testicPl == "rejFreqPl"){
                              if(cv$ic.k.inc.allmu.mat.toshow[i,v$mx0-mu.vec[1]+1]){
                                  if(v$test == "="){#bilateral
                                      text(-0.02,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0) %in% group("[",list(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))%+-%.(v$k)*'*'*.(sprintf("%.1f",cv$samples.x.sd.vec.toshow[i]))/.(sprintf("%.1f",v$n^.5))),"]") %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples*.9,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(-0.02,cv$samples.y.mat.toshow[i,1],bquote(paste(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))-.(v$k)*'*'*.(sprintf("%.1f",cv$samples.x.sd.vec.toshow[i]))/.(sprintf("%.1f",v$n^.5))<=.(v$mx0) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples*.9,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(-0.02,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0)<=.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))+.(v$k)*'*'*.(sprintf("%.1f",cv$samples.x.sd.vec.toshow[i]))/.(sprintf("%.1f",v$n^.5)) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples*.9,pos=4)
                                  }
                              } else {
                                  if(v$test == "="){#bilateral
                                      text(-0.02,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0) %notin% group("[",list(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))%+-%.(v$k)*'*'*.(sprintf("%.1f",cv$samples.x.sd.vec.toshow[i]))/.(sprintf("%.1f",v$n^.5))),"]") %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples*.9,pos=4)
                                  }
                                  if(v$test == "=>"){#unilateral
                                      text(-0.02,cv$samples.y.mat.toshow[i,1],bquote(paste(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))+.(v$k)*'*'*.(sprintf("%.1f",cv$samples.x.sd.vec.toshow[i]))/.(sprintf("%.1f",v$n^.5))<.(v$mx0) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples*.9,pos=4)
                                  }
                                  if(v$test == "<="){#unilateral
                                      text(-0.02,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0)<.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))-.(v$k)*'*'*.(sprintf("%.1f",cv$samples.x.sd.vec.toshow[i]))/.(sprintf("%.1f",v$n^.5)) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples*.9,pos=4)
                                  }
                              }
                          } else {
                              text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(group("[",list(.(sprintf("%.1f",cv$samples.x.m.vec.toshow[i]))%+-%.(v$k)*'*'*.(sprintf("%.1f",cv$samples.x.sd.vec.toshow[i]))/.(sprintf("%.1f",v$n^.5))),"]"),sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                          }
                      }
                  }
                  if(v$thresholds == "result"){
                      if(v$testicPl == "testPl" || v$testicPl == "rejFreqPl"){
                          if(cv$ic.k.inc.allmu.mat.toshow[i,v$mx0-mu.vec[1]+1]){
                              if(v$test == "="){#bilateral
                                  text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0) %in% group("[",list(.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,1])),.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,2]))),"]") %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                              }
                              if(v$test == "<="){#unilateral
                                  text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,1]))<=.(v$mx0) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                              }
                              if(v$test == "=>"){#unilateral
                                  text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0)<=.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,2])) %=>% 'Non',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                              }                             
                          } else {
                              if(v$test == "="){#bilateral
                                  text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0) %notin% group("[",list(.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,1])),.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,2]))),"]") %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                              }
                              if(v$test == "=>"){#unilateral
                                  text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,2]))<.(v$mx0) %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                              }
                              if(v$test == "<="){#unilateral
                                  text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(.(v$mx0)<.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,1])) %=>% 'Oui',sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                              }                                                           
                          }
                      } else {                                      
                          text(0,cv$samples.y.mat.toshow[i,1],bquote(paste(group("[",list(.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,1])),.(sprintf("%.2f",cv$ic.k.limit.mat.toshow[i,2]))),"]"),sep="")),las=2,col=help.color.vec[i],cex=cex.samples,pos=4)
                      }
                  }
              }
          }
      }
     


