Skip to content
Extraits de code Groupes Projets
Valider 2ef3acd5 rédigé par Adrian Kneip's avatar Adrian Kneip
Parcourir les fichiers

Upload New File

parent 248d7c72
Aucune branche associée trouvée
Aucune étiquette associée trouvée
Aucune requête de fusion associée trouvée
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CIFAR10 small images classification dataset.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from keras import backend as K
from keras.datasets.cifar import load_batch
from keras.utils.data_utils import get_file
from tensorflow.python.util.tf_export import tf_export
#@tf_export('keras.datasets.cifar10.load_data')
def load_data():
"""Loads CIFAR10 dataset.
Returns:
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
"""
dirname = 'cifar-10-batches-py'
origin = './'
#path = get_file(dirname, origin=origin, untar=True)
path = '/export/home/adkneip/Documents/PhD/Python3/IMC_Modeling/qnn/my_datasets/cifar-10-batches-py';
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
fpath = os.path.join(path, 'test_batch')
x_test, y_test = load_batch(fpath)
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
if K.image_data_format() == 'channels_last':
x_train = x_train.transpose(0, 2, 3, 1)
x_test = x_test.transpose(0, 2, 3, 1)
return (x_train, y_train), (x_test, y_test)
0% Chargement en cours ou .
You are about to add 0 people to the discussion. Proceed with caution.
Terminez d'abord l'édition de ce message.
Veuillez vous inscrire ou vous pour commenter