      if(v$icPl && (v$hypPl != "false") && v$testicPl == "rejFreqPl"){
          par(mai=c(0.3,0.6,0.5,0))
          ## Plot only if realité known
          xlab.text<-""
          if(cv$n.samples>0){
              if(v$hypPl == "realite"){
                  includes<-t(matrix(c(100-cv$pc.ic.k.mu0.inc.allmu.vec,cv$pc.ic.k.mu0.inc.allmu.vec),ncol=2))
                  xlab.text<-bquote(paste("Moyenne ",mu," de la population d'origine",sep =" "))
                  my.color.vec<-c(non.color.false,non.color.true)
              } else {
                  includes<-t(matrix(c(100-cv$pc.ic.k.mu0.inc.allmu.vec,cv$pc.ic.k.mu0.inc.allmu.vec),ncol=2))
                  xlab.text<-bquote(paste("Moyenne ",mu[0]," de la Hypothèse ",H[0],sep =" "))
                  my.color.vec<-c("white","white")
              }
          } else {
              includes<-t(matrix(c(rep(0,length(mu.vec)),100-rep(0,length(mu.vec))),ncol=2))
              my.color.vec<-c("white","white")
          }

          if(v$hypPl == "realite"){
              barplot.kH1<-barplot(includes,names.arg=mu.vec,xlab="",ylim=c(0,100),col=my.color.vec,cex.names=1.25,cex.axis=1.5,beside=FALSE,xaxs="i",space=0,yaxt="n",las=2)
              axis(2,las=2,yaxp=c(0,100,2),cex.axis=1.5)#to have las=2 for horizontal labels on y axis
              mtext("%",side=2,line=3,at=50)
              title(main=bquote(paste("% de rejet de ",H[0]," lorsque ",mu," = ",.(v$mx)," est la moyenne de la population d'origine",sep=" ")),cex.main=cex.title)
          } else {
               barplot.kH1<-barplot(includes,names.arg=rep("",length(mu.vec)),xlab="",ylim=c(0,100),col=my.color.vec,cex.names=1.25,cex.axis=1.5,beside=FALSE,xaxs="i",space=0,yaxt="n",las=2,border = NA)
               title(main=bquote(paste("% de rejet de ",H[0],sep=" ")),cex.main=cex.title)
          }
          
          if(debug){
              box(which="figure",lty = 'dotted', col = 'blue')
              box(which="plot",lty = 'dotted', col = 'blue')
          }

                                        #  barplot.kH1 is the vector of positions of th bars which we use next
          if(v$hypPl == "true" && cv$n.samples>0){
           barplot.spp<-barplot(matrix(c(100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=1),col=c(oui.color.false,oui.color.true), add=TRUE,beside=FALSE,space=(barplot.kH1[(v$mx-mu.vec[1]+1)]-0.5),axes=FALSE)
          }
          if(v$test == "="){#bilateral
              if(v$hypPl == "realite" && v$mx0 == v$mx && cv$n.samples>0){
                  barplot.spp<-barplot(matrix(c(100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=1),col=c(color.false,color.true), add=TRUE,beside=FALSE,space=(barplot.kH1[(v$mx-mu.vec[1]+1)]-0.5),axes=FALSE)
              }
              if(v$hypPl == "realite" && v$mx0 != v$mx && cv$n.samples>0){
                  barplot.spp<-barplot(matrix(c(100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=1),col=c(color.true,color.false), add=TRUE,beside=FALSE,space=(barplot.kH1[(v$mx-mu.vec[1]+1)]-0.5),axes=FALSE)
              }
          }
          if(v$test == "<="){#unilateral
              if(v$hypPl == "realite" && v$mx <= v$mx0 && cv$n.samples>0){
                  barplot.spp<-barplot(matrix(c(100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=1),col=c(color.false,color.true), add=TRUE,beside=FALSE,space=(barplot.kH1[(v$mx-mu.vec[1]+1)]-0.5),axes=FALSE)
              }
              if(v$hypPl == "realite" && v$mx0 < v$mx && cv$n.samples>0){
                  barplot.spp<-barplot(matrix(c(100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=1),col=c(color.true,color.false), add=TRUE,beside=FALSE,space=(barplot.kH1[(v$mx-mu.vec[1]+1)]-0.5),axes=FALSE)
              }
          }
          if(v$test == "=>"){#bilateral
              if(v$hypPl == "realite" && v$mx0 <= v$mx && cv$n.samples>0){
                  barplot.spp<-barplot(matrix(c(100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=1),col=c(color.false,color.true), add=TRUE,beside=FALSE,space=(barplot.kH1[(v$mx-mu.vec[1]+1)]-0.5),axes=FALSE)
              }
              if(v$hypPl == "realite" && v$mx < v$mx0 && cv$n.samples>0){
                  barplot.spp<-barplot(matrix(c(100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=1),col=c(color.true,color.false), add=TRUE,beside=FALSE,space=(barplot.kH1[(v$mx-mu.vec[1]+1)]-0.5),axes=FALSE)
              }
          }
          
      }
      
      if((v$hypPl != "false") && v$testicPl == "rejFreqPl" && v$empPl){
          ## empty plot descriptives
          par(mai=c(0.3,0,0.5,0))
          plot(c(0,1),c(0,0),col="white",xaxt="n",yaxt="n",xlab="",ylab="",ylim=c(0,cv$maxdmx*2.1),bty="n",las=1)
	  if(debug){
              box(which="figure",lty = 'dotted', col = 'blue')
              box(which="plot",lty = 'dotted', col = 'blue')
          }
          if(v$hypPl == "true"){
              y.max<-cv$maxdmx*2.              
              text(0.425,y.max*0.8,bquote(paste("Rejettent ",H[0]," ?",sep=" ")),cex=cex.samples)
              text(0.425,y.max*0.6,bquote(paste("n",sep=" ")),cex=cex.samples)
              text(0.675,y.max*0.6,bquote(paste("%",sep=" ")),cex=cex.samples)
              text(0.175,y.max*0.4,"Non",col=text.color.true,cex=cex.samples*0.85)
              text(0.175,y.max*0.2,"Oui",col=text.color.false,cex=cex.samples*0.85)
              if(cv$n.samples>0){
                  ICvsmu0.mat<-matrix(c(cv$n.ic.k.inc.allmu.vec[(v$mx0-mu.vec[1]+1)],cv$n.samples-cv$n.ic.k.inc.allmu.vec[(v$mx0-mu.vec[1]+1)],cv$pc.ic.k.inc.allmu.vec[(v$mx0-mu.vec[1]+1)],100-cv$pc.ic.k.inc.allmu.vec[(v$mx0-mu.vec[1]+1)]),ncol=2)
                  ICvsmu0.mat<-round(ICvsmu0.mat,0)
                  text(0.425,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,1]),sep=" ")),col=text.color.true,cex=cex.samples)
                  text(0.675,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,2]),sep=" ")),col=text.color.true,cex=cex.samples)
                  text(0.425,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,1]),sep=" ")),col=text.color.false,cex=cex.samples)
                  text(0.675,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,2]),sep=" ")),col=text.color.false,cex=cex.samples)
		}
              }
          if(v$test == "<="){#unilateral
              if(v$hypPl == "realite" && v$mx <= v$mx0){
                  y.max<-cv$maxdmx*2.1
                  text(0.425,y.max*0.8,bquote(paste("Rejettent ",H[0],", si ",mu,"=",.(v$mx)," ?",sep=" ")),cex=cex.samples)
                  text(0.425,y.max*0.6,bquote(paste("n",sep=" ")),cex=cex.samples)
                  text(0.675,y.max*0.6,bquote(paste("%",sep=" ")),cex=cex.samples)
                  text(0.175,y.max*0.4,"Non",col=color.true,cex=cex.samples*0.85)
                  text(0.175,y.max*0.2,"Oui",col=color.false,cex=cex.samples*0.85)
                  if(cv$n.samples>0) {
                      ICvsmu0.mat<-matrix(c(cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$n.samples-cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=2)
                      ICvsmu0.mat<-round(ICvsmu0.mat,0)
                      text(0.425,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,1]),sep=" ")),col=color.true,cex=cex.samples)
                      text(0.675,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,2]),sep=" ")),col=color.true,cex=cex.samples)
                      text(0.425,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,1]),sep=" ")),col=color.false,cex=cex.samples)
                      text(0.675,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,2]),sep=" ")),col=color.false,cex=cex.samples)
                  }
              }
              if(v$hypPl == "realite" && v$mx0 < v$mx){
                  y.max<-cv$maxdmx*2.1
                  text(0.425,y.max*0.8,bquote(paste("Rejettent ",H[0],", si ",mu,"=",.(v$mx)," ?",sep=" ")),cex=cex.samples)
                  text(0.425,y.max*0.6,bquote(paste("n",sep=" ")),cex=cex.samples)
                  text(0.675,y.max*0.6,bquote(paste("%",sep=" ")),cex=cex.samples)
                  text(0.175,y.max*0.4,"Non",col=color.false,cex=cex.samples*0.85)
                  text(0.175,y.max*0.2,"Oui",col=color.true,cex=cex.samples*0.85)
                  if(cv$n.samples>0) {
                      ICvsmu0.mat<-matrix(c(cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$n.samples-cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=2)
                      ICvsmu0.mat<-round(ICvsmu0.mat,0)
                      text(0.425,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,1]),sep=" ")),col=color.false,cex=cex.samples)
                      text(0.675,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,2]),sep=" ")),col=color.false,cex=cex.samples)
                      text(0.425,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,1]),sep=" ")),col=color.true,cex=cex.samples)
                      text(0.675,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,2]),sep=" ")),col=color.true,cex=cex.samples)
                  }
              }
          }
          if(v$test == "=>"){#unilateral
              if(v$hypPl == "realite" && v$mx0 <= v$mx){
                  y.max<-cv$maxdmx*2.1
                  text(0.425,y.max*0.8,bquote(paste("Rejettent ",H[0],", si ",mu,"=",.(v$mx)," ?",sep=" ")),cex=cex.samples)
                  text(0.425,y.max*0.6,bquote(paste("n",sep=" ")),cex=cex.samples)
                  text(0.675,y.max*0.6,bquote(paste("%",sep=" ")),cex=cex.samples)
                  text(0.175,y.max*0.4,"Non",col=color.true,cex=cex.samples*0.85)
                  text(0.175,y.max*0.2,"Oui",col=color.false,cex=cex.samples*0.85)
                  if(cv$n.samples>0) {
                      ICvsmu0.mat<-matrix(c(cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$n.samples-cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=2)
                      ICvsmu0.mat<-round(ICvsmu0.mat,0)
                      text(0.425,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,1]),sep=" ")),col=color.true,cex=cex.samples)
                      text(0.675,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,2]),sep=" ")),col=color.true,cex=cex.samples)
                      text(0.425,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,1]),sep=" ")),col=color.false,cex=cex.samples)
                      text(0.675,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,2]),sep=" ")),col=color.false,cex=cex.samples)
                  }
              }
              if(v$hypPl == "realite" && v$mx < v$mx0){
                  y.max<-cv$maxdmx*2.1
                  text(0.425,y.max*0.8,bquote(paste("Rejettent ",H[0],", si ",mu,"=",.(v$mx)," ?",sep=" ")),cex=cex.samples)
                  text(0.425,y.max*0.6,bquote(paste("n",sep=" ")),cex=cex.samples)
                  text(0.675,y.max*0.6,bquote(paste("%",sep=" ")),cex=cex.samples)
                  text(0.175,y.max*0.4,"Non",col=color.false,cex=cex.samples*0.85)
                  text(0.175,y.max*0.2,"Oui",col=color.true,cex=cex.samples*0.85)
                  if(cv$n.samples>0) {
                      ICvsmu0.mat<-matrix(c(cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$n.samples-cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=2)
                      ICvsmu0.mat<-round(ICvsmu0.mat,0)
                      text(0.425,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,1]),sep=" ")),col=color.false,cex=cex.samples)
                      text(0.675,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,2]),sep=" ")),col=color.false,cex=cex.samples)
                      text(0.425,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,1]),sep=" ")),col=color.true,cex=cex.samples)
                      text(0.675,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,2]),sep=" ")),col=color.true,cex=cex.samples)
                  }
              }
          }
          if(v$test == "="){#bilateral
              if(v$hypPl == "realite" && v$mx0 == v$mx){
                  y.max<-cv$maxdmx*2.1
                  text(0.425,y.max*0.8,bquote(paste("Rejettent ",H[0],", si ",mu,"=",.(v$mx)," ?",sep=" ")),cex=cex.samples)
                  text(0.425,y.max*0.6,bquote(paste("n",sep=" ")),cex=cex.samples)
                  text(0.675,y.max*0.6,bquote(paste("%",sep=" ")),cex=cex.samples)
                  text(0.175,y.max*0.4,"Non",col=color.true,cex=cex.samples*0.85)
                  text(0.175,y.max*0.2,"Oui",col=color.false,cex=cex.samples*0.85)
                  if(cv$n.samples>0) {
                      ICvsmu0.mat<-matrix(c(cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$n.samples-cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=2)
                      ICvsmu0.mat<-round(ICvsmu0.mat,0)
                      text(0.425,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,1]),sep=" ")),col=color.true,cex=cex.samples)
                      text(0.675,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,2]),sep=" ")),col=color.true,cex=cex.samples)
                      text(0.425,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,1]),sep=" ")),col=color.false,cex=cex.samples)
                      text(0.675,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,2]),sep=" ")),col=color.false,cex=cex.samples)
                  }
              }
              if(v$hypPl == "realite" && v$mx0 != v$mx){
                  y.max<-cv$maxdmx*2.1
                  text(0.425,y.max*0.8,bquote(paste("Rejettent ",H[0],", si ",mu,"=",.(v$mx)," ?",sep=" ")),cex=cex.samples)
                  text(0.425,y.max*0.6,bquote(paste("n",sep=" ")),cex=cex.samples)
                  text(0.675,y.max*0.6,bquote(paste("%",sep=" ")),cex=cex.samples)
                  text(0.175,y.max*0.4,"Non",col=color.false,cex=cex.samples*0.85)
                  text(0.175,y.max*0.2,"Oui",col=color.true,cex=cex.samples*0.85)
                  if(cv$n.samples>0) {
                      ICvsmu0.mat<-matrix(c(cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$n.samples-cv$n.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)],100-cv$pc.ic.k.mu0.inc.allmu.vec[(v$mx-mu.vec[1]+1)]),ncol=2)
                      ICvsmu0.mat<-round(ICvsmu0.mat,0)
                      text(0.425,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,1]),sep=" ")),col=color.false,cex=cex.samples)
                      text(0.675,y.max*0.4,bquote(paste(.(ICvsmu0.mat[1,2]),sep=" ")),col=color.false,cex=cex.samples)
                      text(0.425,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,1]),sep=" ")),col=color.true,cex=cex.samples)
                      text(0.675,y.max*0.2,bquote(paste(.(ICvsmu0.mat[2,2]),sep=" ")),col=color.true,cex=cex.samples)
                  }
              }
          }
      }
  }, height = getPlotHeight, width=getPlotWidth)

###################################################################
  output$DataTable <- renderTable({
    v<-getInputValues()
    calc.new<-getComputedValues()
    cv<-rv$cv.ls
    ## Transpose the sample list
    if(cv$n.samples>0){
        samples.as.list<-list()
        for(i in 1:cv$n.samples){
            samples.as.list[[i]]<-c(round(cv$samples.x.mat[i,],2),c(""),round(cv$samples.x.m.vec[i],2),round(cv$samples.x.sd.vec[i],2),c(""),round(cv$ic.k.limit.mat[i,1],2),round(cv$ic.k.limit.mat[i,2],2))
        }
        samples.as.matrix<- do.call(rbind,samples.as.list) 
        transposed.samples<-lapply(seq_len(ncol(samples.as.matrix)),function(i) samples.as.matrix[,i]) 
        d<-data.frame(transposed.samples)
        colnames(d)<-c(paste("X",1:v$n,sep="")," ","Moy","Sd"," ","LiICk","LsICk")
        d
    }
  })
  
###################################################################
  output$test1 <- renderText({
    v<-getInputValues()
    calc.new<-getComputedValues()
    cv<-rv$cv.ls
    t<-cv$samples.y.toshow[[1]][1]-0.002
    paste("Tab",input$Tabset,"n inc µo :",cv$n.ic.k.inc.mu0," | N :",cv$n.samples," | takesample : ",input$takesample,rv$last.takesample.value," | Last action : ",rv$lastAction," | Sample.exist :",cv$samples.exist," | sample to show : ",length(cv$samples.x.toshow[[1]])," ",length(cv$samples.y.toshow[[1]])," ",cv$samples.x.from," ",cv$samples.x.to," ",t,sep=" ")
  })
  
  output$test2 <- renderText({
    paste("Tab",input$Tabset,sep=" ")
  })
  
  output$test3 <- renderText({
    paste("Tab",input$Tabset,sep=" ")
  })
  
})